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Abstract

We introduce two pieces of information, denoted memes, into a diffusion process in
which memes are transmitted when individuals meet and forgotten at an exogenous rate.
At most one meme can be transmitted at a meeting, which introduces opportunity costs
in the process. Individuals differ according to which meme they find more interesting,
and that is the one they transmit if they face a choice. We find that both memes survive
under the same parameter values, and that relative interest is the main determinant in the
number of people informed of a meme in the long run. We apply our framework to analyze
the impact of segregation and find that segregation leads to polarization. Segregation also
reduces the overall number of people informed in the long run. Our final set of results
shows that agents are more likely to prefer segregation if their information preferences are
more extreme, if they have few social contacts, or if they prefer a meme that is preferred
by only a small fraction of the population.
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1 Introduction

Since the seminal work of Lazarsfeld et al. (1948) and Katz and Lazarsfeld (1955), the importance

of social networks in the diffusion of information has been well documented. It is less well

known how different pieces of information, or memes,1 interact in this diffusion process. In the

production of news, such as in print or TV media, it is obvious that fixed coverage space is

shared by different news stories.2 In the social diffusion process, a similar constraint is present:

Communication time is limited and has to be shared among everything an individual talks

about. Making use of Twitter data, Leskovec et al. (2009) and Weng et al. (2012) have shown

that the total volume of tweets is roughly constant over time, despite significant variation in the

topics of tweets. In addition, their data shows that (i) at any point in time numerous hashtags

diffuse simultaneously, (ii) there are significant differences in the number of times as hashtag is

retweeted, and (iii) hashtags crowd each other out. Diffusion models of a unique information

are not equipped to explain these patterns.

The present paper introduces a parsimonious diffusion model of multiple memes under a

communication constraint, which reproduces the above patterns. To keep the analysis tractable

and to isolate the effect of limited communication time, we build on a standard diffusion process

with epidemiological roots, the Susceptible-Infected-Susceptible (SIS) framework.3 In the model,

each period each agent randomly meets a subset of other agents. At any meeting, there is a

chance that communication occurs, in which case an informed agent passes a meme on. Agents

forget memes at an exogenous rate. The novelty of our process lies in the existence of two memes.

At each meeting, if communication occurs, each agent can pass on only one meme. Within the

model, the choice of what to talk about is determined by intrinsic information preferences of

agents, capturing the idea that individuals are more likely to talk about things that interest

them more.

Within a mean-field approximation of this process, the literature has established the condi-

tions under which a single meme exhibits a positive steady-state, in which a constant fraction

of the population is informed about it in the long run. In our first main result, we show that

1The Merriam-Webster dictionary defines a meme as “an idea, behavior, style, or usage that spreads from
person to person within a culture”. It therefore provides a meaningful way to talk about pieces or bits of
information.

2Arguments about politicians aiming to “bury” unfavorable news arise from this.
3Within economics, this process has been employed by, e.g., Jackson and Rogers (2007b), López-Pintado

(2008), Jackson and Yariv (2010), and Jackson and López-Pintado (2013), among others.
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the conditions that guarantee existence, uniqueness, and stability of a positive steady-state for

either meme in our model are identical to the ones previously derived. That is, we show that

information is extremely resilient. This result notwithstanding, we are able to rank information

steady-states according to interest: The meme that is preferred by the majority of the popula-

tion will exhibit a higher steady-state. We also show that crowding out of information always

occurs.

The resilience of information occurs in a society in which all agents interact randomly. In-

stead, it is well documented that individuals exhibit homophily, a tendency to interact relatively

more with others that are similar to themselves. We show that segregation according to infor-

mation preferences leads to a segregation of information: Within each group, only the preferred

meme exhibits a positive steady-state. Thus, segregation leads to polarization. Interestingly,

both memes exhibit lower steady-states in a segregated society than in an integrated one, i.e.,

segregation also leads to a loss of information overall.

While segregation implies a loss of information, we find that it increases the fractions of

the population informed about their preferred meme. Given this result, we extend our model

to endow individuals with specific utilities from being informed. In particular, we assume that

being informed with the preferred meme provides a utility flow that is larger than the utility flow

of being informed with the alternative meme. This extension allows us to analyze the factors

that influence the likelihood of segregation, as opposed to focusing only on its impact. In fact,

homophily may arise endogenously in our model. We find that the likelihood of observing a

segregated society is increasing in the extremism of information preferences, and in the relative

size of groups that prefer each meme. Individuals that have more meetings per period are less

likely to prefer segregation, ceteris paribus.

Our paper is part of a growing literature that studies diffusion processes on networks. The

model we introduce is a direct extension of the SIS framework that has been employed by

Jackson and Rogers (2007b), López-Pintado (2008), or Jackson and Yariv (2010), but also

Galeotti and Rogers (2013a), and Galeotti and Rogers (2013b). This literature itself builds on

work on epidemiological models in the natural sciences, such as Bailey et al. (1975), Dodds

and Watts (2004) Pastor-Satorras and Vespignani (2001a,b), Pastor-Satorras and Vespignani

(2002), or Watts (2002).4 The simultaneous diffusion of multiple states in this framework has

4More broadly, the paper is also related to network processes of learning, best response dynamics, or explicit
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been addressed by Beutel et al. (2012), Karrer and Newman (2011), Pathak et al. (2010) and

Prakash et al. (2012). In contrast to the present paper, in these models infection with one

virus/state provides full or partial immunity against the other. Such immunity introduces a

tendency for the more virulent state to be the only one that survives in the population. This

result is in stark contrast to our findings of information resilience. Resilience seems to be

corroborated by the vast array of different topics that diffuse simultaneously on online social

networks. The difference in the results is interesting from a technical point of view, as it

highlights the importance of the stage at which the diffusion constraint is placed (i.e., whether

on the infection or on the transmission likelihood). To the best of our knowledge, our paper is

the first that introduces two distinct pieces of information / memes that compete for limited

communication time into the SIS framework.

Diffusion of competing products or innovations has been analyzed in models of influence

maximization, e.g., by Bharathi et al. (2007), Borodin et al. (2010), Dubey et al. (2006) and

Goyal and Kearns (2012). These models differ significantly from an SIS diffusion process, both

with respect to the modeling characteristics, and the questions that they aim to answer. The

above papers are based on threshold models, in which contagion occurs on a fixed network and

nodes never recover. The central question in this strand of literature is which nodes a player

with a fixed budget would choose to infect to maximize the contagion of his product (in Goyal

and Kearns (2012), the focus is on how the efficiency of a “seeding” strategy depends on the

precise diffusion process and its interaction with the network structure). Similarly to previous

work of the diffusion of multiple states in the SIS model, in these papers being infected with

one product precludes infection with another.

We are also related to the literature that has investigated the impact that homophily

has on information diffusion (e.g., in Granovetter (1973) and Golub and Jackson (2012) ho-

mophily can hinder diffusion), and its potential to lead to polarization (see Baccara and Yariv

(2008), Flaxman et al. (2013), Gentzkow and Shapiro (2011), Rosenblat and Mobius (2004),

or Sunstein (2009)).5 The focus of these studies has been predominantly the impact of biased

news/information consumption, and its potential to lead to polarization. Given the rise in in-

adoption decisions. These processes however differ significantly from the SIS model we employ. See, e.g., Jackson
(2008) or Goyal (2012) for an excellent introduction to the literature.

5In the diffusion of a behavior instead, Jackson and López-Pintado (2013) show that homophily can be
beneficial for adoption.
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ternet usage, an important question is whether this rise might increase segregation and hence

polarization. Gentzkow and Shapiro (2011) and Flaxman et al. (2013) find that online news

consumption is not substantially more segregated than offline consumption of news, providing

an argument against a link between internet usage and polarization. On the other hand, in a

recent paper Halberstam and Knight (2014) investigate homophily among Twitter users, which

is used both as an Online Social Network (OSN) and as a tool to consume news. They find

higher levels of homophily for the social network aspect. Our results on the importance of bi-

ases in social interactions, as opposed to news consumption, complement those of Halberstam

and Knight (2014). Indeed, in our model, we find that polarization occurs even with entirely

unbiased consumption of news. This indicates that the focus of the polarization debate might

need to shift towards online segregation in OSNs, away from online media.

The rest of the paper is organized as follows. Section 2 presents the model and derives

the steady-states of each meme, in particular, our result on information resilience. Section 3

relates the ranking of steady-states to information preferences, and to network characteristics.

Section 4 investigates the impact of homophily and derives the conditions under which agents

themselves wish to segregate according to information interests. Section 5 concludes. Various

proofs are relegated to the Appendix.

2 The Model

2.1 Propagation Mechanism

There exist an infinite number of agents, indexed by i, who represent nodes of a network. Time

is continuous. Meetings between agents signify links, and the degree of agent i, ki, denotes the

number of meetings that agent i has at each point in time. The distribution of degrees is P , such

that P (k) is the probability that a randomly drawn node has degree k. A fraction νa ∈ [0, 1]

of the population belongs to group A and the complement νb = 1 − νa belongs to group B.

The group membership determines informational preferences: There exist two memes, A and

B, and members of group A prefer meme A to meme B, and vice versa.6 With the exception

6We remain largely agnostic as to the exact relationship between A and B. They can be different viewpoints
on the same topic (such as arguments for and against the severity of climate change), different ideological pieces
of information (such as “conservative” vs. “liberal”), or entirely distinct, e.g., a piece of celebrity gossip vs. a

5



of informational preferences, there is no difference between members of the two groups.

Agents can be uninformed of both memes (susceptible, S), or informed of either or both.

Thus, the set of states in which an agent can be is {S, Ia\b, Ib\a, Iab}. If an agent susceptible

to information l ∈ {A,B} gets informed about it at a meeting, or when he forgets information

l ∈ {A,B}, he transitions between states. We denote by ν the rate at which information is

transmitted at a meeting and by δ the rate at which it is forgotten. In line with the previous

literature and the epidemiological roots of the model, we refer to ν as the (per contact) infection

rate and δ as the recovery rate.7

A central assumption is that at each meeting, each agent can communicate at most one

meme, as communication time is limited. We assume that the preferred meme is the one that is

communicated, conditional on communication taking place at all.8 Note that if agents are either

in state Ia\b or Ib\a, their information preferences will not matter for the rate at which they pass

on meme l. In particular, individuals are non-strategic in the way they pass on information.

They neither distort the meme they possess, nor do they strategically choose to not transmit a

meme.9

We model the diffusion of the two memes under the assumption that the network of meetings

is realized every period and we solve for the mean-field approximation of the system. Formally,

we define ρa\b(k), ρb\a(k) and ρab(k) as the proportion of degree-k agents in the three infection

states, Ia\b, Ib\a, and Iab, respectively. We denote the corresponding prevalences in the popu-

lation overall as ρa\b =
∑
k P (k)ρa\b(k), ρb\a =

∑
k P (k)ρb\a(k) and ρab =

∑
k P (k)ρab(k). By

definition, ρa(k) = ρa\b(k)+ρab(k), ρb(k) = ρb\a(k)+ρab(k), and ρ(k) = ρa\b(k)+ρb\a(k)+ρab(k),

with equivalent relationships for overall prevalences.

Given the distribution of degrees, P (k), the probability that a randomly encountered node

has degree k is P̃ (k) = P (k)k
〈k〉 . Denote by νθl the probability that a randomly encountered node

will transmit meme l. Then,

political news item. We exclude only verifiable lies.
7If agents never forgot, all information would eventually be known by everybody, which does not seem to be

a relevant case for many of the memes that diffuse through social interactions. Much of the information that
is transmitted as chit-chat is not immediately pay-off relevant. Such information may be a prime target to be
forgotten under memory limitations.

8Our results will not change if we instead assume that νl is the probability that a single agent in state Iab
passes on information l. This assumption would not allow us to investigate questions of the effect of segregation
according to information preferences.

9For models of strategic information transmission on a network, see, e.g., Galeotti et al. (2013), Hagenbach
and Koessler (2010), or recently Bloch et al. (2014).
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νθa = ν
∑
k

P̃ (k) [ρa(k)− νbρab(k)] , (1)

νθb = ν
∑
k

P̃ (k) [ρb(k)− νaρab(k)] . (2)

For νl ∈ (0, 1) and ρab(k) > 0, this probability is strictly lower than the probability that a

randomly encountered node is informed of meme l.

We assume that the infection rate ν is sufficiently small that it approximates the chance

that a node becomes informed of l through his k independent interactions at t. The rate at

which a susceptible node becomes infected with meme l is then kνθl. Similarly, we assume that

the recovery rate δ is sufficiently small such that δ approximates the probability that an agent

forgets a particular meme at time t.10

We assume that A and B diffuse through the population independently of each other. Knowl-

edge of one does not make knowledge of the other any more or less likely. The propagation

process exhibits a steady-state if the following three differential equations are satisfied,

∂ρa(k)

∂t
= (1− ρa(k))kνθa − ρa(k)δ = 0, (3)

∂ρb(k)

∂t
= (1− ρb(k))kνθb − ρb(k)δ = 0, (4)

∂ρab(k)

∂t
= (ρa(k)− ρab(k))kνθb + (ρb(k)− ρab(k))kνθa − 2ρab(k)δ = 0, (5)

i.e., the proportion of agents who become aware of a meme at t equals the proportion of agents

who forget it.11

10In essence, this assumption implies that at most one information is forgotten at any t. This seems reasonable
for short time intervals. Importantly, as at most one meme can be transmitted per meeting, it ensures that the
setup is not exogenously biased against the “survival” of a meme.

11We assume that δ is the unique rate at which both A and B are forgotten. There are numerous alternative
ways to model forgetting, e.g., the preferred meme might be forgotten at a lower rate, or being aware of multiple
memes increases the rate at which all of them are forgotten. On the other hand, it might also be the complexity
of a meme that is the determining factor in forgetting, something that is entirely exogenous to the model. The
unique value of δ allows us to derive very cleanly the impact that the existence of a second meme has on the
diffusion process, without additional complications.
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2.2 Steady-States

Define λ = ν
δ as the diffusion rate of information. The steady-state conditions of ρa(k), ρb(k),

and ρab(k) can be written as

ρa(k) =
kλθa

1 + kλθa
, (6)

ρb(k) =
kλθb

1 + kλθb
, (7)

ρab(k) =
k2λ2θaθb

(1 + kλθa)(1 + kλθb)
= ρa(k)ρb(k), (8)

and substitution of these conditions into equations (1) and (2) yields:

HA(θa, θb) =
∑
k

P̃ (k)
kλθa

1 + kλθa

[
1− νb

kλθb

1 + kλθb

]
, (9)

HB(θa, θb) =
∑
k

P̃ (k)
kλθb

1 + kλθb

[
1− νa

kλθa

1 + kλθa

]
. (10)

Fixed points such that θa = HA and θb = HB describe the steady-states of θa and θb, which

by equations (6)-(8) determine the steady-states of ρl(k) (and hence ρl). Due to the inherent

symmetry of the model, in the remainder of the paper we focus, without loss of generality, on

the case in which νa ≥ νb.

Remark 1. For any given diffusion rate λ ≥ 0, there exists a steady-state in which θl = ρl(k) =

ρl = 0 for l ∈ {A,B}.

The existence of a steady-state in which nobody is informed is trivial. If the initial conditions

are such that no agent is informed of a meme, nobody ever will be. Questions of interest

concern the existence of a steady-state in which ρl > 0 for either or both l ∈ {A,B}, and its

characteristics. Henceforth we will denote, with slight abuse of notation, by ρl(k) and ρl the

posive steady-state values of meme prevalence.

8



2.3 Existence of Non-zero Steady-States

To analyze the existence of steady-states in which ρl > 0 for either or both l ∈ {A,B}, we adapt

the following definition from López-Pintado (2008).

Definition 1. For each l ∈ {A,B}, let λdl be such that the following two conditions are satisfied

for all λ > λdl :

(i) There exists a positive steady-state for meme l, i.e., a steady-state in which a strictly

positive fraction of the population is informed about it. For all λ ≤ λdl , such a positive

steady-state does not exist for meme l.

(ii) The positive steady-state is globally stable. That is, starting from any strictly positive

fraction of agents informed about l, the dynamics converge to the positive steady-state.

For all λ ≤ λdl , the dynamics converge to a steady-state in which no agent is informed

about l.

We call λdl the diffusion threshold of meme l.12

Furthermore, we are interested in how the diffusion threshold and the prevalence of either

meme compare to the case in which meme l is the unique meme diffusing on the network. We

therefore define the following concepts.

Definition 2. Let λd be the diffusion threshold in case a unique meme diffuses through the

network.

Definition 3. Let ρ̃ denote the positive steady-state of a meme if it is the unique meme that

diffuses through the network, with corresponding θ̃ and ρ̃(k).

We will denote by θ̄l the positive steady-state for θl. For the present diffusion process, it has

been established (see, e.g., López-Pintado (2008) or Jackson (2008) and the references therein)

that λd = 〈k〉
〈k2〉 . We are now in a position to state our first set of results regarding the existence

and stability of positive steady-states for either meme l ∈ {A,B}.

Theorem 1. The diffusion threshold λdl depends on the value of νl:

12López-Pintado (2008) in fact defines a critical threshold above which a positive steady-state exists, and a
diffusion threshold above which this positive steady-state is stable. In the present setting, these two thresholds
always coincide.
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(i) If νl ∈ (0, 1) for each l ∈ {A,B}, then λda = λdb = λd = 〈k〉
〈k2〉 .

(ii) If νl = 0 for either l ∈ {A,B}, there exists no finite value of λdl .

(iii) If νl = 1 for either l ∈ {A,B}, λdl = λd = 〈k〉
〈k2〉 . For λ > λdl , θ̄l = θ̃, ρ(k) = ρ̃(k), and

ρl = ρ̃.

Independent of the value of νl, there exists at most one steady-state in which ρl > 0.

Proof. See Appendix A.

Our result that λdl is identical to λd for all interior values of νl highlights the enormous

resilience of information. Any combination of network structure P (k) and λ that is sufficient

to make a unique meme endemic is also sufficient to make multiple memes endemic, provided

that interest in the population exists. The mechanism underlying this result is best understood

in the epidemiological context of the SIS model. An intuitive and well-established result in

this literature is that an infection exhibits a positive prevalence if and only if each infected

agent spreads the disease, on average, to at least one other agent.13 In the SIS model with one

meme, each node spreads it on average to λ 〈k
2〉
〈k〉 others, which leads to the diffusion threshold

of λd = 〈k〉
〈k2〉 . With multiple memes, not every node aware of a meme will actually pass it on.

Instead, a fraction ν-lρ-l of all nodes aware of l are also aware of −l, and will communicate

−l at a meeting. Thus, each node aware of meme l passes it, on average, to λ(1 − ν-lρ-l)
〈k2〉
〈k〉

others. While this is in general smaller than in the one-meme case, it is equal to unity at the

exact same value of λ: From equations (9) and (10) it can be seen that if λ = 〈k〉
〈k2〉 , the only

possible steady-state is one in which θa = θb = 0, and hence ρa = ρb = 0. At this threshold,

a single infected agent passes a meme on average to exactly one other agent in both the one-

and the multiple-meme models. This result would not hold if ρ-l was an exogenous fraction of

the population that was “immune” to meme l. It holds because the competition that the two

memes impose on each other is endogenously determined through the steady-state of ρab, which

is zero at the diffusion threshold.

Theorem 1 explains why there are such vast amounts of different topics that are being

discussed both offline and on OSNs, such as Twitter. Assume that λ > λd. Then any meme

13In the terminology of epidemiology, the average number of agents to which one agent spreads an infection is
the basic reproduction number.
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that is deemed the most interesting by a positive fraction of the population will survive on

this network, no matter how much of a niche topic it might be. The Theorem also provides

insights into the practice of “burying news”. In the model, media coverage plays the role of

planting the initial seed of information in the population. The prevalence of information is

entirely independent of this. While news might be buried if it is released simultaneously with

other major events, this is the result of differential interest in the population only.

3 Information Prevalence and Network Structure

3.1 Relative Information Prevalence

Theorem 1 shows that the predictions of our model are in line with the observation that many

memes survive simultaneously in a population. The second aspect of communication that has

been highlighted is that memes’ prevalences differ.14 To assess the predictions of our model for

meme prevalence, we need to know the magnitudes of ρl. Ultimately, prevalence of information

l is determined by θ̄l, which is the steady-state rate at which l is talked about if communication

occurs. In general, it is not possible to explicitly solve for θ̄l. Nevertheless, there are a number of

positive results that can be derived regarding relative meme prevalence. Since the zero steady-

states are trivial, we focus for the remainder of the paper on the case in which λ > λd and

θ̄l > 0 for both l ∈ {A,B}. Meme l is the “majority” meme/information if νl > 1/2, i.e., if it is

preferred by the majority of the population.

Proposition 1. Consider a given degree distribution P , finite λ > λd and νl ∈ (0, 1). Then,

(i) θ̄a = νa
νb
θ̄b. That is, θ̄a ≥ θ̄b, ρa(k) ≥ ρb(k), and ρa ≥ ρb if and only if νa ≥ νb, with strict

inequality if νa > νb, and k is finite.

(ii)
ρa\b(k)

ρb\a(k) = θ̄a
θ̄b

. Therefore,
ρa\b
ρb\a

= θ̄a
θ̄b

(iii) ρa(k)
ρb(k) ∈ (1, νaνb ) and ρa

ρb
∈ (1, νaνb ) for all finite k.

Proof. The relation between θ̄a and θ̄b is derived in Appendix A. The ranking of meme steady-

states follows directly from this relation and the fact that ρl(k) is strictly increasing in θl,

14Strictly speaking, what can be measured in OSNs such as Twitter is not a meme’s prevalence (ρl), but rather
the rate at which it is talked about (θl). We will return to this difference later.
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while ρl is increasing in ρl(k). Plugging equations (6) and (7) into
ρa\b(k)

ρb\a(k) = ρa(k)(1−ρb(k))
ρb(k)(1−ρa(k)) and

simplification of the expression yields the second result. The boundaries on the steady-state

ratios are derived in Appendix B.

The result of Proposition 1 is independent of the type of degree distribution P , and inde-

pendent of the diffusion rate λ, or degree k. It shows that relative interest uniquely determines

which meme exhibits a higher prevalence in the long run, independent of any parameters of the

diffusion process, including the network structure.

The relative rate at which meme A as opposed to meme B is communicated, θ̄a
θ̄b

, is entirely

unrelated to characteristics of the network or the diffusion process. It is always constant at νa
νb

.

Clearly, the relative rate at which a node becomes informed about meme l relative to meme −l

from a node in state Iab is constant and equal to νa
νb

. But also the relative frequency with which

a node is encountered that is in state Ia\b as opposed to Ib\a is constant, and independent of a

node’s degree or the network. Thus, relative communication rates, which is what is observed in

data such as Twitter, are determined entirely through relative interest.

While the ratio θ̄a
θ̄b

is always constant, the ratio of meme prevalences, both conditional on k

and overall, is strictly smaller than this. Relative consciousness of information is less pronounced

than relative communication. This is due to the fact that some agents are in state Iab. In fact,

it is ρab(k) that plays a crucial role in our next result.

Proposition 2. For each l ∈ {A,B} and νl ∈ (0, 1), θ̄l, ρl(k), and ρl are strictly increasing in

λ. Furthermore, for νa > νb:

(i) ρa(k)
ρb(k) and ρa

ρb
are strictly decreasing in λ.

(ii) ρa(k)
ρb(k) is strictly decreasing in k.

Proof. See Appendix C.

The fact that all steady-state measures (θ̄l, ρl(k), and ρl), are increasing in λ is unsurprising,

and in line with the one-meme model. The decrease in prevalence ratios in both k and λ is driven

by an increased importance of ρab(k) in each meme’s prevalence. For small values of k and/or

λ, prevalence of either meme is very small, thus making it extremely unlikely that an agent

is in state Iab. Therefore, the system starts from a point in which ρl(k) ≈ ρl\-l(k). Thus, the
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prevalence ratio approximates νa
νb

for small prevalences. Starting from this point, increases in k

or λ initially increase both ρl\-l(k) and ρ-ll(k), and the prevalence ratio becomes less pronounced.

Finally, the system reaches a point where ρl(k) is so large that further increases in k or λ actually

reduce ρl\-l(k). Thus, for very large values of k and/or λ, ρl(k) ≈ ρ-ll(k), and the prevalence ratio

of the two memes approximates unity. This mechanism is illustrated in Figure 1 for the case of

a regular network with 〈k〉 = 3. It shows how ρa, ρb and ρab depend on λ, with νa = 0.8.15
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Figure 1: Steady-state prevalences ρab, ρa\b, and ρb\a as functions of ln(λ), for a regular Network
with 〈k〉 = 3. Size of group A is νa = 0.8.

Through the increased importance of ρab in meme prevalence, any increase in the diffusion

rate λ will increase the prevalence of the minority meme relatively more. We now turn to

investigate how changes in the degree distribution P affect relative meme prevalence.

3.2 Stochastic Dominance and Relative Prevalence

To analyze the impact of the network structure, we focus on the effect of a change in the degree

distribution in the sense of first order stochastic dominance. In particular, the degree distribu-

tions P ′ first order stochastically dominates the distribution P if
∑Y
k=0 P

′(k) ≤
∑Y
k=0 P (k) for

all Y with strict inequality for some Y .

Proposition 3. Let P ′ and P̃ ′ first order stochastically dominate P and P̃ respectively. Let

νl ∈ (0, 1) and λ > λd be finite. Then,

15The results are derived by iteration to solve numerically for θ̄l for various values of λ.
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(i) θ̄′l > θ̄l, ρ
′
l(k) > ρl(k), and ρ′l > ρl for each l ∈ {A,B}.

(ii)
ρ′a(k)
ρ′b(k) <

ρa(k)
ρb(k) and

ρ′a
ρ′b
< ρa

ρb
if and only if νa > νb.

Proof. For a single meme, Theorem 1 in Jackson and Rogers (2007b) proves that the steady-

states of θ, ρ(k), and ρ are increasing in a first order stochastic shift in P and P̃ as H(θ) is

concave and H(1) < 1. In the present model, the same arguments can be applied to H l(θ̄l).

In particular, Appendix A proves concavity of H l(θl) and that H l(1) < 1 for l = A, and by

symmetry the same applies to l = B. The proof of the first point hence follows from Theorem

1 in Jackson and Rogers (2007b).

Appendix B makes use of the fact that θ̄a = νa
νb
θ̄b, to express both ρa(k)

ρb(k) and ρa
ρb

as functions

of θa and the parameters only. From these expressions it is straightforward to show that both

ratios are decreasing in θ̄a if and only if νa > νb. As a first order stochastic dominant change in

the degree distribution implies an increase in θ̄a, the second point follows.

Similarly to Proposition 2, the intuition behind Proposition 3 rests with ρab(k). The change

in P and P̃ to P ′ and P̃ ′ increases ρl(k) and ρl. Hence it also increases ρab(k) and ρab. Since

we know from Proposition 2 that
ρa\b(k)

ρb\a(k) is independent of P , a first order stochastic dominant

shift of the degree distribution implies that relatively more nodes are aware of both memes, as

opposed to only one. This implies that the prevalence ratio under P ′ and P̃ ′ is closer to unity

than under P and P̃ .

Both Proposition 2 and 3 show that any form of improvements in the transmission of infor-

mation are relatively more important for memes that are, ex ante, less likely to be transmitted.

Compared to communication offline, OSNs might be characterized by an increased λ or indeed

a first order stochastic dominant shift in P (allow agents to have more meetings). If so, our

results predict that increased online communication disproportionally benefits the prevalence of

minority memes.

3.3 Crowding Out of Information

The third aspect of information diffusion that is highlighted in the Twitter data of Leskovec

et al. (2009) is the fact that hashtags crowd each other out. This is a direct consequence of
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the facts that overall communication stays roughly constant, while hashtags are retweeted at

different rates.

Unfortunately, without solving explicitly for θ̄l, we cannot derive the exact level of crowding

out. We can, however, establish its existence, and find boundaries on the relation between θ̄l

and θ̃, as we now show.

Proposition 4. For any P , finite λ > λd and νl ∈ (0, 1), crowding out is positive:

θ̄l ∈
(
νlθ̃ ,

νl
1− νlν-l

θ̃

)
.

As θ̃ > θ̄l, it follows that ρ̃(k) > ρl(k) and ρ̃ > ρl.

Proof. See Appendix D.

It is clear from the bounds on θ̄l that νl is a significant determinant in crowding out. This

can be highlighted further by solving numerically for ρ̃ and ρl under different parameter values.

As a measure of crowding out, we use

ρl
ρ̃
.

The distributions we consider are the regular network in which ki = 〈k〉 for all i, and a scale-

free distribution with cumulative distribution function F (k) = 1− k
1+〈k〉
〈k〉 .16 Figure 2 illustrates

the importance of interest (νl), the diffusion rate λ, and the degree distribution P in the extent

of crowding out. In it, we set 〈k〉 = 3.17

As can be seen in Figure 2, crowding out can indeed be substantial. The prevalence of a

meme that is preferred by half of the population might be only two-thirds of its value if it

was the unique meme spreading on the network. For a meme preferred by only 20% of the

population, the prevalence might be as low as 24% of its value if it was the only meme.18

These are significant differences, especially as the preference relation between the two memes

16This distribution is the limit form of the distribution function introduced in Jackson and Rogers (2007a) for
the case where all meetings are network-based. We imposed a minimum degree of 1.

17The figures are based on distribution functions that are adjusted to a maximum degree of 50, and are derived
by iteration to find the fixed points of θ and θl for various values of λ.

18In fact, for both networks in Figure 2 the value of ρl
ρ̃

approaches νl
1−νlν-l

as λ approaches λd. For nub = 0.2,

this is 0.2381, while for νa = 0.8 it is 0.9524 and for νa = νb = 0.5, it is 2/3.
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Figure 2: Ratio of ρl
ρ̃ as a function of νl and λ

is ordinal, i.e., the fact that 80% of the population prefer meme A does not preclude them to

attach importance to meme B.

While in general an increase in λ decreases crowding out, there are scenarios in which it

might also increase crowding out of information, as can be seen in Figure 2b for meme A.

In general, increases in λ have larger impacts the smaller the prevalence (as the prevalence is

bounded above by one). If νa > νb, this implies that for finite λ an increase in λ will increase ρb

relatively more than ρa, and both of them relatively more than ρ̃. Thus, crowding out of either

meme tends to decrease as λ increases. On the other hand, the fact that ρb increases relatively

faster than ρa increases disproportionally the competition that meme A faces. Which can slow

down the increase in ρa relative to ρ̃ enough to reverse the effect of an increase in λ on crowding

out of meme A for a range of λ. The illustration in Figure 2 highlights that the existence of this

effect depends on the exact degree distribution and value of νl.

4 Segregation and Integration

4.1 Information Survival under Segregation

In the preceding analysis, agents of groups A and B interact randomly with each other, irrespec-

tive of group membership. Instead, it is a well-documented fact that individuals have a tendency

to interact relatively more with others that are similar to them, i.e., interaction patterns exhibit
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homophily.19

In the present framework, homophily will determine the likelihood that an individual of

group A meets an individual of group B. In particular, we focus on the difference in meme

prevalence in an integrated society that does not exhibit homphily (groups A and B interact

randomly with each other) as opposed to a segregated society in which all interactions are within

the same group. Our first result arises as a Corollary of Theorem 1.

Corollary 1. Assume that society is segregated according to interest groups. Then, for any

finite λ > λd, the prevalence of meme l among members of group l is ρ̃, while the prevalence of

meme −l in group l is zero.

The implications of Corollary 1 are stark. Independent of the amount of initial media cover-

age (i.e., the “seed” of meme l), the degree distribution P , or the diffusion rate of information

λ, meme B will never exhibit a positive steady-state in group A and vice versa. This in itself

gives credence to the idea that segregation might lead to polarization. There exists no positive

steady-state for ρab, which means that if A and B are two alternative viewpoints on the same

issue, nobody is informed of both views. This occurs even if initial news consumption is en-

tirely unbiased, and does not rely on potential biases in the messages sent, or biased updating

rules. Corollary 1 stresses the importance of biased communication patterns for polarization.

It implies that in investigations into the relationship between increases in internet usage and

polarization, the focus might need to shift away from online consumption of news (such as in

Flaxman et al. (2013), Gentzkow and Shapiro (2011), or Sunstein (2009)), and towards OSNs

(as in Halberstam and Knight (2014)).

While the potential for polarization due to segregation is clearly important, our next result

establishes that the prevalence of either meme is lower in a segregated society than in an

integrated one.

Theorem 2. For νl ∈ (0, 1) and finite λ > λd, the prevalence of meme l is ρl in an integrated

society and it is νlρ̃ in a segregated society. The following holds:

(i) ρl > νlρ̃l; information prevalence is higher in an integrated society. The information loss

due to segregation is larger for meme A than meme B if and only if νa > νb.

19One of the earliest work on this is Lazarsfeld et al. (1954). See also the survey by McPherson et al. (2001).
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(ii) νlρl < νlρ̃; the proportion of the population informed about their preferred meme is higher

in a segregated society.

Proof. The second point is immediate as ρ̃ > ρl. The inequality and ranking of information loss

established in the first point are derived in Appendix E.

To the best of our knowledge, the result that segregation can lead to a decrease in total

prevalence is novel in the literature. It goes beyond the polarizing impact of having no agent

informed about both A and B in the long run. Indeed, if memes A and B are entirely unrelated,

there might not be perceivable benefits of being informed about both simultaneously. Never-

theless, even if segregation does not lead to polarization, it has an impact on information. This

impact falls disproportionally on the prevalence of the majority meme, thus segregation reduces

particularly the steady-state prevalence of information that might be considered mainstream.

The distinction between overall meme prevalence and meme prevalence within each group

is also noteworthy. If, e.g., A is a piece of celebrity gossip and B a piece of political news, the

value that individuals in group A put on being informed about B (and vice versa) might be

limited. That is, while overall information is lost due to segregation, it increases prevalence of

memes among those that attach a higher value to it. This leads us to question under which

conditions agents themselves have incentives to segregate, which we address now.

4.2 Endogenous Segregation

To address the question of endogenous segregation, we need to impose some additional structure

on the utility agents gain from being informed. To keep the analysis as tractable as possible, we

assume that agents derive utility directly from being informed about memes A and/or B. We

assume that an agent in group l receives a flow utility of h while he is informed about meme l

and a flow utility of s while he is informed about meme −l, where h ≥ s ≥ 0. Such utility flows

could arise if agents truly value information in itself, but also if they value it because there is

the possibility that it will be useful at an uncertain, future, date. E.g., agents might value to be

informed not so much because it provides them with any benefit as such, but because there is

a chance that these topics might be discussed in their presence, and not being informed would

brand them as ignorant. Alternatively, the information might pertain to the state of the world

and an agent knows that at an uncertain point in the (distant) future he will have to take an
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action whose payoff depends on the state. In either case, the expected utility of an agent would

be increasing in the amount of time he is informed, which is captured with our parsimonious

utility function. Individual agents then care about ρl(k), which is the time that an agent of

degree k spends being informed about l in steady-state. We also assume that agents care only

about the steady-state values of ρl(k) and ρ-l(k). The utility of an agent with degree k in group

l in an integrated and a segregated society is then

U(k)l|int = ¯ρ(k)lh+ ¯ρ(k)-ls, and (11)

U(k)l|seg = ˜ρ(k)h. (12)

Corollary 2 follows immediately from these utilities and Proposition 2.

Corollary 2. Assume that λ > λd and finite. If h > 0 and s = 0, all agents prefer segregation

over integration. If s = h > 0, all agents prefer integration.

More generally, an agent of group l and degree k prefers a segregated society if

s

h
<
ρ̃(k)− ρl(k)

ρ-l(k)
, (13)

which leads to the following result.

Proposition 5. For all νl ∈ (0, 1) and finite λ > λd, a decrease in s
h makes it more likely that

a segregated society will emerge.

Proof. Immediate from equation (13).

I.e., the more extreme information preferences are, the more likely it is that a society seg-

regates. We state Proposition 5 as a likelihood that segregation occurs, as the exact value of s
h

at which agents are indifferent between segregation and integration depends on the values of k,

νl, λ, and P , all of which influence the right-hand side of equation (13). Let ml(k) ≡ ρ̃(k)−ρl(k)
ρ-l(k)

denote this right-hand side. The larger ml(k), the broader is the range of s
h for which an agent

prefers a segregated society. In this sense, large values of ml(k) imply that it is more likely for

segregation to emerge.20

20We have to be careful in how the “emergence” of a particular type of society is interpreted. Starting from
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As an illustration, Figure 3 depicts ml(1) for the regular and scale-free distributions we

employed before.
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(a) Regular Network, k = 〈k〉 = 1

0 2 4 6 8
0

0.2

0.4

0.6

0.8

ln(λ)
m
l(

1
)

l=B, νB=0.2
l=A=B, νA=0.5
l=A, νA=0.8

(b) Scale-free Network, k = 〈k〉 = 1

Figure 3: ml(1) for a regular and a scale-free network, both with 〈k〉 = 1, as a function of νl
and λ

Similarly to crowding out, increases in λ predominantly decrease ml(1), thus favoring inte-

gration. In the case of a regular degree distribution, in fact, it is possible to derive the result

that increases in λ always decrease ml(k). This is not the case for any distribution P , though,

as Figure 3b shows.21 It is obvious that the minimum value of s
h for which for both groups

s
h > ml(1) is found for νa = νb = 0.5. In this sense, segregation is driven by the minority group.

Given a value of s
h , the smaller the size of a group that prefers a meme, the more likely that at

least some agents from this group will prefer segregation to integration. In fact, we are able to

state the following positive results.

Theorem 3. For all finite λ > λd,

• ml(k) is decreasing in k for each l ∈ {A,B}. The higher an agents’ degree, the broader is

the range of s
h for which he prefers an integrated society.

• ma(k) < mb(k) if and only if νa > νb. Conditional on degree, an agent that belongs to the

minority group prefers an integrated society for a smaller range of s
h .

one type of society, no individual agent could unilaterally change this type. However, if all agents of a certain
type would have a higher utility in a segregated society, they would benefit from collectively forming a segregated
group.

21The initial increase in ml(k) for the scale-free distribution is not independent of k either. For example, for
the distribution in Figure 3b, it disappears for values of k ≥ 8.
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Proof. See Appendix F.

Theorem 3 shows that for a fixed value of information preferences, segregation is always

more likely to be chosen by members of the minority group, and/or by agents that have fewer

meetings per period. With the exception of a regular network, in which all agents have the

same degree, segregation must not be complete. For a given P , denote by kmin and kmax the

minimum and maximum degree of the distribution respectively. Then it is the case that:

• All agents of group l prefer segregation if s
h < ml(k

max).

• All agents of group l prefer integration if s
h > ml(kmin).

• If ml(k
max) < s

h < ml(kmin), then group-l agents with degrees up to k∗ prefer segregation,

while agents with degrees above k∗ prefer integration, ceteris paribus.

As limk→∞ml(k) = 0, the first bullet point implies that for unbounded P , segregation is

preferred by all agents of group l only if s = 0. Note that the ceteris paribus assumption invoked

in the last point does not hold. A collective segregation of all agents with k < k∗ would change

the degree distribution of the segregated group relative to the integrated group, thus changing

the value of ml(k) for all k. In particular, the original degree distribution P would first order

dominate the distribution PS among the segregated agents, while the distribution P I among the

integrated agents would first order dominate P . This would make integration more attractive.

If νa 6= νb, there are additional impacts as k∗a 6= k∗b . This implies that among those agents in

the integrated group, the likelihood to meet an agent of group l will no longer be equal to νl.

An unambiguous result that is obtained from Theorem 3 is that equal group sizes maximize the

likelihood that full integration is observed, as depicted in Figure 3.

Our model finds that increased popularity of OSNs can lead to polarization as they offer

increased opportunity to segregate. The results of Proposition 5 and Theorem 3 highlight that

this opportunity is more likely to be taken up by agents that (i) are particularly interested in

niche or very specialized pieces of information (small νl), (ii) are extreme in their valuation of

information (small s
h ), and/or (iii) are comparatively “anti-social”, in the sense that they have

few meetings per period (small k). On the other hand, as our illustration in Figure 3 shows, if

OSNs imply an increase in λ (as an improvement in communication technology), it is possible

that they reduce the attractiveness of segregation.
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5 Conclusion

In the present paper, we have introduced communication constraints into a standard SIS dif-

fusion model: While two memes diffuse simultaneously on the network, at each meeting an

agent can pass on at most one of these memes. The choice of which meme to pass on is driven

by intrinsic preferences, and agents can be grouped according to which meme they prefer. In

essence, the existence of communication constraints introduce opportunity costs in the diffusion

process. To the best of our knowledge, communication costs of any type have not before been

analyzed in a SIS framework.

We find that our parsimonious model is in line with stylized communication patterns found in

Twitter data, such as differences in prevalences and crowding out. Most importantly, our model

predicts that information is resilient, in the sense that the conditions under which a unique

meme exhibits a positive steady-state are identical to the conditions under which both memes

exhibit positive steady-states. Thus, it provides a rationalization for why so many different

topics are discussed simultaneously.

When we allow for segregated interactions among agents, we find that segregation leads to

polarization, a loss of information overall, but an increase in the fraction of agents informed

of their preferred meme. We extend our model by introducing explicit utility flows from being

informed, which allows us to investigate the factors that drive segregation. We find that ex-

tremism of information preferences and low number of meetings increase the extent/likelihood of

segregation. The larger the size of the group that prefers a meme, the smaller are the incentives

for agents of this group to segregate.

We believe that our results relating to the impact (and the causes) of segregation are of

particular interest when applied to the rise of Online Social Networks. Much information that

diffuses on these is casual chit-chat, which we think is well captured by our model. It is a strong

result that even without biased messages or news consumption, non-preferred information has

no chance of surviving in a segregated group. The consequence, from a policy perspective, is

that campaigns to introduce “competing” information into segregated groups will not have any

long term impact, only a reduction of segregation will. The additional potential harm that

segregation causes in our model is the loss of information.

Our model is kept deliberately simple to highlight the impact of opportunity costs in the
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diffusion of information. There are a number of extensions that we believe would be promising

areas of future research. One of these would be to consider the diffusion process on a fixed

network. Although this promises to be an interesting extension, it is of substantial complexity.

Another promising area is the question of how individuals choose which information to commu-

nicate. While we believe our assumption to link this to intrinsic preferences is a valid starting

point, there are numerous other factors that might contribute to this decision. It might, e.g.,

depend on how likely it is that the information is “news” to the other party. Alternatively,

forgetting is a complex matter, and might depend on preferences, or the number of memes an

agent has been exposed to. We believe that these are interesting aspects of the diffusion process

that deserve closer attention.
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A Proof of Theorem 1

The proof of Theorem 1 proceeds in two steps. First, we proof existence and uniqueness of a
positive steady-state for θl. Uniqueness and existence of θl > 0 translates into uniqueness and
existence of ρl(k) > 0 and ρl > 0. Then, we derive the conditions under which this steady-state
of θl is asymptotically stable. Due to the symmetry of memes A and B, we can change the
labels of the information to apply any arguments that we make about A also for B. We will
therefore prove proposition 1 for meme A, without loss of generality.

Re-arranging of equations (1) and (2) under the condition that θl > 0, implies that at the
positive steady-states, the following holds,

1 =
∑
k

P̃ (k)
kλ

(1 + kλθa)(1 + kλθb)
(1 + νakλθb), (14)

1 =
∑
k

P̃ (k)
kλ

(1 + kλθa)(1 + kλθb)
(1 + νbkλθa). (15)

It is immediate that if νa = 1, the steady-state condition for θa in equation (14) is identical
to the condition when A is the only information on the network. López-Pintado (2008) has
proven existence, uniqueness, and stability of the steady-state in this case. Furthermore, if θa is
equal to the value it would take if A was the only meme, there is no θb > 0 that solves equation
(15) as well as (14). This completes the proof for existence, uniqueness and stability of a positive
steady-state for θa if νa = 1, as well as the non-existence of a positive steady-state if nua = 0.

Equations (14) and (15) also show that for any νa ∈ (0, 1) any steady-state has the property
that

θa =
νa

νb
θb, (16)

as this is the only condition under which both (14) and (15) hold simultaneously. We make
use of this relationship to write the steady-state condition for θa as a function of θa only,

HA(θa) =
∑
k

P̃ (k)
kλθa

1 + kλθa

1 + νbkλθa

1 + νb
νa
kλθa

. (17)

Fixed points of HA(θa) = θa correspond to steady-states of θa. We follow the arguments
put forward in López-Pintado (2008) and Jackson and Rogers (2007b) to show the existence
and uniqueness of such a fixed point. First, note that

HA(0) = 0, (18)

HA(1) =
∑
k

P̃ (k)
kλ

1 + kλ

1 + νbkλ

1 + νb
νa
kλ

< 1. (19)

The second result is immediate since
∑
k P̃ (k) = 1, and both factors that multiply P̃ (k) in

HA(1) are less than 1 (strictly so if νa ∈ (0, 1)). Furthermore, taking first and second order
derivatives of HA(θa) with respect to θa yields
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HA′
(θa) =

∑
k

P̃ (k)
kλ

(1 + kλθa)2(1 + νb
νa
kλθa)2

[1 + 2νbkλθa] > 0, (20)

HA′′
(θa) =

∑
k

P̃ (k)

{
− 2k2λ2(1 + 2νbkλθa)

(1 + kλθa)3(1 + νb
νa
kλθa)2

+

+
2k2λ2

(1 + kλθa)2(1 + νb
νa
kλθa)3

[
νb −

νb

νa
− ν2

b

νa
kλθa

]}
< 0. (21)

I.e., HA(θa) is strictly increasing and concave in θa. This implies that a fixed point of HA(θa)
exists and is unique if and only if HA′

(0) > 1. In fact,

HA′
(0) =

∑
k

P̃ (k)kλ =
∑
k

P (k)k2λ

〈k〉
= λ
〈k2〉
〈k〉

(22)

which is larger than 1 if and only if λ > 〈k〉
〈k2〉 , identical to the one-meme case. This completes

the proof of existence and uniqueness of all possible positive steady-state of θl for l ∈ {A,B}.

In the one-meme case, concavity of H(θ) implies stability of the positive steady-state as well
as existence and uniqueness. But since HA(θa) is derived with the steady-state condition that
θa = νa

νb
θb, convergence to the steady-state does not follow from the above arguments. Instead,

we conduct the stability analysis through the eigenvalues of the Jacobian of the system

HA(θa, θb)− θa = 0, (23)

HB(θa, θb)− θb = 0. (24)

The entries of the Jacobian are,

∂HA

∂θa
− 1 =

∑
k

P̃ (k)
kλ

(1 + kλθa)2

[
1− νb

kλθb

1 + kλθb

]
− 1, (25)

∂HA

∂θb
= −νb

∑
k

P̃ (k)
k2λ2θa

(1 + kλθa)(1 + kλθb)2
, (26)

∂HB

∂θa
= −νa

∑
k

P̃ (k)
k2λ2θb

(1 + kλθa)2(1 + kλθb)
, (27)

∂HB

∂θb
− 1 =

∑
k

P̃ (k)
kλ

(1 + kλθb)2

[
1− νa

kλθa

1 + kλθa

]
− 1. (28)

Denote the steady-state of θl as θ̄l. At θ̄a = θ̄B = 0, the eigenvalues of the Jacobian are
∂HA

∂θa
− 1 and ∂HB

∂θb
− 1, both of which are equal to

∑
k P̃ (k)kλ− 1. I.e., the zero steady-state is

stable if λ < λd and unstable if λ > λd.
At θ̄a > 0, θ̄b = 0, again the eigenvalues are ∂HA

∂θa
− 1 and ∂HB

∂θb
− 1. In this case,

∂HA

∂θa
− 1 =

∑
k

P̃ (k)
kλ

(1 + kλθ̄a)2
− 1 < 0, (29)

∂HB

∂θb
− 1 =

∑
k

P̃ (k)
kλ

1 + kλθ̄a
+ νb

∑
k

P̃ (k)
k2λ2θ̄a

1 + kλθ̄a
− 1 > 0. (30)
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since at θ̄a > 0, θ̄b = 0, it is the case that
∑
k P̃ (k) kλ

1+kλθ̄a
= 1. I.e., this steady-state is

unstable, too. Symmetry implies that the same argument applies for θ̄a = 0, θ̄b > 0.
Finally, for θ̄a > 0, θ̄b > 0, the two eigenvalues of the Jacobian are

r1,2 =
1

2

∂HA

∂θa
+
∂HB

∂θb
− 2±

[(
∂HA

∂θa
+
∂HB

∂θb
− 2

)2

− 4

(
(
∂HA

∂θa
− 1)(

∂HB

∂θb
− 1)− ∂HA

∂θb

∂HB

∂θa

)]1/2
Note that ∂HA

∂θa
< HA

θa
and ∂HB

∂θb
< HB

θb
. Since at the steady-state, H

l

θ̄l
= 1, this automatically

implies that ∂HA

∂θa
− 1 < 0 and ∂HB

∂θb
− 1 < 0 at the steady-state. Thus, for both eigenvalues to

be negative, it is sufficient that (∂H
A

∂θa
− 1)(∂H

B

∂θb
− 1)− ∂HA

∂θb
∂HB

∂θa
> 0. For this to hold, in turn,

it is sufficient that 1− ∂HA

∂θa
> −∂H

B

∂θa
and 1− ∂HB

∂θb
> −∂H

A

∂θb
.

Given the partial derivatives, the condition that 1− ∂HA

∂θa
> −∂H

B

∂θa
is equal to

1−
∑
k

P̃ (k)

[
kλ

(1 + kλθ̄a)2
+ (νb − νa)

k2λ2θ̄b

(1 + kλθ̄a)2(1 + kλθ̄b)

]
> 0. (31)

At (θ̄a, θ̄b),

1 =
∑
k

P̃ (k)

[
kλ

1 + kλθ̄a
− νb

k2λ2θ̄b

(1 + kλθ̄a)(1 + kλθ̄b)

]
. (32)

By substituting this expression into equation (31), all terms are sums over k. For equation
(31) to be satisfied, it is then sufficient that it is satisfied for all individual terms of the sums,
i.e.,

kλ

1 + kλθ̄a
− νb

k2λ2θ̄b

(1 + kλθ̄a)(1 + kλθ̄b)
− kλ

(1 + kλθ̄a)2
+ (νb − νa)

k2λ2θ̄b

(1 + kλθ̄a)2(1 + kλθ̄b)
> 0 (33)

Simplifying equation (33), we find that it is equivalent to the condition that

1 + kλθ̄b > 0, (34)

which is always satisfied. Yet again due to symmetry, this also shows that 1− ∂HB

∂θb
> −∂H

A

∂θb
,

too. This completes the proof that for λ > λd, the uniquely stable steady-state is the one in
which θ̄a > 0, θ̄b > 0.

B Proof of Proposition 1

By equations (6) and (7), we have

ρa(k) =
kλθ̄a

1 + kλθ̄a
,

ρb(k) =
kλθ̄b

1 + kλθ̄b
.
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Given that θ̄a = νa
νb
θ̄b, this implies that

ρb(k) =
kλθ̄a

νa
νb

+ kλθ̄a
, (35)

and consequently,

ρa(k)

ρb(k)
=

νa
νb

+ kλθ̄a

1 + kλθ̄a
∈ (1,

νa

νb
). (36)

Furthermore, as ρl =
∑
k P (k)ρl(k), this also implies that

ρa

ρb
=
νa

νb

∑
k P (k) k

1
λ+kθ̄a∑

k P (k) k
1
λ+

νb
νa
kθ̄a

∈ (1,
νa

νb
). (37)

C Proof of Proposition 2

To prove the first part of Proposition 2, note that ρl is increasing in λ if and only if ρl(k) is
increasing in λ. For ρl(k) to be increasing in λ in turn it is sufficient that θ̄l is increasing in λ.
We prove this now for l = A.

As

HA(θa) =
∑
k

P̃ (k)
kλθa

1 + kλθa

1 + νbkλθa

1 + νb
νa
kλθa

,

it follows that for given θa,

∂HA(θa)

∂λ
=

kθa

(1 + kλθa)2(1 + νb
νa
kλθa)2

[1 + 2νbkλθa] > 0. (38)

Fix λ and λ′ and let θ̄a = HA(θ̄a) for λ and θ̄A′ = HA′
(θ̄A′) for λ′. Proposition 2 states that

for any λ′ > λ, θ̄A′ > θ̄a.
Suppose to the contrary that θ̄A′ ≤ θ̄a. Then, as HA(θa) is concave in θa, it is the case that

θ̄A′ ≤ HA(θ̄A′). However, from equation (38) we know that

HA(θ̄A′) < HA′
(θ̄A′) (39)

which contradicts the fact that θ̄A′ = HA′
(θ̄A′). Thus, for each λ′ > λ, θ̄A′ > θ̄a. Hence, θ̄a is

increasing in λ. The same argument holds for l = B.

To show that ρa(k)
ρb(k) and ρa

ρb
are both decreasing in λ if and only if νa > νb, it suffices to show

that ρa(k)
ρb(k) is decreasing in λ iff νa > νb. If this is true, ρb(k) is increasing in λ faster than ρa(k),

which implies that also ρb is increasing in λ faster than ρa. Indeed,

dρa(k)
ρb(k)

dλ
=
k[θ̄a + λdθ̄adλ ]

(1 + kλθ̄a)2

(
1− νa

νb

)
. (40)

Which, as θ̄a is strictly increasing in λ is negative if and only if νa > νb.

Finally, given the expression for ρa(k)
ρb(k) derived in Appendix B, it is straightforward to show

that
dρa(k)
ρb(k)

dk
=

λθ̄a

(1 + kλθ̄a)2

(
1− νa

νb

)
(41)

which is negative if and only if νa > νb, which completes the proof.
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D Proof of Proposition 4

We focus on l = A with νa > νb > 0. Information prevalence in the one-meme case is given by

ρ̃ =
∑
k

P (k)ρ̃(k), (42)

ρ̃(k) =
kλθ̃

1 + kλθ̃
(43)

θ̃ = H(θ̃) =
∑
k

P̃ (k)
kλθ̃

1 + kλθ̃
(44)

Therefore, ρ̃ is strictly increasing in ρ̃(k). Also,

ρa(k) =
kλθ̄a

1 + kλθ̄a
,

which implies that ρ̃ > ρa if and only if θ̃ > θ̄a.
To establish the bounds on θ̄a, we make use of the fact that at θ̃ > 0 and θ̄a > 0, the

following conditions are satisfied,

1 =
∑
k

P̃ (k)
kλ

1 + kλθ̃
, (45)

1 =
∑
k

P̃ (k)
kλ

1 + kλθ̄a

[
1− νb

kλθ̄b

1 + kλθ̄b

]
. (46)

Which means that the two sums are equal to each other, and we can write them as∑
k

P̃ (k)

{
kλ

1 + kλθ̃
− kλ

1 + kλθ̄a

[
1− νb

kλθ̄b

1 + kλθ̄b

]}
= 0. (47)

Some re-arranging shows that this implies∑
k

P̃ (k)
k2λ2

(1 + kλθ̃)(1 + kλθ̄a)(1 + kλθ̄b)

{
1

νa

[
θ̄a(νa + ν2

b)− νaθ̃
]

+ kλθ̄b(θ̄a − νaθ̃)

}
= 0. (48)

If θ̄a < νaθ̃, then θ̄a(νa + ν2
b) < νaθ̃ too, as νa + ν2

b < 1. I.e., each individual term in the sum
in equation (48) would be negative, which contradicts the assumption that both θ̄a and θ̃ are
steady-states. Similarly, if θ̄a >

νa
1−νaνb θ̃, then both terms in the sum in equation (48) would be

positive, again contradicting the steady-state assumption. Due to symmetry, the result for θ̄b

follows, as do the bounds stated in Proposition 4.

E Proof of Theorem 2

Information loss due to segregation is νlρ̃ − ρl. For this to be negative, it is sufficient that
νlρ̃(k) < ρl(k) for all k. As the lower bound for θ̄l is νlθ̃, we know that

ρl(k) > νl
∑
k

P̃ (k)
kλθ̃

1 + νlkλθ̃
> νlρ̃(k).
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I.e., for agents of any degree, segregation leads to an information loss for each meme l ∈
{A,B}, and hence νlρ̃ − ρl < 0. Furthermore, a sufficient condition for |νaρ̃ − ρ̄a| > |νbρ̃ − ρ̄b|
is that |νaρ̃(k)− ρ(k)| > |νbρ̃(k)− ρb(k)|. Note that

νaρ̃(k)− ρa(k)

νbρ̃(k)− ρb(k)
=
νa

νb

ρ̃(k)− 1
νa

kλθ̄a
1+kλθ̄a

ρ̃(k)− 1
νa

kλθ̄a
1+kλθ̄b

(49)

which is larger than 1 if and only if νa > νb, as then both terms on the right hand side are
larger than 1, while for νb > νa, they are both smaller than 1. This immediately shows that

|νaρ̃(k)− ρa(k)| > |νbρ̃(k)− ρb(k)| (50)

if and only if νa > νb.

F Proof of Theorem 3

Point 1:

An agent of degree k and group l prefers a segregated society over an integrated one if

s

h
< ml(k),

where

ml(k) =
ρ̃(k)− ρl(k)

ρ-l(k)
.

For l = A, we have that

d ln(ma(k))

dk
=

λθ̄b

1 + kλθ̄b
− λθ̃

1 + kλθ̃
− λθ̄a

1 + kλθ̄a
(51)

=
λ

(1 + kλθ̄b)(1 + kλθ̄a)(1 + kλθ̃)

[
θ̄b − θ̃ − θ̄a − 2kλθ̄aθ̃ − k2λ2θ̄aθ̄bθ̃

]
(52)

which is always negative, as θ̃ > θ̄b. By symmetry, d ln(mb(k))
dk < 0 holds as well. It is

therefore the case that for each group, individuals that have more meetings per period prefer
an integrated society for a broader range of s

h than individuals with fewer meetings.

Point 2:

The second claim of Theorem 3 is that for all k, mb(k) > ma(k) if and only if νa > νb,
i.e., for two agents with the same degree, the agent belonging to the minority group prefers
segregation for a broader range of s

h . This holds if, for νa > νb,

ma(k)

mb(k)
=
ρ̃(k)− ρa(k)

ρ̃(k)− ρb(k)

ρa(k)

ρb(k)
< 1. (53)

This condition can be re-written as

(ρ̃(k)− ρa(k))ρa(k) < (ρ̃(k)− ρb(k))ρb(k)

kλθ̄a

1 + kλθ̄a

[
kλθ̃

1 + kλθ̃
− kλθ̄a

1 + kλθ̄a

]
<

kλθ̄b

1 + kλθ̄b

[
kλθ̃

1 + kλθ̃
− kλθ̄b

1 + kλθ̄b

]
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and through collecting terms, re-arranging, and making use of the fact that θ̄b = νb
νa
θ̄a, it

can be simplified to

θ̃
[
1− k2λ2θ̄aθ̄b

]
<

1

νa
θ̄a + 2kλθ̄aθ̄b. (54)

This is satisfied, as we know that θ̄a > νaθ̃, i.e., 1
νa
θ̄a > θ̃.
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