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1 Introduction

Since the seminal work of Lazarsfeld et al. (1948) and Katz and Lazarsfeld (1955), the importance
of social networks in the diffusion of information has been well documented. It is less well
known how different pieces of information, or memes,! interact in this diffusion process. In the
production of news, such as in print or TV media, it is obvious that fixed coverage space is
shared by different news stories.? In the social diffusion process, a similar constraint is present:
Communication time is limited and has to be shared among everything an individual talks
about. Making use of Twitter data, Leskovec et al. (2009) and Weng et al. (2012) have shown
that the total volume of tweets is roughly constant over time, despite significant variation in the
topics of tweets. In addition, their data shows that (i) at any point in time numerous hashtags
diffuse simultaneously, (ii) there are significant differences in the number of times as hashtag is
retweeted, and (iii) hashtags crowd each other out. Diffusion models of a unique information
are not equipped to explain these patterns.

The present paper introduces a parsimonious diffusion model of multiple memes under a
communication constraint, which reproduces the above patterns. To keep the analysis tractable
and to isolate the effect of limited communication time, we build on a standard diffusion process
with epidemiological roots, the Susceptible-Infected-Susceptible (SIS) framework.? In the model,
each period each agent randomly meets a subset of other agents. At any meeting, there is a
chance that communication occurs, in which case an informed agent passes a meme on. Agents
forget memes at an exogenous rate. The novelty of our process lies in the existence of two memes.
At each meeting, if communication occurs, each agent can pass on only one meme. Within the
model, the choice of what to talk about is determined by intrinsic information preferences of
agents, capturing the idea that individuals are more likely to talk about things that interest
them more.

Within a mean-field approximation of this process, the literature has established the condi-
tions under which a single meme exhibits a positive steady-state, in which a constant fraction

of the population is informed about it in the long run. In our first main result, we show that

1The Merriam-Webster dictionary defines a meme as “an idea, behavior, style, or usage that spreads from
person to person within a culture”. It therefore provides a meaningful way to talk about pieces or bits of
information.

2 Arguments about politicians aiming to “bury” unfavorable news arise from this.

3Within economics, this process has been employed by, e.g., Jackson and Rogers (2007b), Lépez-Pintado
(2008), Jackson and Yariv (2010), and Jackson and Lépez-Pintado (2013), among others.



the conditions that guarantee existence, uniqueness, and stability of a positive steady-state for
either meme in our model are identical to the ones previously derived. That is, we show that
information is extremely resilient. This result notwithstanding, we are able to rank information
steady-states according to interest: The meme that is preferred by the majority of the popula-
tion will exhibit a higher steady-state. We also show that crowding out of information always
occurs.

The resilience of information occurs in a society in which all agents interact randomly. In-
stead, it is well documented that individuals exhibit homophily, a tendency to interact relatively
more with others that are similar to themselves. We show that segregation according to infor-
mation preferences leads to a segregation of information: Within each group, only the preferred
meme exhibits a positive steady-state. Thus, segregation leads to polarization. Interestingly,
both memes exhibit lower steady-states in a segregated society than in an integrated one, i.e.,
segregation also leads to a loss of information overall.

While segregation implies a loss of information, we find that it increases the fractions of
the population informed about their preferred meme. Given this result, we extend our model
to endow individuals with specific utilities from being informed. In particular, we assume that
being informed with the preferred meme provides a utility flow that is larger than the utility flow
of being informed with the alternative meme. This extension allows us to analyze the factors
that influence the likelihood of segregation, as opposed to focusing only on its impact. In fact,
homophily may arise endogenously in our model. We find that the likelihood of observing a
segregated society is increasing in the extremism of information preferences, and in the relative
size of groups that prefer each meme. Individuals that have more meetings per period are less
likely to prefer segregation, ceteris paribus.

Our paper is part of a growing literature that studies diffusion processes on networks. The
model we introduce is a direct extension of the SIS framework that has been employed by
Jackson and Rogers (2007b), Lépez-Pintado (2008), or Jackson and Yariv (2010), but also
Galeotti and Rogers (2013a), and Galeotti and Rogers (2013b). This literature itself builds on
work on epidemiological models in the natural sciences, such as Bailey et al. (1975), Dodds
and Watts (2004) Pastor-Satorras and Vespignani (2001a,b), Pastor-Satorras and Vespignani

(2002), or Watts (2002).* The simultaneous diffusion of multiple states in this framework has

4More broadly, the paper is also related to network processes of learning, best response dynamics, or explicit



been addressed by Beutel et al. (2012), Karrer and Newman (2011), Pathak et al. (2010) and
Prakash et al. (2012). In contrast to the present paper, in these models infection with one
virus/state provides full or partial immunity against the other. Such immunity introduces a
tendency for the more virulent state to be the only one that survives in the population. This
result is in stark contrast to our findings of information resilience. Resilience seems to be
corroborated by the vast array of different topics that diffuse simultaneously on online social
networks. The difference in the results is interesting from a technical point of view, as it
highlights the importance of the stage at which the diffusion constraint is placed (i.e., whether
on the infection or on the transmission likelihood). To the best of our knowledge, our paper is
the first that introduces two distinct pieces of information / memes that compete for limited
communication time into the SIS framework.

Diffusion of competing products or innovations has been analyzed in models of influence
maximization, e.g., by Bharathi et al. (2007), Borodin et al. (2010), Dubey et al. (2006) and
Goyal and Kearns (2012). These models differ significantly from an SIS diffusion process, both
with respect to the modeling characteristics, and the questions that they aim to answer. The
above papers are based on threshold models, in which contagion occurs on a fixed network and
nodes never recover. The central question in this strand of literature is which nodes a player
with a fixed budget would choose to infect to maximize the contagion of his product (in Goyal
and Kearns (2012), the focus is on how the efficiency of a “seeding” strategy depends on the
precise diffusion process and its interaction with the network structure). Similarly to previous
work of the diffusion of multiple states in the SI1.S model, in these papers being infected with
one product precludes infection with another.

We are also related to the literature that has investigated the impact that homophily
has on information diffusion (e.g., in Granovetter (1973) and Golub and Jackson (2012) ho-
mophily can hinder diffusion), and its potential to lead to polarization (see Baccara and Yariv
(2008), Flaxman et al. (2013), Gentzkow and Shapiro (2011), Rosenblat and Mobius (2004),
or Sunstein (2009)).5 The focus of these studies has been predominantly the impact of biased

news/information consumption, and its potential to lead to polarization. Given the rise in in-

adoption decisions. These processes however differ significantly from the SIS model we employ. See, e.g., Jackson
(2008) or Goyal (2012) for an excellent introduction to the literature.

5In the diffusion of a behavior instead, Jackson and Lépez-Pintado (2013) show that homophily can be
beneficial for adoption.



ternet usage, an important question is whether this rise might increase segregation and hence
polarization. Gentzkow and Shapiro (2011) and Flaxman et al. (2013) find that online news
consumption is not substantially more segregated than offline consumption of news, providing
an argument against a link between internet usage and polarization. On the other hand, in a
recent paper Halberstam and Knight (2014) investigate homophily among Twitter users, which
is used both as an Online Social Network (OSN) and as a tool to consume news. They find
higher levels of homophily for the social network aspect. Our results on the importance of bi-
ases in social interactions, as opposed to news consumption, complement those of Halberstam
and Knight (2014). Indeed, in our model, we find that polarization occurs even with entirely
unbiased consumption of news. This indicates that the focus of the polarization debate might
need to shift towards online segregation in OSNs, away from online media.

The rest of the paper is organized as follows. Section 2 presents the model and derives
the steady-states of each meme, in particular, our result on information resilience. Section 3
relates the ranking of steady-states to information preferences, and to network characteristics.
Section 4 investigates the impact of homophily and derives the conditions under which agents
themselves wish to segregate according to information interests. Section 5 concludes. Various

proofs are relegated to the Appendix.

2 The Model

2.1 Propagation Mechanism

There exist an infinite number of agents, indexed by i, who represent nodes of a network. Time
is continuous. Meetings between agents signify links, and the degree of agent i, k;, denotes the
number of meetings that agent ¢ has at each point in time. The distribution of degrees is P, such
that P(k) is the probability that a randomly drawn node has degree k. A fraction v, € [0,1]
of the population belongs to group A and the complement vy = 1 — v, belongs to group B.
The group membership determines informational preferences: There exist two memes, A and

B, and members of group A prefer meme A to meme B, and vice versa.® With the exception

6We remain largely agnostic as to the exact relationship between A and B. They can be different viewpoints
on the same topic (such as arguments for and against the severity of climate change), different ideological pieces
of information (such as “conservative” vs. “liberal”), or entirely distinct, e.g., a piece of celebrity gossip vs. a



of informational preferences, there is no difference between members of the two groups.

Agents can be uninformed of both memes (susceptible, S), or informed of either or both.
Thus, the set of states in which an agent can be is {5, I\, I, Ias}. If an agent susceptible
to information [ € {A, B} gets informed about it at a meeting, or when he forgets information
I € {A, B}, he transitions between states. We denote by v the rate at which information is
transmitted at a meeting and by § the rate at which it is forgotten. In line with the previous
literature and the epidemiological roots of the model, we refer to v as the (per contact) infection
rate and § as the recovery rate.”

A central assumption is that at each meeting, each agent can communicate at most one
meme, as communication time is limited. We assume that the preferred meme is the one that is
communicated, conditional on communication taking place at all.® Note that if agents are either
in state I, or Ip, their information preferences will not matter for the rate at which they pass
on meme [. In particular, individuals are non-strategic in the way they pass on information.
They neither distort the meme they possess, nor do they strategically choose to not transmit a
meme.?

We model the diffusion of the two memes under the assumption that the network of meetings
is realized every period and we solve for the mean-field approrimation of the system. Formally,
we define pyp(k), ppa(k) and pas(k) as the proportion of degree-k agents in the three infection
states, Iy, Ipw, and I,g, respectively. We denote the corresponding prevalences in the popu-
lation overall as pag = >, P(k)paw(k), ppa = >, P(k)psn(k) and pap = >, P(k)pas(k). By
definition, ps (k) = pas(k)+pas(k), ps(k) = pa(k)+pas(k), and p(k) = pap (k) +ppn (k) +pas(k),
with equivalent relationships for overall prevalences.

Given the distribution of degrees, P(k), the probability that a randomly encountered node

has degree k is ]s(k) = P<(,’:>) * . Denote by v0; the probability that a randomly encountered node

will transmit meme [. Then,

political news item. We exclude only verifiable lies.

7If agents never forgot, all information would eventually be known by everybody, which does not seem to be
a relevant case for many of the memes that diffuse through social interactions. Much of the information that
is transmitted as chit-chat is not immediately pay-off relevant. Such information may be a prime target to be
forgotten under memory limitations.

80ur results will not change if we instead assume that v; is the probability that a single agent in state Iap
passes on information . This assumption would not allow us to investigate questions of the effect of segregation
according to information preferences.

9For models of strategic information transmission on a network, see, e.g., Galeotti et al. (2013), Hagenbach
and Koessler (2010), or recently Bloch et al. (2014).



v, = Vzp(k) [pa(k) — vepan(K)] (1)
k

vy = VZIE’(k) [ps(k) — vapas(k)] . (2)
k

For v; € (0,1) and p,s(k) > 0, this probability is strictly lower than the probability that a
randomly encountered node is informed of meme [.

We assume that the infection rate v is sufficiently small that it approximates the chance
that a node becomes informed of [ through his k independent interactions at t. The rate at
which a susceptible node becomes infected with meme [ is then kv6;. Similarly, we assume that
the recovery rate ¢ is sufficiently small such that § approximates the probability that an agent
forgets a particular meme at time ¢.'°

We assume that A and B diffuse through the population independently of each other. Knowl-
edge of one does not make knowledge of the other any more or less likely. The propagation

process exhibits a steady-state if the following three differential equations are satisfied,

DB (1 pukkot, — palk)5 =0, )
P05E) (1 pu)) vt — (k)5 = 0 W
D) (pa) — pas (BDRA + (oK) — pus(Bs — 20 (5 =0, ()

i.e., the proportion of agents who become aware of a meme at t equals the proportion of agents

who forget it.!

10n essence, this assumption implies that at most one information is forgotten at any ¢. This seems reasonable
for short time intervals. Importantly, as at most one meme can be transmitted per meeting, it ensures that the
setup is not exogenously biased against the “survival” of a meme.

1We assume that § is the unique rate at which both A and B are forgotten. There are numerous alternative
ways to model forgetting, e.g., the preferred meme might be forgotten at a lower rate, or being aware of multiple
memes increases the rate at which all of them are forgotten. On the other hand, it might also be the complexity
of a meme that is the determining factor in forgetting, something that is entirely exogenous to the model. The
unique value of d allows us to derive very cleanly the impact that the existence of a second meme has on the
diffusion process, without additional complications.



2.2 Steady-States

Define A = £ as the diffusion rate of information. The steady-state conditions of p,(k), ps(k),

and pag(k) can be written as

B kX0,
pa(k) m» (6)
B kXOy
pk) = g (")
k%)26,0
pas(k) = -t = pal(k)ps(k), (8)

(1+ k0L (1 + kAGs)

and substitution of these conditions into equations (1) and (2) yields:

"Ur

HA(6,,0;) =

. kO,
1 + kAOA P14+ kO,

L ke
1 + ka BENSYA

HB(0,,0,) = Z (10)
k

Fixed points such that 6, = H A and 6, = HE describe the steady-states of 6, and g, which

by equations (6)-(8) determine the steady-states of p;(k) (and hence p;). Due to the inherent

symmetry of the model, in the remainder of the paper we focus, without loss of generality, on

the case in which v, > v;.

Remark 1. For any given diffusion rate A > 0, there exists a steady-state in which 6, = p;(k) =
pi=0forl € {A, B}.

The existence of a steady-state in which nobody is informed is trivial. If the initial conditions
are such that no agent is informed of a meme, nobody ever will be. Questions of interest
concern the existence of a steady-state in which p; > 0 for either or both | € {A, B}, and its
characteristics. Henceforth we will denote, with slight abuse of notation, by p;(k) and p; the

posive steady-state values of meme prevalence.



2.3 Existence of Non-zero Steady-States

To analyze the existence of steady-states in which p; > 0 for either or both | € {A, B}, we adapt

the following definition from Lépez-Pintado (2008).

Definition 1. For each | € {4, B}, let A¢ be such that the following two conditions are satisfied

for all A > )\f:

(i) There exists a positive steady-state for meme [, i.e., a steady-state in which a strictly
positive fraction of the population is informed about it. For all A < /\ld, such a positive

steady-state does not exist for meme /.

(ii) The positive steady-state is globally stable. That is, starting from any strictly positive
fraction of agents informed about [, the dynamics converge to the positive steady-state.
For all A < )\f, the dynamics converge to a steady-state in which no agent is informed

about [.
We call )\f the diffusion threshold of meme [.'2

Furthermore, we are interested in how the diffusion threshold and the prevalence of either
meme compare to the case in which meme [ is the unique meme diffusing on the network. We

therefore define the following concepts.

Definition 2. Let A; be the diffusion threshold in case a unique meme diffuses through the

network.

Definition 3. Let p denote the positive steady-state of a meme if it is the unique meme that

diffuses through the network, with corresponding 6 and (k).

We will denote by 6; the positive steady-state for §;. For the present diffusion process, it has

been established (see, e.g., Lépez-Pintado (2008) or Jackson (2008) and the references therein)

that A\g = <<kk2>> . We are now in a position to state our first set of results regarding the existence

and stability of positive steady-states for either meme [ € {A, B}.

Theorem 1. The diffusion threshold )\fl depends on the value of v;:

1216pez-Pintado (2008) in fact defines a critical threshold above which a positive steady-state exists, and a
diffusion threshold above which this positive steady-state is stable. In the present setting, these two thresholds
always coincide.



(i) If v, € (0,1) for each | € {A, B}, then A4 =\ = )\; = <<kk2> .

~

(ii) If vy = 0 for either | € {A, B}, there exists no finite value of \¢.

(iii) If vi = 1 for either | € {A, B}, | = A = . For A\ > M, 0, = 0, p(k) = p(k), and

pL= p-
Independent of the value of vy, there exists at most one steady-state in which p; > 0.
Proof. See Appendix A. O

Our result that A¢ is identical to A4 for all interior values of v; highlights the enormous
resilience of information. Any combination of network structure P(k) and A that is sufficient
to make a unique meme endemic is also sufficient to make multiple memes endemic, provided
that interest in the population exists. The mechanism underlying this result is best understood
in the epidemiological context of the SIS model. An intuitive and well-established result in
this literature is that an infection exhibits a positive prevalence if and only if each infected
agent spreads the disease, on average, to at least one other agent.'® In the SIS model with one

meme, each node spreads it on average to )\% others, which leads to the diffusion threshold

of \g = <<kk2>. With multiple memes, not every node aware of a meme will actually pass it on.
Instead, a fraction v,p, of all nodes aware of | are also aware of —I, and will communicate
(k?

—! at a meeting. Thus, each node aware of meme [ passes it, on average, to A(1 — I/_lp_l)T>

others. While this is in general smaller than in the one-meme case, it is equal to unity at the
exact same value of A\: From equations (9) and (10) it can be seen that if A\ = %, the only
possible steady-state is one in which 6, = 03 = 0, and hence p, = pg = 0. At this threshold,
a single infected agent passes a meme on average to exactly one other agent in both the one-
and the multiple-meme models. This result would not hold if p,; was an exogenous fraction of
the population that was “immune” to meme [. It holds because the competition that the two
memes impose on each other is endogenously determined through the steady-state of p,5, which
is zero at the diffusion threshold.

Theorem 1 explains why there are such vast amounts of different topics that are being

discussed both offline and on OSNs, such as Twitter. Assume that A > A\;. Then any meme

131n the terminology of epidemiology, the average number of agents to which one agent spreads an infection is
the basic reproduction number.

10



that is deemed the most interesting by a positive fraction of the population will survive on
this network, no matter how much of a niche topic it might be. The Theorem also provides
insights into the practice of “burying news”. In the model, media coverage plays the role of
planting the initial seed of information in the population. The prevalence of information is
entirely independent of this. While news might be buried if it is released simultaneously with

other major events, this is the result of differential interest in the population only.

3 Information Prevalence and Network Structure

3.1 Relative Information Prevalence

Theorem 1 shows that the predictions of our model are in line with the observation that many
memes survive simultaneously in a population. The second aspect of communication that has
been highlighted is that memes’ prevalences differ.'* To assess the predictions of our model for
meme prevalence, we need to know the magnitudes of p;. Ultimately, prevalence of information
l is determined by 6;, which is the steady-state rate at which [ is talked about if communication
occurs. In general, it is not possible to explicitly solve for ;. Nevertheless, there are a number of
positive results that can be derived regarding relative meme prevalence. Since the zero steady-
states are trivial, we focus for the remainder of the paper on the case in which A > A4 and
6, > 0 for both [ € {A, B}. Meme [ is the “majority” meme/information if v; > 1/2, i.e., if it is

preferred by the majority of the population.

Proposition 1. Consider a given degree distribution P, finite A > Aq and v; € (0,1). Then,
(i) 0, = l’j—‘;és. That is, 0, > 0y, ps(k) > ps(k), and py > pg if and only if vy > vy, with strict
inequality if vy, > vy, and k is finite.

[N PAB _ Oa
i Therefore, pow = Ob

.. opap(k)
(i) pe\a(k) T

(iii) 225 ¢ (1 72) and B2 € (1,22) for all finite k.

L7

Proof. The relation between 6, and 6 is derived in Appendix A. The ranking of meme steady-

states follows directly from this relation and the fact that p;(k) is strictly increasing in 6,

14Strictly speaking, what can be measured in OSNs such as Twitter is not a meme’s prevalence (p1), but rather
the rate at which it is talked about (6;). We will return to this difference later.

11



pas(k) _ pa(k)(1—pg(k))
pw (k) T pe(K)(1—pa(k))

simplification of the expression yields the second result. The boundaries on the steady-state

while p; is increasing in p;(k). Plugging equations (6) and (7) into and

ratios are derived in Appendix B. O

The result of Proposition 1 is independent of the type of degree distribution P, and inde-
pendent of the diffusion rate A, or degree k. It shows that relative interest uniquely determines
which meme exhibits a higher prevalence in the long run, independent of any parameters of the
diffusion process, including the network structure.

The relative rate at which meme A as opposed to meme B is communicated, g—g, is entirely
unrelated to characteristics of the network or the diffusion process. It is always constant at Z—g
Clearly, the relative rate at which a node becomes informed about meme [ relative to meme —!
from a node in state I, is constant and equal to Z—g But also the relative frequency with which
a node is encountered that is in state I,z as opposed to Ip\, is constant, and independent of a
node’s degree or the network. Thus, relative communication rates, which is what is observed in
data such as Twitter, are determined entirely through relative interest.

While the ratio g—g is always constant, the ratio of meme prevalences, both conditional on &
and overall, is strictly smaller than this. Relative consciousness of information is less pronounced
than relative communication. This is due to the fact that some agents are in state I,5. In fact,

it is pap(k) that plays a crucial role in our next result.

Proposition 2. For eachl € {A, B} and v; € (0,1), 0;, pi(k), and p; are strictly increasing in

A. Furthermore, for vy > vg:

(i) pAE]]z; and 52 are strictly decreasing in A.

(i) Z:E:; is strictly decreasing in k.
Proof. See Appendix C. O

The fact that all steady-state measures (0, p;(k), and p;), are increasing in A is unsurprising,
and in line with the one-meme model. The decrease in prevalence ratios in both k and A is driven
by an increased importance of p,g(k) in each meme’s prevalence. For small values of k£ and/or
A, prevalence of either meme is very small, thus making it extremely unlikely that an agent

is in state I,5. Therefore, the system starts from a point in which p;(k) ~ pra(k). Thus, the

12



prevalence ratio approximates Z—g for small prevalences. Starting from this point, increases in k
or A initially increase both py.1(k) and py(k), and the prevalence ratio becomes less pronounced.
Finally, the system reaches a point where p;(k) is so large that further increases in k or A actually
reduce p11(k). Thus, for very large values of k and/or A, p;(k) = p1(k), and the prevalence ratio
of the two memes approximates unity. This mechanism is illustrated in Figure 1 for the case of

a regular network with (k) = 3. It shows how p,, ps and p,s depend on A, with v, = 0.8.1°

1
—— PAB
--- PA\B
0.8 | PB\A []
__ 06 R
=
E 04 [ I" o N N
0.2/ :
0 ! ! | s Il R e )
0 2 4 6

In(\)

Figure 1: Steady-state prevalences pag, pas, and pp\ as functions of In(\), for a regular Network
with (k) = 3. Size of group A is v, = 0.8.

Through the increased importance of p,p in meme prevalence, any increase in the diffusion
rate A will increase the prevalence of the minority meme relatively more. We now turn to

investigate how changes in the degree distribution P affect relative meme prevalence.

3.2 Stochastic Dominance and Relative Prevalence

To analyze the impact of the network structure, we focus on the effect of a change in the degree
distribution in the sense of first order stochastic dominance. In particular, the degree distribu-
tions P’ first order stochastically dominates the distribution P if Z{:o P'(k) < ZZ:O P(k) for

all Y with strict inequality for some Y.

Proposition 3. Let P’ and P’ first order stochastically dominate P and P respectively. Let
v € (0,1) and X > Ay be finite. Then,

15The results are derived by iteration to solve numerically for §; for various values of \.
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(i) 0, > 0, p)(k) > pi(k), and p} > p; for each | € {A, B}.

) ph(k / , ,
(i) Zggk; < 'Z’;E:; and g—g < Z—g if and only if vy > vg.

Proof. For a single meme, Theorem 1 in Jackson and Rogers (2007b) proves that the steady-
states of 6, p(k), and p are increasing in a first order stochastic shift in P and P as H(6) is
concave and H(1) < 1. In the present model, the same arguments can be applied to H'(6;).
In particular, Appendix A proves concavity of H'(6;) and that H'(1) < 1 for I = A, and by
symmetry the same applies to [ = B. The proof of the first point hence follows from Theorem

1 in Jackson and Rogers (2007b).

pa (k)
pB(k)

Appendix B makes use of the fact that §, = Z—fB“éB, to express both and Z—g as functions
of 8, and the parameters only. From these expressions it is straightforward to show that both
ratios are decreasing in 6, if and only if v, > 1. As a first order stochastic dominant change in

the degree distribution implies an increase in 6,, the second point follows. O

Similarly to Proposition 2, the intuition behind Proposition 3 rests with p,s(k). The change
in P and P to P’ and P’ increases p;(k) and p;. Hence it also increases pas(k) and pas. Since
we know from Proposition 2 that Z;;%E:; is independent of P, a first order stochastic dominant
shift of the degree distribution implies that relatively more nodes are aware of both memes, as
opposed to only one. This implies that the prevalence ratio under P’ and P’ is closer to unity
than under P and P.

Both Proposition 2 and 3 show that any form of improvements in the transmission of infor-
mation are relatively more important for memes that are, ex ante, less likely to be transmitted.
Compared to communication offline, OSNs might be characterized by an increased A or indeed
a first order stochastic dominant shift in P (allow agents to have more meetings). If so, our

results predict that increased online communication disproportionally benefits the prevalence of

minority memes.

3.3 Crowding Out of Information

The third aspect of information diffusion that is highlighted in the Twitter data of Leskovec

et al. (2009) is the fact that hashtags crowd each other out. This is a direct consequence of
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the facts that overall communication stays roughly constant, while hashtags are retweeted at
different rates.

Unfortunately, without solving explicitly for 6;, we cannot derive the exact level of crowding
out. We can, however, establish its existence, and find boundaries on the relation between 6,

and 6, as we now show.

Proposition 4. For any P, finite A > \g and v; € (0,1), crowding out is positive:

él S (Zﬁ@~ , _n é) .
1-— 12078
As 0 > 6y, it follows that p(k) > pi(k) and p > p;.
Proof. See Appendix D. O

It is clear from the bounds on 6; that v; is a significant determinant in crowding out. This
can be highlighted further by solving numerically for p and p; under different parameter values.

As a measure of crowding out, we use

bz‘g

The distributions we consider are the regular network in which k; = (k) for all 4, and a scale-
free distribution with cumulative distribution function F(k) = 1 — k16 Figure 2 illustrates
the importance of interest (), the diffusion rate A, and the degree distribution P in the extent
of crowding out. In it, we set (k) = 3.17

As can be seen in Figure 2, crowding out can indeed be substantial. The prevalence of a
meme that is preferred by half of the population might be only two-thirds of its value if it
was the unique meme spreading on the network. For a meme preferred by only 20% of the
18

population, the prevalence might be as low as 24% of its value if it was the only meme.

These are significant differences, especially as the preference relation between the two memes

16 This distribution is the limit form of the distribution function introduced in Jackson and Rogers (2007a) for
the case where all meetings are network-based. We imposed a minimum degree of 1.

17The figures are based on distribution functions that are adjusted to a maximum degree of 50, and are derived
by iteration to find the fixed points of 6 and 6; for various values of .

181n fact, for both networks in Figure 2 the value of %l approaches

vy
1—vv_
this is 0.2381, while for vy = 0.8 it is 0.9524 and for vy = vg = 0.5, it is 2/3.

N as A\ approaches Ayg. For nug = 0.2,
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Figure 2: Ratio of % as a function of v; and A

is ordinal, i.e., the fact that 80% of the population prefer meme A does not preclude them to
attach importance to meme B.

While in general an increase in A decreases crowding out, there are scenarios in which it
might also increase crowding out of information, as can be seen in Figure 2b for meme A.
In general, increases in A have larger impacts the smaller the prevalence (as the prevalence is
bounded above by one). If v, > vy, this implies that for finite A an increase in A will increase py
relatively more than p,, and both of them relatively more than p. Thus, crowding out of either
meme tends to decrease as A increases. On the other hand, the fact that ps increases relatively
faster than p, increases disproportionally the competition that meme A faces. Which can slow
down the increase in p, relative to p enough to reverse the effect of an increase in A on crowding
out of meme A for a range of A\. The illustration in Figure 2 highlights that the existence of this

effect depends on the exact degree distribution and value of v;.

4 Segregation and Integration

4.1 Information Survival under Segregation

In the preceding analysis, agents of groups A and B interact randomly with each other, irrespec-
tive of group membership. Instead, it is a well-documented fact that individuals have a tendency

to interact relatively more with others that are similar to them, i.e., interaction patterns exhibit
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homophily.*®

In the present framework, homophily will determine the likelihood that an individual of
group A meets an individual of group B. In particular, we focus on the difference in meme
prevalence in an integrated society that does not exhibit homphily (groups A and B interact
randomly with each other) as opposed to a segregated society in which all interactions are within

the same group. Our first result arises as a Corollary of Theorem 1.

Corollary 1. Assume that society is segregated according to interest groups. Then, for any
finite A > A\g, the prevalence of meme | among members of group | is p, while the prevalence of

meme —l in group l is zero.

The implications of Corollary 1 are stark. Independent of the amount of initial media cover-
age (i.e., the “seed” of meme [), the degree distribution P, or the diffusion rate of information
A, meme B will never exhibit a positive steady-state in group A and wvice versa. This in itself
gives credence to the idea that segregation might lead to polarization. There exists no positive
steady-state for p,5, which means that if A and B are two alternative viewpoints on the same
issue, nobody is informed of both views. This occurs even if initial news consumption is en-
tirely unbiased, and does not rely on potential biases in the messages sent, or biased updating
rules. Corollary 1 stresses the importance of biased communication patterns for polarization.
It implies that in investigations into the relationship between increases in internet usage and
polarization, the focus might need to shift away from online consumption of news (such as in
Flaxman et al. (2013), Gentzkow and Shapiro (2011), or Sunstein (2009)), and towards OSNs
(as in Halberstam and Knight (2014)).

While the potential for polarization due to segregation is clearly important, our next result
establishes that the prevalence of either meme is lower in a segregated society than in an

integrated one.

Theorem 2. For v € (0,1) and finite X\ > A4, the prevalence of meme | is p; in an integrated

society and it is vip in a segregated society. The following holds:

(i) p1 > vipi; information prevalence is higher in an integrated society. The information loss

due to segregation is larger for meme A than meme B if and only if vy > vg.

190ne of the earliest work on this is Lazarsfeld et al. (1954). See also the survey by McPherson et al. (2001).
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(i) vipr < vip; the proportion of the population informed about their preferred meme is higher

i a segregated society.

Proof. The second point is immediate as p > p;. The inequality and ranking of information loss

established in the first point are derived in Appendix E. O

To the best of our knowledge, the result that segregation can lead to a decrease in total
prevalence is novel in the literature. It goes beyond the polarizing impact of having no agent
informed about both A and B in the long run. Indeed, if memes A and B are entirely unrelated,
there might not be perceivable benefits of being informed about both simultaneously. Never-
theless, even if segregation does not lead to polarization, it has an impact on information. This
impact falls disproportionally on the prevalence of the majority meme, thus segregation reduces
particularly the steady-state prevalence of information that might be considered mainstream.

The distinction between overall meme prevalence and meme prevalence within each group
is also noteworthy. If, e.g., A is a piece of celebrity gossip and B a piece of political news, the
value that individuals in group A put on being informed about B (and vice versa) might be
limited. That is, while overall information is lost due to segregation, it increases prevalence of
memes among those that attach a higher value to it. This leads us to question under which

conditions agents themselves have incentives to segregate, which we address now.

4.2 Endogenous Segregation

To address the question of endogenous segregation, we need to impose some additional structure
on the utility agents gain from being informed. To keep the analysis as tractable as possible, we
assume that agents derive utility directly from being informed about memes A and/or B. We
assume that an agent in group [ receives a flow utility of h while he is informed about meme [
and a flow utility of s while he is informed about meme —I, where h > s > 0. Such utility flows
could arise if agents truly value information in itself, but also if they value it because there is
the possibility that it will be useful at an uncertain, future, date. E.g., agents might value to be
informed not so much because it provides them with any benefit as such, but because there is
a chance that these topics might be discussed in their presence, and not being informed would
brand them as ignorant. Alternatively, the information might pertain to the state of the world

and an agent knows that at an uncertain point in the (distant) future he will have to take an
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action whose payoff depends on the state. In either case, the expected utility of an agent would
be increasing in the amount of time he is informed, which is captured with our parsimonious
utility function. Individual agents then care about p;(k), which is the time that an agent of
degree k spends being informed about [ in steady-state. We also assume that agents care only
about the steady-state values of p;(k) and p.(k). The utility of an agent with degree k in group

l in an integrated and a segregated society is then

U(k)ijine = p(k)h+p(k),s, and (11)

U(k)l|seg = p(k)h. (12)

Corollary 2 follows immediately from these utilities and Proposition 2.

Corollary 2. Assume that X > A\g and finite. If h > 0 and s = 0, all agents prefer segregation

over integration. If s =h > 0, all agents prefer integration.

More generally, an agent of group | and degree k prefers a segregated society if

s _ p(k) — pu(k)
&< p_l(k)l , (13)

which leads to the following result.

Proposition 5. For all v; € (0,1) and finite A > A4, a decrease in 5 makes it more likely that

a segregated society will emerge.
Proof. Immediate from equation (13). O

Le., the more extreme information preferences are, the more likely it is that a society seg-
regates. We state Proposition 5 as a likelihood that segregation occurs, as the exact value of #
at which agents are indifferent between segregation and integration depends on the values of k,
vy, A, and P, all of which influence the right-hand side of equation (13). Let m,;(k) = %
denote this right-hand side. The larger m,(k), the broader is the range of 7 for which an agent

prefers a segregated society. In this sense, large values of m;(k) imply that it is more likely for

segregation to emerge.20

20We have to be careful in how the “emergence” of a particular type of society is interpreted. Starting from
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As an illustration, Figure 3 depicts my(1) for the regular and scale-free distributions we

employed before.

— =B, v5=02 ||

0.8\ — =B, v3=02 || 0.8
---1=A=B, vs=0.5 - 1=A=B, vA=0.5
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(a) Regular Network, k = (k) =1 (b) Scale-free Network, k = (k) =1

Figure 3: my(1) for a regular and a scale-free network, both with (k) = 1, as a function of v,
and A

Similarly to crowding out, increases in A predominantly decrease m;(1), thus favoring inte-
gration. In the case of a regular degree distribution, in fact, it is possible to derive the result
that increases in A always decrease m;(k). This is not the case for any distribution P, though,

as Figure 3b shows.?!

It is obvious that the minimum value of 7 for which for both groups
7 >my(1) is found for v, = v = 0.5. In this sense, segregation is driven by the minority group.
Given a value of 7, the smaller the size of a group that prefers a meme, the more likely that at

least some agents from this group will prefer segregation to integration. In fact, we are able to

state the following positive results.
Theorem 3. For all finite A > A\g,

o my(k) is decreasing in k for each l € {A, B}. The higher an agents’ degree, the broader is

the range of 5 for which he prefers an integrated society.

o m,(k) < mg(k) if and only if vy > vg. Conditional on degree, an agent that belongs to the

minority group prefers an integrated society for a smaller range of 7.

one type of society, no individual agent could unilaterally change this type. However, if all agents of a certain
type would have a higher utility in a segregated society, they would benefit from collectively forming a segregated
group.

21The initial increase in my(k) for the scale-free distribution is not independent of k either. For example, for
the distribution in Figure 3b, it disappears for values of k > 8.
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Proof. See Appendix F. O

Theorem 3 shows that for a fixed value of information preferences, segregation is always
more likely to be chosen by members of the minority group, and/or by agents that have fewer
meetings per period. With the exception of a regular network, in which all agents have the
same degree, segregation must not be complete. For a given P, denote by ki, and k"% the

minimum and maximum degree of the distribution respectively. Then it is the case that:
o All agents of group [ prefer segregation if 7 < my(k™*).
o All agents of group [ prefer integration if 7 > my (Emin)-

o If my (k™) < 7 < my(kmin), then group-I agents with degrees up to k* prefer segregation,

while agents with degrees above k* prefer integration, ceteris paribus.

As limg_, oo my(k) = 0, the first bullet point implies that for unbounded P, segregation is
preferred by all agents of group [ only if s = 0. Note that the ceteris paribus assumption invoked
in the last point does not hold. A collective segregation of all agents with k& < k* would change
the degree distribution of the segregated group relative to the integrated group, thus changing
the value of my;(k) for all k. In particular, the original degree distribution P would first order
dominate the distribution P° among the segregated agents, while the distribution P! among the
integrated agents would first order dominate P. This would make integration more attractive.
If vy # vg, there are additional impacts as k} # k. This implies that among those agents in
the integrated group, the likelihood to meet an agent of group ! will no longer be equal to v;.
An unambiguous result that is obtained from Theorem 3 is that equal group sizes maximize the
likelihood that full integration is observed, as depicted in Figure 3.

Our model finds that increased popularity of OSNs can lead to polarization as they offer
increased opportunity to segregate. The results of Proposition 5 and Theorem 3 highlight that
this opportunity is more likely to be taken up by agents that (i) are particularly interested in
niche or very specialized pieces of information (small v;), (ii) are extreme in their valuation of
information (small ), and/or (iii) are comparatively “anti-social”, in the sense that they have
few meetings per period (small k). On the other hand, as our illustration in Figure 3 shows, if
OSNs imply an increase in A (as an improvement in communication technology), it is possible

that they reduce the attractiveness of segregation.
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5 Conclusion

In the present paper, we have introduced communication constraints into a standard SIS dif-
fusion model: While two memes diffuse simultaneously on the network, at each meeting an
agent can pass on at most one of these memes. The choice of which meme to pass on is driven
by intrinsic preferences, and agents can be grouped according to which meme they prefer. In
essence, the existence of communication constraints introduce opportunity costs in the diffusion
process. To the best of our knowledge, communication costs of any type have not before been
analyzed in a SIS framework.

We find that our parsimonious model is in line with stylized communication patterns found in
Twitter data, such as differences in prevalences and crowding out. Most importantly, our model
predicts that information is resilient, in the sense that the conditions under which a unique
meme exhibits a positive steady-state are identical to the conditions under which both memes
exhibit positive steady-states. Thus, it provides a rationalization for why so many different
topics are discussed simultaneously.

When we allow for segregated interactions among agents, we find that segregation leads to
polarization, a loss of information overall, but an increase in the fraction of agents informed
of their preferred meme. We extend our model by introducing explicit utility flows from being
informed, which allows us to investigate the factors that drive segregation. We find that ex-
tremism of information preferences and low number of meetings increase the extent /likelihood of
segregation. The larger the size of the group that prefers a meme, the smaller are the incentives
for agents of this group to segregate.

We believe that our results relating to the impact (and the causes) of segregation are of
particular interest when applied to the rise of Online Social Networks. Much information that
diffuses on these is casual chit-chat, which we think is well captured by our model. It is a strong
result that even without biased messages or news consumption, non-preferred information has
no chance of surviving in a segregated group. The consequence, from a policy perspective, is
that campaigns to introduce “competing” information into segregated groups will not have any
long term impact, only a reduction of segregation will. The additional potential harm that
segregation causes in our model is the loss of information.

Our model is kept deliberately simple to highlight the impact of opportunity costs in the

22



diffusion of information. There are a number of extensions that we believe would be promising
areas of future research. Omne of these would be to consider the diffusion process on a fixed
network. Although this promises to be an interesting extension, it is of substantial complexity.
Another promising area is the question of how individuals choose which information to commu-
nicate. While we believe our assumption to link this to intrinsic preferences is a valid starting
point, there are numerous other factors that might contribute to this decision. It might, e.g.,
depend on how likely it is that the information is “news” to the other party. Alternatively,
forgetting is a complex matter, and might depend on preferences, or the number of memes an
agent has been exposed to. We believe that these are interesting aspects of the diffusion process

that deserve closer attention.
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A Proof of Theorem 1

The proof of Theorem 1 proceeds in two steps. First, we proof existence and uniqueness of a
positive steady-state for 6;. Uniqueness and existence of #; > 0 translates into uniqueness and
existence of p;(k) > 0 and p; > 0. Then, we derive the conditions under which this steady-state
of 6; is asymptotically stable. Due to the symmetry of memes A and B, we can change the
labels of the information to apply any arguments that we make about A also for B. We will
therefore prove proposition 1 for meme A, without loss of generality.

Re-arranging of equations (1) and (2) under the condition that 6; > 0, implies that at the
positive steady-states, the following holds,

N )
b= ijp(k)(1+kA9A)(1+meB)(

1+ v, kA0y), (14)

. kX
1 = Zp(k)(l_'_k)\eA)(l+k/\9B)(1+I/Bk)\0A). (15)

It is immediate that if v, = 1, the steady-state condition for 6, in equation (14) is identical
to the condition when A is the only information on the network. Lépez-Pintado (2008) has
proven existence, uniqueness, and stability of the steady-state in this case. Furthermore, if 6, is
equal to the value it would take if A was the only meme, there is no 6 > 0 that solves equation
(15) as well as (14). This completes the proof for existence, uniqueness and stability of a positive
steady-state for 6, if v, = 1, as well as the non-existence of a positive steady-state if nu, = 0.

Equations (14) and (15) also show that for any v, € (0,1) any steady-state has the property
that
12N
0y = —0s, 16
= O (16)
as this is the only condition under which both (14) and (15) hold simultaneously. We make
use of this relationship to write the steady-state condition for 8, as a function of 8, only,

1+ vgkO,
P(k O 1
Z 1—|—k:)\9 1+ ”Bk/\GA (17)

Fixed points of H A(GA) = 6, correspond to steady-states of 6,. We follow the arguments
put forward in Lépez-Pintado (2008) and Jackson and Rogers (2007b) to show the existence
and uniqueness of such a fixed point. First, note that

HA(0) = o0, (18)

14+ vk
HA(1) = - B . 1
(1) Zk: 1+k)\1+”3k>\< (19)

The second result is immediate since Zk P(k) = 1, and both factors that multiply P(k) in
HA(1) are less than 1 (strictly so if v, € (0,1)). Furthermore, taking first and second order
derivatives of H4(6,) with respect to 6, yields
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k)\

HY(0,) = P(k 1+ 20,kA0 2
1 ~ 2]{32)\2(1 + 2Z/Bk>\0\)
HA = P(k ‘
(62) Zk: { (14 kA0, )3(1 + 22k,
22 )2 vy U
_ 2 _’B . 21
+ (1+k>\0A)2(1+ %k}\gA)g I:VB vy yAk)\eA:| <0 ( )

Le., HA(6,) is strictly increasing and concave in ,. This implies that a fixed point of H*(6,)
exists and is unique if and only if H4 (0) > 1. In fact,

ZP VA = Z KA <<>> (22)

which is larger than 1 if and only if A > %, identical to the one-meme case. This completes

the proof of existence and uniqueness of all possible positive steady-state of 8; for [ € {A, B}.

In the one-meme case, concavity of H(#) implies stability of the positive steady-state as well
as existence and uniqueness. But since H4(6,) is derived with the steady-state condition that
0, = Z—QQB, convergence to the steady-state does not follow from the above arguments. Instead,
we conduct the stability analysis through the eigenvalues of the Jacobian of the system

HA(0,,05) -0, = 0, (23)
HB(0,,05) — 6, = 0. (24)

The entries of the Jacobian are,

DHA ) kX kG,
96, '~ Zk:P(k)(l ISVRE {1 Ty k)\HB] -b (25)
OHA _ k2020,
90, e Zk: PO A e 0 1 ne)2 (26)
OHP _ k2020,
a0, zk: PO a2t 1 e (27)
OHP . kX kO,
o6, '~ ijp(k)(l ISVRE {1 T k:)\GA] - L (28)

Denote the bteady state of §; as 0. At 0, = B = 0, the eigenvalues of the Jacobian are
%IZ —1 and %}g — 1, both of which are equal to 3", P(k)kA — 1. Le., the zero steady-state is
stable if A < M\ and unbtable if A > Ag.

At 6, > 0,0, = 0, again the eigenvalues are %I; —1and 222 1. In this case,
o 1 = ZP(k)L 1<0 (29)
00, N - (14 kXG,)2 ’
OHB - kX ~ k2)\20,
— =1 = Plk)——— Plk)————=——1>0. 30
06, 2 <)1+k)\0A+Vsz: T ona, (30)

25



since at 0, > 0,0; = 0, it is the case that ), P(k)ﬁ = 1. Le., this steady-state is

unstable, too. Symmetry implies that the same argument applies for 6, =0,0, > 0.
Finally, for 6, > 0,6; > 0, the two eigenvalues of the Jacobian are

(8HA | oH” _2)2 _4((8HA Ly 2H ) oHt aHB)rZ‘}

A B
m:;{aﬂ L

00 00s 00 06g 00 06g 06 004
Note that aH < B and BH < g—:. Since at the steady-state, Ig—ll = 1, this automatically
implies that 22— — 1 < 0 and 22- —1 <0 at the steady-state. Thus, for both eigenvalues to
be negative, 1t is suﬂ"l(nent that (— —1)(91 893 - 1) %Ig; aagf > 0. For this to hold, in turn,
B A
it is sufficient that 1 — S5— > —%%A and 1 — W > —%IZB
Given the partial derlvatlves the condition that 1 — %;— > —57— is equal to
kA k‘2)\2§3
1-— P ——— t (B —V = = > 0. 31
Z { 1+ kXG,)? (v =) (14 kX0, )2(1 + kAeB)] (31)
At (05, 05),
kX k2220
=> P [ _ _ } . (32)
k 1+ kN0, (1 + kX0 ) (1 4 kXGy)

By substituting this expression into equation (31), all terms are sums over k. For equation
(31) to be satisfied, it is then sufficient that it is satisfied for all individual terms of the sums,
ie.,

kA k2)\20, kA k220,
— — Uy B — — —— + (Vs —va) — B
L+ kM, "L+ kN (L + kNG, (1+ kA, (1 + kX0L2(1 + kAGy)

>0 (33)

Simplifying equation (33), we find that it is equivalent to the condition that

1+ kX, > 0, (34)
which is always satisfied. Yet again due to symmetry, this also shows that 1 —%:— > — %I'GI : ,
B

too. This completes the proof that for A > A4, the uniquely stable steady—state 1s the one in
which 6, > 0,65 > 0.

B Proof of Proposition 1

By equations (6) and (7), we have

ISR
k = -
pak) 1+ kNG,
I3V
B = A%
pa(k) 1+ kG,
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Given that 0, = Z—géB, this implies that

kNG,
k)= —2A 35
p(k) YA 4 kNG, %)
and consequently, _
pa(k) _ 7y KA Va

= _ e(1,—). 36
pu(k) 14 kN0, VB) (36)

Furthermore, as p; = Y, P(k)pi(k), this also implies that
Va Zk P(k) 3y +k9A Vi

By =)
Pr Uy Zk Pk )W € VB) (87)

C Proof of Proposition 2

To prove the first part of Proposition 2, note that p; is increasing in A if and ouly if p;(k) is
increasing in A. For p;(k) to be increasing in A in turn it is sufficient that 6; is increasing in .
We prove this now for [ = A.

As

S Ak kA, 1+ vk,
o 1+ kX6, 1+Z—§kA9A’

it follows that for given 6,,

OHA(6,) ko, [
Ox (L kML2(1+ kNG, )2

1+ 20,kA0,] > 0. (38)

Fix A and X and let 6, = H4(6,) for A and 64 = HA (/) for N'. Proposition 2 states that
for any X > X, 04 > 6,.

Suppose to the contrary that 84 < ,. Then, as HA(HA) is concave in 6,, it is the case that
04 < HA(O4:). However, from equation (38) we know that

HA(gA/) <HA,(9_A/) (39)
which contradicts the fact that 04 = HA'(O_A/). Thus, for each X > X, 84 > 6,. Hence, 0, is
increasing in A. The same argument holds for [ = B.

To show that 2 AEZ; and p A are both decreasing in A if and only if v, > vy, it suffices to show

that Z;Ek) is decreasing in A 1ff vy > vg. If this is true, pg(k) is increasing in A faster than p, (k),
which implies that also pg is increasing in A faster than p,. Indeed,

pa(k) A do.
dosmy  klOx+ 2GR (1 VA>. (10)

A (1+kN)Z

Vg
Which, as 6, is strictly increasing in A is negative if and only if v, > v.

Finally, given the expression for Z QE:; derived in Appendix B, it is straightforward to show

that

(k) 5
dk (1 + kAG,)2 Vs

which is negative if and only if v, > vy, which completes the proof.
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D Proof of Proposition 4

We focus on | = A with v, > vy > 0. Information prevalence in the one-meme case is given by

po= Y Pk)pk), (42)
k
o kM
plk) = 1+ kX (43)
_ _ _ kXD
6 = H(G):%:P(k)lJrk)\é (44)

Therefore, p is strictly increasing in p(k). Also,

kX,
14+ kNG,
which implies that 5 > p, if and only if 6 > 0. i .
To establish the bounds on 6,, we make use of the fact that at # > 0 and 6, > 0, the
following conditions are satisfied,

pA(k) =

1 = P(k 45
2P g )
- kX,
1 = P(k 1l—vy————| . 46
Xk: 1+k/\6A [ VB1+k)\0J (46)
Which means that the two sums are equal to each other, and we can write them as
Zﬁ(k){ MR {1—%]“93}} =0. (47)
k 1+ kXN 1+ kN0, 14 kMO
Some re-arranging shows that this implies
- E2\? 1 < _ ~
P(k — — Or(vy +v5) —va0| + kX0 (0) — vn0) p = 0. (48
S P i A H{w){ 8.0+ 02) = 18] + kA5, A>} (48)

I, < Z/Aé, then éA(VA + Vg) < VAé too, as v, + VFQ; < 1. Le., each individual term in the~sum
in equation (48) would be negative, which contradicts the assumption that both ¢, and ¢ are
steady-states. Similarly, if 6, > (48) would be

positive, again contradicting the stéady—state assumption. Due to symmetry, the result for 65
follows, as do the bounds stated in Proposition 4.

E Proof of Theorem 2

Information loss due to segregation is v;p — p;. For this to be negative, it is sufficient that
vp(k) < pi(k) for all k. As the lower bound for 6 is 140, we know that

>1/ P > vip(k).
lz 1+1/1k>\0 > vip(k)
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Le., for agents of any degree, segregation leads to an information loss for each meme [ €
{A, B}, and hence v;p — p; < 0. Furthermore, a sufficient condition for |vyp — pa| > |vsp — s
is that |v,p(k) — p(k)| > |vep(k) — ps(k)|. Note that

~ = 1 _kXd
vap(k) — pa(k) _ ﬁp(k) o 1+k{\%A (49)
vop(k) = pu(k) v p(k) — L 200

which is larger than 1 if and only if v, > vg, as then both terms on the right hand side are
larger than 1, while for vz > v,, they are both smaller than 1. This immediately shows that

|VA/5(k) - PA(k)l > |V8ﬁ(k) - ps(k)l (50)

if and only if v, > v;.

F Proof of Theorem 3
Point 1:

An agent of degree k and group [ prefers a segregated society over an integrated one if

S
E < ml(k)7
where (k) (k:)
p(k) — pi
my(k
) ===
For | = A, we have that
din(my(k) A M), (51)
dk 14 EM, 14+ kN 1+ kN,

— _ A _ [9’3 — 0 — 0, — 2kX0,0 — kQAQéAéBé} (52)
(14 kXG) (1 + kNG, (1 4 kAD)

which is always negative, as 6 > 0, By symmetry, w < 0 holds as well. It is

therefore the case that for each group, individuals that have more meetings per period prefer
an integrated society for a broader range of 7 than individuals with fewer meetings.

Point 2:

The second claim of Theorem 3 is that for all k, mg(k) > m,(k) if and only if v, > v,
i.e., for two agents with the same degree, the agent belonging to the minority group prefers
segregation for a broader range of 7. This holds if, for v, > v,

ma(k) _ p(k) = pa(k) pa(k)
mR(k) ﬁ(k) - PB(k) PB(k)

This condition can be re-written as

< 1. (53)

(p(k) — pa(k))pa(k) < (p(k) — pu(k))ps(k)
kMO k), kO, kO k)G,
14+ kN 14+ kN, L+ kN | 1+kN) 1+ EkNG,

ISVA
14 kX0,

29



and through collecting terms, re-arranging, and making use of the fact that 6, = Z—EG_A, it
can be simplified to

_ _ 1 _ _
0[1 = KN0,05] < —0u + 270, 0. (54)
A

This is satisfied, as we know that 0, > I/Aé, ie., L9, > 0.

VA
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