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Abstract

Composite indicators are becoming increasingly influential tools of environmental assess-

ment and advocacy. Nonetheless, their use is controversial as they often rely on ad-hoc and

theoretically problematic assumptions regarding normalization, aggregation, and weighting.

Nonparametric data envelopment analysis (DEA) methods, originating in the production-

economics literature, have been proposed as a means of addressing these concerns. These

methods dispense with contentious normalization and weighting techniques by focusing on a

measure of best-case relative performance. Recently, the standard DEA model for compos-

ite indicators was extended to account for worst-case analysis by Zhou, Ang, and Poh [21]

(hereafter, ZAP). In this note we argue that, while valid and interesting in its own right,

the measure adopted by ZAP may not capture, in a mathematical as well as practical sense,

the notion of worst-case relative performance. By contrast, we focus on the strict worst-

case analogue of standard DEA for composite indicators and show how it leads to tractable

optimization problems. Finally, we compare the two methodologies using data from ZAP’s

Sustainable Energy Index case study, demonstrating that they occasionally lead to divergent

results.
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1 Introduction

Composite indicators are becoming increasingly influential tools of environmental assessment

and advocacy. Usually taking the form of a weighted arithmetic average of normalized indica-

tors, these indices condense complex multidimensional information into a single number. As

such, they are easy to compute and to interpret. Furthermore, they allow for the computation

of rankings to assess the comparative standing of different entities (countries, regions, policies).

This conceptual simplicity facilitates communication with the press and public, and thus aids

in generating awareness regarding the issue that the composite indicator is meant to address.

Despite their increasing popularity, composite indicators are often strongly criticized by

official statisticians and economists, including those interested in the measurement of sustain-

ability (Ravallion [15], Bohringer and Jochem [3]). These critiques come in different varieties,

both conceptual and methodological. On the conceptual side, it is argued that the underlying is-

sues that composite indicators address are often ill-defined and open to excessive interpretation.

Ravallion [15] cites Newsweek magazine’s “best country rankings” as an intuitive example of

this kind of definitional haziness. Statisticians further complain that the process of constructing

a composite index discards useful statistical information by reducing multidimensional data to

an aggregate measure. While we agree that these are important issues, we do not dwell on them

as the focus of this paper is primarily methodological. Here, critics argue that integral modeling

assumptions behind the construction of composite indices such as the choice of normalization

procedure, aggregation function, and weighting scheme, fail to be grounded in economic theory

or a coherent analytic framework (Ravallion [15]). What is more, the ad-hoc nature of these

choices may lead to unintended theoretical consequences such as unacceptable tradeoffs (Raval-

lion [14]) and problematic measurement-theoretic implications (Ebert and Welsch [12]). Finally,

the indices themselves may be very sensitive to changes in these subjective choices so that any

insights or rankings that are generated can be highly non-robust.

One way of addressing the dependence of composite indices on arbitrary assumptions on

normalization and weighting (while maintaining the linearity of the aggregation function) is via

the nonparametric framework of data envelopment analysis (DEA).1 First developed by Charnes

et al. [5] in the field of production economics, DEA was primarily conceived as a methodology for

measuring the relative efficiency of different decision-making units. Since then, DEA has been

1It is worth noting that there exist other nonparametric frameworks that impose less restrictive assumptions

on aggregation. This increased generality usually introduces ambiguity to the index results. For instance,

in the context of multidimensional welfare measurement, Anderson et al. [1] impose solely monotonicity and

quasiconcavity on the aggregation function and derive upper and lower bounds on index scores, not precise

values and rankings.
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the subject of extensive research in both economics and operations research [9]. Its application

in composite index construction, known as the “benefit of the doubt” (BOD) method, was

proposed by Cherchye et al. [6]. For each entity (country, region, policy) to be assessed, the

BOD method searches for its “most favorable” set of weights, defined as the maximizers of

the ratio of its score to that of the highest-performing member of the group. Thus, weights

are determined endogenously and may differ between entities. Furthermore, it is important to

note that DEA takes as input non-normalized data and its scores and rankings are invariant

to ratio-scale transformations (i.e., multiplicative changes in units). DEA-like methods are

being increasingly used to build composite indices for a variety of applications ranging from

market structure and technology [6, 8], to gender issues [10], to environmental policy and

assessment [11, 19, 21, 20].

In a recent paper Zhou, Ang and Poh. [21] (hereafter, ZAP) extended the DEA framework

of Cherchye et al. [7] to account for worst-case analysis. In particular, they propose a model with

which to compute an entity’s “least favorable weights” and corresponding worst-case relative

performance. The yardstick of performance becomes the ratio of an entity’s score to that of the

worst member in the group. They then go on to propose a hybrid DEA methodology in which

convex combinations of their normalized best- and worst-case DEA scores are considered.

Using ZAP’s work as a springboard we argue that, while interesting in its own right, the

worst-case measure that they adopt may not capture, in a mathematical as well as practical

sense, the notion of worst-case relative performance. We propose an alternative measure that

is, in a strict mathematical sense, the worst-case analogue of the BOD model of Cherchye

et al. [6]. While the mathematical structure of this measure differs significantly to that of the

BOD method, we show how it can nonetheless be tractably computed, even under general convex

restrictions on the weights.2 We then compare the two methodologies using data from ZAP’s

Sustainable Energy Index case study, demonstrating that they occasionally lead to notably

different results.

Paper outline. The structure of the paper is as follows. Section 2 sets up the formal model

and relevant DEA framework. It goes on to discuss ZAP’s approach to modeling worst-case

relative performance and to suggest, by means of a stylized example, how it may result in

undesirable conclusions. Section 3 introduces and analyzes an alternative optimization problem

that is the strict worst-case analogue of traditional DEA for composite indices. Section 4 applies

2An additional advantage of the proposed approach is that it results in worst-case DEA scores that share a

similar 0-1 scale to that of best-case DEA scores. Thus, there is no need for potentially contentious normalization

procedures when taking the aforementioned convex combinations of best- and worst-case DEA scores.
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the proposed procedure to the case study of the original ZAP paper, showing how the two

methodologies can lead to divergent results. Section 5 provides conclusions. All mathematical

proofs, tables, and figures are collected in the Appendix.

2 Model Description

Suppose we are given a set A = {a1, a2, ..., aA} of A agents and a set I = {i1, i2, ..., iI}
of I indicators. Moreover let xai denote agent a’s value for indicator i. All indicator values

xai for a ∈ A and i ∈ I are assumed to be positive. Indicators are weighted with a non-

negative column vector of weights w ∈ <I
+, where wi denotes the weight assigned to indicator

i. Consistent to classical DEA, an agent a’s score under weights w is given by the corresponding

weighted sum of the non-normalized indicators:
∑I

i=1wixai.

Now, let us introduce the main concept behind the use of DEA-like methods in composite

indicators. Consider an individual agent aj ∈ A and suppose that weights w are chosen. The

relative standing of this agent among her peers, given the chosen weights w, is captured via the

ratio of her performance to that of the highest-performing agent of group A. Denoting it by a

function fa(w), it equals:

faj(w) ≡
∑I

i=1wixaji

maxa∈A
∑I

i=1wixai
. (1)

Eq. (1) ranges between 0 and 1; the higher it is, the closer agent aj is to the top performer.

If it equals 1, then for this choice of w, agent aj has the top score. The DEA approach to the

construction of composite indicators uses exactly this measure of relative standing as its mea-

suring stick of performance. In particular, it searches for the set of weights that maximize the

function fa(w), for each agent a ∈ A. Applied to agent aj , it solves the following optimization

problem:

f ∗aj ≡ max
w≥0

faj(w) = max
w≥0

∑I
i=1wixaji

maxa∈A
∑I

i=1wixai
(2)

Optimization problem (2) determines the weights, subject to a non-negativity constraint,

resulting in the best-case relative performance of agent aj . These are known as the “most

favorable weights” for agent aj .

From a mathematical standpoint, the tractability of problem (2) is crucially dependent on

the fact that it may be reduced to the following, equivalent linear-fractional program:

f∗aj
= max

w≥0,z

∑I
i=1 wixaji

z

s.t.

I∑
i=1

wixai ≤ z, a ∈ A, (3)
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which, in turn, can be shown to be equivalent (see section 4.5.2 in Boyd and Vandenberghe [4])

to the linear program

f∗aj
= max

w≥0

I∑
i=1

wixaji

s.t.

I∑
i=1

wixai ≤ 1, for all a ∈ A. (4)

Linear program (4) is the familiar “benefit of the doubt” method for composite indicators

discussed in Cherchye et al. [7] and applied in many contexts since [21, 16, 8, 6, 13, 10].

Importantly, additional linear constraints may be imposed to the weights in optimization

problem (2) at no conceptual or computational cost. Particularly compelling weight restrictions

come in the form of so-called “pie shares” (see Cherchye et al. [7, 6]), which set lower and upper

bounds on the contribution of any single indicator to the agent’s total score. To wit, given a

set of numbers Li, Ui for all i ∈ I the corresponding pie-share constraints to be appended to

problem (2), and ultimately also to its linear equivalent (4), are given by

Li ≤
wixaji∑I

k=1wkxajk
≤ Ui, for all i ∈ I. (5)

The above constraints hold theoretical as well as practical appeal. Theoretically, their impo-

sition does not compromise the very desirable property of ratio-scale invariance of DEA, also

known as “units invariance” [9, 7]. That is, DEA scores and their resulting rankings remain

unchanged under incomparable (i.e., non-identical across indicators) ratio-scale transformations

of the original indicators. This property is particularly compelling in the case of environmental

indices (Ebert and Welsch [12]). Meanwhile, on a practical level pie shares are pure numbers

whose meaning is easy to grasp and on whose values experts can usually come to an agree-

ment [7, 6].

The worst-case model of ZAP. ZAP take as a starting point the above standard DEA

model and extend it to account for worst-case relative performance. Considering again an agent

aj ∈ A, they draw on previous work by Zhu [22] and Takemura and Tone [18] and (implic-

itly) define this agent’s “least favorable weights” as the solution of the following optimization

problem:

gZAP
aj
≡ min

w≥0

∑I
i=1wixaji

mina∈A
∑I

i=1wixai
. (6)

That is, they define the worst-case DEA weights to be such that they minimize the ratio

of an agent’s performance to that of the worst-case performer in the group. Optimization

problem (6) retains the nice properties of problem (2) in that it too can be reduced to a

linear-fractional program, and ultimately to the following linear program (which, in turn, is the
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formulation that appears in ZAP’s work):

gZAP
aj

= min
w≥0

I∑
i=1

wixaji

s.t.

I∑
i=1

wixai ≥ 1, a ∈ A. (7)

In a formal sense, problem (6), and thus also its linear equivalent (7), does not correspond to

worst-case DEA for composite indicators. This is because it abandons the measure of relative

performance faj(w) of Eq. (1), which constitutes the objective function of problem (2), in favor

of an alternative measure, namely

gaj(w) ≡
∑I

i=1wixaji

mina∈A
∑I

i=1wixai
. (8)

The ratio gaj(w) is no smaller than 1 and unbounded above; the smaller it is, the closer agent

aj is to the bottom performer. If it equals 1, then for this choice of w, agent aj has the worst

score. Thus, worst-case DEA as defined by ZAP searches for the set of weights w that minimize

the ratio gaj(w).

While problem (6) is interesting in its own right, and the underlying optimization problem

has identical structure to the standard DEA context (and is thus readily solvable using similar

techniques), it is not the worst-case analogue of standard DEA. Moreover, it may sometimes

fail to capture the essence of worst-case relative performance. The following, highly stylized,

example illustrates this fact.

Example 1 [counter-intuitive implications of ZAP’s model]. Consider the setting

described in Table 1 summarizing an instance of the problem forA = {a1, a2} and I = {i1, i2}.

i1 i2

a1 9999 1

a2 5000 5000

Table 1: xai values for Example 1.

The standard best-case DEA model of Eq. (2) results in identical scores for a1 and a2, since

f ∗a1 = f ∗a2 = 1. Let us now consider worst-case performance. According to ZAP’s model of

Eq. (6), agents a1 and a2 are equal as they both get the absolute minimum score of 1. This is

because there exist weight vectors that equalize their performance (e.g., w = (1/2, 1/2)′), thus

implying that they are simultaneously the worst performers of the two-member group A. By

definition of problem (6), this means that they both get the worst possible score, i.e., gZAP
a1

=
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gZAP
a2

= 1, and so ZAP’s methodology cannot discriminate between them. This result does not,

arguably, accord with intuition. Indeed, we would expect agent a2’s balanced performance across

indicators, in combination with a1’s extremely unbalanced one, to be recognized and rewarded.

Furthermore, note that the exact numbers here are not important. Similar results would obtain

if we make xa1i1 ≥ 0 as large and xa1i2 ≥ 0 as small as we like, and set xa1i1 + xa1i2 =

xa2i1 + xa2i2 and xa2i1 = xa2i2 .

Finally, in order to construct a DEA measure combining best- and worst-case performance,

ZAP normalize the results of (2) and (6) via max-min rescaling. This is necessary because the

scales of the two measures clearly differ; one ranges from 0 to 1, the other from 1 to +∞. This

normalization introduces an undesirable source of subjectivity, which arguably goes against the

normalization-free essence of DEA. In any event, given an agent aj and λ ∈ [0, 1], ZAP propose

to consider the following family of convex combinations of normalized best- and worst-case DEA

scores:

CIZAP
aj

(λ) = λ
f∗aj
−mina∈A f

∗
a

maxa∈A f∗a −mina∈A f∗a
+ (1− λ)

gZAP
aj

−mina∈A g
ZAP
a

maxa∈A gZAP
a −mina∈A gZAP

a

. (9)

We close this section by noting that, while relatively recent, ZAP’s model has already been

quite influential in the literature. Indeed, a number of studies have adopted ZAP’s approach to

worst-case DEA for the construction of composite indices (see Rogge [16], Hatefi and Torabi [13],

Dominguez-Serrano and Blancas [10], among others).

3 An alternative approach to worst-case DEA

An alternative way of modeling worst-case relative performance is to maintain the structure of

optimization problem (2) (i.e., its objective function and constraints) but make it a minimization

as opposed to a maximization. This would involve solving the following optimization problem:

g∗aj ≡ min
w≥0

∑I
i=1wixaji

maxa∈A
∑I

i=1wixai
. (10)

Problem (10) is the strict worst-case analogue of problem (2). Not surprisingly, when applied

to the data of Example 1 it clearly points to a2’s far superior worst-case relative performance

since we have g∗a2 = 5000/9999 vs. g∗a1 = 1/5000).

Analytically, problem (10) is not as straightforward as (2) or (6). This is because we cannot

do the same trick of Eq. (3) to reduce it to an equivalent linear-fractional program. Nonetheless,

it is possible to argue from first principles that it too admits a simple and tractable solution.

For expository reasons, before going into the statement and proofs of the following results,

we generalize Eq. (10) to incorporate arbitrary constraints on the weights. Letting Wj ⊆ <I
+
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denote an arbitrary subset of the non-negative orthant, define the optimization problem:

g∗aj(Wj) ≡ min
w∈Wj

∑I
i=1wixaji

maxa∈A
∑I

i=1wixai
. (11)

The pie-share bounds of Eqs. (5) correspond to sets Wj that are polyhedra, i.e., they can be

expressed as systems of linear inequalities (see Chapter 2 in Bertsimas and Tsitsiklis [2]). This

is because Eqs. (5) are equivalent to the system of linear inequalities{
wixaji − Li

I∑
k=1

wkxajk ≥ 0, wixaji − Ui

I∑
k=1

wkxajk ≤ 0

}
, for all i ∈ I.

We are now ready to state the paper’s first theorem.

Theorem 1 Consider optimization problem (11) with m linear constraints on the weights

given by Wj = {w ∈ <I : w ≥ 0, Gj ·w ≤ hj}, where Gj ∈ <m×I and hj ∈ <m. We

have

g∗aj(Wj) = min
a∈A

 min
w≥0, y≥0

Gjw−hjy≤0∑I
i=1 wixai=1

I∑
i=1

wixaji

 . (12)

Proof. See Appendix.

Theorem 1 establishes that problem (11) is highly tractable for arbitrary polyhedral re-

strictions on weights. Indeed, its solution simply amounts to solving A linear programs, the

inner minimizations of Eq. (12) for each a ∈ A, and picking the optimal solution which is the

smallest. Specifically, this means that the pie-share weight restrictions of Eq. (5) can be easily

accommodated in problem (10).

Corollary 1 establishes an easy consequence of Theorem 1. In particular, when there are

no constraints on the weights, problem (11) can be trivially solved by simply enumerating the

ratios
xaji

xai
for all i ∈ I and a ∈ A and picking the minimum value.

Corollary 1 Consider the setting of Theorem 1 with no constraints on the weights except

for non-negativity (i.e., Wj = <I
+). In this case Eq. (12) can be simplified to:

g∗aj(<
I
+) ≡ g∗aj = min

a∈A, i∈I

xaji

xai
. (13)

Let I∗ denote the set of indicators that attain the minimum in Expression (13). Any

vector w∗
aj
≥ 0 such that

∑
i∈I∗ w

∗
aji∗

> 0 for i∗ ∈ I∗ and w∗aji = 0 otherwise, is an

optimal solution of problem (10) .

Finally, it is worth noting that the positive result of Theorem 1 extends to the case of

arbitrary convex constraints, which has not been previously mentioned in the DEA literature.
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Theorem 2 Consider optimization problem (11) for an arbitrary set Wj. We have

g∗aj(Wj) = min
a∈A

{
min
w∈Wj

∑I
i=1wixaji∑I
i=1wixai

}
. (14)

If Wj can be written as Wj = {w ∈ <I
+ : ck(w) ≤ 0, k = 1, 2, .., K}, where ck(·) for

k = 1, 2, ..., K are convex functions, then the inner minimizations of Eq. (14) are concave

fractional programs that can be efficiently solved with standard methods.

Proof. See Appendix.

In conclusion, the analytic results of this section establish that problem (11), in addition

to being the (generalized) worst-case equivalent of (2), is highly tractable.

4 Numerical case study

In this section, we apply the framework developed in Section 3 to the original case study of ZAP.

In their paper, Zhou and his co-authors applied their DEA methodology to the construction of

a sustainable energy index (SEI) for the eighteen Asia Pacific Economic Development (APEC)

economies in 2002. In what follows, we offer a bare-bones description of ZAP’s SEI, omitting

details on how the index was developed. This is because our primary objective is to briefly

compare the results obtained under the two different DEA methodologies.

The three building blocks of ZAP’s SEI are an energy efficiency indicator (EEI), a renew-

able energy indicator (REI), and a climate change indicator (CCI). The EEI is the reciprocal

of the energy-to-GDP ratio, the REI is the percentage of renewable energy in total final energy

consumption, and the CCI is the reciprocal of the CO2 emissions-to-GDP ratio. More informa-

tion on the rationale and data sources of the SEI can be found in Section 4 of ZAP. Table 2

summarizes data on the EEIs, REIs, and CCIs of the 18 APEC countries.

[Table 2 here]

Application of DEA methodologies. We begin by considering the simplest possible DEA

setting in which there are no weight restrictions. Table 3 summarizes the results of the various

DEA models for this case.3

[Table 3 here]

The second column of Table 3 collects the results of best-case DEA scores as defined by

Eq. (2) (which are of course identical to those cited in ZAP) along with the ranks they imply.

3All computations in this section were performed in MATLAB. Details and programs available upon request.
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The third column collects the results of ZAP’s worst-case DEA scores as per Eq. (6), while the

fourth column summarizes the worst-case DEA scores proposed in this paper as per Eq. (10).

The fifth column lists the average of the normalized values of Columns 2 and 3, i.e., the values

of Eq. (9) for λ = 1/2; the sixth column does the same for Columns 2 and 4, i.e using the

worst-case DEA scores of this paper.4

Examining Table 3 we see that the choice of model (6) versus model (10) results in numerous

rank changes (indicated in red). Some of them can be quite dramatic, like for instance those

involving Russia, which is last according to model (6) and 12th according to model (10). Indeed,

to elucidate the differences between the two methodologies it is instructive to focus on Russia

and contrast its performance to that of Korea. Under model (6) Russia and Korea are considered

equal as there exist weight vectors that result in their having the minimum score in group A
of APEC countries. Denoting by wZAP

a17
and wZAP

a18
the optimal solutions of (6) for Korea and

Russia respectively, we have

wZAP
a17

= (0.01, 1.52, 0.03)′, wZAP
a18

= (0.22, 0.01, 0.49)′.

Conversely, under model (10) we see that Korea has a far inferior worst-case performance to

Russia. The optimal weights provide insight as to why. Denoting by w∗
a17

and w∗
a18

the optimal

solutions of (10) for Korea and Russia respectively, we have

w∗
a17

= (0, K1, 0), w
ZAP
a18

= (0, 0, K2), for any K1, K2 > 0.

Hence, we see that for Korea (Russia), worst-case weights correspond to those assigning positive

weight exclusively to indicator EEI (CCI). The result now follows since Korea’s performance

of 0.6 in EEI (where New Zealand has the maximum value of 56.9) is, in relative terms, worse

than that of Russia which has a CCI value of 0.652 (where Papua has the maximum value of

5.039).

Qualitatively similar implications persist even when we impose the uniform pie-share bounds

(Li, Ui) = (L,U) = (0.1, 0.5) for all i ∈ {1, 2, 3}, albeit to a weaker degree. Table 4 summa-

rizes the corresponding results.

[Table 4 here]

4That is, it lists the values of CI∗a(1/2) for all a ∈ A, where

CI∗aj
(λ) ≡ λ

f∗aj
−mina∈A f

∗
a

maxa∈A f∗a −mina∈A f∗a
+ (1− λ)

g∗aj
−mina∈A g

∗
a

maxa∈A g∗a −mina∈A g∗a
. (15)

Note that, unlike ZAP, the above normalization is not necessary because the g∗aj
measures defined in Eq. (10)

are already scaled to range between 0 and 1. Nonetheless, we still adopt it to maximize comparability of the two

sets of results.
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Combining best- and worst-case DEA scores. Examining the fifth and sixth columns of

Tables 3 and 4, we see that the rankings implied by the two methodologies converge significantly

when we consider the averages of the respective normalized DEA scores, as per Eqs. (9) and (15).

Taking this analysis further, Figure 1 follows the example of ZAP’s Figures 2 and 3 and presents

box plots of country ranks when λ is allowed to assume all values in {0, 0.1., 0.2., ..., 0.9, 1}, for

both cases of unconstrained and constrained weights. As expected, we observe greater variability

in country ranks for the worst-case DEA model of Eq. (15) compared to that of (9). The effect

is stronger when weights are unrestricted, but persists even upon setting the aforementioned

pie shares.

[Figure 1 here]

In conclusion, this brief empirical exercise suggests that indices combining best- and worst-

case DEA scores are quite sensitive to how one chooses to model worst-case relative performance.

5 Conclusion

This note has revisited the concept of worst-case performance in a nonparametric DEA frame-

work, first introduced in the composite-indicator literature by Zhou, Ang, and Poh [21] (ZAP).

We argue that, while interesting and valid in its own right, the worst-case measure adopted

by ZAP does not capture, in a formal sense, the notion of worst-case DEA performance. By

means of a stylized example, we showed that this theoretical inconsistency may at times lead

to undesirable implications. We analyze the strict worst-case analogue of standard DEA and

show how it can be tractably computed, even under general convex restrictions on the weights.

Furthermore, the resulting worst-case DEA scores can be combined with their best-case ana-

logues without requiring prior normalization. The two methodologies are compared using ZAP’s

Sustainable Energy Index case study, demonstrating that they occasionally lead to divergent

results.
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Appendix

A1: Proofs

Theorem 1. Consider optimization problem (11). Let w∗ be its optimal solution and a∗ be

the agent attaining the maximum in the denominator. By definition, we have

min
w∈Wj

∑I
i=1wixaji

maxa∈A
∑I

i=1wixai
=

∑I
i=1w

∗
i xaji∑I

i=1w
∗
i xa∗i

≥ min
w∈Wj

∑I
i=1wixaji∑I
i=1wixa∗i

≥ min
a∈A

{
min
inWj

∑I
i=1wixaji∑I
i=1wixai

}
. (16)

On the other hand,

min
a∈A

{
min
w∈Wj

∑I
i=1wixaji∑I
i=1wixai

}
≥ min

a∈A

{
min
w∈Wj

∑I
i=1wixaji

maxa∈A
∑I

i=1wixai

}

= min
w∈Wj

∑I
i=1wixaji

maxa∈A
∑I

i=1wixai
. (17)

Putting inequalities (16)-(17) together we obtain the equality

min
w∈Wj

∑I
i=1wixaji

maxa∈A
∑I

i=1wixai
= min

a∈A

{
min
w∈Wj

∑I
i=1wixaji∑I
i=1wixai

}
. (18)

Now since Wj is a polyhedral set with Wj = {w ∈ <I : w ≥ 0, Gjw ≤ hj}, for a given

a ∈ A the minimization problem inside the brackets of Eq. (18) is a linear-fractional problem

that can be transformed into the following equivalent linear program (see Section 4.3.2 in Boyd

and Vandenberghe [4]):

min
w≥0, y≥0

Gjw−hjy≤0∑I
i=1 wixai=1

I∑
i=1

wixaji. (19)

Corollary 1. Recall Eq. (19) and suppose Gj = 0 and hj = 0. By standard LP theory (Bert-

simas and Tsitsiklis [2]), the optimal solution of (19) will be attained (perhaps non-uniquely)

at one of the extreme points of polytope {w ∈ <I : w ≥ 0,
∑I

i=1wixai = 1}. The ex-

treme points of this polytope are given by the set of I vectors {w∗ ∈ <I : w∗i = 1
xai
, w∗k =

0 for all k 6= i}. Thus, finding the optimal solution of (19) is equivalent to enumerating the

terms
xaji

xai
for i = 1, 2, ...I , and picking the smallest. Hence, when Wj = <I

+, problem (11) is

equivalent to

min
a∈A

min
i∈I

xiaj
xia

.
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Theorem 2. Eq. (14) is obtained by simply repeating Steps (16)-(17)-(18) in the proof of

Theorem 1 (note that they are not in any way dependent on the structure of sets Wj). The

second part of the Theorem follows from well-known results on concave fractional programming

(see Schaible and Shi [17]).5

A2: Tables and Figures not in main text

Table 2: SEI data (see Zhou et al. [21] for data sources.)

Table 3: Best- and worst-case DEA scores for SEI case study (unconstrained weights).

5Note that both the numerator and denominator of the inner minimization of Eq. (14) are affine non-zero

functions.
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Table 4: Best- and worst-case DEA scores for SEI case study (constrained weights).

Figure 1: Box-plots of SEI ranks when λ ∈ {0, 0.1., ..., 0.9, 1}. Red lines indicate median values, while

gray boxes (black lines) denote 25th-75th (5th-95th) percentile intervals. Left (right) panels refer to the

unconstrained (constrained) weights case. Upper (lower) panels plot the results corresponding to Eq. (9)

(resp., Eq. (15))
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