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1 Introduction

The prevalent approach to modeling trading rules and other economic institutions through mech-
anism design, and game theory in general, assumes a great deal of structure on the form of
player’ beliefs. The seller knows the distribution of buyers’ valuations, the government the dis-
tribution of agents’ productivities, and the regulators the distribution of the firms’ cost, to name
a few. These beliefs come from a black box of the Bayesian approach, the assumption that the
beliefs coincide with a true distribution is then appended almost without exception; see Morris
(1994) for a departure. The drawbacks of the described approach have been prominently put for-
ward in Wilson (1987), who argued that too much information is commonly known among the
players. The common knowledge assumption was relaxed in the mechanism design framework,
and a new wave of literature started, by Bergemann and Morris (2005). They studied the imple-
mentability on all type spaces. Majority of the subsequent literature followed in same vein, that
is, characterizing incentive compatible mechanisms under various assumptions on the agents’
beliefs about each other. Rather little attention, however, has been dedicated to the designer and
the design of optimal mechanism from his perspective.1

We study the robust of optimal trading rule in an environment where a profit maximizing
seller is selling a good to a single buyer. The seller has very limited information about the buyer’s
valuation. He is armed merely with the information about the mean of the distribution of the
buyer’s valuations.2 The information about the mean is represented by the interval to which the
mean belongs. The seller then evaluates any trading mechanism by taking the expectation with
respect to the type distribution that yields the smallest profit among the distributions with a mean
in the interval. In other words, the seller is a maxmin expected utility maximizer who believes
that nature can choose any distribution over non-negative valuations with a mean in a fixed
interval. Wolitzky (2014) provides an interesting interpretation for this information structure,
where a model of a seller who knows only the mean of the buyer’s distribution arises from
model of information acquisition.

Our findings can be summarized as follows. First we show a somewhat daunting result that
a seller who only knows that nature draws a positive valuation from a distribution with a mean in
the interval, [µ, µ̄], expects zero payoff. This is so irrespective of the interval to which the mean
belongs and the mechanism he chooses. Additional information about the mean has no affect on
such a seller’s payoff. The picture drastically changes once one assumes that there is an upper
bound, θ̄, on the support of nature’s distributions. We show that the uniquely optimal selling
strategy has the seller committing to a randomization over prices in interval [τ, θ̄] for some τ > 0
with a cdf of the order ln t and no mass points. Interestingly, the seller randomizes over prices in
such a way that when valuations are distributed on the same interval as prices, the seller’s payoff

depends only on the mean of the distribution of valuations. By making his payoff independent

1Some notable exceptions are Bergemann and Schlag (2008) and Bergemann and Schlag (2011) who study opti-
mal mechanism for sale of an object by a seller under max-min regret and max-min preferences. We provide a more
substantial overview of the literature in the subsection Related Literature below.

2One of the first thing a student is thought in an econometrics class is how to estimate a mean. Yet very little is
known about how agents faced with such limited information should behave. As a thoroughly explored framework,
profit maximization in bilateral trade provides a natural testing ground.
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of the information about the parameters of the distribution that he does not know, the seller, in a
sense, insures himself against the missing information about the distribution of valuations.

We obtain several comparative statics results. Given the interval of means that the seller
entertains as possible, his expected payoff decreases when θ̄ increases. When nature cannot
assign high values to the agents, somewhat curiously, the seller’s payoff increases. This is due to
the fact that by lowering θ̄ one restricts the set of possible distributions for nature. On the other
hand, the seller’s payoff is increasing in the lower bound of possible means, µ, of the distribution
over valuations. Namely, for a given distribution over prices the seller’s payoff cannot decrease
if µ increases.

Bounding the support of the distributions over valuations from above implicitly restricts the
variance of those distributions. We therefore also explore the problem in which seller knows that
the mean of valuations belongs to [µ, µ̄], and the variance to [σ2, σ̄2]; but there is no upper bound
on the support. We show that the unique optimal strategy for the seller is to randomize over some
interval [τ, τ̄] with density of the form h(x) = a/x + b. In this case, he expects the valuations to
be drawn from a distribution that has the support contained in the same interval over which he
randomizes, and more importantly, his payoff then depends only on the mean and the variance
of the distribution of valuations. Thus again, he insures himself against the information about
the distribution of valuations that he does not have. Of course, he believes that nature chooses a
distribution with the lowest possible mean, µ, and the highest possible variance, σ̄2. The seller’s
optimal payoff is shown to be increasing in µ and decreasing in σ̄2.

For a given amount of knowledge about the mean, knowing the upper bound of the support of
the distributions or knowing the upper bound of the variance is payoff equivalent for the seller.
More precisely, given [µ, µ̄], for every θ̄ there exists a σ̄2 (σ2 is irrelevant), and vice-versa,
such that the seller’s payoff is the same regardless of which of the two pieces of information
he possesses. That notwithstanding, the seller uses different pricing schemes in the two cases.
The price distribution in the case when he knows the upper bound on the support first order
stochastically dominates the price distribution he uses when he knows the payoff equivalent
upper bound on the variance of the nature’s distribution. Whether the seller has information
about the variance or the upper bound of the support of the nature’s distribution is thus potentially
identifiable from the data.

The above described results imply that when the seller only has information about the mean
of the distribution over valuations, additional information about the mean has no effect on his
payoff. However, if he has information about the mean and the variance, or the mean and the
upper bound, then additional information about these parameters can be beneficial to the seller.

1.1 Related Literature

Wilson’s critique and Bergemann and Morris (2005) have initiated a large body of literature on
robust mechanism design. For an in-depth review see Bergemann and Morris (2013). Our paper
is closely related to the work of Bergemann and Schlag (2011). They consider the problem of a
seller selling a single good to a buyer. The seller is a max-min expected utility maximizer with
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imperfect information about the distribution over the valuations: he knows that the valuations
are distributed in an epsilon neighborhood of some distribution. In their environment nature has
a dominant strategy, therefore a deterministic take-it-or-leave-it price is optimal.3 Auster (2013)
analyses a model with common values in which the seller is privately informed, and ambiguity
is of the similar form as in Bergemann and Schlag (2011). Garrett (2014) studies a model of
cost-based procurement in which the principal is uncertain about the agent’s effort cost function.

The environment that is closest to the one analyzed in this paper is studied in Wolitzky
(2014). He considers efficiency in a bilateral trade model in which the buyer and the seller know
only the mean of each other’s valuations. He shows that under some parameters the efficient
trade is possible and characterizes when exactly that is the case. Our paper, on the other hand,
is concerned with profit maximization and the value of information for the seller. Also, unlike
in Wolitzky (2014) we allow for the information about the variance. Carroll (2012) studies the
problem of providing robust incentives for information acquisition. In his model the decision
making max-min expected utility maximizing principal is incentivizing an expert to acquire
costly information.

Lopomo, Rigotti, and Shannon (2009) explore robustness of mechanisms under incomplete
preferences, as in Bewley (1986). Castro and Yannelis (2012) approach the problem from a
different perspective and show that every efficient allocation rule is incentive compatible if and
only if the agents have max-min preferences.

Robustness in the context of moral hazard has been explored in Lopomo, Rigotti, and Shan-
non (2011), Chassang (2013) and Carroll (2015), to name a few.

Our paper is also related to the growing literature on mechanism design under ambiguity
aversion. Though in that literature, unlike in the present paper, the buyers are the ones who
are ambiguity averse. See for example Bose, Ozdenoren, and Pape (2006), Bose and Daripa
(2009) and Bodoh-Creed (2012). More recently Bose and Renou (2014) and Di Tillio, Kos,
and Messner (2014) have shown that in such environments the seller might benefit from using
non-standard mechanism.

2 Environment and terminology

Preferences and information: There is a seller who wants to sell a single unit of a good to
a buyer. We denote the probability with which the good is transferred to the agent by x and
write τ for the transfer to be be paid by the agent. Throughout the paper we will slightly abuse
terminology and refer to x also as an ‘allocation’.

The buyer is a risk neutral expected utility maximizing agent whose valuation for the good
is denoted by θ. Thus, if he receives the good with probability x and pays the transfer τ in

3López-Cunat (2000), Bergemann and Schlag (2008) and Bergemann and Schlag (2011) explore the seller’s
problem when he is minimizing his regret.
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exchange, his payoff is

xθ − τ.

If, instead, the buyer decides not to participate in the mechanism his payoff is 0.

The seller is uncertain about the agent’s valuation of the good, θ. He only has partial infor-
mation about the distribution of the buyer’s valuations. More specifically, we assume that the
seller knows that the buyer’s valuations are non-negative and drawn from a distribution which
has a mean that belongs to the interval [µ, µ̄]. We denote the set of all such distributions by
F (µ, µ̄). Later we will explore environments in which the seller knows additional features of the
distributions.

The seller does not assign any value to the good, he only cares about the revenue he can ob-
tain. In addition, we assume that the seller evaluates mechanisms with respect to their worst case
expected value; i.e. it is this worst case expected revenue that he seeks to maximize. Therefore,
if the transfer function in an incentive compatible mechanism is t and the seller believes that the
buyer’s valuation is drawn from a distribution in the set F (µ, µ̄), then his payoff is

inf
F(µ,µ̄)∈F

EF[t].

An axiomatic representation of maxmin preferences is provided in Gilboa and Schmeidler (1989).

3 Unbounded Valuations

First we study the case where the seller only knows that the buyers valuations are distributed
over R+ and the bounds on the mean of the distribution of values [µ, µ̄]. The seller chooses an
incentive compatible and individually rational mechanisms. With one agent it is without loss of
generality to consider randomizations over posted prices.4

The set of distributions over prices is denoted byH and its generic element by H. We require
that

∫ ∞
0 θdH exists and is finite.

4Clearly a randomization over prices is an incentive compatible and individually rational mechanism. On the other
hand, starting from any incentive compatible and individually rational mechanism one can obtain a randomization
over prices. That is, in an incentive compatible mechanism the allocation rule is monotonic, therefore the cumulative
distribution over prices can be defined to be equal to the allocation rule. If no type gets the object with probability
one, this can be replicated by assigning probability to high prices. Since both the allocation rule from the original
mechanism, as well as randomization over prices assign the object with the same probability to each type the two
mechanisms have the same transfers up to a constant. Since any randomization over (non-negative) prices leaves type
0 with zero payoff, the randomization over prices achieves at least as high a payoff as the original mechanism. See
Skreta (2006) and Kos and Messner (2013) for how to deal with the cases where the distribution are not continuous.
The seller could potentially also try to obtain the information about the distribution of the valuations of the buyer,
rather than just ask for his type. Since such information is payoff irrelevant for the buyer, the seller will not be able
to elicit it. Randomization over prices is also studied in Bergemann and Schlag (2011).
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Proposition 1. Suppose that the set of possible types is R+. Then

inf
F∈F (µ,µ̄)

U(H, F) = 0,

for every distribution over prices H ∈ H . Consequently,

sup
H∈H

inf
F∈F (µ,µ̄)

U(H, F) = 0.

Proof. All missing proofs can be found in Appendix A. �

The highest payoff the seller can expect from a given randomization over the prices is the
expected price. This would be the case if he were to sell with probability one. However, nature
can choose a binary distribution over valuation 0 and some high valuation θ with the mean µ. 5

The probability that nature needs to assign to θ is then decreasing in θ. Since the seller in that
case sells only when the buyer’s valuation is θ, and his expected payoff is bounded above by the
expected price, nature can keep the seller to an arbitrarily low positive payoff by making sure
that the seller sells with a very small probability (i.e. by choosing θ high enough).

The daunting consequence of the above result is that knowledge of the mean itself – or the
interval it resides in – has no effect on the seller’s payoff. Regardless of the extent of knowledge
the seller has about the mean, nature can hold him to payoff zero.

The above result hinges on the assumption that the seller is willing to consider arbitrarily
high valuations. Next we explore the case of a seller who believes that only valuations up to
some upper bound θ̄ are possible.

4 Bound on the valuations

In this section we study the environment in which there is an upper bound on the buyer’s valua-
tions. In particular, the seller believes that buyer’s valuations are distributed on the interval [0, θ̄],
for some θ̄ > 0, with a distribution that has a mean in [µ, µ̄]. The set of possible distributions of
valuations is denoted by F (µ, µ̄, θ̄).

4.1 Optimal posted prices

We start our analysis by exploring the seller’s optimal posted price. The appeal of posted prices
stems from their simplicity, their empirical relevance and not least from the fact that they are
optimal for the seller in a standard setting with ambiguity neutral sellers (see Myerson (1981)

5The seller’s problem can be thought of as a zero sum game between the seller and nature. We elaborate on this
later in the paper.
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and Riley and Zeckhauser (1983)). While the optimality property of posted prices does not carry
over to our environment they still constitute a natural benchmark.

Let u(τ, F) be the seller’s expected payoff when he offers the price τ and the valuations are
drawn from the distribution F. Given the price τ, type θ of the buyer will acquire the good if and
only if θ > τ.6 Therefore

u(τ, F) = τ[1 − F(τ)].

The seller’s optimization problem is then

sup
τ≥0

inf
F∈F (µ,µ̄,θ̄)

u(τ, F). (1)

The buyer’s behavior is simple: he buys the good if his value is above the offered price
and does not otherwise. The seller’s problem can therefore be thought of as a game against
the malevolent nature. The seller chooses the price τ after which nature chooses a distribution
F ∈ F (µ, µ̄, θ̄) with the objective to minimize the seller’s payoff.

It is never optimal for the principal to set a price equal to zero or a price that exceeds the
lower bound of the expectation of the agent’s type, µ. A price of zero implies a payoff equal
to zero. The same is true for a price above or at µ. In the latter case nature can hold the
principal to payoff zero by choosing the distribution that puts the entire probability mass on µ.
This distribution trivially satisfies the mean constraint while at the same time generating with
probability one a type that is not willing to buy at the price set by the seller. On the other hand,
any price τ′ that lies strictly between 0 and µ guarantees the principal a strictly positive payoff.
Indeed, any type distribution that respects the mean constraint must put strictly positive weight
on the interval [µ, θ̄]. Therefore, for a price τ′ satisfying 0 < τ′ < µ there is always – irrespective
of what type distribution nature chooses – a set of types with positive probability that is willing
to buy the good. But then the seller’s maxmin expected revenue must be strictly positive too.

To find the optimal price, we first determine nature’s best response to each possible price
τ < µ. Nature’s goal is to chose a distribution that minimizes the seller’s expected payoff.
Buyers with valuations smaller or equal to τ do not buy,7 while buyers with valuations above τ
buy the good. Nature’s objective is therefore to place as much probability mass as possible at
or below τ subject to the constraints that the expected value of the distribution must be in [µ, µ̄]
and that no set of types outside [0, θ̄] can be given positive probability. This objective is best
achieved by choosing the type distribution with mean µ that concentrates all the weight on the
points τ and θ̄.8

6Throughout the analysis we maintain the assumption that the agent does not buy the good if he is indifferent
between buying and not buying. As will become clear, this technical assumption serves the purpose of guaranteeing
that a best response for nature exists. This assumption does not affect the solution and the value of the problem.

7Remember that the buyer does not buy the good when he is indifferent.
8For a fixed price τ, nature is maximizing F(τ) subject to the constraint µ = F(τ)E[θ|θ ≤ τ]+ (1−F(τ))E[θ|θ > τ].

Given that τ < µ, F(τ) is maximized when E[θ|θ ≤ τ] = τ and E[θ|θ > τ] = θ̄.
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The probability mass, p, that this distribution assigns to the type τ is defined by

pτ + (1 − p)θ̄ = µ,

therefore

p =
θ̄ − µ

θ̄ − τ
.

Using this we can rewrite Problem 1 as

max
τ∈[0,µ]

1 − θ̄ − µθ̄ − τ

 τ.
It is straightforward to verify that the objective function of this problem is strictly concave in τ,
and equal to zero on the two extremes of the interval [0, µ]. Solving for τ yields

τ∗ =
√
θ̄
[ √

θ̄ −
√
θ̄ − µ

]
.

Let F∗ be the type distribution corresponding to the principal’s most pessimistic belief associated
with the optimal posted price (i.e. nature’s best response to the optimal price). It is straightfor-
ward to verify that the weight that this distribution puts on θ̄ is 1 − p = τ∗/θ̄. Since this is the
probability with which the principal expects the agent to buy the good, his maxmin expected
revenue is u(τ∗, F∗) = τ∗2/θ̄. We summarize these findings in the following proposition.

Proposition 2. The optimal posted price is

τ∗ = θ̄ −
√
θ̄(θ̄ − µ).

Given this price the seller expects that the agent will buy with probability τ∗/θ̄, therefore his
expected revenue is

u(τ∗, F∗) = [τ∗]2/θ̄ =

( √
θ̄ −

√
θ̄ − µ

)2
.

Comparative statics. The price that the seller charges and the payoff that he realizes are in-
creasing in the lower bound of the expected type, µ. Indeed, for every price the seller’s payoff

(weakly) increases after an increase in µ. Notice also that the seller’s payoff is independent of µ̄.

At first it might seem somewhat surprising, that preventing nature from assigning high valua-
tions to a buyer might help the seller, but in our environment this is indeed the case. The seller’s
payoff is decreasing in the upper bound on the support of nature’s distributions, θ̄: the larger
the upper limit of the set of possible types, the weaker becomes the restriction that the mean
constraint imposes on nature’s ability to concentrate mass on low types. That is, increasing θ̄
increases the set of nature’s strategies.
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4.2 Random Pricing Policies

In this section we explore what the seller can achieve by committing to a randomization over
posted prices. Clearly the seller cannot fare worse when we expand his set of possible mecha-
nisms to randomizations over posted prices. We motivate the following analysis with an exam-
ple.

Example 1. Assume that the agent’s valuations are in the interval [0, 1] (i.e. θ̄ = 1), and that the
seller knows that the expected value of the agent’s valuation is at least 3/4 (i.e. µ = 3/4). The
result from the preceding subsection implies that the seller’s optimal posted price is τ∗ = 1/2
and u(τ∗, F∗) = 1/4.

Now suppose that the seller instead of using a posted price commits to a fifty-fifty random-
ization over the prices τ1 = 1/3 and τ2 = 1/2.9 Given the seller’s randomization over prices,
nature will not put a strictly positive probability mass below τ1. Since the agent does not buy the
good for any valuation θ ≤ τ1, any such mass could be pushed up to τ1 to get a new distribution
with an expected value strictly above µ. In the resulting distribution one could shift some of the
mass from above τ1 to τ1 and still have the expected value larger or equal to µ. Under the new
distribution the seller would, however, obtain a strictly smaller payoff. Expanding on the above
reasoning one can see that nature will only ever randomize over τ1, τ2 and θ̄ = 1.

It is easy to see that nature never chooses a distribution with a mean strictly above µ. There-
fore, there are just three possible candidates for the nature’s distribution. A distribution on {τ1, 1}
with mean µ, a distribution over {τ2, 1} with mean µ, and distributions with the support {τ1, τ2, 1}
and mean µ. It is easy to see, that one only needs to compare nature’s payoff from the first two
distributions. Namely, if one of them yields a higher payoff then the other, a distribution with
full support cannot be optimal.10

If nature randomizes over {1/2, 1} it must do so with probability 0.5, due to µ = 3/4. In this
case the seller’s payoff is 7/24. That is, with probability half he charges 1/3 and sells irrespective
of the type. With probability half he charges 1/2 and sells half of the time (when the valuation
is 1). On the other hand, when nature chooses a distribution on {1/3, 1} it assigns the probability
3/8 to the value 1/3. In that case the seller’s payoff is 25/96. Nature, thus, fares better when
randomizing over {1/3, 1}. But even in that case the seller’s expected payoff is strictly larger
than his maxmin payoff of 0.25 achieved under the optimal (deterministic) price.

The above example shows that the seller benefits from posting a random pricing policy. In
the maxmin problem nature gets to choose its preferred strategy after the seller picks a mecha-
nism. When the seller posts a price nature has the upper hand due to the informational advantage

9One can think of this mechanism as the seller committing to a randomization over prices. Then the randomization
is executed, and finally the buyer decides whether he wants to buy the object at the price.

10Suppose the distribution over {τ1, 1} is F1 and the distribution over {τ2, 1} is F2. If it is the case that nature gets
a higher payoff from F2 then F1 and a distribution F3 with a support {τ1, τ2, 1} is optimal, it has to be the case that
nature gets a higher payoff from F3 then from F1. Since F1’s support is contained in F3’s, one can write F3 as a
convex combination of F1 and some other distribution on {τ1, τ2, 1}, i.e., F3 = αF1 + (1 − α)F4. Since both F1 and
F3 have mean µ, so does F4. But then F4 is a viable distribution for nature that gives a strictly higher payoff than F3,
contradicting that the latter is optimal.
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of knowing what action the seller chose. By randomizing over prices the seller makes it harder
for nature to target its reply. Thus stochastic pricing levels the playing field by decreasing na-
ture’s second mover advantage.

In the rest of this section we characterize the optimal random pricing policy. We describe
a random pricing policy by the cumulative distribution function over prices H that it induces.
We write H(θ̄) for the set of all distribution functions with support in [0, θ̄]. Let U(H, F) be
the principal’s expected payoff when he chooses the price distribution H and the buyer’s type is
drawn from the distribution F, i.e.

U(H, F) =

∫ θ̄

0
u(τ, F)dH(τ),

where u(τ, F) = τ(1 − F(τ)).

The principal’s problem can now be written as

max
H∈H(θ̄)

inf
F∈F (µ,µ̄,θ̄)

U(H, F). (2)

Instead of directly tackling this problem, we solve for a saddle point of the payoff functional
U(H, F). That is, we look for a pair of distributions (F∗,H∗) such that

U(H∗, F) ≥ U(H∗, F∗) ≥ U(H, F∗)

holds for all feasible pairs (H, F). A standard result states that if such a saddle point exists, then

H∗ ∈ arg max
H∈H(θ̄)

 inf
F∈F (µ,µ̄,θ̄)

U(H, F)


and

U(H∗, F∗) = sup
H∈H(θ̄)

inf
F∈F (µ,µ̄,θ̄)

U(H, F).

One can think of the seller’s optimization problem also as the problem of finding a subgame
perfect equilibrium of a sequential zero-sum game played between the seller and nature in which
the seller moves first and nature’s payoff is the negative of the seller’s.11 Instead of solving
directly for such a subgame perfect equilibrium we solve for a Nash equilibrium (H∗, F∗) of the
simultaneous move version of this zero-sum game, which corresponds to a saddle point of the
payoff functional U. The properties of a saddle point imply that the seller’s equilibrium strategy
in the simultaneous move game, H∗, is also his maxmin strategy (i.e. his equilibrium strategy in
the subgame perfect equilibrium of the sequential game). See Appendix B for the corresponding
formal result.

11In this game between, the seller has a possibility to commit. Therefore if the seller commits to a randomization
over prices, nature has to choose a distribution before the outcome of the realization is revealed.
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In what follows we derive properties of a saddle point, should one exist. As we go along,
we impose several additional assumptions to facilitate the derivation. These assumptions will,
of course, be verified before our analysis concludes.

Characterizing nature’s distribution F∗: Suppose there exists a saddle (H∗, F∗). If the
stochastic posted price H∗ solves

max
H(θ̄)

U(H, F∗),

then it must be the case that each element in its support yields the saddle value U∗ = U(H∗, F∗).
That is,

u(τ, F∗) = τ[1 − F∗(τ)]

must be constant in τ over the support of H∗.12

We conjecture that the support of H∗ is some interval [τ, θ̄] for τ such that 0 < τ < µ.
If this is the case, then this interval must also be the support of nature’s strategy F∗. To see
this, observe first that [τ, θ̄] must be contained in the support of F∗ for otherwise there would
be an open subset of [τ, θ̄] over which nature would not randomize and therefore F∗ would be
constant. But then τ[1−F∗(τ)] would not be constant over the same open interval, contradicting
the assumption that [τ, θ̄] is the support of H∗. It remains to be argued that it is suboptimal for
nature to assign any probability mass to types strictly below τ. Notice that the expected revenue
generated by any type below τ is 0, which is the same expected revenue that is generated by type
τ itself. Therefore, shifting the probability mass from the interval [0, τ) to τ does not alter the
expected revenue of the seller. At the same time such a shift relaxes nature’s mean constraint.
This slack in the mean constraint can be exploited to shift probability mass that is placed above
µ down to τ. Doing so strictly reduces the seller’s expected revenue.

The above arguments imply that there is some U∗ > 0 such that [1 − F∗(τ)]τ = U∗ for all
τ ∈ (τ, θ̄), and F∗(τ) = 0 for all τ < τ. The first one of these two conditions is equivalent to

F∗(τ) = 1 − U∗/τ (3)

for all τ ∈ (τ, θ̄). Thus, once τ and U∗ are pinned down so is F∗. Consider first the choice of
U∗ for given τ. Notice that the seller can guarantee himself a payoff that is arbitrarily close
to τ by setting a price just below τ. This implies that U∗ ≥ τ. At the same time, in order for
the condition F∗(τ) = 1 − U∗/τ ≥ 0 to be satisfied for all τ ∈ (τ, θ̄), we must have U∗ ≤ τ.
Combining these two observations yields

U∗ = τ. (4)

12In the saddle (equilibrium ) of the auxiliary simultaneous move zero sum game between the seller and nature
the seller needs to be indifferent over all the prices in the support of his distribution. Of course, from a mechanism
design perspective (in the original problem) the seller has commitment and thus can offer mechanisms in which he
randomizes over prices even if he is not indifferent between them.

11



Equations (3) and (4) have two important implications. First,

F∗(τ) = 0,

which means that there is no atom at τ. And second,

lim
τ↗θ̄

F∗(τ) = 1 − τ/θ̄,

meaning that F∗ has an atom of mass τ/θ̄ at θ̄.

We are left to determine τ. The type distribution F∗ derived in the preceding paragraphs for
a given τ, is a feasible type distribution only if it satisfies the mean constraint∫ θ̄

0
θdF∗ = µ,

which after using the functional form of F∗ becomes,

τ
[
1 + ln(θ̄) − ln(τ)

]
= µ.

The expression τ
[
1 + ln(θ̄) − ln(τ)

]
− µ is strictly negative for values of τ close to zero and

strictly positive for values of τ close to µ. Moreover, it is continuous and strictly increasing in τ.
Thus, there can be only one value of τ for which the above condition is satisfied. In the proof of
Proposition 4 below we show that solving for this unique value delivers

τ = −
µ

W−1(−µ/eθ̄)
,

where W−1 is the lower branch of the Lambert W function. For further details regarding the
Lambert W function see Appendix C.

Characterizing the seller’s randomization over prices H∗: Having determined the distribu-
tion of the types, F∗, that renders the seller indifferent, we move to the question of how the
posted prices need to be distributed for F∗ to be an optimal choice for nature.

When characterizing nature’s strategy we required that the seller be indifferent between all
the points in the support of his strategy. This approach can not be applied in the same way when
characterizing the seller’s optimal strategy. That is, it does not make sense to require that the
nature be indifferent between all types, or degenerate distributions corresponding to them, in the
support of its distribution. Such degenerate distributions might not represent viable strategies
for nature due to the mean restriction. We show that if F∗ is to be nature’s best response,
nature has to be indifferent over a particular set of two-point-distributions. Furthermore, nature’s
indifference on this set implies indifference over all the distributions with mean µ and support in
[τ, θ̄]. We have encountered such distributions in the analysis of optimal (deterministic) posted
prices.

12



Definition 1. For each τ ∈ [τ, θ̄], let Fτ be a distribution that concentrates the probability mass
on at most two points and has an expected value µ. If τ ∈ (µ, θ̄], the support of Fτ are the two
points τ and τ; if instead τ ∈ [τ, µ), then the support of Fτ is {τ, θ̄}. Finally, if τ = µ, then µ is the
only element of the support of Fτ. We refer to Fτ as the τ−distribution.

The distribution Fτ, for τ < µ, assigns the largest possible weight to τ among all distributions
with expected value µ. Indeed, the weight on τ ≤ τ < µ can be increased, while preserving the
mean at µ as long as it is possible to place sufficient mass somewhere above µ. Thus the limit
is reached if the entire mass which is not placed on τ itself is concentrated on the most effective
counterweight, namely the point θ̄. Similarly, for µ < τ ≤ θ̄ the best counterweight in [τ, θ̄] is
τ. In what follows we denote the weight that the τ-distribution assigns to τ by p(τ). For later
reference:

p(τ) =


θ̄ − µ

θ̄ − τ
if τ ≤ τ < µ,

µ − τ

τ − τ
if µ < τ ≤ θ̄.

(5)

The following lemma shows that indifference over all τ−distributions is a necessary condi-
tion for the optimality of F∗.

Lemma 1. If the type distribution F∗ is a best response to a price distribution Ĥ, then Fτ is a
best response to Ĥ for every τ ∈ [τ, θ̄].

This result follows from the following observation. Suppose that there is a saddle point
where nature uses a distribution F∗ with support [τ, θ̄]. If the distribution Fτ gives a strictly
higher payoff to nature, then Fτ is a profitable deviation. If, on the other hand, it gives a strictly
smaller payoff than F∗, then so do distributions Fτ′ for every τ′ in a small enough neighborhood
of τ. But then nature would be better of by reducing the probability F∗ assigns to all such Fτ′ .13

Next we show that indifference over the set of all τ-distributions is not only necessary but
also sufficient for F∗ to be a best reply to a price distribution Ĥ. More specifically, the following
lemma tells us that indifference over all τ−distributions implies indifference over all distribu-
tions with mean µ and support in [τ, θ̄]. It is easy to see that nature is worse off by choosing a
distribution that assigns mass below τ or has a mean above µ.

Lemma 2. Suppose that H is a price distribution such that every τ-distribution yields the same
payoff Ū, i.e. U(H, Fτ) = Ū, for all τ ∈ [τ, θ̄]. Then

U(H, F) = Ū,

13More precisely, F∗ can be written as a convex combination of a distribution G, which is a randomization over
Fτ′ for τ′ in a small neighborhood around τ, and some other distribution H. Notice that H also has the mean µ.
Since G yields a strictly smaller payoff to nature than F, H must yield a higher payoff, and thus represent a profitable
deviation. This is the continuous counterpart of what was discussed in footnote 10.
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for all F with mean µ and support in [τ, θ̄].

Lemmata 1 and 2 imply that type distribution F∗ is a best reply to a price distribution H if
and only if the latter yields the same payoff against all τ-distributions. We have yet to determine,
however, the price distribution that yields the same payoff for all Fτ.

Consider first the case where the buyer’s valuations are drawn from Fτ, for τ ≤ µ. Equation
(5) implies

p(τ) =
θ̄ − µ

θ̄ − τ
.

Moreover, assume that the distribution according to which the seller picks the price, H∗, is twice
differentiable.14 The seller’s payoff is

p(τ)
∫ τ

τ
tdH∗(t) + (1 − p(τ))

∫ θ̄

τ
tdH∗(t).

With probability p(τ) nature draws the value τ in which case the seller sells at a price t if t < τ.
With probability 1 − p(τ) nature draws valuation θ̄ and the seller sells for every price t < θ̄. If
the payoff is to remain constant across all τ-distributions, it must be the case that the derivative
of the payoff with respect to τ is equal to zero. That is,

p′(τ)
∫ τ

τ
th∗(t)dt + p(τ)τh∗(τ) − p′(τ)

∫ θ̄

τ
th∗(t)dt = 0,

must hold for all τ in (τ, µ). Equality (5) implies p(τ)/p′(τ) = θ̄ − τ, which can be used to
simplify the above equation to

(θ̄ − τ)τh(τ) −
∫ θ̄

τ
th∗(t)dt = 0. (6)

Condition (6), in turn, can hold for every τ only if the derivative of the left hand side is zero over
the entire interval (τ, µ):

(θ̄ − 2τ)h∗(τ) + (θ̄ − τ)τ
dh∗(τ)

dτ
+ τh∗(τ) = 0, (7)

or equivalently,

h∗(τ) + τ
dh∗(τ)

dτ
= 0. (8)

This latter expression is a simple differential equation the solutions of which are of the form

h(τ) =
a
τ
,

14This assumption will be verified later, as will be the question of whether there exist equilibria in which H∗ is not
twice differentiable.
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where a is a constant. Notice that (6) holds for any such solution. Thus, (7) is not only necessary
but also sufficient for (6).

For τ ∈ (µ, θ̄), the seller’s payoff when he adopts the price distribution H∗ and nature replies
with the distribution Fτ, τ ∈ (µ, θ̄), is

p(τ)
∫ τ

τ
th∗(t)dt.

Nature draws the valuation τ with probability p(τ) and valuation τ with the remaining probabil-
ity. In the first case the seller sells at a price t if t is below τ. In the second case, the seller does
not sell the good. Following the above procedure one obtains the same differential equation

h∗(τ) + τ
dh∗(τ)

dτ
= 0.

The preceding analysis implies that there is a twice differentiable price distribution against
which F∗ is a best response if and only if there is a constant a such that the function h(τ) = a/τ,
is a density, i.e., h integrates to 1 over [τ, θ̄].15 This pins down the constant a:

a =
1

ln(θ̄) − ln(τ)
> 0.

The following result characterizes the seller’s optimal behavior.

Proposition 3. Suppose the seller knows that valuations are drawn from a distribution with a
mean in [µ, µ̄] and with a support that is contained in [0, θ̄], where µ ≤ µ̄ ≤ θ̄. Then, it is optimal
for the seller to commit to a randomization over prices described by the distribution

H∗(τ) =


0, if τ < τ
ln(τ) − ln(τ)
ln(θ̄) − ln(τ)

, if τ ≤ τ ≤ θ̄,

where τ is the unique solution to τ
[
1 + ln(θ̄) − ln(τ)

]
= µ.

We have shown that (H∗, F∗) is a saddle point of the seller’s payoff functional given in (2).
Since in the saddle both the seller and nature randomize over the interval [τ, θ̄] and the seller
sells with probability one when he charges the price τ, his expected payoff is τ.

Interestingly, the randomization over prices H∗ makes the seller’s payoff dependent only on
the mean of nature’s distribution; bar a class of suboptimal distributions. More precisely, when
the seller randomizes over prices with density h(τ) = a/τ as specified above and the valuations

15Strictly speaking, the above argument establishes that the density must be a1/τ on [τ, µ), and a2/τ on [µ, θ̄], for
some two positive constants a1 and a2. It is then easy to verify that nature’s indifference over all binary distributions
Fτ implies a1 = a2.
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are distributed with a distribution F, the seller’s payoff is∫ θ̄

τ
x(1 − F(x))h(x)dx = a

∫ θ̄

τ
(1 − F(x))dx

= aµ − a
∫ τ

0
(1 − F(x))dx,

where µ is the mean of distribution F, and where the last equality follows from
∫

(1− F(x))dx =

µ. It is thus optimal for nature to set F(τ) = 0 for all τ ≤ τ. In words, nature does not want
to assign positive probability to valuations below τ. But then the seller’s payoff is simply aµ.
The seller, in a sense, insures himself against the information about the parameters of the type
distribution he does not have by making his payoff dependent only on the mean.

Uniqueness. We strengthen the above result by showing that (H∗, F∗) is the unique saddle
of U and therefore H∗ the unique optimal strategy for the seller. We first argue that F∗ is the
only type distribution that can be part of a saddle point. Suppose that (Ĥ, F̂) is another saddle
point. Then, (H∗, F̂) is a saddle point too; this is a standard result, an immediate consequence,
for example, of Lemma 36.2 in Rockafellar (1997) (see also Appendix B). Since the support of
H∗ is the entire interval [τ, θ̄], the seller must be indifferent between all prices in the interval, i.e.

(1 − F̂(τ))τ = U∗

for all τ ∈ [τ, θ̄]. We have seen earlier that F∗ is the only distribution function which satisfies
this condition. Therefore, it must be the case that F̂ = F∗.

Next we argue Ĥ = H∗. First we show that if (Ĥ, F̂) is a saddle point, then Ĥ is strictly
increasing and continuous on [τ, θ̄].

Lemma 3. If (Ĥ, F̂) is a saddle point then Ĥ has no mass points. Moreover, the support of Ĥ is
[τ, θ̄].

As mentioned before, if there is a second solution to the seller’s problem, Ĥ, then (Ĥ, F∗)
must also form a saddle. Moreover, the two saddles have the same value. Lemma 1 then implies
that when the seller uses Ĥ, all the τ-distributions must give the same payoff , i.e.,

p(τ)
∫ τ

τ
tdH(t) + (1 − p(τ))

∫ θ̄

τ
tdH(t) = U∗, (9)

for all τ ∈ [τ, µ] and H ∈ {Ĥ,H∗} and

p(τ)
∫ τ

τ
tdH(t) = U∗, (10)

for all τ ∈ (µ, θ̄] and H ∈ {Ĥ,H∗} . Equality (10) implies
∫ τ

τ
tdĤ =

∫ τ

τ
tdH∗ for all τ ∈ (µ, θ̄].
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Moreover, using
∫ θ̄

τ
tdĤ =

∫ θ̄

τ
tdH∗ with (9) yields

∫ τ

τ
tdĤ(t) =

∫ τ

τ
tdH∗,

for all τ ∈ [τ, µ]. Since Ĥ is continuous by Lemma 3, it follows that Ĥ(τ) = H∗(τ) for all
τ ∈ [τ, θ̄].16

The above analysis implies that the saddle point (H∗, F∗) identified in Proposition 3 is the
unique saddle point of the seller’s problem given by (2). The result in Appendix B then implies
that the seller’s optimal strategy is unique.

Proposition 4. The randomization over prices H∗ identified in Proposition 3 is the unique opti-
mal selling strategy for the seller when he believes that nature chooses a type distribution with
a mean in [µ, µ̄] and with a support in [0, θ̄].

4.2.1 Comparative statics

Throughout the analysis we fixed the lower bound on the mean of the distributions of valuations,
µ, and the upper bound on the buyer’s valuation θ̄. The analysis showed that the upper bound
on the mean of valuations, µ̄, plays no role. The seller’s pessimism leads him to expect nature
to choose a distribution with the smallest possible mean µ. Whether µ̄ is just slightly above µ or
equal to θ̄ is then irrelevant.

The lower bound on the mean µ allows for more interesting comparative statics. A higher
µ forces nature to assign more weight to higher types. Since those types are willing to pay
higher prices the seller’s payoff increases. In more detail: for any seller’s randomization over
prices his payoff cannot decrease if µ increases, and his payoff will increase if the randomization
over prices assigns positive probability to prices below µ. More can be said in the extreme
cases. When µ is close to zero there are virtually no restrictions left on the seller’s pessimism.
Consequently, his maxmin payoff must go to zero. On the other hand, when µ is close to θ̄ the
buyer’s valuation is with high probability close to θ̄, and so is therefore the seller’s payoff.

As θ̄ increases, the buyer can have higher valuation. However, the seller’s maxmin expected
payoff decreases. An increase of θ̄, ceteris paribus, expands nature’s set of strategies. In par-
ticular, the weight that any τ−extreme distribution with τ < µ assigns to τ increases because
the counterweight θ̄ is larger. But if nature is able to concentrate more probability mass on low
types the seller’s maxmin payoff must decrease. In fact, when θ̄ goes to infinity the seller’s
payoff collapses to zero.

16Suppose two continuous distributions functions Ĥ and H∗ do not coincide. Then there must be points τ′ and τ′′

such that i) the two functions coincide on [τ, τ′] ∪ {τ′′} and ii) one strictly exceeds the other for every τ ∈ (τ′, τ′′).
But that means that if one conditions on prices below τ′′, one conditional distribution strictly first order stochastically
dominates the other. Consequently, the corresponding (conditional) expected prices must be strictly ranked as well.
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Proposition 5. Denote the maximal payoff that the seller can achieve when nature has to
choose a price distribution from F (µ, µ̄, θ̄) by U∗(µ, µ̄, θ̄). U∗ is strictly increasing in µ, con-
stant in µ̄, and strictly decreasing in θ̄. Furthermore, U∗(0, µ̄, θ̄) = 0, U∗(θ̄, θ̄, θ̄) = θ̄ and
limθ̄→∞U∗(µ, µ̄, θ̄) = 0.

The above result is illustrated in the following figure. The panel on the left hand of the figure
shows the seller’s optimal payoff U∗ in dependence of µ with θ̄ fixed at 1.

Figure 1: U∗ as function of µ (left) and θ̄ (right)

The result on the behavior of U∗ has immediate implications for how the seller’s optimal
strategy, H∗ varies with the parameters µ and θ̄ . This is so because U∗ coincides with τ, and
from Proposition 3 we know that µ enters H∗ only through τ. The following proposition provides
the details. We write H∗

µ,θ̄
for the optimal price distribution in the environment characterized by

the parameters µ and θ̄.17

Proposition 6. The following holds:

i) If µ′ > µ, then H∗
µ′,θ̄

first order stochastically dominates its counterpart H∗
µ,θ̄

.

ii) Let θ̄′ > θ̄. There exists a τ̃ such that H∗
µ,θ̄′

(τ) > (<)H∗
µ,θ̄

(τ) for all τ < (>)τ̃.

Part i) of the above proposition is illustrated in the following figure. The panel on the left
hand of the figure shows the price distributions corresponding to the parameter pairs (µ, θ̄) =

(1/3, 1) (blue curve) and (µ, θ̄) = (2/3, 1) (red curve). The right hand panel shows the type
distributions for the same two parameter pairs (with the same coloring).

17We drop µ̄ from the list of parameters since the optimal choices do not depend on it.
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Figure 2: Price distributions H∗1
3 ,1

and H∗2
3 ,1

.

4.3 Posted prices vs. randomized prices

Deterministic posted prices are desirable due to their simplicity. However, the above analysis
shows that the seller achieves a higher profit by using a randomized pricing policy. In this section
we study how large the loss is when the seller forgoes the possibility to randomize over prices
and how this loss varies with the parameters of the model.

In order to simplify the interpretation of the results we express the loss as a fraction of the
maximally achievable payoff (i.e. the payoff that the optimal randomized price generates), and
denote it by ρ(µ, θ̄). It is straightforward to show that both the optimal payoff with randomiza-
tions, U∗, and its counterpart in the case of (deterministic) posted prices are homogeneous of
degree one in (µ, θ̄). Therefore, we normalize θ̄ = 1 and analyze how ρ(µ, 1) varies with µ.

Proposition 7. The relative loss ρ(·, 1) is strictly decreasing and satisfies ρ(0, 1) = 1 and
ρ(1, 1) = 0. That is, the principal’s relative loss is large (100%) when µ converges to 0, and
it vanishes only when his knowledge of the mean type implies knowledge of the exact type:
µ = θ̄ = 1.

When µ is close to 1 most of the probability over valuations must be close to 1 too, therefore
there is little loss in using deterministic prices. One might then think that the same result would
obtain when µ is close to the lower bound of the support, but this is not the case. The relative
loss is strictly decreasing and approaches 100% when µ approaches 0. This is a consequence of
the fact that when the seller offers a deterministic price τ, nature optimally uses a distribution on
{τ, 1}.

The above result is illustrated in the following figure.
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Figure 3: The relative loss of foregoing the option to randomize

5 Variance

The bound on the support of nature’s distribution implicitly imposes a bound on the variance of
the same distribution. Therefore it is natural to explore what the optimal selling mechanism are
when in addition to bounding the mean of nature’s distribution, one also bounds the variance.

Suppose that on top of knowing that the mean of the type distribution belongs to the interval
[µ, µ̄] the seller also has some information about the dispersion. In particular, assume that he
knows that the variance is in the interval [σ2, σ̄2].

From the analysis in the preceding sections we know that the relevant part of the information
with respect to the mean is its lowest possible value, µ. In particular, the beliefs that determine
the seller’s behavior have mean µ. This insight carries over to the analysis of this section.
Indeed, any type distribution with a mean µ̃ > µ can be shifted downward until it satisfies
the mean constraint with equality.18 Such a shift can at most lead to a reduction of the variance
(depending on whether or not the shift creates a mass point at 0) and could at most decrease the
seller’s payoff. In what follows we therefore only consider type distributions with mean µ to
start with. Given this restriction it is convenient to simplify notation by writing µ instead of µ.

To derive the seller’s optimal mechanism we proceed again as in the case with a bound on
the highest type. That is, we look for a saddle point (H∗, F∗) of the seller’s payoff functional U.
We conjecture that the saddle has certain properties, derive how the saddle should behave given
the assumptions, and at the end verify that the derived object is indeed a saddle.

Suppose the seller randomizes over some interval [τ, τ̄]. If that is the case, then nature’s
distribution must be such that the seller is indifferent between all the prices in the same interval.

18Of course, the probability mass distributed over [0, µ̃ − µ) has to be concentrated on the point 0.
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Following the reasoning from the case where there was an upper bound on the support of nature’s
distributions, it can be shown that the indifference implies that nature’s distribution F∗ must be
of the form

F∗(τ) = 1 − τ/τ, (11)

for all τ ≤ τ < τ̄, with a mass point τ̄/τ at τ̄. In addition, nature’s distribution must satisfy the
mean constraint ∫ τ̄

τ
τdF∗ = µ,

which using the functional form for F∗ yields

τ[1 + ln(τ̄) − ln(τ)] = µ, (12)

and the variance constraint. We further conjecture that nature chooses a distribution with the
highest possible variance. We have shown before that when unrestricted by variance nature can
hold the seller to an arbitrarily low payoff by mixing over two points, for example 0 and τ̂ where
the latter is chosen very large, with a distribution that has mean µ. If the variance of nature’s
optimal distribution was strictly smaller than σ̄2, then the nature could achieve a higher payoff

by mixing this distribution with the before mentioned binary distribution and achieve a higher
payoff. The variance constraint reads∫ τ̄

τ
τ2dF∗ − µ2 = σ̄2,

which, using the functional form for F∗, simplifies to

τ[2τ̄ − τ] − µ2 = σ̄2. (13)

The following lemma establishes that (12) and (13) have for each pair of parameters (µ, σ̄2) a
unique solution in terms of τ and τ̄. The assumption that the seller randomizes over an interval,
therefore, fully pins down the type distribution.

Lemma 4. The system comprised of equations (12) and (13) has a unique solution for each pair
(µ, σ̄2).

Thus far we have assumed that the seller randomizes over an interval, and derived nature’s
distribution that makes the seller indifferent over all prices in an interval. Notice that given the
restrictions on mean and variance, and assuming nature chooses a distribution with the highest
variance, nature’s distribution is uniquely pinned down. We are left to determine how the seller
should randomize in order for the distribution F∗ to be optimal for nature.

In the case with an upper bound on valuations, H∗ was chosen so that nature was indifferent
among all distributions with mean µ. To identify this price distribution we have exploited the
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fact that general indifference holds for nature if it holds on the set of τ-distributions. This class
of distributions allowed for a one dimensional parametrization, which we used to characterize
the density of the price distribution through a simple differential equation.

An analogous approach works when a variance constraint is imposed. However, binary
distributions cannot be used here. A binary distribution corresponding to a τ too far above or
below µ might have too high a variance. The relevant set of elementary distributions over which
we need to guarantee indifference is a class of ternary distributions that have mean µ and variance
σ̄2. In particular, for each type τ ∈ [τ, τ̄] this class contains a distribution whose support includes
τ itself and two points from the set {τ, µ, τ̄} (ternary τ-distribution).

More precisely, the index set of (ternary) τ-distributions with mean µ and variance σ̄2, can
be split into three segments, [τ̄, τ1], [τ1, τ2] and [τ2, τ̄] depending on τ. For low values of τ,
τ ∈ [τ, τ1], those are the distributions on {τ, µ, τ̄}. For the intermediate values, τ ∈ [τ1, τ2];
the relevant distributions have the support {τ, τ, τ̄}. Finally, for the high values, τ ∈ [τ2, τ̄], the
distributions are on {τ, µ, τ}. The threshold τ1 is the largest τ in [τ, τ̄] for which there exists a
distribution with support {τ, µ, τ̄}, mean µ, and variance σ̄2. On the other hand, τ2 is the smallest
τ ∈ [τ, τ̄] such that there exists a distribution with support {τ, µ, τ}, mean µ, and variance σ̄2.

The condition that the payoff across these distributions has to be constant can again be trans-
lated into a differential equation for the density of the price distribution. Solving this differential
equation yields the result that the density is of the form

h(τ) = a/τ + b,

for τ ∈ [τ, τ̄], where a and b are some constants.

Two conditions are used to determine the constants a and b. The first is to incentivize nature
not to assign probability outside of [τ, τ̄]. The next lemma shows that this will be the case
precisely when a/τ̄ + b = 0, for a > 0 and b < 0. The second condition is the requirement that h
is indeed a density:

∫
h(t)dt = 1.

Lemma 5. Suppose that the seller randomizes over prices on the interval [τ, τ̄] with distribution
that has density

h(τ) =
a
τ

+ b,

for τ ∈ [τ, τ̄], 0 otherwise, and h(τ̄) = 0. Then, for every nature’s distribution F that satisfies
the mean and the variance restriction, there exists a distribution F̂ with the same mean and
variance, such that the support of F̂ is contained in [τ, τ̄] and the distribution F̂ yields a smaller
payoff to the seller. Moreover, if F is nature’s distribution with support in [τ, τ̄], then the seller’s
payoff is

aµ + 0.5bµ2 + 0.5bσ2,

where µ is the mean and σ2 the variance of distribution F.
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The above lemma shows that when the seller randomizes over prices with density h(τ) =

a/τ + b on [τ, τ̄] that satisfies h(τ̄) = 0, nature optimally chooses a distribution whose support is
contained in [τ, τ̄]. More importantly, the seller’s payoff in the latter case depends only on the
mean and the variance of nature’s distribution. With other words, the seller can by randomizing
over prices with a density h as specified above, in a sense, insure himself against the information
about the parameters of the distribution he does not have.

The requirements h(τ̄) = a
τ̄ + b = 0 and

∫ t̄
t h(t)dt = 1 fully pin down the constants a and b:

a =
τ̄

τ̄[ln(τ̄) − ln(τ)] − [τ̄ − τ]
,

b = −
1

τ̄[ln(τ̄) − ln(τ)] − [τ̄ − τ]
.

It is easy to see that a > 0 and b < 0 using the inequality ln(x) ≤ x − 1, where the inequality is
strict for x > 0.

The upcoming result provides a characterization of the seller’s optimal pricing policy when
he has information only about the mean and the variance of the distribution over valuations.

Let H∗ and F∗ be two distributions with support [τ, τ̄] where the pair {τ, τ̄} is the unique
solution of the system

τ[1 + ln(τ̄) − ln(τ)] = µ,

τ[2τ̄ − τ] − µ2 = σ̄2.

Let

H∗(τ) =
τ̄[ln(τ) − ln(τ)] − (τ − τ)
τ̄[ln(τ̄) − ln(τ)] − (τ̄ − τ)

,

for τ ∈ [τ, τ̄], with H∗(τ) = 0 for τ < τ, and H∗(τ) = 1 for τ > τ̄, and

F∗(τ) = 1 −
τ

τ
,

for τ ∈ [τ, τ̄), and F∗(τ) = 1 for τ ≥ τ̄.

Proposition 8. If the seller believes that the buyer’s valuations are drawn from a distribution
with mean µ and variance in the interval [σ2, σ̄2] it is optimal for him to randomize over prices
with distribution H∗. The seller’s max-min expected payoff is τ.

Proof. We started by conjecturing that the seller randomizes over an interval. Assuming fur-
ther that nature chooses a distribution with the highest possible variance enabled us to derive
the unique nature’s distribution, F∗, that makes the seller indifferent over some interval. As a
byproduct we obtained the interval over which the seller randomizes, i.e. τ an τ̄.

Lemma 5 shows that when the seller randomizes with H∗ it is optimal for nature to choose
a distribution with a support in [τ, τ̄]. Moreover, once nature chooses such a distribution the
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seller’s payoff depends only on the mean and the variance of the distribution. In particular it is
increasing in the mean and decreasing in the variance. The distribution F∗ with the mean σ̄2

therefore minimizes the seller’s payoff, given his randomization over the prices, and is therefore
optimal for nature. The pair (H∗, F∗) is thus indeed a saddle. �

Uniqueness. Here we argue that the above established saddle, and therefore the optimal
selling strategy for the seller, are unique. Suppose that there was another saddle (Ĥ, F̂). Then
(H∗, F̂) is a saddle too. The reasoning behind why F̂ = F∗ is the same as in the case of upper
bound on the support. The idea is, the support of H∗ is [τ, τ̄], therefore this must also be the
support of F̂. But then the seller must be indifferent over all the prices in the interval. This pins
down F̂. In particular, F̂ = F∗.

On the other hand, if (Ĥ, F̂) is a saddle, so is (Ĥ, F∗). In a result paralleling Lemma 1 we
show that if the distribution of valuations F∗ is a best response to a price distribution Ĥ, then
nature is indifferent between ternary distributions Fτ for every τ ∈ [τ, τ̄] (when the seller chooses
Ĥ).

Lemma 6. If the type distribution F∗ is a best response to a price distribution Ĥ, then also Fτ

is a best response to Ĥ for every τ ∈ [τ, τ̄].

The above Lemma implies

pτ(τ)
∫ τ

τ
tdĤ + pτ(µ)

∫ µ

τ
tdĤ + pτ(τ̄)

∫ τ̄

τ
tdĤ = U∗,

for all τ ∈ [τ, τ1], where pτ(x), for x ∈ {τ, µ, τ̄}, is the probability the ternary distribution Fτ

assigns to point x; similar expressions are obtained for τ ∈ [τ1, τ2] and τ ∈ [τ2, τ̄]. The left
hand side of the above equation can, therefore, be thought of as a constant function and is thus
differentiable in τ. Since pτ(·) is differentiable in τ for τ ∈ (τ, τ1) one can show that H must be
differentiable. Even more, we argue that the fact that the left hand side of the above equation is
identical to U∗ implies that H is three times differentiable.

Lemma 7. If (F∗, Ĥ) is a saddle, then Ĥ must be three times differentiable.

Differentiating (19) three times one obtains a differential equation, the solutions of which
are of the form h(τ) = a/τ + b, for τ ∈ [τ, τ̄] and 0 elsewhere.

Lemma 8. If (Ĥ, F∗) is a saddle, then Ĥ must have a density of the form h(τ) = a/τ+ b on [τ, τ̄]
and 0 otherwise.
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Thus far we have shown that in any saddle (Ĥ, F̂), F̂ = F∗ and Ĥ must have density of the
form h(τ) = a/τ + b. Proposition 8 showed that for

a =
τ̄

τ̄[ln(τ̄) − ln(τ)] − [τ̄ − τ]
,

b = −
1

τ̄[ln(τ̄) − ln(τ)] − [τ̄ − τ]
,

one obtains an optimal distribution. Here we show that this is the only combination of a and b
that yields an optimal distribution over prices.

Lemma 9. Let (Ĥ, F̂) be a saddle, where Ĥ has a density of the form h(τ) = a/τ + b on [τ, τ̄]
and 0 otherwise. Then

a =
τ̄

τ̄[ln(τ̄) − ln(τ)] − [τ̄ − τ]
,

b = −
1

τ̄[ln(τ̄) − ln(τ)] − [τ̄ − τ]
.

The above sequence of lemmata delivers the following result.

Proposition 9. The distribution over prices H∗ is the unique optimal seller’s distribution.

Proof. Suppose there was a saddle (Ĥ, F̂) , (H∗, F∗). We have argued in the text that F̂ = F∗.
Moreover, (Ĥ, F∗) must also be a saddle. Therefore Ĥ is three times differentiable by Lemma
7. In turn, Ĥ has a density of the form h(τ) = a/τ + b, for τ ∈ [τ, τ̄] and 0 otherwise by Lemma
8. Constants a and b are then pinned down by Lemma 9. Therefore Ĥ = H∗, which contradicts
(Ĥ, F̂) , (H∗, F∗). �

Comparative Statics. The seller’s optimal strategy is independent of σ2. What matters is
the upper bound on the variance of the type distribution σ̄2. The seller fears nature choosing
a distribution that places most of the weight on very low types. To preserve the mean µ, it
must pick with some probability large types. Thus, what the seller fears are strongly dispersed
distributions which are characterized by a large variance. The following result formalizes the
above idea.

Proposition 10. The seller’s payoff is strictly decreasing in σ̄2.

Proof. Since an increase of σ̄2 means that the variance constraint on nature is relaxed it follows
that nature must be able to do weakly better against any strategy of the seller. In particular, this
is true also vis-a-vis the equilibrium pricing strategy. Thus, the seller’s payoff cannot possibly
increase as σ̄2 increases.
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In order to show that it must actually strictly decrease remember that the seller’s payoff is τ
and notice that the condition

τ
[
1 + ln(τ̄) − ln(τ)

]
= µ

implies

dτ
dσ̄2

[
1 + ln(τ̄) − ln(τ)

]
+ τ

[
dτ̄

dσ̄2

1
τ̄
−

dτ
dσ̄2

1
τ

]
= 0,

which can be rewritten in the following more compact format (using 1 + ln(τ̄) − ln(τ) = µ/τ)

dτ
dσ̄2

µ − τ

τ
+

dτ̄
dσ̄2

τ

τ̄
= 0

Therefore, whenever τ is constant in σ̄2 so is τ̄. But if neither of the two limits of the support of
F∗ change, then F∗ itself remains unchanged and so also its variance stays the same. A constant
variance of F∗ is in contradiction with the fact that the variance constraint must be binding. �

While the seller attaches no value to information about the mean only, as long as he con-
templates as possible all non-negative valuations, additional information about the mean or the
variance can have an effect on the seller’s payoff when he has some information about the mean
and the variance to start with.

An interesting implication of Proposition 8 is that whenever the variance constraint is bind-
ing a high enough upper bound on the set of possible types can be imposed without altering the
problem’s solution or value. Thus, in a sense one can replace the bounds on the set of feasible
types with a bound on the variance of the types and vice versa. More precisely, in the prob-
lem where the seller knows the mean belongs to the interval [µ, µ̄] and the upper bound on the
valuations is θ̄, the seller and nature randomize over the interval [τ, θ̄] where τ is defined by

τ
[
1 + ln(θ̄) − ln(τ)

]
= µ.

If the seller knew instead that the mean belongs to the interval [µ, µ̄] and the variance to [σ2, σ̄2]
he would randomize over the interval [τ, τ̄] where τ and τ̄ are defined by

τ[1 + ln(τ̄) − ln(τ)] = µ,

τ[2τ̄ − τ] − µ2 = σ̄2.

The two intervals of randomization coincide when τ̄ = θ̄ and therefore σ̄2 = τ[2θ̄ − τ] − µ2.
Furthermore, in both cases the seller’s payoff is precisely τ. Therefore the seller knowing µ ∈
[µ, µ̄] and that the possible valuations are in [0, θ̄] is payoff equivalent for the seller to knowing
that µ ∈ [µ, µ̄] and σ2 ∈ [σ2, σ̄2] for the σ̄2 as derived above (and any σ2 ≤ σ̄2).

This notwithstanding, the two types of constraints are not equivalent. In fact, there is no pair
θ̄ and σ̄2 such that the σ̄2-constrained and the θ̄ constrained problem yield the same solution to
the seller’s problem. The following proposition elaborates on this point. It states that whenever
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the two types of constraint lead to the same support for the price and type distributions, the price
distribution that corresponds to the case with a bound on the type set first order stochastically
dominates the price distribution that corresponds to the case with a constraint on the variance.
Therefore, one could discern from the data whether the seller’s information is about the mean
and the variance or about the mean and the upper bound on the valuations.

Proposition 11. Let µ, θ̄ and σ̄2 be such that the pairs (µ, θ̄) and (µ, σ̄2) induce the same supports
for the price distribution [τ, θ̄]. If the two optimal price distributions are denoted by H∗

θ̄
and H∗

σ̄2 ,
respectively, then for all τ < τ < θ̄,

H∗
σ̄2(τ) > H∗

θ̄
(τ).

The above result is illustrated in the following figure which shows the price distributions for
the pairs (µ, θ̄) = (1/2, 1) and (µ, σ2) = (1/2, 0.088).

Figure 4: Optimal price distributions: bounded variance (blue), bounded type set (red)

6 Conclusion

We showed that the seller who only has information about the mean expects payoff zero regard-
less of which mechanism he uses. However, the choice of the seller’s mechanism does become
important when he has information both about the mean and the variance. In that case more
information benefits the seller. However, even when he knows the mean and the variance he en-
tertains as possible a rather “large” set of distributions. To connect the model with the Bayesian
setting it would be of interest to explore the seller’s optimal mechanisms when he also has the
information about higher order moments. This is left for future research.
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7 Appendix A

Proof of Proposition 1. Let H be a distribution over prices for which
∫ ∞

0 τdH exists and is
finite. Let F̃ be the binary distribution that assigns probability p to some θ > 0, probability 1− p
to 0, and has mean µ; thus, p =

µ

θ . The seller’s payoff from H can be bounded as follows

inf
F∈F (µ,µ̄)

U(H, F) ≤ U(H, F̃)

= p
∫ θ

0
tdH

=
µ

θ

∫ θ

0
tdH

≤
µ

θ

∫ ∞

0
tdH,

where the second line is due to nature randomizing over values 0 and θ, and the fact that the
seller receives the price t when the said price is below θ.

Since θ can be chosen arbitrarily large and
∫ ∞

0 tdH is finite, the upper bound on the seller’s
payoff can be made arbitrarily small. That is, infF∈F (µ,µ̄) U(H, F) = 0. �

Proof of Lemma 1. If for some τ ∈ [τ, θ̄], Fτ gives nature a strictly higher payoff against Ĥ
than F∗, then F∗ is not a best response to Ĥ. Thus if F∗ is to form a saddle with Ĥ, then it must
be the case that U(Ĥ, Fτ) ≥ U(Ĥ, F∗) for every τ ∈ [τ, θ̄].

Next we argue that no Fτ can give nature a strictly smaller payoff than F∗. Suppose, to the
contrary, that U(Ĥ, Fτ̂) > U(Ĥ, F∗) for some τ̂ ∈ [τ, µ) (the case τ̂ ∈ [µ, θ̄] is very similar and
is thus omitted). We claim that this implies that there is a (small) ε > 0, such that U(Ĥ, Fτ′) >
U(Ĥ, F∗) holds for every τ′ ∈ (τ̂, τ̂ + ε). Since

U(Ĥ, Fτ) = p(τ)
∫ τ

τ
xdĤ(x) + (1 − p(τ))

∫ θ̄

τ
xdĤ(x),

it follows that for every τ′ > τ̂,

U(Ĥ, Fτ̂) − U(Ĥ, Fτ′) = (p(τ′) − p(τ̂))
∫ θ̄

τ̂
xdĤ(x) − p(τ′)

∫ τ′

τ̂
xdĤ(x).

When τ′ converges to τ̂ from above the first term of the above expression vanishes, while the sec-
ond may not if Ĥ has atoms at τ̂ or around it. Therefore, either U(Ĥ, Fτ′) converges to U(Ĥ, Fτ)
(when Ĥ is atomfree around τ̂) or, U(Ĥ, τ) < U(Ĥ, τ′) for every τ′ > τ̂ that is sufficiently close
to τ̂; notice that in this latter case, Fτ′ gives nature a strictly lower payoff against Ĥ than F∗.
Thus, in either of the two cases there exists an ε > 0 such that nature obtains a smaller payoff

from Fτ′ for τ′ ∈ [τ̂, τ̂ + ε) than it does from F∗. Let τl = τ̂ and τh = τ̂ + ε/2.
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The next step of our argument is to show that F∗ can be written as a convex combination of
two distribution functions, Fα and G, where the latter is defined as a mixture of Fτ′-distributions
with τ′ ∈ [τl, τh]. Thus, by construction G is a type distribution that yields to nature a strictly
lower payoff when played against Ĥ than F∗ does. But then Fα must be a distribution that does
better against Ĥ than F∗, meaning that (Ĥ, F∗) cannot be a saddle of U.

Let

G(t) =
1

τh − τl

∫ τh

τl

Fτ(t)dτ,

for t ∈ [0, θ̄], be a uniform mixture over Fτ for τ ∈ [τl, τh]. It is easy to verify that G is a
distribution on [0, θ̄] with mean µ. Using the definitions of Fτ one can rewrite G as follows

G(t) =
1

τh − τl

∫ t

τl

pτdτ

=
1

τh − τl

∫ t

τl

θ̄ − µ

θ̄ − τ
dτ,

for t ∈ [τl, τh] and G(t) = 1
τh−τl

∫ τh

τl

θ̄−µ

θ̄−τ
dτ, for t ∈ (τh, θ̄) (also, G(t) = 0 for t < τl). For later

reference, the derivative

G′(t) =
1

τh − τl

θ̄ − µ

θ̄ − t

attains its maximum on [τl, τh] at τh where G′(τh) = (θ̄ − µ)/[(θ̄ − τh)(τh − τl)].

Define

Fα =
1

1 − α
[F∗ − αG].

We will argue that for sufficiently small α, Fα is a distribution. Clearly Fα(0) = 0 and Fα(θ̄) = 1.
Since both F∗ and G are right continuous so must be Fα. The main point is to show that Fα is
nondecreasing for small enough (but positive) α. Towards that, notice that

F′α(t) =
1

1 − α
[F′(t) − αG′(t)],

at all the points of differentiability of F and G. The critical region of t is [τl, τh] and the point
t = θ̄ where Fα exhibits a jump that it inherits from F∗ and G∗. Below this interval G = 0 and
above it G is again constant except for the jump at θ̄.
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For t ∈ [τl, τh]

F′α(t) =
1

1 − α
[F′(t) − αG′(t)]

=
1

1 − α

τt − α 1
τh − τl

θ̄ − µ

θ̄ − t


≥

1
1 − α

 ττh
− α

1
τh − τl

θ̄ − µ

θ̄ − τh

 ,
where the second equality uses the above derived expressions for F′ and G′, and the inequality
is due to the fact that the derivative F′(t) is minimized and the derivative G′ maximized at τh.
The expression in the last bracket is clearly positive for α small enough. Notice also that for α
small enough the jump that Fα exhibits at θ̄ must be an upward jump.

Now fix some (sufficiently small but strictly positive) α such that Fα is a distribution function
and rewrite the defining equation of Fα as follows

F∗ = (1 − α)Fα + αG.

Since both G and F∗ have mean µ this equation implies that also Fα must have mean µ. There-
fore, Fα represents a viable strategy for nature. Since playing G against Ĥ yields for nature a
strictly smaller payoff than playing F∗, it must be the case that Fα yields a strictly higher payoff

against Ĥ than F∗ does. But then F∗ cannot be the best reply to Ĥ which contradicts our starting
assumption. �

Proof of Lemma 2. Let H be as in the statement of the result and take any type distribution
F ∈ F (µ, µ̄, θ̄) with the support in [τ, θ̄]. The seller’s expected payoff from (H, F) is

U(H, F) =

∫ θ̄

τ

∫ τ

τ
tdH(t)dF(τ). (14)

By assumption for every τ the payoff under the corresponding τ-extreme distribution is equal to
some constant c. That is

p(τ)
∫ τ

τ
tdH(t) + (1 − p(τ))

∫ θ̄

τ
tdH(t) = c for all τ ≤ τ < µ,

p(τ)
∫ τ

τ
tdH(t) = c for all µ < τ ≤ θ̄.

Observe that the second line implies that the term
∫ θ̄

τ
tdH(t) in the first line can be replaced by
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c/p(θ̄). Thus, the integrand of the outer integral in (14) is equal to

∫ τ

τ
tdH(t) =


c

p(τ)
−

1 − p(τ)
p(τ)

c
p(θ̄)

if τ ≤ τ < µ

c
p(τ)

if µ < τ ≤ θ̄.
(15)

Using (5) it is straightforward to show that both expressions on the right hand side simplify to∫ τ

τ
tdH(t) = c

τ − τ

µ − τ
.

Substituting this into (14) we obtain

U(H, F) =

∫ θ̄

τ

∫ τ

τ
tdH(t)dF(τ) =

c
µ − τ

∫ θ̄

τ
(τ − τ)dF(τ) = c, (16)

where the third equality follows from the fact that the expectation of τ under F is equal to µ. �

Proof of Proposition 3. In the text preceding Proposition 3 we established that (H∗, F∗) is a
saddle. The fact that H∗ is then optimal for the seller follows from the result in Appendix B. �

Proof of Lemma 3. Step 1: No mass point.

If (Ĥ, F̂) is a saddle point, so is (Ĥ, F∗), which in turn implies U(H∗, F∗) = U(Ĥ, F∗).
Suppose Ĥ has a mass point, at τ̂, and let ∆ = Ĥ(τ̂) − H(τ̂−) be the size of the mass point at τ̂.
The mass point at τ̂ implies that nature’s payoff from playing Fτ̂ is larger than its payoff from
playing Fτ for τ ∈ (τ̂, τ̂ + ε) for ε > 0 small enough. To see this, assume first that τ̂ < µ. In this
case the seller’s payoff when he randomizes according to Ĥ and nature replies with Fτ, is

p(τ)
∫ τ

τ
xdĤ(x) + (1 − p(τ))

∫ θ̄

τ
xdĤ(x),

where p(τ) = (θ̄ − µ)/(θ̄ − τ) is the probability that nature assigns to τ.

Therefore, for τ ∈ (τ̂, τ̂ + ε)

U(Ĥ, Fτ̂) − U(Ĥ, Fτ) = (p(τ̂) − p(τ))
∫ θ̄

τ̂
xdĤ(x) − p(τ)

∫ τ

τ̂
xdĤ(x).

The first term can be made arbitrarily small by choosing ε small enough. The integral in the
second term, on the other hand, is bounded below by τ̂∆ because of the atom at τ̂. Therefore,
if ε is small enough then U(Ĥ, Fτ̂) − U(Ĥ, Fτ) < 0. Since nature’s objective is to minimize the
seller’s payoff, this inequality implies that nature is not not indifferent among all τ-distributions
when facing a seller who adopts the price distribution Ĥ. But then (Ĥ, F∗) cannot be a saddle
due to Lemma 1.
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A perfectly analogous argument applies also in the case θ̄ > τ̂ ≥ µ. In principle this leaves
the possibility of a jump at θ̄. But the price p = θ̄ generates a zero revenue and is thus never
optimal. We can therefore conclude that Ĥ cannot exhibit any mass points.

Step 2: The support of Ĥ is [τ, θ̄].

The seller has no incentive to charge a price larger than θ̄ with positive probability (no type
buys at such a price), or a price lower than τ. In the latter case, the seller would be strictly better
off by increasing the price to τ, in which case he would still sell the good with probability one.
The support of Ĥ is therefore contained in [τ, θ̄].

Now suppose that there is some hole in the support. We argue that F∗ then cannot be an
optimal response to Ĥ since nature can improve upon it by reallocating the mass that F∗ assigns
to the hole. Suppose that nature first shifts the mass that F∗ assigns to the hole to the upper limit
of the hole. Doing so yields a type distribution F′ which when played against Ĥ generates the
same payoff as F∗. But then nature can manipulate F′ further by shifting a strictly positive share
of the mass that F′ concentrates on the interval (µ, θ̄] to the lowest type τ to obtain distribution
F′′ with the mean µ. Clearly, this second shift strictly reduces the seller’s payoff. �

Proof of Proposition 4. The result was proven in the text preceding the statement of the result.
Here we show how τ can be expressed as a function of Lambert function. The condition that
defines the lower limit of the support of the distributions H∗ and F∗ can be solved to yield the
expression

τ = −
µ

W−1(−µ/eθ̄)
.

To show this, remember that the defining condition of τ is

τ(1 + ln(θ̄) − ln(τ)) = µ.

Dividing both sides of the equation by τ and evaluating them with the exponential function we
can rewrite this condition as follows

τ−1eθ̄ = eµτ
−1

⇔ −eθ̄(−µτ−1) = µeµτ
−1

⇔ −µτ−1e−µτ
−1

= −
µ

eθ̄
.

Remember that the lower branch of the Lambert W function, W−1, is defined on the interval
(−1/e, 0) and describes the corresponding part of the inverse of the functionz, defined by z(W) =

WeW . Using this function we can rewrite the above equation as follows

z
(
−
µ

τ

)
= −

µ

eθ̄
⇔ W−1

(
−
µ

eθ̄

)
= −

µ

τ

which is easily solved for τ

τ = −
µ

W−1
(
−
µ

eθ̄

) .
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Proof of Proposition 5. U∗ coincides with τ. Taking the partial derivative of τ with respect to
µ yields

∂τ(µ, θ̄)
∂µ

=

[
−W−1(−µ/eθ̄) −

µ

eθ̄
W′−1(−µ/eθ̄)

]
/
[
W−1(−µ/eθ̄)

]2
.

From the implicit definition of the function W1 through the equation

z = W−1(z)eW−1(z),

for z ∈ [−1/e, 0), it immediately follows that

W′−1(z) =
W−1(z)

z[1 + W−1(z)]
.

Since W1 is strictly smaller than −1 on its entire domain we can conclude that its derivative, W′
−1,

must be strictly negative everywhere. This in turn means that ∂τ/∂µ is the sum of two strictly
positive expressions und thus must be strictly positive.

The partial derivative of τ with respect to θ̄ is

∂τ(µ, θ̄)
∂θ̄

=

[
µ2

eθ̄2
W′−1(−µ/eθ̄)

]
/
[
W−1(−µ/eθ̄)

]2
.

Thus this partial derivative shares the sign of W′
−1, which means that it is negative. �

Proof of Proposition 6. Part i) is a rather immediate implication of Proposition 5. Both distri-
bution functions are everywhere decreasing in τ (except at the upper limit τ = θ̄). Since τ is an
increasing function of µ the result follows.

As for part ii) notice that

∂H∗(τ; µ, θ̄)

∂θ̄
= −

τθ̄
τ

[
ln(θ̄) − ln(τ)

]
−

1
θ̄

[
ln(τ) − ln(τ)

]
,

where τθ̄ indicates the partial derivative of τ with respect to θ̄. Both terms of the difference are
continuous in τ. The first one is strictly decreasing in τ and the second one is strictly increasing
in τ. Finally, for τ = τ the first term is strictly positive while the second one is equal to zero.
The converse is true for τ = θ̄. Thus, there must exist exactly one point, τ̃ were the derivative
is equal to zero. For smaller values of τ the derivative must be strictly positive and for larger
values it is strictly negative.

�
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Proof of Proposition 7. The relative loss ρ is given by

ρ(µ, 1) =

τ −
(
1 −

√
1 − µ

)2

τ
.

Using τ = −µ/W−1(−µ/eθ̄) we can rewrite ρ as follows

ρ(µ, 1) = 1 +

W−1(−µ/e)
(
1 −

√
1 − µ

)2

µ
.

Since W−1(−1/e) = −1 it immediately follows that ρ(1, 1) = 0.

As for the behavior of ρ(µ, 1) when µ goes to 0 notice that we can write

ρ(µ, 1) = 1 +
α(µ)

β(µ)

where

α(µ) =

(
1 −

√
1 − µ

)2

µ
and β(µ) =

1
W−1(−µ/e)

.

Using L’Hopital’s Rule it can be shown that α(µ) → 0 as µ converges to 0. Moreover, since
limx↑0 W−1(x) = −∞ it follows that also β(µ) tends to zero when µ goes to zero. To compute the
limit of the ratio of α and β we therefore apply L’Hopital’s Rule once more. Doing so yields

lim
µ→0

α(µ)

β(µ)
= lim

µ→0

α′(µ)

β′(µ)
=

1/4
−∞

= 0.

In order to see that we are entitled to apply l’Hopital’s rule notice that both α and β are dif-
ferentiable at all points µ > 0. That β is differentiable at all µ follows from the fact that the
(lower branch of the) Lambert W function is differentiable on (−1/e, 0). Moreover, it is also
straightforward to verify that β′(µ) , 0 for all µ > 0.

It remains to be shown that ρ(·, 1) is decreasing . Computing the derivative of ρ(·, 1) yields

∂ρ(µ, 1)

∂µ
=

W−1(−µ/e)
[
1 −

√
1 − µ

] [
W−1(−µ/e)

(
1 −

√
1 − µ

)
+ µ

]
[
1 + W−1(−µ/e)

]
µ2

√
1 − µ

.

Since W−1 ≤ −1 this expression is negative if and only if

−W−1(−µ/e) >
µ(

1 −
√

1 − µ
) . (17)

Both sides of this inequality are decreasing functions of µ and both go to 1 as µ goes to 1.
Moreover, while the rhs goes to 2 as µ approaches 0, the lhs diverges to ∞. Thus, the above
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inequality holds at least in a neighborhood of 0. Suppose that contrary to our hypothesis there is
some µ′ ∈ (0, 1) at which the two sides of the inequality cross (are equal), i.e.

−W−1(−µ′/e) =
µ′(

1 −
√

1 − µ′
) .

At µ′ the slope of the lhs is

d(−W−1(−µ′/e))

dµ
= −

W−1(−µ′/e)

µ′
(
1 + W−1(−µ′/e)

) = −
1√

1 − µ′
(
1 −

√
1 − µ′

) .
The slope of the rhs is instead

−2 + µ′ + 2
√

1 − µ′

2
(
1 −

√
1 − µ′

)2 √
1 − µ′

Dividing this expression by the slope of the lhs we obtain

1 −
µ′

2
(
1 −

√
1 − µ′

) < 1.

Thus, at every point of intersection of the two sides of (17) the lhs is decreasing faster than the
rhs. Consequently, there can be at most one point of intersection. Since the two curves meet at
µ = 1 it follows that there can be no intersection point in (0, 1). �

Proof of Lemma 4. Solving (13) for τ̄ yields

τ̄ =
µ2 + σ̄2

2τ
−
τ

2
.

Plugging this expression back into (12) delivers

τ

[
1 + ln

(
µ2 + σ̄2

2τ2 +
1
2

)]
= µ.

Write f (τ) for the expression on the lhs of the above equation. Since for τ = µ the expression
under the logarithm is larger than 1 it follows that f (µ) > µ. On the other hand, if τ tends to
zero then f (τ) converges to the limit of τ ln(1/τ2). Using L’Hopital’s rule it can be shown that
the latter expression goes to 0 as τ converges to 0. Since f is a continuous function of τ we can
conclude that there must be some admissible value of τ such that f (τ) = µ.

As for uniqueness of the solution it is more convenient to first solve (12) for τ and then
subsitute it into (13). We know from the preceding section that (12) has a unique solution in τ
and that this solution is given by τ(τ̄, µ) = −µ/W−1(−µ/τ̄e).
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Substituting this solution into (13) we obtain

τ(τ̄, µ)[τ̄ − τ(τ̄, µ)] = σ̄2 + µ2. (18)

If the lhs of this equation is strictly increasing in τ̄ then the equation can have at most one
solution. The derivative of the lhs of (18) with respect to τ̄ is positive if and only if

τ′τ̄

τ
− τ′ ≥ −1.

where τ′ denotes the partial derivative of τ(τ̄, µ) with respect to τ̄. Using the definition of τ(τ̄, µ)
this inequality can be rewritten as

−2
τ̄

µ
W−1(−µ/τ̄e) ≤

τ̄

µ
[W−1(−µ/τ̄e)]2 + 1.

Since W−1(−1/e) = −1, it follows that this inequality is satisfied with equality at the lowest
possible value for τ̄, τ̄ = µ. For τ̄ > µ, W−1(−µ/τ̄e) < −1. Thus, both sides of the inequality
increase with τ̄. But due to the quadratic expression on the rhs, that side grows faster than the
lhs, therefore we can conclude that for every µ, τ(·, µ) is strictly increasing. �

Proof of Lemma 5. Suppose nature chooses a distribution F. The seller’s payoff is then∫ τ̄

τ

x(1 − F(x))h(x)dx =

∫ τ̄

τ

(a + bx)(1 − F(x))dx

=

∫ ∞

0
(a + bx)(1 − F(x))dx −

∫ τ

0
(a + bx)(1 − F(x))dx −

∫ ∞

τ̄

(a + bx)(1 − F(x))dx

= aµ + 0.5bσ2 + 0.5bµ2 −

∫ τ

0
(a + bx)(1 − F(x))dx −

∫ ∞

τ̄

(a + bx)(1 − F(x))dx,

where µ is the mean and σ2 the variance of distribution F, and the last equality follows from∫ ∞

0
xk(1 − F(x))dx =

1
k + 1

∫ ∞

0
xk+1dF,

which implies
∫ ∞

0 (1 − F(x))dx = µ and
∫ ∞

0 x(1 − F(x))dx = (σ2 + µ2)/2.

In the next couple of lines we focus on the last two terms of the seller’s payoff; integrals∫ τ

0 (a + bx)(1 − F(x))dx and
∫ ∞
τ̄

(a + bx)(1 − F(x))dx. Assumption a/τ̄ + b = 0 together with
the requirement that h is a density (thus non-negative on [τ, τ̄]) implies a > 0, and therefore,
a + bτ < 0 for τ > τ̄, and a + bτ > 0 for τ ≤ τ. Nature, who wishes to minimize the seller’s
payoff, therefore optimally sets F(τ) = 0 for τ ≤ τ and F(τ) = 1 for τ ≤ τ̄. The above calculation
implies that for every distribution F that satisfies the mean and the variance restriction, nature
prefers a distribution F̂ with the same mean and variance and support within the interval [τ, τ̄].
It is easy to see that such an F̂ always exist.

Next we focus on distributions whose support is within [τ, τ̄]. Let F be some such distribu-
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tion. The seller’s payoff then simplifies to

aµ + 0.5bµ2 + 0.5bσ2.

Since a and b are such that a + bτ > 0 for τ ∈ [τ, τ̄), the seller’s payoff is increasing in the
mean on [τ, τ̄), implying that nature wants to decrease the mean as much as possible. On the
other hand, b < 0 implies that nature wants to increase the variance until it hits the upper bound
σ̄2. �

Proof of Lemma 6. If for some τ ∈ [τ, τ̄], Fτ gives nature a strictly higher payoff against Ĥ
than F∗, then F∗ is not a best response to Ĥ. Thus if F∗ is to form a saddle with Ĥ, then it must
be the case that U(Ĥ, Fτ) ≥ U(Ĥ, F∗) for every τ ∈ [τ, τ̄].

Next we argue that no Fτ can give nature a strictly smaller payoff than F∗. Suppose, to the
contrary, that U(Ĥ, Fτ̂) > U(Ĥ, F∗) for some τ̂ ∈ [τ, τ1) (the two cases with τ̂ ≥ τ1 are very
similar and thus omitted). We claim that this implies that there is a (small) ε̄ > 0, such that
for every ε < ε̄ the ternary distribution with support {τ̂ + ε, µ + ε, τ̄}, mean µ and variance σ̄2,
generates a strictly smaller payoff against Ĥ than F∗. With a slight abuse of notation we write
Fε for this type of ternary distribution. Notice that

U(Ĥ, Fε) = pε(τ̂ + ε)
∫ τ̂+ε

τ
xdĤ(x) + pε(µ + ε)

∫ µ+ε

τ
xdĤ(x) + pε(τ̄)

∫ τ̄

τ
xdĤ(x).

Thus it follows that for every 0 < ε < ε̄,

U(Ĥ, F0) − U(Ĥ, Fε) = (p0(τ̂) − pε(τ̂ + ε))
∫ τ̂

τ
xdĤ(x) − pε(τ̂ + ε)

∫ τ̂+ε

τ̂
xdĤ(x)

+ (p0(µ) − pε(µ + ε))
∫ µ

τ
xdĤ(x) − pε(µ + ε)

∫ µ+ε

µ
xdĤ(x)

+ (p0(τ̄) − pε(τ̄))
∫ τ̄

τ
xdĤ(x).

When ε converges to 0 from above the first terms in all three lines of the above expression
vanish, while the other two do not if Ĥ has atoms at τ̂ and µ or around these points. Therefore,
either U(Ĥ, Fε) converges to U(Ĥ, F0) (when Ĥ is atom free around τ̂ and µ) or, U(Ĥ, F0) <
U(Ĥ, Fε) for every ε > 0 that is sufficiently close to 0; notice that in this latter case, Fε gives
nature a strictly lower payoff against Ĥ than F∗. Thus, in either of the two cases there exists an
ε̄ > 0 such that nature obtains a smaller payoff from Fε for ε ∈ [0, ε̄) than it does from F∗.

The next step of our argument shows that F∗ can be written as a convex combination of two
distribution functions, Fα and G, where the latter is defined as a mixture of Fε-distributions with
ε ∈ [0, ε̄]. Thus, by construction G is a type distribution that yields to nature a strictly lower
payoff when played against Ĥ than F∗ does. But then Fα must be a distribution that does better
against Ĥ than F∗, meaning that (Ĥ, F∗) cannot be a saddle of U.
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For each t ∈ [0, τ̄] define G(t) as uniform mixture over all Fε distributions. That is, set

G(t) =
1
ε̄

∫ ε̄

0
Fε(t)dε,

for all t ∈ [0, τ̄]. It is easy to verify that G is a distribution on [0, τ̄] with mean µ and variance
σ̄2. Clearly, G is constant over the intervals [0, τ̂), [τ̂ + ε̄, µ) and [µ + ε̄, τ̄). Over the intervals
[τ̂, τ̂ + ε̄) and [µ, µ + ε̄), G is strictly increasing. Notice that in the first case we can write

G(t) =
1
ε̄

∫ t

τ̂
pτ−τ̂(τ)dτ,

while in the second case we have

G(t) = G(τ̂ + ε̄) +
1
ε̄

∫ t

µ
pτ−µ(τ)dτ.

In either of the two cases G is differentiable in the interiors of the respective intervals and the
slope of G is proportional either to pt−τ̂(t) or pt−µ(t). Since both these expressions are proba-
bilities this means that G′(t) is bounded above. Notice that the same conclusion can be drawn
regarding the left and right hand derivatives of G at the endpoints of the two intervals (where G
is not differentiable).

Next define

Fα =
1

1 − α
[F∗ − αG].

We argue that for sufficiently small α, Fα is a distribution. Clearly, Fα(0) = 0 and Fα(θ̄) = 1.
Since both F∗ and G are right continuous so must be Fα. It thus only remains to show that Fα is
nondecreasing for sufficiently small (but positive) α. Towards that, notice that

F′α(t) =
1

1 − α
[F∗′(t) − αG′(t)],

at all the points of differentiability of G and F∗. Furthermore, F∗′(t) = τt−1 is bounded away
from 0. Since G′(t) is bounded above it follows that for sufficiently small α, F′α(t) is positive at
all points where it is defined. The only points where F′α is not well defined are the end points of
the intervals over which G is increasing and the point τ̄ where G exhibits a jump. Since F∗ also
exhibits a jump at τ̄ it is easy to see that F∗−αG must jump upward at τ̄ if α is small enough. As
for the endpoints of the intervals where G is increasing, we can apply the same kind of argument
as in the case of the points where G is differentiable, using left and right hand derivatives.

Now fix some (sufficiently small but strictly positive) α such that Fα is a distribution function
and rewrite the defining equation of Fα as follows

F∗ = (1 − α)Fα + αG.

Since both G and F∗ have mean µ and variance σ̄2 this equation implies that Fα must also have
mean µ and variance σ̄2. Therefore, Fα represents a viable strategy for nature. Since playing G
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against Ĥ yields for nature a strictly smaller payoff than playing F∗, it must be the case that Fα

yields a strictly higher payoff against Ĥ than F∗ does. But then F∗ cannot be the best reply to Ĥ
which contradicts our starting assumption. �

Proof of Lemma 7. We start with a more detailed description of the relevant ternary distribu-
tions. The ternary τ-distribution, Fτ, satisfies the following conditions: i) the support of Fτ is
composed of τ itself and two elements from the set {τ, µ, τ̄}, ii) the mean of Fτ is µ and the
variance of Fτ is σ̄2.

More specifically, the support of Fτ is {τ, µ, τ̄} if τ ≤ τ1 = µ − σ2/(τ̄ − µ) and {τ, µ, τ} if
τ ≥ τ2 = µ + σ2/(µ − τ); for all remaining τ ∈ [τ, τ̄] the support is {τ, τ, τ̄}. The probability
weights of the elements of the support are

pτ(τ) =


σ2/[(τ̄ − τ)(µ − τ)] if τ ∈ [τ, τ1][
σ2 + (µ − τ)(τ̄ − µ)

]
/
[
(τ̄ − τ)(τ − τ)

]
if τ ∈ (τ1, τ2)

σ2/[(τ − τ)(τ − µ)] if τ ∈ [τ2, τ̄],

pτ(τ) =


0 if τ ∈ (τ, τ1 ][
σ2 − (τ̄ − µ)(µ − τ)

]
/
[
(τ̄ − τ)(τ − τ)

]
if τ ∈ (τ1, τ2)

σ2/
[
(µ − τ)(τ − τ)

]
if τ ∈ [τ2, τ̄],

pτ(µ) =


1 − σ2/[(τ̄ − µ)(µ − τ)] if τ ∈ [τ, τ1]
0 if τ ∈ (τ1, τ2), τ , µ
1 − σ2/[(µ − τ)(τ − µ)] if τ ∈ [τ2, τ̄],

pτ(τ̄) =


σ2/[(τ̄ − µ)(τ̄ − τ)] if τ ∈ [τ, τ1][
σ2 + (µ − τ)(µ − τ)

]
/
[
(τ̄ − τ)(τ̄ − τ)

]
if τ ∈ (τ1, τ2)

0 if τ ∈ [τ2, τ̄).

In the following figure we represent the probability weights for the parameter combination τ =

0.1, µ = 1, τ̄ = 2, σ2 = 0.25.

Figure 5: pτ(τ) (black), pτ(τ) (red), pτ(µ) (green) and pτ(τ̄) (blue)

Notice that the probabilities are differentiable at all points except τ1 and τ2; at those two
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points they exhibit kinks but are still continuous.

By Lemma 6 we know that each Fτ produces the saddle value when played against an opti-
mal price distribution Ĥ. That is, U(Ĥ, Fτ) is equal to U∗ for all τ, or more explicitly,

pτ(τ)
∫ τ

τ
tdĤ + pτ(µ)

∫ µ

τ
tdĤ + pτ(τ̄)

∫ τ̄

τ
tdĤ = U∗, (19)

for τ ∈ [τ, τ1]; the other two cases are similar. Being constant in τ the sum on the lhs of (19)
is twice differentiable with respect to τ. Since the second and the third term of this sum are
themselves differentiable with respect to τ (except at the points τ1 and τ2), so must be the first
term. Since the first term is the product of two functions of τ, where the first one, pτ(τ), is again
differentiable (except at the two points τ1 and τ2), this means that also the second one,

∫ τ

τ
tdH,

must be differentiable with respect to τ.

Since the optimal price distribution Ĥ is continuous,19 we can use integration by parts to
write ∫ τ

τ
tdĤ = τĤ(τ) − τĤ(τ) −

∫ τ

τ
Ĥ(t)dt. (20)

This expression as a whole is differentiable with respect to τ, and since the second and the third
term are each individually differentiable it follows that so must be the first one. The derivative
of (20) is τH′(t), or in our notation, τh(t).

Using (19) we can write ∫ τ

τ
tdĤ = g(τ),

where

g(τ) =
1

pτ(τ)
U∗ −

pτ(µ)
pτ(τ)

∫ µ

τ
tdĤ −

pτ(τ̄)
pτ(τ)

∫ τ̄

τ
tdĤ.

Inspection of the function g reveals that it depends on τ only through the probabilities. Since
those are twice differentiable wrt τ (with exception of the points τ1 and τ2) and since by (20)
we know that the first derivative of g is equal to τh(τ), it follows that h(τ) must be differentiable
except possibly at τ = τ1 and at τ = τ2.

A similar argument can be used to show that h′ is differentiable. �

Proof of Lemma 8. Lemma 6 implies that if (Ĥ, F∗) is a saddle, then nature is indifferent be-
tween all the ternary Fτ distributions. In particular, for τ ≥ τ2, the seller’s payoff from any such

19Suppose it was not, and suppose that there is a discontinuity at some τ̃ in [τ, τ1) (the other cases are handled
similarly). Then a ternary distribution Fτ′ for a τ′ close enough but above τ̃ would yield strictly smaller payoff to
nature than τ̃. That would contradict Lemma 6.
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ternary distribution is

pµ(τ)
∫ µ

τ
tdĤ + pτ(τ)

∫ τ

τ
tdĤ = U∗, (21)

the other two cases are handled in a similar fashion. By Lemma 7, Ĥ is (at least) three times
differentiable. Differentiating (21) with respect to τ yields

p′µ(τ)
∫ µ

τ
tdĤ + p′τ(τ)

∫ τ

τ
tdĤ + pτ(τ)τh(τ) = 0. (22)

for τ ∈ (τ2, τ̄). Dividing through by p′τ(τ) and taking once more the derivative with respect to τ
we obtain an expression of the type

A(τ)
∫ µ

τ
tdĤ + B(τ)τh(τ) + C(τ)

[
h(τ) + τh′(τ)

]
= 0,

for all τ ∈ (τ2, τ̄). Cumbersome but straightforward calculations show that B(τ)/A(τ) = −(µ− τ)
and C(τ)/A(τ) = (2τ−µ−τ)(µ−τ). Thus if we divide the above equation by A(τ) and differentiate
again we obtain

−(µ − τ)[h(τ) + τh′(τ)] + (µ − τ)[h(τ) + τh′(τ)] + [2τ − µ − τ](µ − τ)[2h′(τ) + τh′′(τ)] = 0,

which simplifies to

2h′(τ) + τh′′(τ) = 0,

for all τ ∈ (τ2, τ̄). Solving this differential equation yields

h(τ) =
a
τ

+ b,

for all τ ∈ (τ2, τ̄). �

Proof of Lemma 9. We argue that h(τ̄) must be equal to 0. This, together with the requirement
that h integrates to 1, pins down a and b.

Suppose that (Ĥ, F∗) was a saddle with h(τ̄) = a/τ̄ + b > 0. Then for a small enough ε > 0,
a/τ + b > 0 for all τ ∈ (τ̄, τ̄ + ε). In the proof of Lemma 5 we show that the seller’s payoff when
using a distribution with a density of the the form h(τ) = a/τ+ b on [τ, τ̄], and the valuations are
distributed with distribution F, can be written as

aµ + 0.5bσ2 + 0.5bµ2 −

∫ τ

0
(a + bx)(1 − F(x))dx −

∫ ∞

τ̄
(a + bx)(1 − F(x))dx.

Since a + bx > 0 for x ∈ [τ̄, τ̄ + ε], nature would then strictly benefit from deviating to a
distribution F̃ that has the same mean and variance as F∗ but also assigns some probability mass
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to the interval [τ̄, τ̄ + ε]. Such a deviation can be found as long as F∗ does not have variance 0,
which cannot happen in a saddle anyways. Therefore h(τ̄) > 0 cannot be the case in a saddle. �

Proof of Proposition 11. Since the optimal randomization over prices has the same support in
both cases, τ̄ = θ̄. The optimal distribution for the seller when he knows the mean is µ and the
variance bounded above by σ̄2 can be written as

H∗
σ̄2(τ) =

θ̄[ln τ − ln τ] − (τ − τ)
θ̄[ln θ̄ − ln τ] − (θ̄ − τ)

,

and the optimal distribution in the case when he knows that the valuations are distributed with a
distribution with mean µ and support in [0, θ̄]

H∗
θ̄
(τ) =

ln τ − ln τ
ln θ̄ − ln τ

.

The difference H∗
σ̄2(τ) − H∗

θ̄
(τ) has the same sign as

(ln τ − ln τ)(θ̄ − τ) − (ln θ̄ − ln τ)(τ − τ),

which in turn has the same sign as

ln τ − ln τ
τ − τ

−
ln θ̄ − ln τ
θ̄ − τ

.

The last expression is positive if (ln τ − ln τ)/(τ − τ) is decreasing in τ. Differentiating the
expression yields

d
dτ

(
ln τ − ln τ
τ − τ

)
=

1 −
τ

τ + ln
τ

τ

(τ − τ)2

≤ 0,

for τ ≥ τ and the inequality is strict for τ > τ. The inequality follows from ln x ≤ x − 1, with
strict inequality for x , 1. �

8 Appendix B

In this appendix we report the basic saddle point result on which parts of our analysis rely. For
a more detailed discussion see Rockafellar (1970).

We start by introducing some notation. Let X and Y be two arbitrary sets and let K be a
function that maps the Cartesian product X × Y into the extended real numbers, i.e.

K : X × Y → [−∞,+∞].
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Define

f (x) = sup
y∈Y

K(x, y) and g(y) = inf
x∈X

K(x, y).

Proposition 12. A pair (x̄, ȳ) satisfies the saddle point condition

K(x, ȳ) ≥ K(x̄, ȳ) ≥ K(x̄, y) for all x ∈ X, y ∈ Y,

if and only if x̄ solves

x̄ ∈ arg min
x∈X

f (x), and ȳ ∈ arg max
y∈Y

g(y),

and the saddle-value of K exists, i.e. one has

inf
x∈X

f (x) = sup
y∈Y

g(y).

Proof. Suppose first that x̄ ∈ arg minx∈X f (x), ȳ ∈ arg maxy∈Y g(y) and f (x̄) = g(ȳ). By the
definition of f and g it follows that

f (x) ≥ K(x, y) ≥ g(y) for all x ∈ X, y ∈ Y.

In particular, the inequalities must hold for x̄ and ȳ, i.e.

f (x̄) ≥ K(x̄, ȳ) ≥ g(ȳ).

But since f (x̄) = g(x̄) we can conclude that

sup
y∈Y

K(x̄, y) = K(x̄, ȳ) = inf
x∈X

K(x, ȳ),

which implies the saddle point condition.

Conversely, suppose that the saddle point condition holds, i.e.

K(x, ȳ) ≥ K(x̄, ȳ) ≥ K(x̄, y) for all x ∈ X, y ∈ Y.

This immediately implies that

g(ȳ) = inf
x∈X

K(x, ȳ) = K(x̄, ȳ) = sup
y∈Y

K(x̄, y) = f (x̄).

But since for all x ∈ X and y ∈ Y we have f (x) ≥ g(y) we also know that f (x̄) is an upper bound
of g(y) and since this upper bound is reached for y = ȳ we can conclude that g(ȳ) ≥ g(y) for all
y ∈ Y . Finally, a perfectly analogous argument delivers f (x̄) ≤ f (x) for all x ∈ X and thus

inf
x∈X

f (x) = sup
y∈Y

g(y).
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