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Abstract

This paper experimentally examines the selection of equilibria in dynamic games. Our baseline
treatment is a two-state extension of an indefinitely repeated prisoner’s dilemma, which we
modify in series of treatments to study the focality of efficiency and symmetry, the effect
dynamic and static strategic externalities, and the size of the state-space. Subjects in our
experiments show an affinity for conditional cooperation, readily conditioning their behavior on
both the state of the world, and recent history of play. With strong dynamic and static
externalities present we see most subjects coordinate on efficiency by conditioning on past play.
However, when we remove either type of strategic externality, conditioning on just the state
becomes more common, and behavior is consistent with the Markov-perfect prediction. Changes
to the environment’s state-space are more nuanced: perturbations of the game with small-sized
noise does not lead to more state-conditioned behavior; however, a richer set of endogenous
states does lead to more Markov-perfect behavior.
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1. INTRODUCTION

The trade-off between opportunistic behavior and cooperation is a central economic tension. In
settings where agents interact indefinitely theory shows it is possible to support efficient outcomes.
So long as all parties put enough weight on long-run benefits from sustained cooperation, threats
to condition future behavior on present outcomes and thereby punish opportunistic choices can
be credible. This holds whether the strategic environment is fixed (a repeated game) or evolving
through time (a dynamic game). The set of subgame-perfect equilibria (SPE) is large, with many
equilibrium outcomes possible across a range of efficiency levels. For repeated games—a special
case within dynamic games—the experimental literature has documented a number of patterns for
observed behavior (see Dal B6 and Fréchette, 2014, for a survey). In comparison, much less is
known for the larger family of dynamic games. In this paper we expand outward from what is
already well-known, experimentally investigating how behavior in very simple dynamic games

responds to broadly read features of the environment.

Dynamic games are frequently used in both theoretical and empirical applications, and the analy-
sis typically requires some criterion for equilibrium selection.' In principle, just as with repeated
games, strategies can condition on the observed history of play. Such history-dependent strate-
gies can bootstrap cooperative outcomes in equilibrium, for example through trigger strategies that
cooperate conditional on no observed deviations, otherwise switching to an incentive-compatible
punishment phase. Yet the most-common solution concept in the dynamic-games literature pre-
cludes such history-dependence. Instead, the literature focuses the search for equilibria on those
strategies where agents condition their choices only on the present ‘“state” of the game—where
each state in the dynamic game corresponds to a specific stage-game.’

Strategies that condition the selected action only on the present state are referred to as Markov
strategies. While analytically tractable, because Markov strategies are memoryless they cannot
punish based on observed deviations from the intended path of play. Typically, strategies that con-
dition on the larger history can sustain efficient outcomes in equilibrium, where Markov strategies
with their tighter conditioning can not. Where the emphasis in repeated games is on equilibria
that use past play to support efficient outcomes, the focus on Markov in more general dynamic

'A few examples of Dynamic Games across a number of fields: Industrial Organization (Maskin and Tirole, 1988;
Bajari et al., 2007), Labor Economics (Coles and Mortensen, 2011), Political Economy (Acemoglu and Robinson,
2001), Macroeconomics (Laibson, 1997), Public Finance (Battaglini and Coate, 2007), Environmental Economics
(Dutta and Radner, 2006), Economic Growth (Aghion et al., 2001) and Applied Theory (Rubinstein and Wolinsky,
1990; Bergemann and Valimaki, 2003; Horner and Samuelson, 2009).

2Here we refer to the notion of Markov states, which are endogenously defined as a partition of the space of histories
(see Maskin and Tirole 2001 for details). The notion of Markov states is different from the notion of Automaton states
(for example, a shirk state and a cooperative state in a prisoner’s dilemma). For a discussion on the distinction see
Mailath and Samuelson (2006), page 178.
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games ignores such conditioning. Restricting attention to Markov strategies can rule out efficient

outcomes, even where they are supportable in an SPE.

The available experimental evidence on human behavior mirrors this rift. On the one side, a large
experimental literature on the infinite-horizon prisoner’s dilemma (PD) game documents a major-
ity of subjects using efficient, history-dependent strategies when the future discount rate is large
enough that these strategies are equilibria. On the other side, a nascent literature on infinite-horizon
dynamic games suggests that behavior is consistent with the subset of SPEs where players do use
Markov strategies (Markov perfect equilibria, MPE).” Our paper’s aim is to study the connection
between the experimental literatures on infinitely repeated and dynamic games. Given the two
distinct sets of results, a natural task is characterizing which properties of a dynamic game might
lead to the selection of state-dependent strategies, and which to less-restrictive history-dependent
ones. Hence our paper’s subtitle: What is the “conditional” in conditional cooperation, states or

actions?

The experimental literature on dynamic games has primarily focused on rich dynamic environ-
ments, with many possible states. At the other extreme, the infinitely repeated PD is effectively
a degenerate dynamic game, with just a single state variable (and an MPE of joint-defection for-
ever). One simple characterization might be that behavior becomes Markovian as soon as the
state-space is non-degenerate. We will show this is not the case. In our core two-state environ-
ment, more-efficient SPE are the norm, where the path of play after miscoordinations identifies
history-dependent behavior. After showing this simple one/many distinction does not work to pre-
dict the majority of behavior and outcomes, we move on to isolate and modify other qualitative

features of our core game.

This core game—which we will call our “pivot”—extends the most-studied indefinitely repeated
game by adding a single additional state. In both of these states agents face a PD stage game.
However, the payoffs in the Low state are unambiguously worse than those in the High state,
where the best payoff in Low is smaller than the worst payoff in High. The game starts in Low and
only if both agents cooperate does it transition to High. Once in the High state the game transitions
back to Low only if both agents defect. The game we use has a unique symmetric MPE where
agents cooperate in Low and defect in High, but efficient outcomes that reach and stay in High
can only be supported with history-dependent strategies. Our modifications to the pivot involve
eight between-subject treatments, where each examines how a change to an isolated feature of the

original game affects behavior and the selection of strategies.

3Battaglini et al. (2012) were the first to provide experimental evidence where the comparative statics are well or-
ganized by MPE. See Battaglini et al. (2014) and Salz and Vespa (2015) for further evidence. In Vespa (2014), the
choices of a majority of subjects can be rationalized using Markov strategies. For other experiments with infinite-
horizon dynamic games see Saijo et al. (2014) and Kloosterman (2014).
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In the pivot (and many of our modified versions of it) we find that a majority of human subjects
seek to support efficient outcomes with history-dependent choices, at comparable levels to those
reported for infinitely repeated PD games. This indicates a smoother transition over selection from
infinitely repeated to dynamic games—the mere presence of an additional state does not drive
subjects to ignore history and focus solely on the state. This is not say that Markov play is non-
existent in our data, and importantly, where we do observe it, it is consistent with theory. About
one-fifth of the choice sequences in our pivot are consistent with the MPE prediction, while the
frequency of non-equilibrium Markov play is negligible.

Our first set of manipulations change the efficient frontier in the dynamic game, making a single
symmetric SPE more focal while holding constant the MPE prediction. These treatments allow
us to study whether behavior responds in the direction of greater use of history-dependent strate-
gies. While our pivot has many SPE outcomes with higher payoffs than the symmetric MPE, our
efficiency manipulations will make one of these outcomes (joint cooperation in both states) more
focal. A “static” manipulation alters a single payoff at a single state (reducing the temptation
payoff in the High state), and makes simple history-dependent cooperation relatively more attrac-
tive. A “dynamic” manipulation alters the transition rule between states to make deviations from
joint-cooperation relatively less tempting (holding constant the original pivot’s two stage-games,
we make it harder to remain in the High state). In both manipulations the direction of the change in
behavior is an increase in the selection of efficient outcomes, with less efficient equilibrium Markov
play becoming negligible. Quantitatively, the effect is much stronger in the dynamic manipulation,

where efficient play represents approximately three-quarters of the observed data.

The second set of manipulations focuses on how one agent’s chosen action affects the other par-
ticipant, on the nature of the strategic externalities. In our pivot one subject’s current choices can
affect both the other’s current payoffs (a static externality) and the other’s future payoff (a dynamic
externality operating through the state’s transition). To what extent are each helping to support

history-dependent play?

We remove the pivot’s dynamic externality in two distinct ways. In the first, we make the transition
between the two states exogenous, but where both states are reached (stochastically) along the
game’s path. In the second, we remove the dynamics entirely, playing out each of the pivot’s two
stage-games as separate infinitely repeated games. In both manipulations, the only MPE involves
playing the stage-game Nash: unconditional joint defection. Relative to the pivot, we observe
substantially less cooperation in both treatments—thus, the dynamic externalities are clearly an
important factor in the subjects’ behavior. Moreover, while behavior in the treatment with an
exogenous but changing state is consistent with the MPE prediction (just under 60 percent have a
strong match to it), behavior in the fixed Low-state repeated game is much more cooperative and

history-dependent. Comparing the two modifications without dynamic externalities, we conclude
4



that a changing strategic environment does make it harder for subjects to coordinate on history-
dependent strategies. But this makes the success for history dependence in the pivot all the more

impressive, with its evolving (but endogenous) state.

We also conduct treatments that remove the static strategic effects, retaining the pivot’s dynamic
consequences (the endogenously evolving state). To remove static externalities we require that
each agent’s contemporaneous choice does not affect the other’s contemporaneous payoff. We
conduct two separate parametrizations, in which the broad structure of the equilibrium set re-
mains comparable to the pivot: the efficient actions are exactly the same (and stay in the High
state), while the most-efficient MPE still alternates between the Low and High states. Under both
parametrizations we find an increase in the frequency of equilibrium Markov play, and a decrease
in the frequency of history dependence. The presence of strong static externalities is therefore also

identified as an important factor in the selection of history-dependent play.

The final set of manipulations in the paper involves increases to the pivot game’s state-space. One
argument often informally made in favor of the Markov restriction is that when environments are
“complex,” agents may find it easier to use “simple” strategies. Here our manipulations increase
the number of possible states, while holding constant many elements from the pivot, to explore
whether there is a resulting increase in Markov play. Our first state-space manipulation is a pertur-
bation, adding small-scale, exogenous noise to the pivot’s payoffs. Each shock to the game is an
independent draw and its effect on the game is non-persistent, where only the Low/High component
is endogenous. Our findings for this treatment indicate that despite an order of magnitude increase
in the state-space’s size, behavior is similar to the pivot. If anything we observe an increase in the
frequency of history dependence.

Our second state-space manipulation adds two endogenous states (each with their own particular
stage games) to the pivot game. We term these states Very Low and Very High, and choose their
stage games so that the main structure of the pivot remains: the efficient and MPE outcomes do
not change. We still find substantial use of history-dependent strategies. However, the treatment
offers a new rationale for why Markov behavior may emerge. With more endogenous states, there
is greater variation in subjects’ play, and a greater selection of pessimistic play that starts out by
defecting. Coordinating on efficient cooperative outcomes seems to become more challenging,
and greater rates of miscoordination lead to paths of play more consistent with state-dependent

equilibria of the game.

Taken together, our paper’s treatments lead to a number of summary conclusions: i) having a
dynamic strategic environment does not necessarily lead to a prevalence of Markov play, where
many of the non-Markov strategies we observe aim for efficiency. ii) For those subjects who do
use Markov profiles, the MPE is focal. iii) Behavior is particularly sensitive to changes in the

transition rule. iv) Increased complexity in the state space does not on its own lead to Markov play
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becoming focal. v) the presence of both static and dynamic externalities affect coordination over
history-dependent strategies; where removing either type of strategic externality leads to a much

greater selection of state-conditioned behavior.

Clearly, the larger set of dynamic environment is very rich, and our paper only looks at a small
family of games within it. Our aim here is to start documenting which broad features of the
environment have strong effects on behavior, so that eventually it might be possible to develop
criteria for equilibrium selection in dynamic games, as has happened within the larger repeated-
games literature. In the discussion section of the paper we expand on this topic and outline some
implications of our findings for this larger research agenda, and show that some modified rules of
thumb from the repeated games literature can be predictive of selection.

2. EXPERIMENTAL DESIGN AND METHODOLOGY

2.1. Dynamic Game Framework. A dynamic game here is defined as n players interacting
through their action choices a; € A := A; x --- X A, over a possibly infinite number of pe-
riods, indexed by ¢=1,2,... . Underlying the game is a payoff-relevant state §; € © evolving
according to a commonly known transition rule ¢ : A x © — AO, so that the state next round
is given by 0,1 = (a4, 0;). The preferences for each player i are represented by a period payoff
u; : A x © = R, dependent on both the chosen action profile a; and the current state of the game
0;. Preferences over supergames will be represented by the discounted sum (with parameter 9):

(D Vi ({at, Ht}?il) = Z 5t_1ui (at, et) .
t=1

Our main set of experiments will examine a number of very simple dynamic environments with an
infinite horizon: two players (1 and 2) engage in a symmetric environment with two possible states
(© = {L(ow), H(igh)}), and two available actions, .A; = {C(ooperate), D(efect)}. Any fewer
payoff-relevant states, it is an infinitely repeated game. Any fewer players, it is a dynamic decision

problem. Any fewer actions, it is uninteresting.

The state in the first period is given by #; € O and evolves according to the (possibly random)
transition ¢(-). Given a stage game payoff of u;(a, #) for player i, symmetry of the game enforces
uy ((a,a’),0) =uy((d,a),0) forall (a,a’) € A:=A; x Ay and all states § € ©.

2.2. Treatments. A treatment will be pinned down by the tuple [' =< ©, 64, u;, 1) > indicating
a set of possible states O, a starting state 6;, the stage-game payoffs w;(as, 0;), and the transition
rule ¥ (ay, 0;). All other components (the set of actions .4 and the discount parameter §) will be
common. In terms of organization, sections 3—6 will describe treatments and results sequentially.

After specifying and motivating each treatment, we provide more specific details with respect to
6



the theoretical predictions within each section. In particular, for each we treatment we will focus
on characterizing symmetric Markov perfect equilibria (MPE, formally defined in the next section)
and providing examples of other SPE that can achieve efficient outcomes by conditioning on the
history of play.

2.3. Implementation of the infinite time horizon and session details. Before presenting treat-
ments and results, we first briefly note the main features of our experimental implementation. To
implement an indefinite horizon, our design uses a partial strategy method that guarantees data
collection for at least five periods within each supergame. The method, which is a modification of
the block design (cf. Fréchette and Yuksel 2013) implements 6 = 0.75 as follows: At the end of
every period, a fair 100-sided die is rolled, the result indicated by Z;. The first period 7' for which
the number Z > 75 is the final payment period in the supergame.

However, subjects are not informed of the outcomes Z; to Z; until the end of period five. If all
of the drawn values are less than or equal to 75 the game continues into period six. If any one of
the drawn values is greater than 75, then the subjects’ payment for the supergame is the sum of
their period payoffs up to the first period 7" where Z exceeds 75. In any period ¢ > 6, the value
Z, is revealed to subjects directly after the decisions have been made for period t.* This method

implements the expected payoffs in (1) under risk neutrality.’

All subjects were recruited from the undergraduate student population at the University of Califor-
nia, Santa Barbara. After providing informed consent, they were given written and verbal instruc-
tions on the task and payoffs.® Each session consists of 14 subjects, randomly and anonymously

matched together across 15 supergames. We conducted at least three sessions per treatment, where

“This design is therefore a modification of the block design in Fréchette and Yuksel (2013), in which subjects learn
the outcomes Z; once the block of periods (five in our case) is over. We modify the method and use just one block
plus random termination in order to balance two competing forces. On the one hand we would like to observe longer
interactions, with a reasonable chance of several transitions between states. On the other, we would like to observe
more supergames within a fixed amount of time. Our design helps balance these two forces by guaranteeing at least five
choices within each supergame (each supergame is expected to have 5.95 choices). Fréchette and Yuksel (2013) show
that “block designs” like ours can lead to changes in behavior around the period when the information on {Zt}?zl is
revealed. However, such changes in behavior tend to be lower with experience and do not interact with treatments.
SFor payment we randomly select four of the fifteen supergames. Sherstyuk et al. (2013) compare alternative pay-
ment schemes in infinitely repeated games in the laboratory. Under a ‘cumulative’ payment scheme similar to ours
subjects are paid for choices in all periods of every repetition, while under the ‘last period’ payment scheme sub-
jects are paid only for the last period of each supergame. While the latter is applicable under any attitudes towards
risk (Chandrasekhar and Xandri, 2014), the former works requires risk neutrality. However, Sherstyuk et al. observe
no significant difference in behavior conditional on chosen payment scheme, concluding that it “suggests that risk
aversion does not play a significant role in simple indefinitely repeated experimental games that are repeated many
times”.

®Instructions are provided in Appendix A. In the instructions we refer to periods as rounds and to supergames as cycles.
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FIGURE 1. Summary of Treatment Design

each session lasted between 70 and 90 minutes, and participants received average payments of
$19.

2.4. Overview of the design. In total we will document results from nine distinct treatments,
across three broad categories of manipulation: i) changing the efficient outcome (section 4); ii)
changing strategic externalities, how one agent’s choice affects the other’s payoffs (section 5); and
ii1) changing the size of the state space (section 6). In each manipulation we change a single feature
of our pivot dynamic game, endeavoring to hold other elements constant. Though we will provide
more specific details as we introduce each treatment, the reader can keep track of the full design

and the differences across treatments by consulting Figure 1 and Table 1.

Figure 1 shows how all nine treatments are organized around the pivot (labeled En-DPD), while
Table 1 summarizes the main differences in theoretical properties for each treatment, relative to the
pivot. The table provides: 1) the size of the state-space; ii) the most-efficient symmetric MPE; iii)
the efficient action profile; iv) the action that obtains the individually rational payoff (by state); v)
the action profile/probability of transition to a different state; and vi) the starting state ;. However,
rather than presenting the entire global design all at once, we introduce each manipulation and its
results, in turn. The natural point to begin then, is by describing our pivot treatment, and outlining

the behavior we find within it, which we do in the next section.

"One treatment has four sessions (En-DPD-CC with 56 subjects), where all others have three sessions (42 subjects)
8



TABLE 1. Treatment Summary

Treatment  |O)| MPE Efficient IR action Transition Pr{6, =L}
L H L H L H L H
Pivot (Section 3):
En-DPD 2 ¢ D (C,0) (D) D C (c,c) (D,D) 1
Change Efficiency (Section 4):
En-DPD-CC = = = = (o = = = - -
En-DPD-HT = = = = () D D = not (C, C) =
Change Strategic Externalities (Section 5):
Ex-DPD = D D = = D D prob. 0.6 prob. 0.2 =
Ex-SPD 1 D D = = D D 0 0 prob. 0.4
En-CP-L = = = = = = = — —
En-CP-H = - = — — _ _

Change State-Space Complexity (Section 6:)
En-DPD-X 22 = = = = -
En-DPD-© 4 = = = =

Note: Where the table lists “=", the relevant cell is identical to the En-DPD game’s value. For the En-DPD-X and En-DPD-©
treatments we list = to indicate similarity on the path, given a changed state space. The Transition column indicates either the
action profile a that changes the state (so that 1)(a,6) # 6) for deterministic transitions or the exogenous probability the state
changes given a random transition.

3. PIVOT TREATMENT

3.1. Pivot Design (En-DPD). Our pivot game uses two PD stage games, one for each state, and so
we label it a dynamic prisoner’s dilemma (DPD). The transition between the two states is endoge-
nous (En-), with a deterministic relationship to the current state and player actions. We therefore
label the pivot treatment as “En-DPD.”

The precise stage-game payoffs u;(a, #) are given in Table 2 in US cents. The game starts in the
low state (¢; = L), and the next period’s state 6,1 = 1(ay, 0;) is determined by

H if (a,0) = ((C,C0),L)
Y(a,0) =< L if (a,0) = ((D,D),H)

0 otherwise.

This transition rule has a simple intuition: joint cooperation in the low state is required to shift the
game to the high state; once there, so long as both players don’t defect, the state remains in high.®
8 An economic interpretation for this is that the state represents the stock of a good (fish in a pond, water in reservoir,

the negative of pollution levels, market demand) and the actions a choice over that stock (extraction of fish or water,
9



TABLE 2. En-DPD

0=Low 6=High
2: 2:
C D C D
1: C 100,100 30, 125 1 C 200, 200 130, 280
- D 125, 30 60,60 - D 280, 130 190, 190

Examining the payoffs in each state, both stage games are clearly PD games: D is a dominant
strategy but (D, D) is not efficient. Each stage game therefore has a static strategic externality,
where the choice of player ¢ in period t alters the period payoff for player j# i . However, because
the transition between states depends on the players’ actions the game also has a dynamic strategic
externality. The choice of player 7 in period ¢ affects future states and thus has direct implication
on the continuation value for player ;.

Theoretical Properties. Much of our paper will focus on symmetric Markov strategy profiles, a

function 0 : © — A;. Markov strategies only condition on the current state ¢, ignoring other
components of the game’s history ; = {(as,0,)}'_}, in particular the previously chosen actions.
Given just two states, there are four possible pure Markov strategies available to each player in our
pivot game, an action choice o, € {C, D} for the low state, and o € {C, D} for the high state.

We will use the notation M,, .,

to refer to the Markov strategy

o, if0=1,
a(0) =

og if6 = H.
A symmetric pure-strategy Markov perfect equilibrium (MPE) is a profile (M, ,,, M5, »,;) that is
also an SPE of the game. For our pivot there is a unique symmetric MPE, the strategy Mcp: both
players cooperate in the low state, both defect in high. As such, the path of play for this MPE cycles
between the low and high states forever, and the discounted-average payoff is 4/7- 100 +3/7- 190 ~
138.6.

Symmetric profiles that cooperate in the high state, either Mo or M, are not sub-game perfect.
A single player deviating in the high state increases their round payoff to 280 from 200, but the
deviation affects neither the state nor action choices in future periods, so the continuation value
is unchanged and the deviation is beneficial. Moreover, the strategy Mpp that plays the stage-
game Nash in both states is also not a SPE. For any sub-game where the game is in the high state,

this Markov profile dictates that both agents jointly defect from this point onward, yielding the

effluent from production, market supply). By cooperating in the low state, the stock can be built up to a socially-
desirable level. Once at the high state, the stock is more robust only transitions back to low following more systemic
opportunistic behavior (joint defection).
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discounted-average payoff }l <190 + % - 60 = 92.5. But the individually rational (IR) payoff in the
high state is 130, which each player can guarantee by cooperating in every period. So Mpp is not
an MPE.

From the point of view of identifying Markov behavior, we parametrize the pivot game so that
the equilibrium strategy M-p has the following properties: 1) the MPE path transits through both
states; ii) the strategy requires both that subjects do not condition on the history, but also that they
select different actions in each state, and is therefore more demanding than Markov strategies such
as Mpp that choose actions unconditionally; and iii) more-efficient SPE are possible when we
consider strategies that can condition on history, as we discuss next.

Keeping the game in the high state is clearly socially efficient—payoffs for each player ¢ satisfy
min, u;(a, H) > max, u;(a, L). Joint cooperation in both states is one outcome with higher pay-
offs than the equilibrium MPE, achieving a discounted average payoff of 175. One simple form of
history-dependent strategy that can support this outcome in a symmetric SPE is a trigger. Players
cooperate in both states up until they observe an action profile a;, # (C, C'), after which the trigger
is pulled and they switch to an incentive-compatible punishment. One way to make sure the pun-
ishment is incentive compatible is to simply revert to the MPE strategy M as a punishment. We

will refer to this symmetric history-dependent trigger strategy with an Mo p punishment phase as

10
Sep.

Though joint-cooperation is more efficient than the MPE, it is possible to achieve greater efficiency
still. The efficient path involves selecting C' in the first period and any sequence of actions {a; }7°,
such that each a; € {(C, D), (D, C)}. From period two onwards, efficient outcomes yields a total
period payoff for the two players of 410, where joint-cooperation forever yields 400.'" One simple
asymmetric outcome involves alternating forever between (C, D)/(D, C') in odd/even periods once

the game enters the high state. Such an outcome can be supported with an Mqp-trigger after any

9Expanding to asymmetric MPE, there is an equilibrium where one agent uses Mp¢ and the other Mpp. If the
starting state were high, this asymmetric MPE can implement an efficient outcome where one agent selects C, the
other D, and thereby remain in the high state. However, since the initial state is low, this strategy will never move the
game to the high state, and as such implements the highly inefficient joint-defection in low forever outcome.
10The symmetric profile (Scp, Scp) is an SPE for all values of § > 0.623, and so constitutes a symmetric SPE for
our pivot game at § = 0.75. Trigger-strategies where both players punish using Mpp (which we call Spp) are not
sub-game perfect. However, jointly-cooperative outcomes can be sustained using an asymmetric Markov trigger. In
this modification, the player who deviates switches to Mp¢, while the player who was deviated upon switches to
Mpp. That is, this strategy uses the asymmetric MPE described in footnote 9 and implements an punishment path of
permanent defection. This strategy is a symmetric SPE for all values of 6 > 0.534 (note that symmetry in action is
broken by the observed history, and so both players using this strategy is an SPE).
Twe parametrize our pivot treatment with an asymmetric efficient outcome as this baseline will help when comparing
with the manipulations of the strategic externalities in Section 5. Section 4 will present two treatments where symmetry
is restored; however the payoff difference between efficient and a symmetric solution is small, amounting to 5 cents
per player.
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deviation from the intended path, where we will subsequently refer to this asymmetric trigger strat-
egy as Acp. The discounted-average payoff pair from the first period onwards is (170.7,186.8),

so the player who cooperates first suffers a loss relative to joint-cooperation forever.

Though efficient outcomes are not attainable with symmetric SPE, or through any type of MPE,
every efficient outcome in En-DPD is supportable as an SPE for § = 0.75.'>!3 In particular, be-
cause all efficient outcomes can be supported as SPE, both players can receive discounted-average
payoffs arbitrarily close to the first-best symmetric payoff of 178.75. As such, our pivot illus-
trates a tension not only between the best-case symmetric SPE and MPE, but also between what is

achievable with symmetric and asymmetric strategies.

3.2. Pivot Results. All results in all treatments in this paper are summarized by two figures and
a table positioned at the end of this paper." The two figures are designed to illustrate aggregate-
level behavior (Figure 2) and variation across supergames (Figure 3) while the table (Table 5)
provides estimates of the selection frequency for a number of key strategies. While more-detailed
regressions are included in the paper’s appendices, to simplify the paper’s exposition we will focus

on just these three main sources to discuss our results, with details in footnotes and the appendix.

The first source, Figure 2, presents the most-aggregated information on behavior, the average co-
operation rate by state, as well as some basic patterns for behavior within and across supergames.
The left-most six bars present results for the En-DPD treatment. The first three gray bars indicate
the cooperation rate when the state is low, where the first, second and third bars show averages
for supergames 1-5, 610 and 11-15, respectively. The height of the bars indicate that the overall
cooperation rate in the low state is close to 75 percent, and is relatively constant as the sessions

proceed (albeit with a slight decrease in the last five supergames).

Similarly, the three white bars present the average cooperation rates for all periods in the high
state, again across each block of five supergames. The figure illustrates an average cooperation
rate in the high state of just under 70 percent in the first five supergames, falling to a little over
50 percent in the last five supergames. These raw numbers suggest that a considerable proportion
of subjects are trying to reach more efficient outcomes than the MPE prediction of no cooperation
in the high state. Figure 2 also suggests that at least some subjects are not conditioning solely on

2Efficient paths must have both players cooperate with probability one in the initial low state and have zero probability
of either joint defection or joint cooperation in high. This rules out symmetric mixtures without a correlation device
(effectively putting a non-payoff relevant variable into the state space).
13Every efficient supergame outcome {a; },-, in En-DPD is supportable as an SPE for § > 0.462. The bound on §
comes from the one-period deviation in periods 2 and onwards for the following strategy: In period one, both agents
cooperate. In period two and beyond, one agent plays C, the other D, with a triggered (Mpc, Mpp) punishment if
the game is ever in the low state in period 2 onward. All other efficient actions weaken the temptation to deviate.
4As we introduce treatments we will refer back to these three tables frequently. Readers are advised to either book-
mark the pages that contain them, or print out additional copies. More-detailed tables with formal statistical tests, the
most-common sequences of the state and action choices within supergames are given in the Online Appendix.
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the state, that the frequency of cooperation at each state changes as the supergame proceeds. To
illustrate this, the figure displays cooperation rates in the first (second) period of each supergame
conditional on being in the low (high) state with gray (white) circles. Comparing the placement
of each circle relative to the corresponding position of the bar indicates the differences between
the initial cooperation rate and the overall average for that state. For En-DPD, the pattern shows
much higher initial cooperation levels in the low state, approaching 100 percent in the last five
supergames. But the overall low-state cooperation rate is much lower, and if anything falling
across the session, suggestive of history-dependent play."

While aggregate-level analysis suggests that a there is a substantial proportion of subjects who
condition their behavior on the history, such results can mask meaningful heterogeneity. For in-
stance, if half of the subjects use strategies that condition on past play, such as S¢p, and half use
the equilibrium Markov strategies, aggregate cooperation rates may show evidence much more
consistent with the latter strategy. To further disaggregate behavior we move to Figure 3. The unit
of observation here is the set of choices a subject made within one supergame, which we will refer
to as a history. Each history is represented with two numbers: the cooperation rates in the low state
(horizontal axis) and in the high state (vertical axis). The figure rounds these cooperation rates
to the nearest tenth (and so the figure can be thought of as an 11 x 11 histogram) illustrating the

number of observed pairs with bigger circles to represent a greater mass of observations. '

Figure 3(A) shows that while most histories in the pivot present a perfect or near-perfect coop-
eration rate in the low state, the dispersion is much larger along the vertical axis, suggesting the
presence of three broad categories of cooperation in the high state. The mass of histories near the
top-right corner represent supergames where the choices come close to joint cooperation, achiev-
able with the symmetric history-dependent S¢p strategy. The mass in the bottom-right corner has
very low high-state cooperation rates, and is consistent with the MPE strategy M p. Finally, there
is a group with high-state cooperation rates close to 50 percent, which could be consistent with the
asymmetric Ao p strategy that alternates between C' and D in the high state to achieve an efficient
outcome. However, other strategy pairs might also produce these patterns.

To further inquire which strategies best represent the choices of subjects we use a strategy fre-
quency estimation method (SFEM, for additional details see Dal B6 and Fréchette, 201 1).17 The
method considers a fixed set of strategies, and compares the choices that would have been observed
had the subject followed the strategy perfectly (taking as given the other player’s observed actions).
Using an independent probability 1 — 3 of making errors relative to the given strategy, the process
I>Table 8 in the appendix provides the predicted cooperation levels by state obtained from a random-effect estimate,
while Table 10 explicitly tests whether the initial cooperation rate in each state is different than in subsequent periods.
1®When a history never reaches the high state it is not possible to compute the cooperation rate in high. Such cases are
represented in the vertical axis with ‘NaN’ for not a number.

"This method has also been used by Fudenberg et al. (2010), Embrey et al. (2011) and Vespa (2014).
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measures the likelihood the observed sequence of choices were produced by each strategy. The
method then uses maximum likelihood to estimate a mixture model over the specified strategies
(frequencies of use for each strategy) as well as a goodness-of-fit measure /3, the probability any

choice in the data is predicted correctly by the estimated strategy mixture.

In the reported outcomes in Table 5 we use a very simple set of strategies.'® It includes all four
Markov strategies, M¢cc, Mpp, Mcp and Mpe. In addition, the estimation procedure also in-
cludes four strategies that aim to implement joint cooperation. First, we include the two symmetric
trigger strategies, Scp and Spp, which differ in the severity of their punishments. We also include
two versions of tit-for-tat (7fT"). The standard version starts by selecting C' in period one and
from the next period onwards selects the other’s previous period choice, where this strategy has
been documented as a popular choice in previous infinitely repeated PD studies despite not being
sub-game perfect. The only difference in the suspicious version (S7"fT") is that it starts by defect-
ing in the first period. We also include two history-dependent asymmetric strategies that seek to
implement the efficient outcome: A-p and App, where the difference between the two is again on
the triggered punishment after a deviation."

The SFEM estimates for the pivot treatment in the first column of Table 5 reflect the heterogeneity
observed in Figure 3(A). A large mass of behavior is captured by three statistically significant
strategies with comparable magnitudes: M¢p, Scp and T'fT". The frequency of the alternating-
state Markov equilibrium strategy is slightly higher than one-fifth and reversion to that strategy
is the most popular among those using triggers to achieve joint cooperation, where theses trigger
strategies (S¢p and Spp) capture approximately 30 percent of the estimates.

The mass attributed to 7"fI" represents approximately one-quarter of the estimates. In the En-DPD
game, though 7T fT is a not a symmetric Nash equilibrium, the strategy does provide substantial
flexibility. If paired with another subject using 7" fT", the outcome path results in joint cooperation.

However, when paired with other players that defect the first time the high-state is reached T T’

18The SFEM output provides two inter-related goodness-of-fit estimates v and 3, and for comparability to other papers
we report both. The parameter v determines the probability of an error, and as v — 0 the probability that the choice
prescribed by a strategy is equal to the actual choice goes to one. The probability that any choice is predicted correctly
is given by the easier to parse 3, which is a transformation of . Although the set of included strategies is simple, our
measures of goodness-of-fit are far from a random draw (a g value of 0.5). This suggests that with this limited set of
strategies it is possible to rationalize the data to fairly well.

19Efficient asymmetric SPE not only require coordination over the off-the-path punishments to support the outcome,
they also require coordination over breaking symmetry the first time play reaches high. The strategy specifies that
one agent starts by selecting C, and the other D the first time the high state is reached. From then both play the
action chosen by the other player last period so long as the outcome is not (D, D), switching to the punishment path
otherwise. The appendices present the SFEM output with both strategy sub-components Acp = (Ag Ds Ag D) and
App = (A%, AB ), where A% is the strategy which starts with action a the first time the game enters the high
state (see Table 15). However, because the two versions of each strategy only differ over the action in one period it
is difficult for the estimation procedure to separately identify one from the other. For simplicity of exposition Table 5
includes only the version in which the subject selects D in the first period of the high state, A2, and A5 ,.
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produces an efficient path, and can be part of a Nash equilibrium (in particular, when paired to
Aecp or App which lead with defection in high). T'fT is therefore capable of producing both joint
cooperation and efficient alternation across actions in the high-state depending on the behavior it

is matched to.%°

3.3. Conclusion. The majority of the data in our pivot is not consistent with the symmetric MPE
prediction of joint cooperation in low and joint defection in high. Though we do find close to one
fifth of subjects are well matched by the My strategy profile, many more attain more-efficient
outcomes and remain in the high state. Over 60 percent of the estimated strategies are those that
when matched with one another keep the game in the high state forever through joint cooperation
(Mce, Spp, Scp and T fT). Strikingly, the smallest element from the four is the Markov profile

Mo indicating that punishments are used often enough for history-dependence to be identified.

Just three strategies account for most of the data in the infinitely repeated PD literature—Always
defect, the Grim trigger and Tit-fot-Tat. Through the lens of a dynamic game, the first two strategies
can be thought of as the MPE and joint-cooperation with an MPE trigger. Our findings in a dynamic
PD game therefore mirror the results from static PD games. Three strategies account for over 60
percent of the data: the MPE M p; joint cooperation with an MPE trigger, Scp; and tit-for-
tat. Despite the possibility for outcomes with payoffs beneath the symmetric MPE (in particular
through the strategy Mpp which defects in both states) the vast majority of outcomes and strategies
are at or above this level, even where history-dependent punishments are triggered. The MPE
strategy is clearly a force within the data, with approximately 40 percent of the estimated strategies
using it directly or reverting to it on miscoordination. However, the broader results point to history-
dependent play as the norm. The next three sections examine how eight modifications to the pivot

alter this finding.

4. CHANGES TO THE EFFICIENT ACTION

Our pivot game is parametrized so the first-best outcomes are asymmetric. Our first set of treat-
ments modify the pivot so that the action maximizing the sum of the payoffs is unique and symmet-
ric: joint cooperation. We achieve this through two distinct changes to the temptations to defect:
The first reduces the static temptation holding constant the continuation value from a defection.

The second reduces the continuation value from a defection holding constant the static temptation.

2Owe reproduce the SFEM analysis excluding 7' f7T strategies in the appendix (see Table 16). The mass previously
captured by T'fT is reflected largely through higher estimates for strategies that attempt to jointly cooperate (combined
together, Scp, Spp, Mo increase from 42.9 percent to 63.8 percent), while a smaller fraction goes to those that
attempt efficient alternation (A¢cp, App together increase from 6.2 percent to 10.8 percent).
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4.1. Static Change (En-DPD-CC). Our first modification shifts the efficient action by decreasing
the payoff u; (D, '), H) from 280 to 250. All other features of the pivot—the starting state, the
transition rule, all other payoffs—are held constant. The change therefore holds constant the MPE
prediction (cooperate in low and defect in high) but reduces the payoffs obtainable with combina-
tions of (C, D) and (D, C) in high. Where in En-DPD the asymmetric outcomes produce a total
payoff for the two players of 410, the joint payoff in the modification is just 380. Joint cooperation
is held constant so that the sum of payoffs is 400, as in the pivot. The history-dependent trigger
Scp is still a symmetric SPE of the game, but its outcome is now first best, and the temptation
to deviate from it is lowered.?! As the main change in the game is to make the high-state action

(C, C') more focal, we label this version of our endogenous-transition PD game: En-DPD-CC.

The data, presented in Figures 2 and 3(B), displays many similar patterns (and some important dif-
ferences) with respect to En-DPD. Initial cooperation rates in both states and both treatments start
out at similar levels, but the pattern of declining high-state cooperation across the session observed
in En-DPD is not mirrored in En-DPD-CC. The high-state cooperation rates for the two treat-
ments are significantly different (at 90 percent confidence), but only for the last five supergames.**
Looking at the supergame level in Figure 3(B), this increase is reflected through much larger con-

centrations in the top-left corner, perfectly cooperative supergames.

The estimated strategy weights in Table 5 indicate higher frequencies for the strategies aimed at
joint cooperation. Strategies that lead to joint cooperation when matched (S¢p, Spp, 1'f 1T and
Me¢) amount to 70 percent of the estimated frequencies, an increase of ten percentage points over
the pivot. The estimated frequency of MPE play is diminished substantially, both directly as the
M p strategy is not statistically significant, and indirectly, as the symmetric trigger with the most

weight is the harsher-punishment trigger Spp.

Like the En-DPD results, the large majority of outcomes in En-DPD-CC intend to implement
more-efficient outcomes than the MPE. The manipulation in En-DPD-CC makes joint cooperation
focal and so easier to coordinate on, and our data matches this idea with even less evidence for the
MPE strategy than in the pivot. Our next treatment examines a similar exercise where we instead

weaken the continuation value on a defection from joint-cooperation.

4.2. Dynamic Change (En-DPD-HT). In the previous two treatments we discussed, once the
game reaches the high state, only joint defection moves it back to low. Where the last treatment

modifies a stage-game payoff in the pivot to make joint cooperation first best, our next treatment

2ISimilar to the reasoning in the pivot, the grim-trigger Spp is not sub-game perfect, as both participants choosing
Mpp is not an SPE. However, joint cooperation can be implemented with the asymmetric Markov trigger as described
in footnote 10.
22Statistical tests are reported in the appendix Table 9 using a random-effects probit clustering standard errors at the
session level.
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does this through a change to the transition rule. Exactly retaining the two stage-game payoffs
from En-DPD (as given in Table 2), we alter the transition rule in the high-state ¢)(a, H) so that any
action except for joint-cooperation switches the state to low next period. The complete transition

rule for the state is therefore
H if ar = (C, C),

L otherwise.

9t+1 = %D(at,@t) =

As we are changing the high-state transition (HT) rule, we label the treatment En-DPD-HT.

There are two broad changes from En-DPD when we alter the dynamics in this way: 1) the efficient
action in the high state becomes (C, (') as defections yield an inefficient switch back to the low
state; and ii) the individually rational payoff in high is reduced. In the pivot, conditional on reach-
ing the high state, each player can ensure themselves a payoff of at least 130 in every subsequent
period by cooperating. However, in En-DPD-HT no agent can unilaterally keep the state in high,
as doing so requires joint cooperation. The individually rational payoff in the high state therefore
shrinks to 1/4-190+3/4-60 = 92.5, with the policy that attains the minmax shifting to Mpp (where
it is Mpc in En-DPD).

The most-efficient MPE of the game starting from the low state is the same as the pivot (M¢p),
where the sequence of states and payoffs it generates is identical to that in En-DPD. However, the
change in transition rule means that both Mpp and Mpe are now also symmetric MPE, though
with lower payoffs than Mc-p.> Efficient joint cooperation is attainable as an SPE with either

symmetric trigger, Spp and Scp.**

On the one hand, the change in the transition rule here makes supporting an efficient outcome
easier. First, joint cooperation is focal, which may aid coordination. Second, the transition-rule
change reduces the temptation payoff in the high state as a deviation leads to low for sure next pe-
riod, so a deviation is less appealing. However, on the other hand, the changed transition rule may
also increase equilibrium Markov play. In En-DPD an agent deviating from the Mqp equilibrium
in the high state suffers a static loss (a 130 payoff versus 190) that is partially compensated with
an increased continuation value (next period the game will still be in high). With the En-DPD-HT
transition rule there is no reason at all to deviate from M in the high state. A one-shot deviation
produces a realized static loss and there is no benefit for the continuation. For this reason, coor-
dinating away from the MPE strategy Mp becomes harder in En-DPD-HT. To see this from a
different point of view, consider an agent who believes only M¢p or Scp will be used by the other
BIf the dynamic game were to begin in the high state, the MPE Mp yields an efficient outcome, as it effectively
threatens a reversion to the worst-case MPE path if either play deviates. However, given that our game sets 6§, = L,
the path of play for this strategy is inefficient, as it traps the game in low forever.

2 fT is still a Nash equilibrium of the game, but again not an SPE as there is a profitable one-shot deviation along

paths that deviate from joint cooperation.
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player. Her choice will depend on her belief on the strategy the other will select (Mqp or Scp).
But the set of beliefs that lead to Mcp being a best response in En-DPD is a strict subset of those
in En-DPD-HT.

While ex-ante the change in the transition rule might plausibly lead to either more or less Markov
play here, the data displays a substantial increase in the selection of efficient outcomes. Looking
at the state-conditioned cooperation rates for En-DPD-HT in Figure 2 and comparing it to the
pivot, the most apparent results are the significant increase in high-state cooperation.”> Comparing
Figures 3(A) and (C) shows a clear upward shift, with the vast majority of supergames in the upper-
right corner, tracking instances of sustained joint cooperation. Finally, the SFEM output in Table
5 indicates a substantial increase in strategies involving joint cooperation along the path: adding

Mee, Spp and T fT, the total frequency is 91.2 percent.

While there is a clear increase in play that supports the efficient symmetric outcome, the SFEM
estimates also indicates a shift for the most-popular punishments. In the pivot (and En-DPD-CC)
the most popular history-dependent strategy is 7' f7". But in En-DPD-HT the most-popular strategy
corresponds to the harshest individually rational punishment: Spp, the grim trigger. Indeed, this
focus on harsher punishments for deviations may help drive behavior away from M¢p. The set of
beliefs that would lead an agent to select Mcp is much smaller when she thinks that the other is
selecting between M¢cp and Spp than when the other is selecting between M¢ap or Scp. We find
no evidence for alternating-state Markov play, either directly through M p, or through subjects
using it as a punishment on miscoordination with Scp. The only Markov strategy with a significant
estimate is Mcc, which is harder to separately identify from history-dependent strategies that
succeed at implementing joint cooperation, and is the only Markov strategy not consistent with an
MPE.*

4.3. Conclusions. In this section we document two modifications to our pivot that examine how
changes to the efficient outcome affect subjects’ behavior. Though joint cooperation is Pareto
dominated by efficient, asymmetric SPE in our pivot, the efficient SPE outcomes in both of our
modifications are attainable with symmetric history-dependent SPE. In both treatments, the ob-
served frequency of M¢p is negligible, and we observe more instances of successful joint coop-
eration. The observed move towards efficient outcomes is strongest for En-DPD-HT, when the

manipulation affects the pivot game’s dynamics.

25The difference is significant at the 99 percent confidence level for the last five supergames.

26The SFEM can identify two strategies that implement joint cooperation only if we observe some behavior in a
punishment phase. Otherwise, two strategies such as Spp, Scp and M are identical. Hence, when the procedure
reports an estimate for M, it can be capturing either M¢ ¢ or any history-dependent strategy that mostly cooperates
and either does not enter its punishment phase within our data, or where that path is closer to M¢¢ than our other
coarsely specified strategies. Vespa (2014) develops an experimental procedure to obtain extra information that allows
to distinguish between such strategies and gain more identifying power.
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In both modifications, we find that the rate of MPE use is lower than the pivot, despite a decrease in
the attainable efficiency frontier. One way to interpret these treatment effects is that the changes aid
subjects’ coordination, and reduce strategic uncertainty. In En-DPD, though the payoff differences
between efficiency and joint cooperation are small, they may be apparent enough to make coordi-
nation more complicated. Our efficiency treatments suggest that the selection of history-dependent
strategies over state-dependent ones is not solely driven by absolute efficiency tradeoffs, but also
the ease of coordination.

5. CHANGES TO THE EXTERNALITIES

In the above treatments there are two strategic considerations to each subject’s choice of action.
First, from a static point of view, their choice affects their partner’s contemporaneous payoff.
Second, from a dynamic perspective, their choice affects the transition across states, and hence
their partner’s future payoffs. Both strategic forces may lead subjects to cooperate more, if they
think inflicting these externalities on the other will affect future cooperation. In this section we
examine four new treatments, that separate these two types of externality, to see if the strategies
subjects select responds to their presence. The first two treatments remove dynamic externalities,
so that neither player’s choice of action affects future values for the state, holding constant the
En-DPD game’s static externalities. The second treatment pair do the converse: hold constant the
pivot’s dynamic externalities and remove the static externalities entirely so neither player’s choice

affects the other’s contemporaneous payoff.

5.1. Removing Dynamic Strategic Externalities.

Ex-DPD treatment. To isolate the effects from dynamic externalities in En-DPD our treatments
alter the transition rule. The stage-games are identical to those given for the pivot (Table 2) so the
static externalities are the same. However, our change to the transition rule removes any interde-
pendence between the current state and the actions chosen last period, and in this way removes
dynamic externalities. For our first manipulation of the state-transition rule we choose an exoge-

nous stochastic process for the state’s transition:

35-Hep2s- L if6 =L

¢(CL,9):¢<9): 4/5-H@1/5'L if0 = H.

The state evolves according to a Markov chain, which starts with certainty in the low state. If the
state is low in any period, there is a 60 percent chance the game moves to high next period, and a

40 percent chance it remains in low. Given the present period is high, there is a 20 percent chance
19



of a move to low next period, and an 80 percent chance it remains high.>’ Given the exogenous

transition rule (Ex-) we label this dynamic PD treatment Ex-DPD.

All MPEs of a dynamic game with an exogenously evolving state are necessarily built-up from
Nash profiles in the relevant stage games, as the continuation value of the game is unaffected by
current actions (with the strategy’s assumed independence). Because the stage-games in each state
are PD games this leads to a unique MPE prediction: joint defection in both states. However, other
efficient SPE exist that allow for cooperation in the low state and (C, D)/(D, C) alternation in the
high state.?®

Looking at the experimental results for Ex-DPD, outcomes are starkly different from those where
the state’s evolution is endogenous. From Figure 2 it is clear that cooperation rates are much lower
than the pivot, for both the low and high states. In the low state, the initial cooperation levels in the
first period are 40—45 percent, where this falls across the supergame so that the overall low-state
cooperation rate is closer to 30 percent. Cooperation in the high state is lower still, where average
cooperation levels fall from 15 percent at the start of the session, to just under 10 percent in the

final five supergames.

The reduced cooperation in Figure 2 is indicated at the supergame-level in Figure 3(D), where the
large mass in the bottom-left corner is consistent with sustained defection in both states. This pat-
tern is obviously also reflected in the SFEM estimates reported in Table 5. The highest frequency
is attributed to the MPE, M, p, with an estimate of just under 60 percent. For those subjects who
do attempt to support cooperation, the strategies used tend to be Spp, reflecting a reversion to the
MPE profile when cooperation is not successfully coordinated on.*

Removing the dynamic externalities dramatically shifts the observed behavior in the laboratory,
leading to a collapse in cooperation. We isolate this result further with our next treatment, which
examines the extent to which the absence of any dynamics over the state helps or hinders coopera-

tion.

Ex-SPD treatment. Our next modification goes further than Ex-DPD, removing the supergame

dynamics entirely. To do this we alter the transition rule to keep the game in the same fixed state for

2’The Ex-DPD sessions were conducted after the En-DPD sessions were completed. The 60 percent and 80 percent
probabilities were chosen to match aggregate outcomes in the En-DPD sessions.
ZAn asymmetric SPE that remembers whose turn it is to cooperate (defect) in high exists for § = 3/4, given an Mpp-
trigger on any deviation from the path. History-dependent cooperation only in the low state can be sustained as a
symmetric SPE with joint-defection in the high state at § = 3/4, however, it is not an SPE to jointly cooperate in the
high state, even with the worst-case M p p-trigger on a deviation.
2We also estimated strategy weights for this treatment adding the history-dependent strategy that supports cooperation
only in the low state, described in footnote 28. The frequency estimate is 5.9 percent and is not significant. Subjects
who aim to cooperate in this treatment try to cooperate in both states, and Spp is the primary history-dependent
strategy.
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the entire supergame, so 0,1 = 6; with certainty. Rather than a dynamic game, each supergame is
now an infinitely repeated static PD (SPD) game, and so we label this treatment Ex-SPD. To attain
observations from subjects in both infinitely repeated stage games we make one additional change
to the pivot, altering the starting state 6. For each supergame in Ex-SPD the starting period is the
realization of the lottery, 3/5 - H @ 2/5 - L. The chosen game therefore has the advantage of making
the experimental environment and instructions similar to our other dynamic-game treatments (in
terms of language, complexity and length), while also assessing subject-level responses to the two
different infinitely repeated PD games.

Comparing aggregate-level results in Figure 2 it is clear that cooperation rates in Ex-SPD are higher
for both states than for Ex-DPD. Because supergames are in a single fixed state, Figure 3(E) can
only show the results on separate axes. The figures shows a large number of supergames with joint
defection when the selected state for the supergame is high, but a larger degree of heterogeneity—

and more instances of cooperation—when supergame’s state is low.

SFEM estimates are presented by state in Table 5 and for this treatment we exclude from the esti-
mation those strategies that do condition differentially across states. When § = H, the frequency
of always defect (here labeled Mpp) is comparable to the estimate for Ex-DPD. However, more
cooperative 1" fT" strategies (both the standard and suspicious variety) are also selected, with ag-
gregate frequencies close to 40 percent, substantially higher than in Ex-DPD. The contrast to the
Ex-DPD behavior is starker in the low state. In this case, the frequency attributed to always defect
(Mpp) is much lower, where approximately three-quarters of the estimated strategies correspond
to attempts to implement joint cooperation. The cooperation rates for both states in Ex-SPD are
therefore in line with the larger experimental literature on infinitely repeated PD games, despite
within-subject changes to the stage-game across the session.*

Summary. Removing the dynamic externality from the pivot in Ex-DPD leads to a collapse of
conditional cooperation, and the MPE becomes focal. However, when we remove the dynamics
entirely, so that subjects face each stage games as a repeated PD game, we find an increases in the
cooperation rate in both states relative to Ex-DPD. Having an evolving state within the supergame
therefore makes it harder for subjects to cooperate. This finding shows that equilibrium selection
does respond to dynamic externalities, suggesting that the endogenously evolving state was a key

component in the selection of history-dependent cooperation in the pivot.

S infinitely repeated PD, the basin of attraction of the grim-trigger (Spp) helps predict cooperation. The basin of
attraction of Spp is the set of beliefs on the other’s initial choice that would make Spp optimal relative to Mpp.
The low-state PD game has a basin of attraction for Spp for any belief on the other also using Spp above 0.24. In
contrast, in the high-state game Grim is strictly dominated by playing always defect.
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TABLE 3. Dynamic Common Pool Treatments

(A) Markov Parametrization (En-DCP-M)

O=Low 6=High
2: 2:
C D C D
C 100,100 100, 125 C 130,130 130,190
D 125,100 125,125 D 190,130 190,190
(B) Efficiency Parametrization (En-DCP-E)
O=Low 6=High
2: 2:
C D C D
C 100,100 100,125 C 130,130 130,280
D 125,100 125,125 D 280, 130 280,280

5.2. Removing Static Strategic Externalities. The previous two treatments remove the dynamic
externalities, while retaining the pivot’s static tensions. We now carry out the converse exercise:
turn off the static externalities, while retaining the same dynamic strategic environment. We there-
fore fix the pivot game’s transition rule )—joint cooperation is required to transit from low to
high, while anything but joint defection keeps the game in high. Our next two treatments in-
stead alter the stage-game payoffs so that each player’s static payoff is unaffected by the other
player’s choice.’! Given this restriction, the game can no longer be a PD, and is instead a dynamic
common-pool (DCP) problem. In order to make the games comparable to En-DPD, we use two

separate parametrizations, with payoffs presented in Table 3.

Both parametrizations have the same payoffs in the low state: cooperation yields a payoff of 100,
defection 125, regardless of what the other player chooses. The low-state payoff from selecting
D corresponds to the temptation payoff in En-DPD, the payoff from selecting C' to that from joint
cooperation. Selecting C' in the low state therefore allows for the possibility of transiting to high

next period if the other also cooperates, but involves giving up on a static gain of 25.

In the high state, we set the payoffs from choosing to cooperate at 130 in both parametrizations,
which matches the high-state sucker’s payoff from the pivot. The only difference between our two
parametrizations is the payoff from choosing D in the high state. In the treatment we will refer to
as En-DCP-M the payoff from defecting in high is set to 190, matching the joint-defection payoff
in the pivot. In the treatment we will refer to as En-DCP-E the payoff from defection is instead set

to 280, matching the temptation payoff in the pivot.

31The restriction is therefore that u; ((as,a—;),0) = u; ((ai, a’,l—) ,9) foralla_;,a’ , € A_;.
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In En-DCP-M the stage-game payoffs match the payoffs attainable with the Markov (hence ‘*-M’
prediction from the pivot. The strategy Mcp in En-DCP-M yields exactly the same sequence of
payoffs (and the same gains/losses from a one-time deviation) as the pivot. Efficient outcomes
still involve any combination of (C, D)/(D, C) in the high state, but with this parametrization
the payoffs realized from an efficient path are lower than the pivot. In the En-DCP-E treatment
the payoffs from any efficient (hence ‘-E’) path are matched to those in the pivot, but conversely
payoffs from the most-efficient MPE are higher than in En-DPD.*

In both DCP treatments the most-efficient pure-strategy MPE uses M¢p, though Mpp also be-
comes a symmetric MPE. The efficient outcome in both treatments is the same as in En-DPD, and
requires asymmetric play. If coordinated upon, taking turns between cooperation and defection in
the high state can be supported as an SPE with a triggered reversion to either M¢p or Mpp in the
En-DPD-M parametrization. So both A-p and App are SPE in En-DPD-M; however, only App
is an SPE for En-DPD-E.”

In terms of symmetry, these two treatments involve a change in the opposite direction from the
efficiency manipulations presented in Section 4. Where those treatments lowered the efficiency
frontier to make joint cooperation efficient, the DCP treatments fix the efficient outcomes in the
pivot but lower the value of symmetric cooperation. Joint cooperation is therefore less focal, and its
static payoff is Pareto dominated by either asymmetric action profile. More so, joint-cooperation
forever is not only less efficient than it was in the pivot, the symmetric MPE strategy M 1s now
the Pareto-dominant symmetric SPE for the DCP games.

En-DCP-M treatment. The aggregate results in Figure 2 indicate reduced cooperation rates in
both states relative to En-DPD. However, the cooperation rate in the low state is now significantly
greater than the high state. At the supergame level, Figure 3(F) shows a relatively large degree
of variation across supergames, but with the largest mass concentrated at the bottom-right corner,
consistent with the best-case MPE prediction M¢p.

The SFEM estimates confirm the intuition from Figure 3(F), where the modal strategy is the most-
efficient MPE with close to 30 percent of the mass. However, efficient asymmetric strategies that
alternate in the high state do account for approximately a quarter of the data, suggesting a greater
focus on them when the (slightly) less efficient symmetric outcomes are removed. Just over 10
percent of the estimates reflect 7" 1", which as argued earlier can generate efficient asymmetric
paths when it meets a complementary strategy. Relative to the pivot there is a large reduction in
strategies implementing joint cooperation, where subjects avoid this pareto-dominated outcome.

mt outcome in the pivot game had involved joint cooperation, we would not have been able to make a

clear efficiency comparison to a DCP treatment. Instead, in our larger design, the efficient outcome in the pivot and
DCP both require alternation in the high state.

33Unlike the pivot not all efficient outcomes can be sustained as SPE for the DCP treatments.
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En-DCP-E treatment. The patterns in our second common-pool parametrization have a starker
match to the best-case MPE. The difference in average cooperation rates between the two states is
larger than in En-DCP-M (Figure 2), and the largest mass of supergames are in the bottom-right
corner of Figure 3(G). Looking at the SFEM results, the most popular strategy by far is M¢p,
with an estimated frequency close to two-thirds. History-dependent strategies that implement effi-
cient outcomes are estimated at very low (and insignificant) frequencies. In fact, the only strategy

showing a significant estimate involves reversion to M¢cp when it (frequently) miscoordinates.

Summary. Our two dynamic common-pool treatments suggest substantial increase in the selection
of Markov strategies as we remove static externalities, in particular the MPE. We do find some
evidence for greater coordination on the asymmetric efficient SPEs in En-DCP-M relative to the
pivot, where the treatment removes second-best symmetric SPE such as Scp. However, as we
increase the opportunity costs incurred from initiating the efficient cooperation—giving up 280
instead of 190 by cooperating first—this coordination on asymmetric outcomes disappears. The
data indicates that subjects’ strategy selections respond to the presence of static externalities, with
a clear increase of symmetric equilibrium Markov play in En-DCP-E relative to En-DPC-M from

the pivot.

5.3. Conclusion. Subjects are sensitive to both the dynamic and static strategic externalities in
our environments. Whenever we turn either one off we observe an increase in equilibrium Markov
play. The absence of endogenous dynamics in the game clearly makes it more difficult for subjects
to coordinate on cooperative outcomes. Instead, we observe a substantial increase in the frequency
of choices consistent with the MPE, which in the absence of dynamic externalities is Mpp (Ex-
DPD and Ex-SPD). When we remove the static externalities (the En-DCP treatments) we also
find that equilibrium Markov behavior becomes more focal, though in this case captured by the
best-case MPE strategy M¢p.

In each of the above treatments, removing each type of externality weakens the theoretic desir-
ability of history-dependent strategies. For the treatments without dynamics, the power of history
dependence is reduced as the future path of play can no longer be leveraged by the punishment
path. In our DCP treatments, where there is no static externalities, the change means that efficient
outcomes can no longer be symmetric, and constraining to symmetric SPE, Mqp is the best out-
come. It is possible that the absence of a more-efficient symmetric SPE is the primary driver for
the increased Markov play rather than just the removal of static externalities. Though further re-
search will likely separate between these forces more exactly, some evidence already exists. Vespa
(2014) examines a dynamic common-pool game, but where the state space has no upper bound, so
that joint cooperation always leads to a higher payoff state. In his setting an efficient symmetric

SPE exists, but modal behavior mirrors the MPE prediction, suggesting that the absence of static
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externalities can be an independent driver for coordination on state-conditioned responses. His
game also has a richer state space, and this increased complexity may also contribute to the result.

We turn to this potential selection channel in the next section.

6. CHANGES TO THE COMPLEXITY OF THE STATE SPACE

One possible reason for the failure of the MPE to predict subjects’ choice in our pivot is that the
state space is very simple. We know that history-dependent strategies are common in experiments
on the infinitely repeated PD games, with just one state. At the other extreme with an infinite
number of states there is experimental evidence for Markov play (cf. Battaglini et al., 2014; Vespa,
2014). One potential selection argument for state-dependent strategies is simply the size of the
state space, where the 20 percent MPE play we observe in our pivot would increase as we add
more state variables. Our final two treatments examine this idea by manipulating the pivot game
to increase the size of the state space. In so doing, we assess whether the presence of a richer

state-space leads to a greater frequency of cognitively simpler Markov strategies.

The first of these treatments increases the set of payoff relevant states in the pivot by adding exoge-
nous, non-persistent shocks, entirely independent of the original state variables. These shocks are
moderately small in scale, and can therefore be thought of as a perturbation of the pivot’s strategic
tensions, but with an order-of-magnitude increase in state-space complexity. The second treatment
adds just two further states to the pivot—one below Low, the other above High—but both new
states are associated with entirely distinct stage games, and are reached endogenously along the

path of play.

6.1. Static Complexity (En-DPD-X). One simple way of adding states to the game is through
payoff-relevant noise. Our first complexity treatment does this with a commonly known iid payoff
shock each period through a uniform draw z;, over the support X = {—5,—4,...,4,5}.>* The
specific payoffs in each period are given by

0) + x ifa;=Candf =L,

0) — x ifa,=Dandf =L,
w;(a,0)+2 -2, ifa;=Candf = H,

0)—2-x, ifa;=Dand0 = H,

u; (a,(0,2)) =

\ az (G,
where ;(a, ;) are the En-DPD payoffs given in Table 2. The modification therefore adds an
effective shock of 2 - x; (or 4 - x; in the high state) when contemplating a choice between C' or D
in low. However, the effect of the shock is static, as the draw next period x;; is independent with
34This form of shock is common in IO applications that aim to structurally estimate the parameters of a dynamic game.

See, for example, Ericson and Pakes (1995).
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an expected value of zero. The state space swells from two payoff-relevant states in En-DPD to
22 here ({L, H} x X, with the 11 states in X), where we will henceforth refer to this treatment as
En-DPD-X.

Increasing the state-space also leads to an increase in the set of admissible pure, symmetric Markov
strategies. From four possibilities in the pivot, the increased state space now allows for approx-
imately 4.2 million Markov strategies. However, of the 4.2 million possibilities only one can
be used in a symmetric MPE: cooperate at all states in {(L, x) |x € X }, defect for all states in
{(H,x)|x € X }. The game therefore has the same effective MPE prediction as our pivot.

Moreover, the efficient frontier of the extended state-space game is (for the most part) unaltered,
as are the set of simple SPEs.*> Because of the strategic similarity to En-DPD, all the simple
symmetric SPE that exist in the pivot have analogs here, while every efficient outcome is again
supportable as an SPE by using asymmetric history-dependent strategies. Importantly, given its

focality in the pivot, joint cooperation can also be supported here with a Markov trigger.

Examining the results for En-DPD-X in Figure 2, we see qualitatively similar average cooperation
levels to those found in the unperturbed pivot. Comparing Figures 3(A) and (H), this similarity
extends at the supergame level, though the slightly greater cooperation in both states for En-DPD-X
is a little more apparent.*® To make the comparison across treatments cleaner, the SFEM estimates
use the same strategies as our previous treatments, and thus ignores strategies that might condition
on the shock 2, € X.*” The levels of equilibrium Markov play captured by the M¢p estimate are
non-negligible, but compared to the less-complex pivot we actually see a decrease in its assessed
weight. The largest difference between these two treatments is that we note a substantial reduction
of T'f'T" in favor of higher estimates for M. This suggests that joint cooperation is more robust
in En-DPD-X than the pivot, where some supergames are not triggering deviations after the first
failure. Potentially the additional strategic uncertainty introduced into the game with the exogenous

shock increases subjects’ leniency.

Summary. Following our interpretation of this treatment as a perturbation of the pivot, the broad
results point to a continuity in equilibrium selection with respect to the strategic tensions of the
dynamic game, where the size of the state space does not on its own increase the selection of MPE
strategies. Though we perturb the game’s presentation quite substantially, the outcomes in our

33The sum of payoffs are maximized through any combination of (C, D)/(D, C) in the high state, unless z; > 3, at
which point (C, C) is superior.
36By the last five rounds, the average behavior depicted in Figure 2 for En-DPD-X is significantly more cooperative in
both states.
3T At the aggregate level, there is evidence of a correlation between the cooperation rate and the value of x in the high
state. In the appendix, Figure 4 displays the cooperation rates for different values of x. Table 17 expands the SFEM
analysis by including Markov and history-dependent strategies that condition on z. The main conclusions we present
in the text are unaffected by this expansion.
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TABLE 4. En-DPD-© additional stage games

6=Very Low (vL) 0=Very High (vH)
2: 2:
C D C D
1 C 60,60 40,10 1 C 200,200 10,380
"D 10,40 20,20 "D 380,10 85,85

En-DPD and En-DPD-X treatments are remarkably similar, reflecting their similar core strategic
tensions.

6.2. Dynamic Complexity (En-DPD-0). In our En-DPD-X treatment the added states only affect
the current period, and therefore the complexity of conjecture on what might happen that period.
Our final treatment enriches the state-space by adding two new states that can be endogenously
reached along the path. In contrast to the first complexity treatment, our second complexity treat-
ment affects the complexity over both what will happen this period (if the new states are reached)
and over the conjectures over where the state is headed (at all states). Our dynamic-complexity
treatment extends the state-space to 6= {vL, L, H,vH} with the added states “very low” (vL)
and “very high” (vH), where we label this treatment En-DPD-©.%

The pivot’s transition rule is modified so that joint cooperation moves the supergame to a higher
state (until the ceiling v H is reached), while joint defection moves the supergame to a lower state
(until the floor v H is reached). In all other cases the state is held constant. The new transition rule
therefore acts as an extension of the pivot’s ensuring all four states can be reached, and is given by
vH if (0=HANa=(C,C)),

H if@=LNa=(CC))V(@=vHNa=(D,D)),

Y(a,0) =< L if (@=vLAa=(C,C))V(0=HAa=(D,D)) ,

vL if (0=LANa=(D,D)),

0 otherwise.

\

Payoffs in the low and high states are identical to those used in En-DPD, and we again start all
supergames in the low state with certainty. For the two added states, the stage-game payoffs are
given in Table 4.

The very-low stage game is chosen to have cooperation as the efficient, dominant strategy, where
both players cooperating is both statically and dynamically efficient, as this action profile also
transits the game to a better state next period. We calibrate the payoffs so that when both players
choose the dominant strategy of C' in v the payoff they receive is matched to the payoff from

31n the experiment the additional states were referred to as the Green Table for vL and the Orange Table for vH.
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joint defection for the low state in En-DPD. For our very-high stage game we choose a PD game
(with D as the dominant strategy), choosing the w; ((C,C') ,vH) payoff so that symmetric joint
cooperation in all periods yields an identical sequence of payments in En-DPD and En-DPD-6. In
order to keep the efficient outcomes identical to those in En-DPD, we set the off-diagonal payoffs
in the v H stage-game so that alternation between (C, D) and (D, C') in vH is less efficient than the
same alternation in the H state. However, we also substantially increase the temptation to defect,
with a payoff of 380. Finally, we set the joint defection payoff u; ((D, D) ,vH) to $0.85. This has
the effect of making alternation between the high and low states superior to alternation between
high and very high (3 - 190 + 2 - 130>2 - 200 + 2 - 85).%

The pure-strategy MPE of this game is constructed to be directly analogous to the pivot. The
unique pure-strategy symmetric MPE is to cooperate in the low and very low states, and defect in
the high and very high states. As such, along the path of play that starts in low, the supergame
should only visit the low and high states under this MPE, yielding the same sequence of states and
payoffs as Mcp in the pivot.*® SPE exist that can attain any efficient outcome, while symmetric
SPE that maintain joint cooperation do still exist (analogous to Scp and Spp) yielding identical
on-path payoffs to those in the pivot. However, our constructed game makes deviations from joint

cooperation a dollar more tempting once v H has been reached.

Looking at the experimental results, overall cooperation rates are significantly lower than in the
pivot for both the low and high states (see Figure 2). The cooperation rates whenever the game
reaches the v L state are not shown in the figure, but the average cooperation rates here are high (90
percent for the first five supergames falling to 85 percent for the last five). Additionally, the v H-
state’s cooperation rates vary from 55 percent in the first five cycles to 60 percent in the last five.
Surprisingly, the cooperation rate in the v/ state with its more-powerful temptation is actually
larger than in the H state.

At the supergame-level, the horizontal axis of Figure 3(I) measures the cooperation rate in either
the v L or L states, and the vertical axis cooperation rates in either the H or v H). Given the structure
of outcomes in En-DPD-0, the top right corner therefore still reflects jointly cooperative outcomes,

and the bottom right the equilibrium MPE. Contrasting Figures 3(A) and (I) the observed patterns

The individually rational payoff in the high state is still 130, while it is lower at % -85 + % - 130 in the very high
state. The individually rational payoff is 40 in the very low state, and is reduced from 60 to 45 in the low state.
40Paralleling En-DPD there is a pair of asymmetric MPE where one player defects in high and the other cooperates.
The rest of the strategy is identical for the two players: cooperate in very low, defect in low, defect in very high.
Given that low is the starting state, this MPE is inefficient, and alternates between low and very low. If this asym-
metric Markov strategy is selected, there is a differing sequence of states selected relative to the sequence in En-DPD,
however, the sequence of payoffs is constructed to be identical.
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are similar once we exclude the larger fraction of supergames that never get to the H-state or

beyond (the supergames on the lower ‘NaN’ line).*!

Comparing the pivot and En-DPD- in the strategy estimates in Table 5 we observe similar total
levels for Markov strategies, representing about one-third of the data in each case.*> The equilib-
rium Markov strategy M¢p is still the most popular of the four, but the estimates show an increase
in Mpp and a decrease in M¢ ¢, reflective of the increased frequency of supergames that never
enter the high state. Since M in En-DPD is also consistent with any history-dependent strategy
that successfully implements joint cooperation, the increase in Mpp in En-DPD-O can be seen as

reflecting a small increase in overall Markov play.

History-dependent strategies are similar: the combined frequency does not change substantially
from the pivot, but there are shifts over which particular strategies are used. Strategies supporting
joint cooperation represent about a half of the estimates in En-DPD-0, but the most common is
the Spp trigger which reverts to defection in both the low and high states (and is a good selection
when coordination is between conditional cooperation and Mpp). In contrast, the pivot has T'fT’
and S¢p as the two most-common cooperative strategies, and choosing Mpp is rare, both as an

initial choice or through a trigger on miscoordination.

Relative to the pivot then, the main shift we observe is an increase in Mpp, both directly and
indirectly as a punishment after a failed attempt at cooperation. Both players using Mpp is not
sub-game perfect (either in En-DPD-0 or the pivot) as there is a profitable deviation in the high
state: choosing C' is profitable as it keeps the game in high. But since we start both games in
the low state, subjects defecting in low never reach the state where the strategy is not sub-game
perfect. In the pivot, the first-period cooperation rate is close to 95 percent so that almost all
subjects experience the high state, but in En-DPD-0 it is significantly lower (at approximately
80 percent).* Early miscoordination in the low state is particularly damaging: the outcome is
statically inefficient, and dynamically it is more likely that the game will cycle between the low and

very-low states. In period two, following an initial round where one player defects, only 12 percent

HFor example, the cooperation rates in the high state when we exclude the supergames that do not reach the high state
are similar. In the pivot, conditional on getting into the high state in period two (186 of 210 supergames), 38 percent
manage to coordinate on joint cooperation. For En-DPD-0 only 146 of the 210 supergames reach the high state, but
42 percent of these coordinate on joint cooperation.
“2For this treatment Table 5 abuses notation. A Markov strategy in this treatment should indicate the actions for each
of the four possible states, so we could write the equilibrium strategy as Mccpp for, respectively, cooperation in very
low and low, and defection in high and very high. However, for simplicity and comparability to our other treatments
we will restrict the Markov-strategies we look at to cooperate in very low and defect in very high. Where we show
estimates for the strategy M,, »,, we mean Mc¢,, -, p- Strategy estimation with more Markov strategies for En-
DPD-O is presented in Table 17 of the appendix, where we show that little is lost with the particular restrictions in v.L
and vH.
A random-effects probit assessed over the last five cycles rejects equivalence for first-period cooperation in En-DPD
and En-DPD-© with 95 percent confidence.
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of the 52 En-DPD-© supergames with this history manage to recoordinate on joint cooperation
and reach the high state, while 46 percent have joint defection. In contrast, 55 percent of En-DPD
supergames with the same miscoordinated initial history (22 supergames) have joint cooperation in
period two, and none have joint defection. Subjects are therefore less likely to initially cooperate
in En-DPD-O than the pivot, and also less willing to forgive these initial defections. Given the
constructed similarities between the two games, the larger set of endogenous states does seem to
make subjects less optimistic that the other will cooperate in future states and hence they are less

likely to cooperate to begin with.*

6.3. Conclusion. The results in the complexity manipulations show that expanding the state-space
does not lead to a large increase of equilibrium Markov play. In fact, in En-DPD-X while we sub-
stantially increase the size of the state-space from 2 to 22 states, we find that cooperative outcomes
are actually more likely to succeed. In other words, the presence of a large number of states is not

inhibiting subjects from coordinating on more-efficient outcomes than the MPE.

The change in the state-space in En-DPD-O (from 2 to 4 states) is over endogenously reached
states, and here we again do not find substantial shifts in the frequency of Markov play relative
to the pivot. However, we do find a greater degree of fracture over which strategies subjects are
trying to coordinate over, away from joint-cooperation even in the low states, and with a greater
frequency of Markov triggers. Though the level of Markov play does not increase ex ante, greater
miscoordination in supergames leads many to paths of play that are state-dependent and consistent
with MPE predictions.

7. DISCUSSION

7.1. Summary of Main Results. Our paper presents experimental results over a core pivot game,
and eight modifications that create variation across three themes: 1) coordination and efficiency; ii)
the presence of different types of strategic externalities; and iii) the complexity of the state space.
Within each treatment we manipulate whether the changes are to the static tensions within the

game, or the dynamics tensions. We now summarize our main experimental results:

Result 1 (History Dependence). Having a dynamic game does not necessarily lead to the selection
of MPE. Most subjects who do not use Markov strategies aim to implement more efficient outcomes

with history-dependent play.

#Our experiments do not allow us to identify whether this comes from the presence of the very high state (for instance,
causing cooperation to unravel from the top) or the very-low state (where lower possible payoffs cause players to focus
on the individually rational actions).
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Evidence: Most behavior in En-DPD, En-DPD-CC, En-DPD-HT and En-DPD-X can be best
fitted with more-efficient SPE strategies than any MPE profiles. Though the MPE does very well
at predicting some of our treatments (in particular Ex-DPD and En-CP-H), the majority of our

games are better explained via history-dependent strategies.

Result 2 (Markov Selection). For subjects who use Markov profiles, the MPE is the focal response.

Evidence: In all treatments with endogenous transitions M is the most-efficient MPE predic-
tion. We find that this is the Markov strategy with the highest frequency in En-DPD, En-DCP-M,
En-DCP-E and En-DPD-O. In En-DPD-CC, En-DPD-HT and En-DPD-X the Markov strategy
with the highest frequency is M¢ ¢, but this strategy is more-likely to conflated with more-lenient
history-dependent strategies.* In treatments with exogenous transitions, Mpp, is the unique MPE

and it is the Markov strategy with the highest frequency.

Result 3 (Coordination and Efficiency). When the successful implementation of more-efficient out-
comes than the best-case MPE requires substantial coordination, we observe higher levels of equi-

librium Markov play .

Evidence: In our environments coordination difficulties present themselves in different ways.
First, there may be many outcomes more efficient than the MPE. This is the case, for example,
in our pivot En-DPD. The multiplicity is particularly salient because the efficient outcome does
not coincide with symmetric joint cooperation. When we alleviate the chances for miscoordina-
tion by aligning efficiency with joint cooperation (in En-DPD-CC and En-DPD-HT) we observe
much lower levels of MPE play. Second, when the only SPE outcomes with greater efficiency than
the MPE are asymmetric (En-DCP-M and EN-DCP-E) we observe even greater levels of MPE

play.

Result 4 (Response to Dynamics). Behavior is very sensitive to how the state evolves.

Evidence: Removing the endogeneity of the transition (En-DPD—Ex-DPD) yields the most dras-
tic reduction of the cooperation in our treatment set. Moreover, where we remove the dynamics
entirely (Ex-DPD—Ex-SPD) cooperation rates increase, suggesting that certainty in the transition
is also important. When subjects directly control the evolution of the state, they are generally more
successful at coordinating on more-efficient outcomes. Another component of this sensitivity to
the dynamics is illustrated in our change to the efficient action. When we change the transition rule
(En-DPD—En-DPD-HT) we observe a large shift in both the average behavior, and the frequency
of the history-dependent strategies (particularly those with harsher punishments).

m earlier, along the equilibrium path strategies that implement joint cooperation and M¢ ¢ are identical.

Hence, the SFEM cannot separately identify them.
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Result 5 (Complexity). Adding exogenous states (shocks) does not lead to an increase in Markov
play, and history-dependent cooperation is still common. However, while adding more endoge-
nous states does not lead to an increase in the selection of Markov strategies, the presence of
additional states does alter which strategies are selected, leading to greater miscoordination, and

lower cooperation.

Evidence: Our two treatments with richer state-spaces lead to differing rates of cooperation.
Where we add exogenous non-persistent shocks to the payoffs each round (En-DPD—En-DPD-
X) the aggregate observed behavior looks similar, if anything moving away from the MPE and
towards higher-efficiency outcomes. When we add additional endogenous states (En-DPD—En-
DPD-0) overall Markov play stays constant, but the lower-payoff Markov profile Mpp is selected
at a relatively higher frequency, and M 1s much reduced. As the number of states increase, so
too does the set of plausible strategies. Coordination therefore becomes more challenging, and

some subjects become more pessimistic, pushing behavior away from cooperation.

7.2. Toward a Selection Index. The larger experimental literature on infinitely repeated games
has identified two main determinants of history-dependent behavior (see the survey of Dal B6 and
Fréchette 2014 for further details). First, the higher the basin of attraction (BoA) of Sp (the grim
trigger), the more likely cooperation is to emerge. The basin of attraction for S, is the set of beliefs
on the other player being a conditional cooperator that would make S optimal relative to Mp
(always defect). In other words, when a relatively low belief on the other cooperating is enough
to make conditional cooperation attractive, such strategies are more likely to emerge. Second,
cooperative outcomes occur more frequently when cooperation can be supported as an SPE that
is risk-dominant. Selecting to cooperate is risk dominant if playing Sp, is the best response to the

other choosing Sp or Mp with equal probabilities.

While our experiments were designed to investigate behavior across qualitative features of the
game, a natural question given out results is whether selection indices like the BoA keep their pre-
dictive power in our dynamic environments. Our results point to subjects coordination responding
to both the static and dynamic strategic externalities, which motivates extensions to the BoA that
integrate both elements (the payoffs and transition rule) into their calculation. In addition, our

results also point to symmetric strategies as being focal.

In several of our dynamic games, the direct analogs to the infinitely repeated game strategies
(Mpp and Spp) are not SPEs, so to evaluate a basin of attraction it is necessary to consider which
strategies are reasonable to construct it over. For infinitely repeated PD games, the two strategies
compared can be thought of as the MPE (M) and a trigger strategy that supports the efficient
outcome with a Markov trigger (Sp). For dynamic games we can therefore extend this to define

the basin for the best symmetric SPE of the game (for example, in the pivot S¢p) relative to the
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best symmetric MPE (M¢p in the pivot). Hence, we define the basin of attraction for the pivot
as the probability that the other chooses the MPE strategy, p*(Scp, Mcp), that makes the player
indifferent over the two strategies. This index has the interpretation that for any belief that the

other player selects M¢p lower than p*(Scp, Mcp), the best response is to select S¢ .

The simple BoA index p*(S, M) using the best symmetric SPE and MPE is successful in predicting
differences in cooperation relative to the pivot for most of our treatments. For our pivot the index is
equal to p*(Scp, Mcp) = 0.754, so that for all beliefs the other plays M¢p from zero to just over
three-in-four, it is optimal to choose Scp. This index predicts an increase in history-dependent
behavior in En-DPD-CC, which is consistent with our findings, as it increases to p*(Scp, Mcp) =
0.817.%7

In the case of En-DPD-X, the basin p*(Scp, Mcp) depends on the realization of the shock x when
play is in the high state. If the realization of x is zero, the index coincides with En-DPD. However,
the likelihood of coordination changes with x as predicted by the index. For low values of the
realization (negative values of x), the index is lower indicating that it cooperation is less likely,
while the opposite happens for higher values of x. In fact, as x swings between —5 to 5 the index
moves between 0.550 and 0.983. We find that this is consistent with the findings reported in Figure
4 of the appendix, where the cooperation rate in the high state is positively correlated with x.

The greatest rates of selection for the MPE appear in Ex-DPD, though for this treatment the index
has to shift the strategies under consideration. The best symmetric SPE supports cooperation in
low and defection in high with an Mpp trigger on any deviation (call this strategy X pp), while the
MPE prediction here is Mpp. The basin of attraction p*(Xpp, Mpp) = 0.255, and so conditional
low-state cooperation is only rational if the belief the other uses Mpp is less than one-in-four.
Calculating the repeated-game basin p*(Sp, Mp) for each isolated stage-game in Ex-DPD, we
instead have a low-state index of 0.760 and a high-state index of zero (as S is not an SPE). Shifts

in the cooperation rates from the pivot are matched by changes in the index.*

The index is also predictive for the En-DCP treatments. The best-case MPE in these games is
the best symmetric SPE, and so this index suggests history-dependent outcomes are not likely,
which matches the broad outcomes. However, while the outcome is predicted, the measure ignores
some of the important mechanics. The efficient SPE strategies that some subjects are focused on

46Defining the BoA more generally. Take any two strategies o and ¢’ such that both (o, o) and (0”, o’) are SPE the
game. The BoA for o is defined over the belief that the other player uses the strategy (1 —p) - o @ po’. For some belief
p*, the player is indifferent between playing o and ¢’. While the asymmetric pairs (o, 0’) and (o, o) will not be SPE
outcomes, it is natural to require that after their initial miscoordination, they subsequently reach a path that is an SPE
from that point onward.
4IThe low cooperation in Ex-DPD is also predicted as ¢5 (Ex-DPD) = 0.255, where the strategies considered are a
defect-in-High/Grim-trigger in low and M pp, where the Ex-SPD low-state index is 0.760.
*8Note that this index also predicts where the coordination occurs. For the pivot it is in period two once the high state
is reached. For Ex-DPD and Ex-SPD it is in period one.
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this treatments are asymmetric, and within En-DCP-M there is a substantial amount of behavior

consistent with such outcomes being selected.

However, we do find a disconnect between the BoA index and the focal strategies in En-DPD-
HT. The index predicts decreased history dependence in En-DPD-HT relative to the pivot, with
a basin of p*(Scp, Mcp) = 0.634, but this is the treatment we observe the greatest selection of
cooperative, history-dependent strategies. Similarly, in En-DPD-O the index is p*(Sep, Mcp) =
0.754, identical to the pivot, but the additional endogenous states lead to greater pessimism at the

very start of the game which is therefore not matched by the BoA.

The above simple extension of the basin of attraction to dynamic games offers a rule of thumb se-
lection index, one that integrates both the static and dynamic strategic effects into it. For many of
our treatments, more-efficient history-dependent play is predicted over state-dependent play by this
index. However, refining this rule presents challenges that future research might address. For in-
stance, it is clear in En-DPD-HT that many subjects use history-dependent conditional-cooperation
that punishes with the worst case MPE, not the best. Multivariate selection indices that consider
coordination across multiple strategies may be more successful. A desirable index might initially
compare coordination across Scp, Spp, Mcp and Mpp in En-DPD-HT, and discern that the
p*(Spp, Mpp) = 0.929 comparison is the most relevant margin, thereby eliminating the best-case
MPE M¢p.* Similarly, our complexity treatment with more endogenous states, En-DPD-O shows
a decrease in initial cooperation relative to the pivot that is not predicted by the BoA, and further

research may help pin down the effects of state complexity on coordination.

8. CONCLUSION

Our paper explores a set of nine dynamic game under an infinite-time horizon in the laboratory.
While many applications of dynamic games focus on Markov-perfect equilibria our results suggest
that the selection of state-dependent strategies depends on features of the game. Our core treatment
is simple two-state extension of the infinitely repeated prisoner’s dilemma, and we find behavior
that is conceptually closer to the experimental literature on repeated games than the theoretically
focal MPE assumption. Most behavior is consistent with history-dependent strategies that aim to

achieve greater efficiency than the MPE prediction.

Our treatments also allow us to identify conditions under which Markov play may become more
prominent. First, we find that the MPE prediction is more frequent in games where coordination

on history-dependent strategies is harder. This happens as we weaken the strategic externalities

40ne reason for a change in focus might also be changes to the individually rational action in the high state for
En-DPD-HT.
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through changes to the dynamics and stage game payoffs, and as we decrease the focality of sym-
metric history-dependent outcomes. Second, we do find that changes to the complexity of the
state space can lead to breakdowns of cooperation. Though small with respect to the frequency
strategies are selected, in the long-run the effect is more pronounced, as many more supergames
are miscoordinated. This finding might help explain the greater selection of symmetric MPE in
other large state-space experiments on dynamic game (Battaglini et al., 2012, 2014; Vespa, 2014),
where increased strategic uncertainty from the many possible future states pushes the game to-
wards simpler Markov behavior. However, when the state-space is increased through exogenous,
non-persistent shocks (which are common in many industrial organization applications) we find
a small increase in history dependence. This is also is consistent with other experimental games

with a larger state space (see Salz and Vespa, 2015).

While our results allow us to bridge earlier findings in repeated and dynamic games, our relatively
large number of treatments illustrate a richness in subject behavior. That more-efficient history-
dependent strategies emerge in our lab data suggests researchers should be somewhat wary of
making Markov assumptions. If incentive-compatible strategies with Pareto superior outcomes are
quickly learned and deployed by undergraduate students matched anonymously with one another
in the lab, it is hard to believe they are will not be present in the field, where participants engage in
longer interactions and with more channels for coordination. Future research can further explore
and pin down what drives selection, while many other first-order questions remain open. For
instance, in dynamic game environments little is known about how equilibrium selection responds
to the importance of the future (via the discount factor). Or how behavior is affected by the size
of the action space: if coordination is important for equilibrium selection, a more complex action-
space may play an important role in the selection of strategies.
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APPENDIX A. SUPPLEMENTARY MATERIAL: FIGURES AND TABLES

Tables 6 and 7 present the stage games for the En-DPD-CC and En-DPD-X treatments, respec-
tively.

TABLE 6. En-DPD-CC Stage Games

O=Low O0=High
2: 2:
C D C D
1 C 100,100 30, 125 1 C 200, 200 130, 250
" D 125, 30 60,60 - D 250, 130 190, 190
TABLE 7. En-DPD-X Stage games
O=Low, x 6=High, z
2: 2:
C D C D
|- C | 100+2x,100+z | 30-x, 125+ C 200+2x, 130+2x, 280-2x
' 200+2x

D 125-x, 30+ 60-2,60-x D | 280-2x, 130+2x | 190-2x, 190-2x
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TABLE 8. Cooperation rates by state (Last 5 supergames)

Treatment 0, =Low 6, =High
Mean (std. err) Mean (std. err)
En-DPD 0.796  (0.035) - 0.489 (0.045)
En-DPD-CC 0.794 (0.036) 0.674 (0.042) (x*x~*
En-DPD-HT 0.832  (0.050) 0.979 (0.010) (x*x~*

( )

(% )
Ex-DPD  0.189 (0.059) (x*xx) 0.012 (0.007) (x*x)
Ex-SPD!  0.406 (0.062) (x*x)  0.079 (0.024) (x*%)
En-CP-M  0.638  (0.047) (xx%) 0245 (0.041) (x*%)
En-CP-E 0946  (0.021)  (%*) 0.187  (0.047) (% **)
En-DPD-X 0.856 (0.036) (%) 0.635  (0.055) (x*%)
En-DPD-© 0453 (0.033) (xx%) 0254 (0.032) (x%%)

* Kk %

Note: Figures reflect predicted cooperation rates for the median subject (subject random-effect at zero) attained via
a random-effects probit estimate over the last five cycles with just the state as a regressor. Statistical significance is
given for differences with the pivot En-DPD, except for: {- Statistical significance here given relative to Ex-DPD

Further analysis at the aggregate level. Table 8 presents tests on whether the cooperation rates
by state and treatment in Figure 2 are statistically different from the pivot. The predicted co-
operation rates are obtained after estimating a random-effects probit with a dummy variable for
cooperation in the left-hand-side, and a constant and a state dummy on the right-hand side.

Table 9 performs a robustness check on the estimates of 8. The table reports the estimates of a linear
probability model with the same dependent variable, but an additional set of controls and standard
errors that are clustered at the session level. Each treatment presents estimates relative to the pivot,
so that the Treatment dummy takes value 1 if the observation corresponds to that treatment and O if
it belongs to the pivot. There is also a state dummy and the interaction between state and treatment
dummies. Finally, there is a set of dummy variables for the included supergames.

Tables 12 and 13 report the most frequently observed evolution of the state and sequences of

actions, respectively.
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TABLE 10. Differences between initial and subsequent period Cooperation Rates

Treatment

6 =Low

0 =High

APr{C} (Std. Err)

APr{C} (Std. Err)

En-DPD 0.498
En-DPD-CC  0.520
En-DPD-HT  0.867
Ex-DPD 0.124
Ex-SPD 0.286
En-CP-M 0.421
En-CP-E 0.084
En-DPD-X  0.256
En-DPD-©  0.421

(0.075)
(0.066)
(0.090)
(0.050)
(0.068)
(0.053)
(0.039)
(0.065)
(0.041)

(% % *)
(% * %)
(% * )
(% * %)
(% % *)
(% * )
(%)
(% * )
(% * )

0.213
0.135
0.006
0.049
0.0407
0.069
0.040
0.256
0.219

(0.046)
(0.044)
(0.014)
(0.022)
(0.021)
(0.039)
(0.034)
(0.055)
(0.030)

Note: Figures reflect predicted marginal effect A Pr {C}=Pr{ C| Initial Period, 8} — Pr{ C|Subsequent Period, §} for
the initial play dummies for the median subject (subject random effect at zero) attained via a random-effects probit
estimate over the last five cycles (regressors are state dummies and dummies for Low & Period One and High & Period
2;. Statistical significance is relative to zero. t-For Ex-DPD we define the initial level with a High & Period 1 dummy.
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Robustness of the SFEM estimates. The estimates reported in Table 14 result when the strategies
included correspond to those that capture most behavior in infinitely repeated prisoner’s dilemma
experiments. For each treatment we include always cooperate (M¢c(¢), always defect (Mpp), the
best Markov perfect equilibrium whenever it differs from Mpp, a trigger strategy with reversion
to the best Markov perfect equilibrium and Tit for Tat. Comparing the measure of goodness-of-fit
(/) to the estimates in Table 5 we observe only a minor reduction. This suggests that this simple
set of strategies can rationalize our data to a large extent.

For treatments where the efficient outcome can be supported with App or Acp Table 15 reports
the estimates using the two versions of each strategy depending on whether the strategy starts
by selecting C' or D the first period the game is at the high state (for more details in footnote
19). In En-DPD the estimates remain largely unchanged except that the frequency of strategy that
starts by cooperating and punishes with M¢p after a deviation, which we call AS,p,, is above 20%.
Comparing to the estimates in Table 5 we verify that there is a reduction of similar magnitude in
the estimate of Scp. This highlights the difficulty of identifying a strategy such as AS, from Scp:
both strategies prescribe to cooperate in high if there are no previous deviations and would coincide
from then on if there is no coordination on alternation in the second period in high. A similar effect
(albeit smaller) is present for En-DPD-O. Other than these discrepancies the estimates reported in

Table 5 remain largely unchanged.

Table 16 presents the SFEM frequencies when we exclude 7' fT" and ST fT'. As argued in footnote
20 this allows us to inquire what proportion actually corresponds to efficient alternation. The
estimate for App are now positive and significant in En-DPD and En-DCP-M. For En-DPD, this
suggests that a mass of approximately 10 percentage points, which is part of the 7'f'I" estimate in

Table 5 tries to implement the efficient outcome. The estimate is even higher in En-DCP-M.

Table 17 presents estimates when we expand the set of Markov strategies in treatments where we
change the size of the state-space. To explain the extra strategies included for En-DPD-X, consider
first Figure 4. The figure presents the cooperation rates in low and in high in panels (A) and (B),
respectively. Supergames are grouped in blocks of five and the state-space X is divided in three
parts: lower than or equal to —3, between —3 and 3, and higher than or equal to 3. Panel (A)
shows that the cooperation rate in low is largely unaffected by the choice of . However, for high
state in panel (B) there is a positive effect on cooperation as values of = are higher. Guided by
this figure we included two extra strategies in our estimation M¢ceo poe and Méce ppe- The
supra-script indicates that it is a Markov strategy that conditions on z. The first (last) three values
of the subindex indicate the action prescribed in the low (high) state for each of the three elements
in the partition of X. Both strategies prescribe the choice of C' in the low state for all values of
x. This is consistent with the high cooperation rates in panel (A) of Figure 4. In the high state,

strategy Moo poc prescribes to defect only if the value of x is lower than or equal to —3, while
47



M¢écc ppe would also defect if x is between —3 and 3. We also include trigger strategies that
aim to implement joint cooperation, but use either of these strategies as punishments (S¢cc pec
Séce,ppe )-

The estimates in Table 17 are significant a only in the case of M¢ ¢ pee reaching approximately
one-fifth of the mass. Relative to the estimates in Table 5, the reduction is coming from M and

Scp. The inclusion of these strategies, however, only leads to a minor improvement in the measure
of goodness-of-fit, from 0.828 to 0.846.

For En-DPD-0O, we explored sequences of actions and states (see Tables 12 and 13) that can be
rationalized with Markov strategies that do not prescribe the same choice for vH and H, and vL
and L. We include two additional strategies. Mcppp, which cooperates only in vL and defects
otherwise and M¢cccp that only defects in v H. The estimates in Table 17 show that both strategies
capture approximately 10 percent of the mass and are statistically significant. The goodness-of-fit
measure relative to Table 5 increases by 6 points. The strategy that suffers the largest loss of mass

(relative to Table 5) is Mpp, which is now at zero.
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TABLE 17. SFEM Output: Additional Strategies in Complexity Treatments

Strategies En-DPD-X En-DPD-O
Markov
Mco (Mcocep) 0.253%* 0.000
(0.078) (0.041)
Mpp (Mcppp) 0.027 0.166*
(0.034) (0.088)
Mcp (Mocpp) 0.133* 0.176*
(0.071) (0.092)
Mpe (Mepep) 0.000 0.000
(0.013) (0.039)
Mccoce 0.059
(0.077)
Mpppp 0.000
(0.038)
Mécepee 0.203**
(0.098)
Méee,ppe 0.002
(0.048)
History-dependent
Spp (Seppp)  0.073 0.266***
(0.062) (0.075)
Scp (Scepp)  0.162 0.109*
(0.119) (0.065)
Stce,pec 0.000
(0.019)
Séce.ppe 0.000
(0.020)
rfr 0.063 0.091*
(0.056) (0.055)
sTfT 0.015 0.000
(0.024) (0.003)
App (Acppp) 0.032 0.102
(0.036) (0.066)
Acp (Acepp)  0.038 0.031
Y 0.588** 0.645**
(0.070) (0.054)
5 0.846 0.825

Note: Bootstrapped standard errors in parentheses. Level of Significance: ***-1 percent; **-5 percent; *-10 percent.
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FIGURE 4. Cooperation rates in En-DPD-X

Note: Running a random-effects probit estimates, for the low state in period one, only the difference between cooper-
ation for z < —3 and x > 3 is significant (95 percent confidence, for both supergames 6-10 and for 11-15). For the

high-state cooperation in period two, the difference between cooperation for z < —3 and z > 3 is always significantly
different (above 99 percent confidence, each block of five).
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