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Abstract 
 
We analyze optimal taxation of labor and capital income in a life-cycle framework with 
idiosyncratic income risk. We provide a novel decomposition of labor income tax formulas into 
a redistribution and an insurance component. The latter is independent of the social welfare 
function and determined by the degree of income risk and risk aversion. The optimal linear 
capital tax is non-zero and trades off redistribution and insurance against savings distortions. 
Our quantitative results reveal that the insurance component contributes significantly to optimal 
labor tax rates and provides an informative lower bound on optimal taxes: even for welfare 
functions that do not value redistribution, marginal tax rates are positive for all income levels. 
Optimal capital taxes are significant and yield sizable welfare gains; in particular if labor 
income taxes are suboptimal. 
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1 Introduction

A comprehensive literature in public economics has characterized optimal labor income tax-
ation. This body of work has shown that labor supply elasticities and the distribution of
abilities are the key forces determining optimal nonlinear income tax schedules.1 A relatively
recent literature, often called the New Dynamic Public Finance (NDPF), has expanded the Mir-
rlees model to take into account dynamics and idiosyncratic uncertainty.2 The NDPF studies
properties of second-best efficient allocations that are only constrained by informational asym-
metries. The implementation of such allocations therefore requires complex history-dependent
tax functions.3

In this paper, we bring together elements from the public economics and the NDPF-literature.
In the tradition of the public economics literature, we study the optimal design of relatively
simple tax instruments that are within the realm of current tax practices:4 nonlinear labor
income taxes of current income – i.e. history-independent taxes – and linear capital income
taxes. In line with the NDPF, we study a life-cycle framework with idiosyncratic uncertainty.
These life-cycle considerations allow us to complement the public economics literature in the
following two ways: First, it allows us to study the effect of income risk on labor income
taxation and distinguish the role of taxes for redistribution and insurance against idiosyncratic
wage risk. Second, the dynamics allow us to study the question of optimal capital taxation.
Importantly, our approach is flexible enough to also study the optimal design of capital taxes
for some given suboptimal labor income tax code and vice versa.

Main Results and Contribution. First, we derive a novel formula for optimal marginal
labor income tax rates in a dynamic setting. Additionally, we show how the mechanical effect
(Diamond 1998, Saez 2001) can be cleanly decomposed into an insurance and a redistribution
component. Intuitively, taxes serve a social insurance role which depends on the degree of
risk aversion and wage risk in the economy. The redistribution component reflects how much
redistribution of resources between individuals who are ex-ante different is valued. Concretely
in the life-cycle context, young individuals already start out with very different income levels.
The redistribution component is then mostly pinned down by difference in the welfare weights
on different income levels at a young age. We calibrate the model based on recent estimates of
income risk parameters, which are allowed to condition on age, providing a realistic life-cycle
structure for the evolution of income risk (Karahan and Ozkan 2013). Interestingly we find
numerically that for our benchmark calibration the redistribution and insurance component

1See, e.g., Piketty (1997), Diamond (1998) and Saez (2001) or Piketty and Saez (2013a) for a recent survey
article.

2Golosov, Kocherlakota, and Tsyvinski (2003) is often seen as the starting point of this literature. More
recently Farhi and Werning (2013) and Golosov, Troshkin, and Tsyvinski (2015) study the properties of dynamic
optimal allocations and especially labor wedges in more detail.

3 See Kocherlakota (2004, 2005) and Werning (2011).
4Social insurance and tax codes in most countries typically also contain some history-dependent elements,

in particular retirement and unemployment benefits. Personal income taxes – although they contain some form
of history dependence in the form of deductions – are arguably better described as being history-independent.
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are roughly equally important for the optimal Utilitarian tax rates. Based on the above con-
siderations, we also provide a social insurance lower bound on labor taxes. The experiment we
consider shuts down the redistributive benefits of labor taxes by adjusting the welfare weights
in such a way that labor taxes would be zero in a static setting. Any positive level of taxes for
these Pareto weights purely captures the insurance motive. We find that tax rates are strictly
positive, starting at about 25%, then fall before they slightly increase again and converge to a
level of around 10%.

Next, we derive a novel formula for the optimal linear capital tax rate5 that follows a very
simple and intuitive equity-efficiency relationship: the gains from redistributing wealth are
traded off against the negative incentive effects on the savings margin. In contrast to the
famous Atkinson-Stiglitz result (Atkinson and Stiglitz 1976), in a dynamic model with risk
optimal capital taxes are, in general, non-zero. In our model savings taxes are not redundant
as individuals are heterogenous with respect to labor income and capital income over their life
cycle. It is, hence, beneficial for the government to employ multiple instruments. This logic
is related to the inheritance tax model by Piketty and Saez (2013b). In our simulations, the
government strongly relies on capital income taxation and the optimal tax rate is around 15%.

Our framework also allows to investigate the interaction between labor and capital taxation,
which is not possible in the static Mirrlees model. This interaction is, in general, also not
studied in the NDPF-approach, since both labor and capital wedges are part of the dynamic
mechanism design solution. We examine optimal labor income taxes for a given capital tax
and vice versa. Strikingly, we find that for given labor income taxes, optimal capital tax
rates differ substantially, depending on how labor income taxes are set. This depends on two
mechanisms. First, lower labor income taxes lead to a more concentrated distribution of wealth
which increases the redistributive power of capital income taxes. Second, the lower the degree
of social insurance through labor income taxation, the stronger the desire to self insure in the
form of precautionary savings and the lower the elasticity of savings with respect to capital
income taxes. Conducting the opposing exercise, the simulation reveals that optimal marginal
labor income tax rates are decreasing in the level of capital taxation, the quantitative effect is
very small, however.

Finally, our contribution is also of technical nature. We show that assuming preferences
without income effects on labor supply is the key simplification to make the problem tractable.
If labor income taxes are only a function of current income yt, the income that individuals
optimally choose in a decentralized economy only depends on their current productivity θt and
not on accumulated wealth. For the allocation, this implies that income is solely a function of
θt and not of the history of shocks θt = (θ1, θ2, ..., θt). This guarantees that the individuals can
easily be ordered among the yt dimension. A second advantage of this specification is that the

5The practice of taxing capital linearly in most countries, is often linked to arbitrage opportunities in the
case of capital. If individual A face a higher marginal tax rate on savings than individual B, there would be
a deal where both could be better of by making individuals B save individual A’s money. The assumption of
linear capital taxes can therefore be grounded on the idea that the government cannot observe consumption on
the individual level and is often made in the public finance literature. See Hammond (1987) for a more general
theoretical discussion of that issue.
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Hessian matrix of the individual problem has a zero minor diagonal. This makes a first-order
approach valid under a mild monotonicity condition on yt(θt) as in the static Mirrlees model. As
we show in the main body of the paper, these considerations make it possible to solve for optimal
nonlinear labor and linear capital income taxes. We believe our approach is also attractive for
other researchers who would like to study dynamic life-cycle problems like, for example, models
with retirement, and would like to restrict labor taxes to be history-independent but fully
nonlinear.

Closely Related Literature. As already discussed in the first paragraph, our paper is
closely related to the public economics taxation literature and work in the NDPF (Piketty
1997, Diamond 1998, Piketty and Saez 2013a, Golosov, Troshkin, and Tsyvinski 2015, Farhi
and Werning 2013).

This paper is also related to Golosov, Tsyvinski, and Werquin (2014), who study general
dynamic tax reforms and elaborate the welfare gains from the sophistication of the tax code
such as age dependence, history dependence or joint taxation of labor and capital income.
Similar as them, we study the design of taxes in dynamic environments by directly taking into
account individual responses to taxes instead of using mechanism-design techniques.

Stantcheva (2015a) and Piketty and Saez (2013b) have recently derived optimal linear in-
heritance tax rates for a class of models with multiple generations. The main difference to
the present paper is that we concentrate on the implications of precautionary life-cycle savings
instead of intergenerational considerations for capital taxes. There is a small but growing
literature on age-dependent income taxation. Most recent and related to our work, Weinzierl
(2011) and Bastani, Blomquist, and Micheletto (2011) study the welfare gains of age-dependent
labor income taxation. Blomquist and Micheletto (2008) is an important earlier paper in this
literature.

Also studying age dependency as well as standard income taxes, Best and Kleven (2013)
augment the canonical optimal tax framework by incorporating career effects into a determin-
istic model. By contrast, we place our focus on a risky and dynamic economy, a standard
NDPF framework calibrated to empirical estimates of income risk, but leave out human capi-
tal. Related dynamic tax models with human capital are, for example, developed in Da Costa
and Maestri (2007), Kapicka and Neira (2013), Findeisen and Sachs (2015b) and Stantcheva
(2015b). Kapicka (2006) looks at a dynamic deterministic environment with unobservable hu-
man capital and constrains the labor income tax to be history independent in a similar spirit
as in our paper. Conesa, Kitao, and Krueger (2009), in tradition with the Ramsey approach to
optimal taxation, study optimal labor and capital income taxes in a computational life-cycle
framework. While our approach shares some features from a Ramsey type of exercise, we al-
low labor income taxes to be an arbitrarily nonlinear function in the Mirrlees tradition and
theoretically highlight the forces driving labor and capital taxation.
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Structure. We start with a description of the formal framework in Section 2. We also describe
our technical contribution in this section. Section 3 contains our theoretical results on labor and
capital taxes. Section 3.1 and 3.3 derive the new formulas, and in Section 3.2 we present the
insurance-redistribution decomposition. Optimal policy simulations are presented in Section 4.
Section 4.2 contains the baseline simulation. In Section 4.3 we study the interaction of labor
and capital taxes and Section 4.4 presents the social insurance lower bound on optimal taxes.
Finally, in Section 5 we conclude.

2 The Model

2.1 Environment

We consider a life-cycle framework with T periods where individuals at any point in time t
are characterized by their productivity θt ∈ Θ = [θ, θ].6 We denote the history of shocks by
θt = (θ1, θ2, . . . , θt). Flow utility is given by

U(ct, yt, θt) = U

(
ct −Ψ

(
yt
θt

))
,

where we assume U ′ > 0, U ′′ < 0, and Ψ′,Ψ′′ > 0. ct is consumption in period t, yt is gross
income in period t and yt

θt
captures labor effort.

Abusing notation, we sometimes write the utility function or its derivatives as a function
of the history of shocks only, i.e. U(θt), U ′(θt) and U ′′(θt). When we present optimal tax
formulas, we denote by ε the labor supply elasticity and sometimes suppress the dependence
of ε on the current skill type, consistent with the utility functions we use for the simulations,
where the elasticity is constant. As our appendix reveals, the theoretical results are more general
and apply also to utility functions where the elasticity changes with the skill type and taxes.
Importantly, the functional form of U eliminates income effects on labor supply, while allowing
for risk aversion.7 This assumption is crucial for the tractability of the dynamic optimal tax
problem with simple instruments as we describe in detail in this section.

We assume that agents already differ in the first period. The conditional density function
(cdf ) of the initial distribution of productivities is denoted by F1(θ1) and captures the ex-
ante heterogeneity of agents. The reader should think about this heterogeneity as the level
of heterogeneity of individuals at age of roughly 25. In the following periods, productivities
evolve stochastically over time according to a Markov process. The respective cdf is Ft(θt|θt−1).
Denote by ht(θt) the probability of history θt, i.e. ht(θt) = ft(θt|θt−1)ft−1(θt−1|θt−2).....f1(θ1).
We assume that all conditional density functions are continuously differentiable. Denote by Θt

6For notational convenience, we assume that the support of θt does not change over time. Allowing for a
moving support would be a straightforward extension.

7The empirical literature using detailed micro data sets has typically not rejected a zero income elasticity
on labor supply or found very small effects (see Gruber and Saez (2002) for the US or a recent paper by Kleven
and Schultz (2012) using the universe of Danish tax records).
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the set of possible histories in t. Further, we denote by ft(θt) the cross-sectional skill distribution
at time t, i.e. ft(θt) =

∫
Θt−1 ft(θt|θt−1)ht(θ

t−1)dθt−1.
The discount factor is β. The interest on savings r is fixed; thus we either consider a small

open economy or a linear production technology. Further, we assume incomplete markets in
a sense that individuals only have access to risk-free one period bonds.8 Finally, we assume
β (1 + r) = 1, which does not come at the expense of generality but simplifies the exposition.

2.2 Policy Instruments and Planner’s Objective

We are interested in the Pareto efficient set of nonlinear labor income tax schedule and linear
capital income tax rates that only condition on current income. Thus, we are not solving for
a second-best Pareto problem, where the government could condition policy instruments on
all public information (typically the history of income and savings), but rather restrict the set
of policy instruments in a Ramsey manner. However, our approach shares the feature of the
Mirrlees approach that labor income taxes can be an arbitrarily nonlinear function of current
income, see also the discussion at the end of this section. Finally, note that our approach also
allows to study age-dependent taxation, which we explored in an earlier version of this paper,
see Findeisen and Sachs (2014).

The government chooses a labor income tax schedules T (·) and a linear capital tax rate τs.
The preferences of the social planner are described by the set of Pareto weights {f̃1(θ1)}θ1∈[θ,θ].
The cumulative Pareto weights are defined by F̃1(θ1) =

∫ θ1
θ
f̃1(θ̃1)dθ̃1. The set of weights are

restricted such that F̃1(θ) = 1. Different sets of Pareto weights refer to different points on the
Pareto frontier. The set of weights where f̃1(θ1) = f1(θ1) ∀ θ1, e.g., refers to the Utilitarian
planner. Similar as ht(θt), define h̃t(θt) = ft(θt|θt−1)ft−1(θt−1|θt−2).....f̃1(θ1) to express the
Pareto weights for individuals with certain histories.

In the remainder of this paper, we use the notions wealth, savings or capital for at inter-
changeably. Also note that the way we define τs, it is a stock tax not a flow tax. However, there
is always a one to one mapping between such a stock tax on at and a tax on capital income
rat. Thus, there is no loss of generality in the way we defined τs. In the following, we use the
notions capital taxes, wealth taxes and capital income taxes interchangeably. Further note that
the way we define capital taxes implies that borrowing is subsidized at the same rate as saving
is taxed.9

Relation to Ramsey and Mirrlees Approaches. The tax problem we look at lies at
the intersection of previously considered instruments. As in the public economics taxation

8We allow agents to borrow up to natural debt limit (see Aiyagari (1994)). There are two differences
to Aiyagari (1994): First, labor supply is endogenous; the minimal amount of future earnings in period s is∑T
t=s yt(θ). Secondly, individuals can actually not borrow that much as repaying everything would yield zero

consumption and a negative argument in U (·) because of the disutility of labor. Therefore, in the absence of
taxes, the maximal amount of debt is

∑T
t=s

(
yt(θ)−Ψ

(
yt(θ)
θ

))
.

9One could impose a zero subsidy (tax) on borrowing as an additional constraint. This would make notation
more burdensome without changing the main results on the desirability of non-zero capital taxes.
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approach, the labor tax is fully nonlinear with no parametric restrictions. However, as we
consider a life cycle we also characterize linear savings taxes. In the Ramsey approach one
typically considers linear labor and savings taxes. The Ramsey equivalent to our problem would
be a parametric restriction on T , e.g., a linearity restriction. In that sense, the allocations that
can be attained via a Ramsey approach are a subset of the allocations, that we can attain with
our policy instruments. In a NDPF approach, policy instruments are normally only restricted
by informational asymmetries. Therefore, the the set of allocations that we can attain with our
policy instruments is a subset of the allocations that can be reached via the NDPF approach.

2.3 Individual Problem Given Taxes

Each period, individuals make a work and savings decision. Formally, the recursive problem of
individuals given taxes reads as:

Vt(θt, at, T , τs) = max
at+1,yt

U

(
yt − T (yt) + (1 + r)(1− τs)at − at+1 −Ψ

(
yt
θt

))
+ Et [Vt+1(θt+1, at+1, T, τs)] , (1)

where a1 = 0 and aT ≥ 0. Based on the assumption on preferences, the following lemma
directly follows:

Lemma 1. The optimal gross income yt that solves (1) is independent of assets, the savings
tax rate τs and the labor income tax schedule T . It is thus only a function of the current shock
and of the labor income tax schedule: y(θt, T ).

This will greatly simplify the optimal tax analysis. For the resulting allocation, this implies
that yt is only a function of θt and not of θt. The savings decision of individuals, in contrast,
will depend on all state variables: at+1(θt, at, T, τs). Recursively inserting, one can also write
at+1(θt, T, τs). For the resulting allocation, this implies that assets are a function of the history
of shocks: at+1(θt).

2.4 The Social Planner’s Problem

The tax problem of the social planner is then:

max
T,τs

∫
Θ

V1(θ1, 0, T, τs)dF̃1(θ1) (2)

where V1(θ1, 0, T , τ) is the solution to (1) for each θ1 and subject to an intertemporal budget
constraint:10

10If we integrate over different histories θt, then within the integral we use θt to denote the last element of
θt.
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T∑
t=1

1

(1 + r)t−1

∫
Θt
T (y(θt))ht(θ

t)dθt

+
T∑
t=2

1

(1 + r)t−1

∫
Θt−1

τs(1 + r)at(θ
t−1, T , τs)ht−1(θt−1)dθt−1 ≥ R (3)

where R is some exogenous revenue requirement of the government.
Constraint (1) makes the solution of the problem with Lagrangian methods nontrivial. In

the following subsection, we argue that (1) can be replaced by a set of first-order conditions
for at+1 and yt and a monotonicity condition on yt that is well known from the static Mirrlees
literature.

2.5 First-Order Approach

In the remainder of this paper, we will suppress the dependence of assets and gross income on
taxes. We will thus write y(θt) instead of y(θt, T ) and at(θt−1) instead of at(θt−1, T , τs).

We now want to show how (1) can be replaced by two first-order conditions and a monotonic-
ity constraint. The set of first-order conditions for the individual problem (1) are standard. For
the labor supply decision, they are particularly simple because the problem does not depend
on t but only on the realized shock. The reason is that labor income taxes do not depend on
time. Thus, we have ∀ θ ∈ Θ:

1− T (y(θ)) = Ψ′
(
y(θ)

θ

)
1

θ
. (4)

For the savings decision, the first order condition ∀t = 1, ..., T − 1 and ∀θt ∈ Θt is given by:

U ′
(
y(θt)− T (y(θt))− at+1(θt) + (1− τs)at(θt−1)−Ψ

(
y(θt)

θt

))
=(1− τs)

∫
Θ

U ′

(
y(θt+1)− T (y(θt+1))− at+2(θt, θt+1)

+ (1− τs)at+1(θt)−Ψ

(
y(θt+1)

θt+1

))
dFt+1(θt+1|θt). (5)

These conditions are only necessary and not sufficient for the agents’ choices to be optimal. Due
to the assumption about preferences, however, the second-order conditions are of particularly
simple form. The derivative of the first-order condition of labor supply with respect to con-
sumption, i.e. the cross derivative of the value function, is zero. By symmetry of the Hessian,
the same holds for the derivative of the Euler equation with respect to labor supply. Thus,
the minor diagonal of the Hessian matrix contains only zeros. For (4) and (5) to represent a
maximum, only the second derivatives of the value function with respect to labor supply and
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consumption have to be ≤ 0. For labor supply, a familiar argument from the standard Mirrlees
model implies that this holds if and only if11

y′(θ) ≥ 0 ∀ θ ∈ Θ. (6)

The second-order condition for savings is always fulfilled due to concavity of the utility function.
Hence, (4) and (5) represent a maximum whenever y′(θ) ≥ 0. As y′(θ) ≥ 0 even implies global
concavity, (4) and (5) represent a global maximum if y′(θ) ≥ 0 holds.

In a final step, we make use of a change of variables and define M(θt) = y(θt) − T (y(θt)).
Applying this for (4) is still problematic as it contains T ′, however. To tackle this problem, we
make use of the following derivative

∂
(
y(θ)− T (y(θ))−Ψ

(
y(θ)
θ

))
∂θ

= y′(θ)(1− T ′(y(θ)))−Ψ′
(
y(θ)

θ

)[
y′(θ)

θ
− y(θ)

θ2

]
.

Inserting (4) into this derivative yields:

∂
(
y(θ)− T (y(θ))−Ψ

(
y(θ)
θ

))
∂θ

= Ψ′
(
y(θ)

θ

)
y(θ)

θ2
. (7)

Thus, (7) is equivalent to (4). Next, we apply the change of variables M(θ) = y(θ) − T (y(θ))

for the LHS of (7), which leads to a problem that can be solved with calculus of variation or
optimal control:

Proposition 1. Instead of choosing T and τs to maximize (2) subject to (1) and (3), the planner
can also choose {M(θ), y(θ)}θ∈Θ, {{at(θt−1)}θt−1∈Θt−1}t=1,...,T and τs subject to (3), (5), (6) and
(7), where y(θ)− T (y(θ)) = M(θ).

The approach can also be interpreted as a restricted direct mechanism that is augmented by
a savings choice. Agents report their type θt and the planner assigns bundles (M(θt), y(θt)) – it
is a restricted mechanism because the planner cannot makeM and y conditional on the history
of shocks. We provide the Lagrangian and the first-order conditions in Appendix A.1. When
solving for optimal policies, we do not incorporate the monotonicity constraint (6) into the
Lagrangian, as is standard practice in the optimal tax literature. In the numerical simulations
we ex-post check whether the monotonicity condition is fulfilled or not.

3 Optimal Taxation

We now characterize optimal labor and capital income taxes. Importantly, the formulas for
labor and savings taxes are also valid if the other instrument is not chosen optimally.

11See, e.g., Salanié (2003, p.87 ff).
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3.1 Labor Income Taxes

We directly start with the characterization of optimal marginal tax rates.

Proposition 2. Optimal marginal tax rates on labor income y(θ) satisfy:

T ′(y(θ))

1− T ′(y(θ))
=

(
1 +

1

ε

)
1

θ
∑T

t=1
1

(1+r)t−1ft(θ)
×

T∑
t=1

[Mt(θ) + St(θ)] , (8)

where

Mt(θ) =
λ

(1 + r)t−1

∫
Θt−1

∫ θ

θ

dFt(θ̃|θt−1)ht−1(θt−1)dθt−1

− 1

(1 + r)t−1

∫
Θt−1

∫ θ

θ

U ′(θt−1, θ̃)dFt(θ̃|θt−1)h̃t−1(θt−1)dθt−1 (9)

and

St(θ) = −
∫

Θt−1

∫ θ

θ

µt(θ
t−1, θ̃)U ′′(θt−1, θ̃)dθ̃dθt−1

+ (1− τs)
∫

Θt−1

µt−1(θt−1)

∫ θ

θ

U ′′(θt−1, θ̃)dFt(θ̃|θt−1)dθt−1, (10)

where µt(θt) is the Lagrangian multiplier on the Euler equation of individuals with history θt

and λ is the Lagrangian multiplier on the government budget constraint, i.e. the marginal value
of public funds. In Appendix A.2, we derive expressions for these multipliers. Further, we have
T ′(y(θ)) = 0, and T (y(θ)) = 0 – i.e. no distortion at the bottom and top – if θ <∞.

The mechanical effect Mt(θ) is similar as in the static model. In the life-cycle model, it
is defined for every period t. An important difference is, however, that it now also captures
the insurance motive of taxation on top of redistributive concerns. We disentangle the welfare
gains from redistribution and insurance in Section 3.2.
St(θ) captures the impact of labor income taxes on the Euler equation constraints (5). For

τs = 0 this additional term is equal to zero because the values of the Lagrangian multipliers
on the Euler equations are equal to zero. Relaxing or tightening the Euler equations has no
first-order effect on welfare because it does not affect incentives to supply labor. Only for
τs 6= 0, relaxing or tightening the Euler equations has a first-order impact on welfare through
the implied change in capital tax revenue.

Alternatively, one can derive (8) with a tax perturbation (Piketty (1997), Golosov, Tsyvinski,
and Werquin (2014)). In that case, the term St(θ) gets a straightforward economic interpre-
tation. We briefly sketch this perturbation argument. Consider – starting from the optimal
tax system – an infinitesimal increase of the marginal tax rate ∆T ′ at an infinitesimal income
interval with length ∆y(θ) around income level y(θ). Since the tax system was optimal, this
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should have no first-order effect on welfare. The impact on welfare can be decomposed into
three effects.

First, there is a mechanical welfare effect from taking money from individuals with income
> y(θ). It is given by Mt(θ) × ∆T ′∆y(θ) for each period t. It depends on redistributive
preferences – i.e. the Pareto weights – of the planner, the degree of risk aversion as well as on
the share of individuals with income > y(θ) in period t.

Second, an increase in the marginal tax rate triggers a loss in tax revenue which is induced by
lower labor supply of individuals of type θ. It is well known from the tax perturbation literature
that this can be captured by LSt(θ)×∆T ′∆y(θ), where LSt(θ) ≡ −λ T ′(y(θ))

1−T ′(y(θ))
θ ε
ε+1

1
(1+r)t−1ft(θ)

for each period t, see e.g. Piketty (1997). The change in labor supply has no direct impact on
welfare by the envelope condition.

Third, the tax perturbation also impacts the savings decision in each period and therefore
changes welfare through the implied change in revenue from the savings tax by ∆T ′∆y(θ) ×
Spert(θ), where:12

Spert(θ) = λτs

T∑
j=2

(1 + r)j−2

∫
Θj−1

∫ θ

θ

∂aj(θ
j−1)

∂T (y(θ̃t))
dθ̃thj−1(θj−1)dθj−1. (11)

The sign of Spert(θ) is ambiguous. On the one hand, higher labor taxes reduce savings by an
income effect as it reduces resources available to save for all individuals. On the other hand,
higher labor taxes also mean that tax burdens in the future are higher, which drives up the
need for savings. Finally, higher labor taxes also imply a higher degree of social insurance which
reduced the demand for savings as a self-insurance device. In our simulations we come back to
the issue and check how much Spert(θ) contributes quantitatively to optimal labor taxes.

Given that the initial tax function was optimal, the overall impact on welfare must add up
to zero:

∆T ′∆y(θ)×

(
Spert(θ) +

T∑
t=1

(LSt(θ) +Mt(θ))

)
= 0. (12)

Solving (12) for T ′(y(θ))
1−T ′(y(θ))

reveals that we have to have Spert(θ) =
∑T

t=1 St(θ) given that (12)
has to imply the same optimality condition as Proposition 2.

Obtaining analytical expressions for Spert(θ), is quite complex in a stochastic environment
because expressions for ∂aj(θ

j−1)

∂T (y(θ̃t))
are needed. Using St(θ) instead provides a way to analytically

capture these effects that we also exploit in our numerical simulations.13 For intuition and
interpretation on the other hand, (11) is more suitable.

12This effect on savings behavior also has no direct first-order effect on welfare because of the envelope
theorem.

13In an earlier version of this paper, we formally show the equivalence between the two approaches for a three-
period economy (Findeisen and Sachs 2014). Deriving savings responses for the three-period case is already
quite involved.

10



3.2 Insurance – Redistribution Decomposition

We now show how the role of income taxes in a dynamic environment can be cleanly decomposed
into an insurance and a redistribution component.14 Specifically, we decompose the mechanical
effect from the last section. Recall its definition for an increase of the marginal tax rate at
income level y(θ):

Mt(θ) =

∫
Θt−1

∫ θ

θ

(
λht(θ

t−1)

(1 + r)t−1
− U ′(θt−1, θt)h̃t−1(θt−1)

(1 + r)t−1

)
dFt(θt|θt−1)dθt−1. (13)

M1(θ) measures the redistributive gain from income taxation in period one. Mt(θ) with t > 1

captures both, welfare gains of taxation from redistribution between ex-ante heterogeneous
individuals and insurance against idiosyncratic uncertainty in the t-th period. Whereas the
gains from redistribution depend on the particular set of Pareto weights, gains from insurance
are independent of the welfare criterion – this is formalized in the next proposition:

Proposition 3. The mechanical effectMt(θ) can be decomposed into two parts:

Mt(θ) =MI
t (θ) +MR

t (θ),

where
MI

t (θ) =
λ

(1 + r)t−1

∫
Θt−1

[
(1− Ft(θ|θt−1))− CU(θt−1; θ)

]
ht−1(θt−1)dθt−1 (14)

and

MR
t (θ) =

∫
Θt−1

(
λht−1(θt−1)

(1 + r)t−1
−
h̃t−1(θt−1)

∫
θt
U ′(θt−1, θt))dFt(θt|θt−1)

(1 + r)t−1

)
× CU(θt−1; θ)dθt−1

(15)

with

CU(θt−1; θ) =

∫ θ
θ
U ′(θt−1, θt)dFt(θt|θt−1)∫ θ

θ
U ′(θt−1, θt)dFt(θt|θt−1)

.

It can easily be shown that adding (14) and (15) yields (13). Whereas (15) depends on the
set of Pareto weights, (14) is independent of the redistributive preferences. In the following we
use an intuitive perturbation argument to show that MI

t (θ) indeed captures the mechanical
insurance value of taxation andMR

t (θ) captures the mechanical impact of taxation on welfare
through redistribution between ex-ante heterogeneous agents.

14Relatedly, Boadway and Sato (2012) derive a formula for the optimal marginal tax rate in a static setting
with heterogeneity and uncertainty. They also show how their formula addresses the desire to redistribute and
to provide insurance. Their timing is different, however. In their setup, individuals do not perfectly know the
gross income they will earn when making their labor supply decision because gross income will be a function of
labor supply and a stochastic term.
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For this purpose we slightly reinterpret the classical tax perturbation method. For ease
of exposition, we consider the case without capital taxation.15 Further, w.l.og. we normalize
the tax perturbation such that ∆T ′∆y(θ) = 1. Thus for incomes above y(θ) tax payment T is
increased by one dollar. The overall net present value (NPV) mechanical tax revenue increase of
this reform is given by:

∑T
t=1

1
(1+r)t−1 (1− Ft(θ)). Then, assume that the additional tax revenue

generated by this increase is redistributed in a lump sum fashion:16 The uniform lump-sum tax
increase is given by

∆(θ) =

∑T
t=1

1
(1+r)t−1 (1− Ft(θ))∑T

t=1
1

(1+r)t−1

.

Individuals with θ1 < θ will enjoy higher period one consumption of ∆(θ), whereas period
one consumption for individuals with θ1 ≥ θ will decrease by 1 − ∆(θ). Whether period t

consumption will be increased or decreased depends on the realization of the shock. From a
period t − 1 perspective, the reform of the tax function in period t will provide an insurance
value. To obtain an expression for this insurance value, define for each type θt−1 a ‘constant
utility term’:

CU(θt−1; θ) =

∫ θ
θ
U ′(θt−1, θt)dFt(θt|θt−1)∫ θ

θ
U ′(θt−1, θt)dFt(θt|θt−1)

.

The numerator captures the (expected) utility loss in period t due to the tax increase (absent
the lump-sum tax adjustment). Dividing it by the expected marginal utility in period t says
by how much consumption had to be increased in period t, for every possible realization of the
t-period shock, in order to make the individual of type θt−1 in expectation equally well of. This
number is smaller than one because (i) the tax increase in period t affects the individual in
period t with probability less than one and because of (ii) risk aversion.

To measure the welfare gain through this insurance role of income taxation, we ask the
following question: If the government could increase the lump-sum transfer in period t by a
different amount for each θt−1-history such that expected period t utilities are unchanged for
all θt−1-types (i.e. by CU(θt−1; θ) respectively), how much resources could the government save
due to this insurance against income risk? From each individual of type θt−1, the government
obtains tax revenue of 1−Ft(θ|θt−1)

(1+r)t−1 in NPV. To hold utility constant for that individual from a

period t− 1 perspective, only CU(θt−1;θ)
(1+r)t−1 of resources have to be spent (in NPV). The difference

1−Ft(θ|θt−1)
(1+r)t−1 − CU(θt−1;θ)

(1+r)t−1 then captures the NPV resource gain from this hypothetical reform. It

15The presence of a non-zero capital tax τs has no impact on the decomposition in Proposition 3, however,
the perturbation argument is a bit more involved. In Appendix A.4 we show how the perturbation argument
differs in that case.

16This lump sum increase has no first-order impact on welfare via the implied responses of savings behavior.
The reason is that the change in behavior has no first-order impact on individual utilities by the envelope
theorem and that there is no effect on the government budget because wealth taxes are zero. An equivalent
option would be to redistribute the lump sum in the first period. But also in the presence of a savings tax
a slightly related tax reform can be constructed to obtain the decomposition of the mechanical effect. See
Appendix A.4 for the proof.
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is simple to show that it is always positive. Adding up and integrating over all histories yields
(14). MI

t (θ) reflects the gains from insurance for individuals in period t−1 against their period
t shocks. This insurance gain is measured in first period resources. The more pronounced labor
income risk, conditional on θt−1, and the stronger risk aversion, the larger is this insurance
effect.

This consideration, however, was hypothetical because the lump-sum transfer in period t

is not increased by CU(θt−1; θ) for type θt−1 but by ∆(θ) instead, expected period t utility
therefore does not stay constant. Instead expected utility for individuals of type θt−1 increases
by

R(θt−1; θ) = ∆(θ)− CU(θt−1; θ)

in monetary terms, which can be either positive or negative. The larger θt−1, the larger
CU(θt−1; θ) and the lower R(θt−1; θ). R(θt−1; θ) captures the redistributive element of this tax
reform for period t. To derive the welfare consequences of this implied redistribution, recall that
R(θt−1; θ) measures the expected utility increase of type θt−1 in monetary terms. A marginal
increase in consumption in period t for individuals of type θt−1 (and for each realization of the
shock θt) is valued

βt−1

∫
Θ

U ′(θt−1, θt)dFt(θt|θt−1)h̃t−1(θt−1)− λ

(1 + r)t−1
ht−1(θt−1)

by the planner. Thus, aggregating over all types and weighing by R(θt−1; θ) yields:

MR∗
t (θ) =

∫
Θt−1

(
λht−1(θt−1)

(1 + r)t−1
−
h̃t−1(θt−1)

∫
θt
U ′(θt−1, θt)dFt(θt|θt−1)

(1 + r)t−1

)
×
(
CU(θt−1; θ)−∆(θ)

)
dθt−1. (16)

The last term ∆(θ) can now be ignored because it is independent of θt−1 and because it is
possible to show that

∫
Θt−1

(
λht−1(θt−1)

(1 + r)t−1
−
h̃t−1(θt−1)

∫
θt
U ′(θt−1, θt)dFt(θt|θt−1)

(1 + r)t−1

)
dθt−1 = 0.

This follows from the expression for λ which says that average period one social marginal
utility is equal to λ (see Appendix A.2) and the Euler equations. Combining this with (16)
yieldsMR

t (θ) as defined in (15).
These arguments reveal that (15) indeed measures the welfare effect through redistribution

between ex-ante heterogeneous agents. The CU(θt−1; θ)-term should be higher for high θt−1-
types because they are likely to draw a better shock in Period t. For redistributive Pareto-
weights (i.e. F (θ1) ≤ F̃ (θ1) for each θ1) the termMR

t (θ) should therefore be positive at every
θ. If Pareto weights are sufficiently strong in favor of high innate types, the welfare effect from
redistribution can, intuitively, become negative. We investigate and illustrate the decomposition
in our numerical simulations.
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3.3 Capital Income Taxes

We now turn to the question of the optimal capital tax. As for the marginal labor income tax
formula, our optimal capital tax formula does not only hold for optimal labor income taxes but
also for suboptimal labor income taxes.

Proposition 4. The optimal linear capital tax rate τs satisfies:

τs
1− τs

=

∑T
t=2

1
(1+r)t−2

∫
Θt−1 at(θ

t−1)
[
ht−1(θt−1)−

∫
Θ
U ′(θt−1,θ̃t)dFt(θ̃t|θt−1)

λ
h̃t−1(θt−1)

]
dθt−1∑T

t=2
1

(1+r)t−2

∫
Θt−1 at(θt−1)ζat,1−τs(θ

t−1)ht−1(θt−1)dθt−1
,

where ζat,1−τs(θt−1) is the elasticity of savings with respect to (one minus) the tax rate on capital
for individuals of history θt−1.

We now provide a brief intuitive derivation. Assume that starting from the optimal capital
tax rate, the government slightly increases it. This small change will mechanically increase tax
revenue in present value terms by

T∑
t=2

1

(1 + r)t−2

∫
Θt−1

at(θ
t−1)ht−1(θt−1)dθt−1. (17)

The tax increase decreases utility of individuals. This impact on the planner’s objective (in
terms of public funds) is given by

T∑
t=2

βt−1(1 + r)

∫
Θt−1

at(θ
t−1)

∫ θ

θ

U ′(θt−1, θ̃)

λ
dFt(θ̃|θt−1)h̃t−1(θt−1)dθt−1. (18)

It also influences the savings decision of individuals, which has no first-order impact on indi-
vidual utility but on public funds, which is given by:

T∑
t=2

τs
(1 + r)t−2

∫
Θt−1

∂at(θ
t−1)

∂τs
h(θt−1)dθt−1

=
T∑
t=2

− 1

(1 + r)t−2

τs
1− τs

∫
Θt−1

ζat,1−τs(θ
t−1)at(θ

t−1)h(θt−1)dθt−1. (19)

Note that for τs = 0 this effect is of second order indicating that increasing or decreasing τ
from zero has no first-order incentive costs and a non-zero capital tax is desirable whenever
(17)|τ=0 + (18)|τ=0 6= 0.

For τ 6= 0, however, it holds that (19) 6= 0. Optimality of τs then requires (17)+(18)+(19) =

0, which yields (4) (assuming β(1 + r) = 1). Developing a novel dynamic tax reform approach,
Golosov, Tsyvinski, and Werquin (2014) look at the welfare effects of an increase of a linear
capital tax rate starting from any given tax system and obtain a formula similar to (4). In
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Appendix A.1 we also provide a first-order condition for the optimal linear capital tax rate in
terms of the Lagrangian multiplier functions on the Euler equations, see equation (23).

Whereas formula (4) applies for optimal and suboptimal labor income taxes, its quantitative
implications are sensitive with respect to the labor income tax schedule. On the one hand, the
more progressive the labor income tax function, the less concentrated is wealth, which lowers
the power of capital taxes for redistribution and insurance as captured by the numerator of (4).
On the other hand, the lower the level of labor income taxation, the less insured individuals
are against labor income risk and the stronger the need for self-insurance through savings. A
strong need for self-insurance implies a lower responsiveness of savings with respect to capital
taxes. Both effects call for higher capital taxation if labor income taxes are lower. We study
this in detail in the numerical section.

Relation To Previous Public Finance Literature. In the NDPF -literature, savings
wedges are usually interpreted to arise because of income effects on labor supply and comple-
mentarities between consumption and labor (Golosov, Troshkin, and Tsyvinski 2015). The first
channel of income effects is shut down in our framework by assumption. Moreover, our analysis
show that complementarities do not show up to have a direct effect on optimal linear capital
tax rates when the tax instruments are history-independent and there are no income effects.
Only the trade-off between redistribution of capital income and incentives for savings matter
for the optimal level of the capital tax.

In Blomquist and Micheletto (2008), who consider age-dependent nonlinear taxes in a two
period model with ex-ante homogenous agents, which can end up as a high or low skilled
agent in period 2. Savings are taxed to relax the incentive constraint in period 2 due to an
income effect on labor supply. Savings are not taxed for redistributive issues because ex-ante
homogeneous all save the same amount.17 Jacobs and Schindler (2012) show that in a two-
period model with linear labor taxes, a similar role for the capital tax as in the NDPF -literature
arises as capital taxes have the positive effect of boosting labor supply in the second period.
In their framework, a positive capital tax also provides insurance against idiosyncratic risk. In
addition, their timing assumptions are also different in that individuals make consumption and
labor supply decisions before their shock realizes. Finally, Piketty and Saez (2013b) derive a
formula for the optimal linear inheritance tax in an overlapping generations framework. As
for the formulas presented in this paper, equity-efficiency considerations are key to understand
optimal bequest taxation.

17Bastani, Blomquist, and Micheletto (2011) numerically elaborate a similar discrete type model with ex-ante
heterogeneity and raise a similar argument for taxing savings in order to relax incentive constraints.
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4 Simulation

4.1 Calibration

There is large literature on the estimation of earnings dynamics over the life cycle – see Meghir
and Pistaferri (2011) and Jappelli and Pistaferri (2010) for recent surveys. For the parameteri-
zation of our model, we use the recent empirical approach taken by Karahan and Ozkan (2013).
In their analysis, they estimate the persistence of permanent shocks as well as the variance of
permanent and transitory income shocks for US workers. Innovatively, and in contrast to most
previous work in this strand of the literature, they allow these parameters to be age-dependent
and to change over the life cycle. They find two structural breaks in how the key parameters
change over the life cycle, giving three age groups, in which income dynamics are governed by
the same risk parameters.

We base our parameterization on their results. Given the estimates of Karahan and Ozkan
(2013) for the evolution of income over the life cycle18, we simulate a large number of labor
income histories. We describe the process for earnings risk over the life cycle in detail in
Appendix B.

We then partition individuals into three age-groups (corresponding to three periods in the
model), namely 24-36, 37-49 and 50-62. Last, we calibrate the cross sectional income dis-
tributions for each age group and the respective transition probabilities. Figure 5 in Ap-
pendix B shows the three cross-sectional income distributions for each age group. To complete
the parametrization of the model, we calibrate all conditional skill distributions from their
income counterparts, as pioneered by Saez (2001).19

We assume that the utility function is of the form

U(c, y, θ) =

(
c− ( yθ )

1+ 1
ε

1+ 1
ε

)1−ρ

1− ρ
.

For the benchmark, we set ε = 0.33 (Chetty 2012). Our conclusions from the simulations are
not sensitive to the choice of the labor supply elasticity. For the coefficient of relative risk
aversion we look at different values; in the benchmark scenario we chose ρ = 1.5 (Chetty 2006).
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Figure 1: ‘Laissez-Faire’ Pareto Weights

4.2 Optimal Policies

In Figure 1(a) we plot optimal marginal tax rates on labor income for different values of risk
aversion. Marginal tax rates are decreasing in income which is similar to the pattern found in
the static Mirrlees model when productivities are log-normal distributed.

Moreover, taxes are increasing in risk aversion. If risk aversion increases, so does the in-
surance value of taxation. At the same time also the redistributive desire increases because
marginal utility is decreasing faster in income.

Figure 1(b) illustrates the insurance and redistribution components of the mechanical effect
at the Utilitarian optimum as discussed in Section 3.2 for ρ = 1.5. We plot each component
added up over all periods:

∑3
t=1Mt(θ),

∑3
t=1MI

t (θ) and
∑3

t=1MR
t (θ). By definition,MI

1(θ) =

0, as in the first period taxes purely redistribute but do not provide any insurance value. All
three functions are hump-shaped. Moreover, the insurance and redistribution effects co-move
closely across the income distribution. Interestingly, for this Utilitarian case, the insurance
component is slightly bigger than the redistribution component for all income levels, however,
the magnitude of effects are close together.

The optimal tax rate on capital income is 14.82%. We recalculate the tax on the stock of
capital τs such that it can be interpreted as an annual tax rate on capital income, following
Farhi, Sleet, Werning, and Yeltekin (2011).20 In the next section, we show that the level of the

18We gratefully acknowledge that they shared some estimates with us that are not directly available from
their paper.

19We back out the skill from the first-order condition of individual labor supply given an approximation of
the current US-tax system, a linear tax rate of 30%. Our results are robust to using parametric nonlinear tax
functions fitted to the US system.

20As Farhi, Sleet, Werning, and Yeltekin (2011), we calculate the tax on annual capital income as a relative
geometric average τCI,annual according to

1− τCI,annual =
((1− τs) ∗ (1 + r))1/T − 1

(1 + r)1/T − 1
,
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optimal capital tax rate can change significantly if the labor income tax code is not set at the
optimal but some exogenous level.

4.3 The Interaction of Labor and Capital Taxation

An advantage of our history-independent tax approach is that it also allows to study optimal
capital taxation given some labor income tax schedule and vice versa. Studying this interaction
between capital and labor income taxation is not possible in the static Mirrlees model. This
interaction is, in general, also not studied in a dynamic Mirrlees approach, since both labor
and capital wedges are part of the dynamic mechanism design solution.

4.3.1 Optimal Capital Taxes for Given Labor Taxes

The optimal capital income tax formula (4) applies for optimal and suboptimal labor income
taxes. We quantitatively explore savings taxes under different scenarios and consider the opti-
mal capital tax given (i) the optimal labor income tax (as in Section 4.2), (ii) an approximation
of the current US labor income tax schedule21, (iii) zero labor income taxes and (iv) a very
progressive labor income tax code which is as in (ii) but marginal tax rates are increased by 50
percentage points at each point. In terms of the amount of redistribution carried through the
labor tax system, scenario (iv) features the most progressive schedule, followed by the optimal
schedule (i), and then the current schedule (iii) and finally the zero tax case.

Table 1 summarizes the results. There are very large differences across the four scenarios.
The optimal tax rate on annual capital income varies between 3% and 51%. In line with the
argumentation from above, the less progressive the labor income tax schedule the higher the
optimal capital tax rate and also the implied welfare gains from capital taxation.22 Wealth
inequality increases if the labor tax code is less redistributive: going from the case with zero
labor taxes to the high tax scenario (iv), the wealth share held by the top 10% of the wealth
distribution in the last period increases from 64% to over 80%.23

As argued above, a more progressive labor income tax schedule calls for lower capital income
taxation not only because of lower wealth concentration but also because individuals need to
provide less self-insurance through precautionary savings and should therefore be more elastic
w.r.t. capital taxes in their savings decision. To disentangle these effects, we decompose (4) to
see what part of the variation in optimal capital tax rates across the four scenarios is driven
by the the desire to redistribute wealth, captured by the numerator, and behavioral responses,

where T = 13 is the number of years per model period and and r = 1.0313 − 1.
21Here, we use the Gouveia-Strauss specification of Guner, Kaygusuz, and Ventura (2013), who provide

different parametric approximations of the US tax system.
22As is standard, we measure the welfare gains in consumption equivalents. Concretely, we ask by how much

percent consumption in the zero-capital tax scenario would have to be increased for each individual in each
period such that welfare is as high as in the optimal capital tax scenario.

23For brevity, we do not provide comparative statics w.r.t. the CRRA coefficient. A higher CRRA coefficient
increases both, the size and the welfare gain of capital taxation, see also an earlier version of this paper (Findeisen
and Sachs 2014).
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Form of Labor Taxation

Optimal Nonlinear (Mirrlees) Current System Zero Labor Taxes High and Progressive

Optimal Tax Rate on
Annual Capital Income 14.82% 31.28% 51.18% 2.97%

Welfare Gain From
Taxing Capital 0.05% 0.23% 0.83% ≈ 0.00%

Table 1: Optimal Capital Tax Rates For Given Labor Tax Systems (Utilitarian Planner, CRRA
Coefficient of 1.5)
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Figure 2: Optimal Labor Income Taxes for given Capital Income Taxes

captured by the denominator. Going from the zero labor tax case to the high tax scenario,
the numerator decreases by a factor around six and the denominator increases by a factor
around three. Wealth inequality and the strength of behavioral responses, hence, both matter
in explaining the variation in optimal capital tax rates and the decomposition results imply a
larger role for the wealth inequality component.

4.3.2 Optimal Labor Income Taxes for Given Capital Taxes

The optimal labor income tax schedule is still described by (8) – the formula holds for any level
of the capital tax rate τs. The optimal labor income tax schedule is nevertheless influenced by
the degree of capital taxation because the level of the capital tax rate impacts the termsMt(θt)

and SI(θ). The higher the capital tax rate, the weaker the desire for redistribution through
labor income taxes as captured byMt(θt). The impact on SI(θ) is ambiguous.

Our quantitative exploration reveals that the level of the capital tax rate is relatively unim-
portant for the design of optimal labor income taxes. For example, if we compare the two
extreme cases (i) zero capital taxes and (ii) very high capital taxes of 52% (which was the
highest level in Table 1), the difference in the optimal labor income tax schedule is relatively
small, see Figure 2. The schedules differ by at most two percentage points.
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This result strongly contrasts with the finding that the optimal capital tax rate is strongly
influenced by the labor income tax schedule. What is driving this asymmetry? The reason is
that capital taxes hardly influence the redistributive power of labor income taxes. In particular,
the distribution of labor income which is of key importance for optimal marginal tax rates, is
not affected by the level of capital income taxation. The level of the capital tax rate only
influences the mechanical effects (9) and the savings effect. However, these forces are of second
order numerically. By contrast, the redistributive power of capital taxes heavily depends on
inequality in savings, which in turn is strongly affected by the labor income tax code.

A Naive Planner: Using a Static Labor Tax Formula Given that the level of optimal
labor income taxes hardly depends on the level of the savings tax, a natural question is how
bad a planner who ignores the direct impact of labor taxes on savings tax revenue performs in
terms of welfare. The planner in this scenario uses the optimal tax formula (8) with (10) set to
zero. Thus, a government is considered that does not take into account the impact on public
funds through the implied savings responses of individuals. Our simulation reveals that both,
the effects on the optimal tax schedule and on welfare of using this static formula is minuscule.
The welfare loss is only 0.01% in consumption equivalents.

4.4 A Social Insurance Lower Bound on Taxes

In a framework with heterogeneous agents, there is no correct or wrong normative objective.
Typically the literature focuses on the Utilitarian and Rawlsian objective or intermediate cases.
We leave this path and instead also ask the following question: To what extent can redistributive
taxation be grounded on the idea of social insurance? We therefore make the following thought
experiment: We consider a static economy where productivities are distributed as in the first
period of our dynamic economy. We then consider a static Mirrlees problem and back out the
Pareto weights that would yield the laissez-faire equilibrium as the optimum, i.e. that point on
the Pareto frontier with zero redistribution in a static economy. The respective Pareto weights
are illustrated in Figure 3(a); richer individuals obtain a higher weight as compared to their
population share.

Figure 3(b) contains the results for optimal marginal tax rates in this case. Tax rates start
at about 25%, then they fall, slightly increase again and finally converge to a level around 10%.
Given the choice of the welfare objective, this result must be based on the insurance value of
taxation. Our decomposition of the mechanical effect into an insurance and a redistribution
effect that we derived in Section 3.2 provides the analytical tools to illustrate the insurance
value. In Figure 4, we illustrate the decomposition. Given that the planner does not value
redistribution, the redistribution effect is negative. In fact the planner dislikes the fact that
positive marginal tax rates imply redistribution from initially high skilled to initially low skilled,
which is illustrated by the red dashed curve. However, the planner positively values the amount
of insurance against income risk that is provided by taxation because also initially high-skilled
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benefit from social insurance; this is illustrated by the black dashed-dotted curve. Interestingly,
the value of insurance is even higher than in the Utilitarian case (compare Figure 1(b)). The
reason is that tax rates are larger in the Utilitarian case and therefore the level of insurance
provided is larger, which in turn implies that the marginal gain from additional insurance is
smaller.

5 Conclusion

We contribute to the optimal taxation literature in public economics by studying labor and
capital income taxation in life-cycle model with risk. This allows to decompose optimal taxes
into an insurance and redistribution component. For the optimal capital income tax, simple
equity-efficiency considerations are first-order. Optimal capital taxes are, hence in general,
non-zero. In the model savings taxes are not redundant as individuals are heterogenous with
respect to labor income and capital income over their life cycle. Finally, our contribution is also
technical. We believe our approach laid out in Section 2 is also attractive for future applications
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where dynamics and nonlinear taxation are important.24 Examples are models of retirement
or a life-cycle model with also the extensive margin of labor supply.

24We apply this approach in the context of education in a model with multidimensional heterogeneity in
Findeisen and Sachs (2015a).
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A Appendix

A.1 Lagrangian and First-Order Conditions

L =
T∑
t=1

βt−1

∫
Θt
U

(
M(θt)− at+1(θt) + (1− τs)(1 + r)at(θ

t−1)−Ψ

(
y(θt)

θt

))
h̃(θt)dθt

+ λ
T∑
t=1

1

(1 + r)t−1

∫
Θt−1

∫
Θ

y(θt)−M(θt) + τs(1 + r)at(θ
t−1)dF (θt|θt−1)h(θt−1)dθt−1

+
T−1∑
t=1

∫
Θt
µt(θ

t)

[
U ′
(
M(θt)− at+1(θt) + (1− τs)(1 + r)at(θ

t−1)−Ψ

(
y(θt)

θt

))

− β(1 + r)(1− τs)
∫

Θ

U ′

(
M(θt+1)− at+2(θt, θt+1)

+ (1− τs)(1 + r)at+1(θt)−Ψ

(
y(θt+1)

θt+1

))
dF (θt+1|θt)

]
dθt

+

∫
Θ

η(θ)
∂
(
M(θ)−Ψ

(
y(θ)
θ

))
∂θ

dθ −
∫

Θ

η(θ)Ψ′
(
y(θ)

θ

)
y(θ)

θ2
dθ.

Partially integrating
∫

Θ
η(θ)

∂(M(θ)−Ψ( y(θ)
θ ))

∂θ
dθ yields

η(θ)

(
M(θ)−Ψ

(
y(θ)

θ

))
− η(θ)

(
M(θ)−Ψ

(
y(θ)

θ

))
−
∫

Θ

η′(θ)

(
M(θ)−Ψ

(
y(θ)

θ

))
dθ.

The derivatives with respect to the endpoint conditions yield η(θ) = η(θ) = 0. Substituting
this into the Lagrangian, yields the following first-order conditions:

∂L
∂M(θ)

=−
T∑
t=1

λ

(1 + r)t−1

∫
Θt−1

f(θ|θt−1)h(θt−1)dθt−1

+
T∑
t=1

βt−1

∫
Θt−1

U ′(θt−1, θ)f(θ|θt−1)h̃(θt−1)dθt−1

+
T−1∑
t=1

∫
Θt−1

µt(θ
t−1, θ)U ′′(θt−1, θ)dθt−1

−
T∑
t=2

β(1 + r)(1− τs)
∫

Θt−1

µt−1(θt−1)U ′′(θt−1, θ)f(θ|θt−1)dθt−1

− η′(θ) = 0 (20)
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∂L
∂y(θ)

=
T∑
t=1

λ

(1 + r)t−1

∫
Θ

f(θ|θt−1)h(θt−1)dθt−1

−
T∑
t=1

βt−1

∫
Θ

U ′(θt−1, θ)Ψ′
(
y(θ)

θ

)
1

θ
f(θ|θt−1)h̃(θt−1)dθt−1

+
T−1∑
t=1

∫
Θt−1

µt(θ
t−1, θ)U ′′(θt−1, θ)Ψ′

(
y(θ)

θ

)
1

θ
dθt−1

−
T∑
t=2

β(1 + r)(1− τs)
∫

Θt−1

µt−1(θt−1)U ′′(θt−1, θ)Ψ′
(
y(θ)

θ

)
1

θ
f(θ|θt−1)dθt−1

− η′(θ)Ψ′
(
y(θ)

θ

)
1

θ
− η(θ)

(
Ψ′
(
y(θ)

θ

)
1

θ2
+ Ψ′′

(
y(θ)

θ

)
y(θ)

θ2

)
= 0 (21)

∂L
∂at+1(θt)

=
λ

(1 + r)t−1
τsht(θ

t)− µt(θt)U ′′
(
θt
)

− (1− τs)2β(1 + r)2µt(θ
t)

∫
Θ

U ′′(θt, θt+1)dF (θt+1|θt)

+ (1− τs)β(1 + r)µt−1(θt−1)U ′′
(
θt
)
f(θt|θt−1)

+ (1− τs)(1 + r)

∫
Θ

µt+1(θt, θt+1)U ′′(θt, θt+1)dθt+1 = 0 (22)

∂L
∂τs

=
T∑
t=2

λ

(1 + r)t−2

∫
Θt−1

at(θ
t−1)h(θt−1)dθt−1

−
T∑
t=2

βt−1(1 + r)

∫
Θt−1

at(θ
t−1)

∫
Θ

U ′(θt−1, θt)dF (θt|θt−1)h̃(θt−1)dθt−1

−
T−1∑
t=1

(1 + r)

∫
Θt−1

at(θ
t−1)

∫
Θ

µt(θ
t−1, θt)U

′′(θt−1, θt)dθtdθ
t−1

+
T∑
t=2

β(1 + r)2(1− τs)
∫

Θt−1

µt−1(θt−1)

∫
Θ

U ′′(θt−1, θt)at(θ
t−1)dF (θt|θt−1)dθt−1

+
T∑
t=2

β(1 + r)

∫
Θt−1

µt−1(θt−1)

∫
Θ

U ′(θt−1, θt)dF (θt|θt−1)dθt−1 = 0. (23)
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A.2 Multiplier Functions

First, we integrate (20) over all realizations and use the transversality conditions η(θ) = η(θ) =

0 to obtain:

λ =

(
T∑
t=1

1

(1 + r)t−1

)−1

×

T∑
t=1

{
βt−1

∫
Θt−1

U ′(θt−1, θt)ft(θt|θt−1)h̃t−1(θt−1)dθt−1

+

∫
Θt−1

µt(θ
t−1, θt)U

′′(θt−1, θt)dθ
t−1

− (1− τs)
∫

Θt−1

µt−1(θt−1)U ′′(θt−1, θt)ft(θt|θt−1)dθt−1

}
. (24)

From (20) we obtain through integrating:

η(θ) =
T∑
t=1

λ

(1 + r)t−1

∫
Θt−1

∫ θ

θ

dF (θ̃|θt−1)dH(θt−1)

−
T∑
t=1

βt−1

∫
Θt−1

∫ θ

θ

U ′(Rt(θ
t−1, θt))dF (θ̃|θt−1)dH̃(θt−1)

−
T∑
t=1

∫
Θt−1

∫ θ

θ

µt(θ
t−1, θ̃)U ′′(Rt(θ

t−1, θ̃))dθ̃dθt−1

+
T∑
t=1

(1− τs)
∫

Θt−1

µt−1(θt−1)

∫ θ

θ

U ′′(Rt(θ
t−1, θ̃))dF (θ̃|θt−1)dθt−1. (25)

Next, we derive µt. Use (22) to obtain, with SOCt(θ
t) being the second-order condition for

savings from the individuals problem:

µt(θ
t) =

λ
(1+r)t−1 τsht−1(θt−1) + (1− τs)β(1 + r)µt−1(θt−1)U ′′ (θt) ft(θt|θt−1)

SOCt(θt)

+
(1− τs)(1 + r)

∫
Θ
µt+1(θt, θt+1)U ′′(θt, θt+1)dθt+1

SOCt(θt)
. (26)

Therefore, we define some terms that make notation less burdensome:

At(θ
t) =

λ
(1+r)t−1 τsht−1(θt−1)

SOCt

Bt(θ
t) =

(1− τs)β(1 + r)U ′′ (θt) ft(θt|θt−1)

SOCt
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Ct(θ
t, θt+1) =

(1− τs)(1 + r)U ′′(θt, θt+1)

SOCt
,

then, we can rewrite (26) as

µt(θ
t) = At(θ

t) +Bt(θ
t)µt−1(θt−1) +

∫
Θ

Ct(θ
t, θt+1)µt+1(θt, θt+1)dθt+1.

Or, more concretely for t = T − 2:

µT−2(θT−2) =AT−2(θT−2) +BT−2(θT−2)µT−3(θT−3)

+

∫
Θ

CT−2(θT−2, θT−1)µT−1(θT−2, θT−1)dθT−1. (27)

For t = T − 1, we get:

µT−1(θT−1) =AT−1(θT−1) +BT−1(θT−1)µT−2(θT−2). (28)

Now insert (28) into (27). Omitting arguments, this yields:

µT−2 =
AT−2 +BT−2µT−3 +

∫
Θ
CT−2AT−1dθT−1

1−
∫

Θ
CT−2(θT−2, θT−1)BT−1(θT−1)dθT−1

.

Now insert this into µT−3

µT−3 =AT−3 +BT−3µT−4 +

∫
Θ

CT−3

AT−2 +BT−2µT−3 +
∫
θT−1

CT−2AT−1dθT−1

1−
∫

Θ
CT−2BT−1dθT−1

dθT−2, (29)

yielding

µT−3 =
AT−3 +BT−3µT−4 +

∫
Θ
CT−3

AT−2+
∫
Θ CT−2AT−1dθT−1

1−
∫
Θ CT−2BT−1dθT−1

dθT−2

1−
∫

Θ

CT−3BT−2

1−
∫
Θ CT−2BT−1dθT−1

. (30)

Now insert this into µT−4

µT−4 =AT−4 +BT−4µT−5

+

∫
Θ

CT−4

AT−3 +BT−3µT−4 +
∫

Θ
CT−3

AT−2+
∫
Θ CT−2AT−1dθT−1

1−
∫
Θ CT−2BT−1dθT−1

dθT−2

1−
∫

Θ

CT−3BT−2

1−
∫
Θ CT−2BT−1dθT−1

dθT−3. (31)

Rewrite to obtain
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µT−4 =

1−
∫

Θ

CT−4BT−3

[
1−

∫
θT−2

CT−3BT−2

[
1−

∫
Θ

C2BT−1dθT−1

]−1
]−1
−1

(
AT−4 +BT−4µT−5

+

∫
Θ

CT−4

AT−3 +
∫

Θ
CT−3

AT−2+
∫
Θ CT−2AT−1dθT−1

1−
∫
Θ CT−2BT−1dθT−1

dθT−2

1−
∫

Θ

CT−3BT−2

1−
∫
Θ CT−2BT−1dθT−1

dθT−3

)
. (32)

Finally, calculate µT−5, after which the pattern should become clear.

µT−5 =

1−
∫

Θ

CT−5BT−4

[
...

[
1−

∫
Θ

CT−2BT−1dθT−1

]−1

....

]−1
−1

(AT−5 +BT−5µT−6

+

∫
Θ

CT−5

AT−4 +
∫

Θ
CT−4

AT−3+
∫
Θ CT−3

AT−2+
∫
Θ CT−2AT−1dθT−1

1−
∫
Θ CT−2BT−1dθT−1

dθT−2

1−
∫
Θ

CT−3BT−2
1−

∫
Θ CT−2BT−1dθT−1

1−
∫

Θ

CT−4BT−3

1−
∫
Θ

CT−3BT−2
1−

∫
Θ CT−2BT−1dθT−1

 . (33)

Now define

Dt =

1−
∫

Θ

CtBt+1

1−
∫

Θ

Ct+1Bt+2

[
...

[
1−

∫
Θ

CT−2BT−1dθT−1

]−1

....

]−1

dθt+2

−1

dθt+1

−1

.

Using this definition, we can write µT−5 as

µT−5 =
AT−5 +BT−5µT−6 +

∫
Θ
CT−5

AT−4+
∫
θT−3

CT−4

AT−3+
∫
Θ CT−3

AT−2+
∫
Θ CT−2AT−1
DT−2

DT−3

DT−4

DT−5

. (34)

It now turns out helpful to make another definition:

Et =

∫
Θ

Ct
At+1

∫
Θ
Ct+1

At+2+
∫
Θ Ct+2

At+3+
∫
Θ Ct+3

At+4......

Dt+4
Dt+3

Dt+3

Dt+1

.

Then we can write µT−5 as
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µT−5 =
AT−5 +BT−5µT−6 + ET−5

DT−5

.

In general, we thus obtain:

µt =
At +Btµs−1 + Et

Dt

.

For the second period, we obtain

µ2 =
A2 +B2µ1 + E2

D2

. (35)

and get

µ1 =
A1 + E1

D1

. (36)

Now we can recursively calculate all other µt for t = 2, ..., T .
In equation (36) one can see that the µ1(θ1) = 0 if savings taxes are zero. Recursive

calculation reveals that all µt are equal to zero.

A.3 Labor Income Taxes

Dividing (21) by Ψ′ 1
θ
and adding (20) yields

T ′(y(θ))

1− T ′(y(θ))
=

(
1 +

1

εyt,1−T ′(θ)

)
η(θ)

λθ
∑T

t=1
1

(1+r)t−1

∫
θt−1

∫
θt
f(θt|θt−1)h(θt−1)dθt−1

. (37)

Inserting (25) into (37) yields the formula for optimal labor tax rates.

A.4 Decomposition of the Mechanical Effect in the Presence of Cap-

ital Taxes

In this appendix we show that the decomposition of the mechanical effect as derived in Sec-
tion 3.2 also holds in the presence of a non-zero capital tax rate τs. Again, we consider a
reform, where the marginal tax rate for individuals with income y(θ) is increased such that all
individuals with income y > y(θ) will pay exactly one more dollar of income taxes. Besides the
labor supply effect on welfare, this affects welfare by

∑T
t=1(Mt(θ) + St(θ)). We now slightly

reinterpret the tax perturbation to intuitively derive that the effect on welfare can also be
written as

∑T
t=1MR

t (θ) +MI
t (θ) + SI(θ), where M I(θ) is as defined in (14) andMR

t (θ) is as
defined in (15).

For the reinterpretation, we assume that the additional labor income tax revenue ∆(θ) is
then redistributed lump-sum.
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In the presence of a non-zero capital tax τs, one also has to take into account that the
increase in the lump sum element by ∆(θ) (as defined in (3.2)) causes savings responses that
affect welfare. Formally this effect on welfare through the change in the Euler equations is
given by:

S∗(θ) =∆(θ)

{
T−1∑
t=1

∫
Θt−1

∫
θ

µt(θ
t−1, θt)U

′′(θt−1, θt)dθtdθ
t−1

−
T∑
t=2

(1− τs)
∫

Θt−1

µt−1(θt−1)

∫
Θ

U ′′(θt−1, θt)dFt(θt|θt−1)dθt−1

}
. (38)

Equations (14) and (16) can be derived in the same way as in the main text. However, now we
do not haveMR∗

t (θ) =MR
t (θ) but instead

∑T
t=1MR∗

t (θ) + S∗(θ) =
∑T

t=1MR
t (θ):

T∑
t=1

MR∗
t (θt) + S∗(θ) =

∫ θ

θ

λf1(θ1)− f̃1(θ1)U ′(θ1)dθ1

+
T∑
t=2

∫
Θt−1

(
λht−1(θt−1)

(1 + r)t−1
−
h̃t−1(θt−1)

∫
θt
U ′(θt−1, θt))dFt(θt|θt−1)

(1 + r)t−1

)
× CU(θt−1; θ)dθt−1

−∆(θ)
T∑
t=1

∫
Θt−1

(
λht−1(θt−1)

(1 + r)t−1
−
h̃t−1(θt−1)

∫
θt
U ′(θt−1, θt))dFt(θt|θt−1)

(1 + r)t−1

)
dθt−1 + S∗(θ). (39)

which is equal to
∑T

t=1MR
t (θ) because the last line is equal to zero because of the transversality

condition η(θ) = 0.

B Details on Calibration

We use the empirical model from Karahan and Ozkan (2013), who estimate their model using
PSID-data. yih,t denotes log income of individual i at age h in period t. To obtain residual log
incomes ỹih,t, the authors regress log earnings on some observables (age and education):

yih,t = f(X i
a; θt) + ỹih,t,

where f(X i
a) is a function of the observable characteristics. Residual income is then decomposed

into a fixed effect (αi), an AR(1) component (zih,t) and a transitory component (φtεih):

ỹih,t = αi + zih,t + φtε
i
h,t,

where the AR(1) process is given by

zih,t = ρh−1z
i
h−1,t−1 + πtη

i
h,
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and where the error term ηih captures persistent shocks, πt is a time dependent loading factor
and ρh−1 measures the persistence of these shocks.

Based on non-parametric estimates, Karahan and Ozkan (2013) divide individuals into three
age groups: 24-33 (young), 34-52 (middle age) and 53-60 (old). In the following, we list the
values they obtain for the different parameters, where the indices Y,M,O correspond to the
three age groups from their paper.
Age-dependent parameters:

• Persistence parameters: ρY = 0.88, ρM = 0.97 and ρO = 0.96,

• Variances of the persistent error terms: σ2
η,Y = 0.027, σ2

η,M = 0.013 and σ2
η,O = 0.026

• Variances of the transitory shock: σ2
ε,Y = 0.056, σ2

ε,M = 0.059 and σ2
ε,O = 0.068

Age-independent parameters:

• Variance of individual fixed effect: σ2
α = 0.0707

• Variance of z1 (i.e. the starting value of the persistence term): σ2
z = 0.0767

Time-dependent parameters:

• As we consider only one cohort, we assume the time dependent loading factors πt and φt
to be constant. Indeed, we set them to π = 1.1253 and φ = 1.1115 which corresponds to
the values from 1996 as they lie in the middle of all estimates for the years from 1968-1997.

Parameters in f(X i
a; θt):

• The function takes the form of a 3rd order polynomial in age. The coefficients are
0.0539713 for age, -0.153567 for (age/10)2 and 0.0111291 for (age/10)3.

• As Karahan and Ozkan (2013), we distinguish three education groups: individuals without
high school degree, high school graduates and college graduates. The education dummies
take on the values 9.570346, 9.91647 and 10.26789 respectively.

Based on all these parameters, one can now simulate the evolution of the earnings distri-
bution. We simulated millions of lives such that a law of large numbers applies. For each
simulated life, we then have the income for each year, which allows us to calculate the average
income of one individual for all three parts of his life. For our simulations these are the age
groups 24-36, 37-49 and 50-62 – see main text. We set the initial share of non high-school
graduates to 0.15, for high-school graduates to 0.60 and for college graduates to 0.15. This
matches well US numbers – see, for example, the NLSY97.

We next discretize the earnings distribution. Thus for each simulated life, we then have
3 grid points; one for each period. With a standard kernel smoother (bandwidth of $2,500),
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Figure 5: Income Distribution for Each Age Group
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Figure 6: Conditional Income Distributions, Middle Aged Workers

we then smoothed the unconditional earnings distributions over this grid space as well as the
conditional earnings distributions and therefore the transition probabilities. The final step was
then to calibrate the skill distributions from the earnings distributions, as is commonly done
(Saez 2001).

It becomes clear how inequality evolves over the life cycle. In the middle age group there are
much more people with high incomes relative to the young and old. The income distribution
first fans out, going from young to middle, and then compresses again in the last part of the
life cycle. Figure 6 shows three conditional income distributions for the middle age-group,
conditioning on earnings of $14,000, $30,000 and $100,000 in the previous period respectively.
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