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Abstract
This paper deals with two interrelated questions, namely the optimum size of a vehicle or vessel, and
the structure of transport costs with respect to haulage distance. The relationship between these two
questions has not been coherently dealt with previously in the literature, and the heuristic attempts at
doing so, have lead to both theoretical and empirical anomalies. This paper adopts an inventory
optimisation approach in order to show that both of these questions can be treated in a unified manner
and this allows us to show, first, that under very general conditions the optimum size of a ship increases
with the haulage distance and haulage weight, and second, that the observed structure of transport costs
with respect to the haulage distance and quantity is itself a result of this optimisation problem.
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1.  Introduction
It is a well-known empirical observation that transport rates normally taper with
increasing haulage distance, as described in Fig 1., thereby producing a generally
concave relationship between transport costs and haulage distance. At the same time it
is also observed that in many cases, transport rates fall with respect to the haulage
quantity for any given distance, as described by Fig.6, thereby producing a convex
relationship between transport rates and the quantity shipped. These observations are
normally termed economies of distance and economies of scale in transportation,
respectively. For many transportation models such observations are simply taken as
assumed and any analysis proceeds on the basis of these assumptions. However,
exactly why transport rates should behave in this way is actually not at all clear from
an analytical point of view. The problem appears initially when we try to relate the
observed structure of distance-transport costs to the costs of moving vehicles or
vessels, as part of the overall problem of determining the relationship between the
optimum size of a vehicle or vessel and variations in haulage distance. Under
conditions where observed transport costs taper with haulage distance, there is no
formal analytical proof that the optimum size of a vehicle or vessel (from hereon
referred to as ‘vehicle-vessel’), increases with haulage distance (Thorburn 1960;
Jansson and Shneerson 1982; 1987). Although we normally assume this fact, as we
will see shortly, the existing heuristic attempts at accounting for this can be shown to
be analytically indeterminate. The reason for this is that while the outcome of the
vehicle-vessel size optimisation problem depends on the behaviour of distance-
transport costs, the behaviour of distance-transport costs can also be shown to depend
on the outcomes of the vehicle size optimisation problem (Bacon 1984, 1992; 1993;
McCann 1993, 1998; McCann and Fingleton 1996). The result of this is not only that
a formal proof of the relationship between optimal vehicle-vessel size and haulage
distance has not previously been provided, but also that no theoretical explanation as
to why transport costs are concave with respect to haulage distance has yet been given.

The aim of this paper is to provide a general proof to both of the above
problems. In order to do this, the derivation of the structure of transport costs and
haulage distance will be discussed within the overall framework of shipment size
optimisation theory. Our purpose here is not to question the validity of standard
shipment or vehicle-vessel size optimisation theory. Rather, we show here that both of
these questions, namely that of the optimum vehicle-vessel size, and that of the non-
linear structure of transport costs with respect to haulage distance, are in fact the same
problem. Moreover, they can be solved within the existing framework by unifying
them into a single consistent theoretical approach, which avoids the anomalies
inherent in previous analyses. This approach allows us to prove the very general
conditions under which the optimum size of a vehicle-vessel does increase with the
haulage distance or the haulage weight. Furthermore, it also allows us to prove that
transport rates are almost always concave with haulage distance irrespective the
number of vehicle-vessel choices we have or the returns to scale that they exhibit. The
reason is that the observed concave structure of distance-transport costs, is itself
endogenously generated by the derivation of the optimum size of a shipment or
vehicle-vessel.
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The paper is organised as follows. In section two, we will outline how these
issues have previously been dealt with in the literature and indicate the analytical
problems that these explanations create. In section 3, we will discuss the relationship
between two different analytical specifications of the shipment size optimisation
problem. The first approach specifies transport rates as a function of the distance and
quantity of the bundle of goods to be shipped, while the second approach specifies
transport rates in terms of vehicle-vessel haulage costs. We will see that at present
these two approaches do not give us consistent analytical results to the problem of the
relationship between the optimum shipment size and the haulage distance. Therefore,
it is necessary to unify the approaches to the specification of transport rates in these
two models in order to produce coherent results. In section 4 this is done initially for
the case of a single vehicle-vessel. In section 5 this unified approach is then extended
to the more general case where we have multiple vehicle-vessel choices. In section 6
we will provide a formal proof of the conditions under which the vehicle-vessel size
increases with the haulage distance. This will also allow us to prove that transport
rates are almost always concave with the haulage distance irrespective of whether or
not we experience economies of scale in vehicle-vessel hauling costs, and irrespective
of the number of vehicle-vessel choices we have. The reason for this is due to the
calculation of the optimum shipment size itself. Finally, we will be able to explain the
conditions under which haulage costs are convex with respect to the haulage weight.

2. The Problem
Within transport economics, there is as yet no formal analytical proof of the
conditions under which the optimum size of a vehicle-vessel increases with haulage
distance. The problem centres around the well-known paradox that observed freight
rates per ton normally taper with haulage distance as in Fig 1., whereas the observed
cost per ton of a given vehicle or vessel is generally linear with distance, as described
by Fig.2.

      £          £

                        “cost line” of a
“freight curve” given ship

d d
Fig. 1 Fig. 2

Freight rate per ton tapering with distance                            Costs per ton as a linear function of distance

The existing ‘indirect proof’ by Thorburn (1960) in the case of water-borne shipping
has been described by Jansson and Shneerson as “a possible point of departure” (1982
p.226) and “a useful diagrammatic technique” (1987 pp.144-145). The same argument
was also employed by Alonso (1964) in the case of road and rail shipments.
Thorburn’s heuristic approach is explained by Jansson and Shneerson thus:
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  1z       2z
    £    3z       £

“freight curve”

   d
Fig. 3 Fig.4

Costs per ton for different ships as a       The freight curve as an envelope to
function of distance                cost lines of given ships

When we compare the cost per ton functions of various alternative vessels of
increasing size, 1z , 2z …. nz , if we assume that the port or terminal handling costs per
ton, represented by the positions of the intercepts, and the vehicle-vessel hauling costs
per ton, represented by the function slopes, behave as described according to Fig.3,
Jansson and Shneerson (1982; 1987 pp144-145), argue that we can draw an envelope
function as described in Fig 4. Observation of the point of tangency between a
particular vehicle-vessel function and the envelope suggests that a larger vehicle-
vessel will be used for longer routes. However, there are two fundamental problems
with this heuristic approach.

(i) The theoretical validity of such an analysis depends crucially on the there being
both a sytematically positive empirical relationship between the size of an individual
vehicle-vessel and its terminal or port handling costs, and a systematically negative
empirical relationship between the size of an individual vehicle-vessel and its hauling
cost per ton. Otherwise, it would not be possible for us to draw Fig.4. Moreover, these
systematic relationships would also need to hold empirically in the case where we
have vehicle-vessels of different vintages, in spite of the fact that technological
improvements which reduce the port or terminal handling costs and movement-
hauling costs will be embodied in newer vehicle-vessels. In the case of marine
shipping, the empirical evidence of Heaver and Studer (1972), Robinson (1978) and
Garrod and Miklius (1985) indicates that no such systematic functional relationships
as described in Fig.3 necessarily exist. Indeed, if Fig.3 was altered to take account of
their findings, the optimum vessel size on all routes would be extremely large, as
Garrod and Miklius (1985) correctly point out.

(ii) It is not possible to use observed cost per ton freight rates with respect to distance
and quantity of the bundle to be shipped, as exogenously determined inputs to the
problem of the optimum vehicle-vessel size. The reason is that such observed freight
rates themselves depend on the fleet management principles employed by third-party
hauliers using their own fleets of vehicle-vessels. The result is that such an approach
cannot tell us how the optimum size of a vehicle-vessel is related to haulage distance.
All it can tell us is how the optimum size of a shipment, belonging to a customer who
does not make decisions concerning the optimal employment of vehicle-vessels, is
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related to haulage distance. Yet, as we will see in the next section, these are
analytically two quite different problems, and it is these two problems which need to
be unified.

In order to unify these two approaches analytically it is first necessary for us to
compare how shipment optimisation problems are solved:
(a)  with transport costs specified as exogenously given freight rates dependent on the

quantity and distance of the bundle of goods to be shipped, as in Fig.1, and
(b)  with transport costs specified as endogenously dependent on vehicle-vessel

movement costs, but independent of the quantity and distance of the bundle of
goods to be shipped as in Fig.2.

To do this we must specify transport costs in terms of an explicitly spatial measure
such as transport cost per ton-mile, as is done in spatial pricing models, in order to
allow the endogenous nature of transport cost generation to be investigated. Then it is
necessary to see how these two analytical approaches can be unified initially in the
case of a single vehicle-vessel. Subsequently we will be able to extend the analysis to
the case of multiple vehicle-vessel choices.

3. Shipment Size Optimisation Models

The question of the determination of the optimum size of a shipment and the
associated question of the optimum frequency of a shipment is a well-rehearsed
problem. Here we compare two types of approaches to such problems which explicitly
include distance as a variable.

(a) Models with transport costs related to the quantity and distance of the bundle
shipped
Models in which transport costs are related to the quantity and distance of the bundle
shipped are the usual type in spatial pricing models. In terms of shipment size
optimisation problems these can be represented by the following approach:

For a shipper which ships a quantity im  per time-period of inputs of f.o.b. source price

ic  per unit of im , over a distance of id  at a per ton-mile transport cost it , the total
transportation costs involved can be represented as

i i it d m
and the delivered c.i.f. price can be represented as:

i i ic t d+
which represents the value of an individual unit of inventory if the firm is a bonded

carrier. Alternatively, if the shipper is simply a carrier, then the inventory time costs

contribution of the fuel used are given by

i it d 1

                                                
1 The time cost element of fuel used in transit was recognised by Jansson and Shneerson (1982). Our
model combines both the fuel-time and the inventory time costs within the same inventory framework,
whereas they were treated separately by Jansson and Shneerson (1982) and Garrod and Miklius (1985),
respectively.
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Assuming that goods are delivered and consumed at a constant rate and there are no
stock-outs or shortages,2 it is initially possible to represent the total logistics costs per
time-period faced by the firm as (McCann 1993;1996):

Total Logistics Costs TLC
m S
Q

I Q c t d
t d mi

i i

i

i i i i
i i i= +

+
+

( )
2

          (1)

                                             Port     Inventory                 Transport Movement
                                                            Costs           Holding Costs Costs

where iS  represents any fixed component of port or terminal-handling costs which are
independent of the capacity of the vehicle-vessel, but are incurred every time a
vehicle-vessel berths, I is an inventory holding cost coefficient, usually represented as
the sum of the interest and insurance rates, and i

Q  is the shipment size of the goods or
people (Findlay 1983). Transport movement costs are the fuel and labour-time costs
incurred in moving the goods or people between ports of call. From this we can
determine the optimum shipment size thus:

δ
δ

( ) ( )TLC
Q

m S
Q

I c t di

i

i i

i

i i i=
−

+
+

=2 2
0                       (2)

and:

∗ =
+

Q
m S

I c t d
i i

i i i

2
( )

          (3)

From equation (3) we see that the optimum shipment size is a function of the total
transport costs per ton of cargo carried i it d . The particular relationship between the
optimum shipment size and the haulage distance will depend on exactly how total
transport costs change with haulage distance. In this case, it would initially appear that
as long as total transport costs are a positive function of distance, the optimised
shipment size i

Q  always falls as haulage distance id  increases. Clearly, this result is
counter-intuitive, particularly in the light of the empirical evidence (Kendall 1972;
Jansson and Shneerson 1987). As we will see in the next section, however, the reason
we observe this incongruous result is that there is a fundamental analytical problem
with the this approach. This is because in shipment size optimisation problems,
transport rates it  in reality will also be a function of the shipment bundle size i

Q ,

while i
Q  is a function of it  (McCann and Fingleton 1996). The result is that we have

too many variables and the problem becomes indeterminate (Bacon 1984). This is the
reason why spatial pricing techniques have previously been unable to provide any
analytical solution to the problem discussed in section 2. As Bacon (1984 p.115)
points out “the form of the transport cost function plays a key role once we allow
frequency to become a variable. Models in which transport costs are proportional to
bundle size …yield completely unsatisfactory results, and must be abandoned for

                                                                                                                                           

2 Variable demand and one-off deliveries also imply that a variety of individual vessels or vehicles will
be needed at different times. Variable demand uncertainties are usually accounted for by calculating the
optimum buffer stock to add to the simple optimum shipment quantity (Love 1979) and the existence of
these buffer stocks does not fundamentally alter the behaviour of our simple model. The economic
shipment principle will still be used to determine the general logistics arrangements, while one-off
shipments will be organised individually. This means that although our model is set in a steady-state
context, it conclusions are not fundamentally altered by uncertainty.
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models where transport cost is fixed with respect to bundle size”. This leads us to the
second type of shipment size optimisation models.

(b) Models with transport costs defined as vehicle-vessel movement costs
The simplest model in which the optimum size of a shipment is determined with
respect to haulage distance, in the case where transport costs are specified as vehicle-
vessel moving costs, is the case of a single vehicle-vessel. Subject to the constraint
that the calculated optimal value of Q, given as Q*, does not exceed the total capacity
of the vehicle, the shipment size problem can be defined (Bunn 1982; Bacon 1984;
1992; 1993) as determining the shipment size Q which minimises:

TL C
m
Q

S d v
I Q c

i
i

i
i i i

i i= + +( )
2

(4)

where iv represents the cost of moving the particular vehicle-vessel through a distance
of one mile. In other words, every time the vehicle is moved through a particular
distance id the total transport costs incurred are given as iiv d , as described by Fig.2.
Once again, taking the first-order conditions we have:

d TLC
d Q

m
Q

S d v
I ci

i

i

i

i i i
i( )

( )= − + + =2 2
0 (5)

and:

i

i i i i

i

Q
m S d v

I c
∗ =

+2 ( )
(6)

Observation of (6) suggests that in the case of a single vehicle-vessel, the optimised
shipment size is a positive function of distance. However, this result cannot yet inform
us concerning the question of the relationship between the optimum vehicle-vessel
size and the haulage distance, because it is limited to the case of a single vehicle-
vessel. Nor can this model throw any light on the observed structure of transport costs.

(c) The Argument
The key argument of this paper is that it is possible to combine models of type (a) with
models of type (b) in order to provide analytical solutions to the problems outlined in
sections 1 and 2. In order to do this we must be able to overcome the problem of
indeterminacy generally faced by models of type (a), and to allow models of type (b)
to be extended to incorporate a more general description of transport costs which
allows for the possibility of choices between multiple vehicle-vessels. The first stage
of this analytical problem is to overcome the problem of indeterminacy in models of
type (a) by describing transport rates in terms of vehicle hauling costs, as in models of
type (b). In section 4 this will be done initially in the case of one vehicle-vessel. Then
in section 5 this principle will be extended to the case where the logistics or transport
planner has multiple vehicle-vessels to choose from. In section 6, this more general
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formulation of shipment size optimisation problems can then be employed to provide
proofs to each of the problems concerning the relationship between the optimal
vehicle-vessel and the haulage distance and weight, and also the to prove that total
transport costs will be a concave function of distance even for a single vehicle-vessel,
or for multiple vehicle-vessels irrespective of whether they exhibit economies of scale.

4. A unified approach to the mathematical description of transport rates within
shipment optimisation problems

In order to arrive at a unified approach to discussing transport costs analytically within
the shipment size optimisation framework it is initially necessary to discuss the
behaviour of individual vehicle or vessel transport costs and to see how these are
related to the frequency of shipments made.

In many spatial models, per ton-mile transportation costs are often held fixed
for analytical simplicity. What this actually means is that the transport cost per ton-
mile is independent of the absolute quantity of goods carried. As we see in McCann
(1993; 1998), in the case of individual batch shipment deliveries, this situation cannot
occur. Goods can be carried by transportation forms such as truck, train, ship, airplane
etc. These truckloads, trainloads, planeloads etc. represent the  upper limits of the
potential delivery batch sizes. Once the volume of goods per shipment increases above
these size limits, transport-movement costs will generally rise in a stepwise fashion,
since the fixed overheads will rise. If however, we can assume for the moment that
these shipment loads do not exceed the upper physical limits of the particular mode of
transportation (Bunn 1982), we can for the moment assume that transportation costs
are independent of volume carried (Bacon 1984, 1992, 1993). Using a specific form
and size of transportation vehicle-vessel, such as a particular truck or ship, the cost of
moving that vehicle-vessel over a unit distance id  will be the cost of fuel consumed
plus the labour-hours involved, including where appropriate the empty or ballast
return journey. This movement cost per mile has already been defined as iv .3  Now
we can assume for the moment that it makes negligible difference to the value of iv
whether the vehicle-vessel carries one unit of im  over the distance id , or one hundred
units of im  over distance id . In other words, as long as the batch size i

Q  does not
exceed the physical size of the vehicle-vessel, the total cost of transporting the
shipment i

Q  over a unit distance is independent of the shipment size. The total

movement haulage cost for each shipment i
Q  will therefore be given by  iiv d . What

is evident, is that for a given vehicle-vessel, total transportation costs are a linear
function of distance, as in Fig.2.

Now we can imagine two points a fixed distance apart id . One point is an
input source and the other a market point, with a vehicle-vessel moving forwards and
backwards between these two points shipping a quantity of goods im  per time period
from the input source to the market. The total distance traveled by this vehicle-vessel
per time period is equal to f d i× 2

 
where f is the frequency of shipment, i.e. the

number of deliveries per time period. If the market requires 100 units of im  per day,

                                                
3 This would be the equivalent of the parameter g in Bacon (1992, 1993) and k in Findlay (1983).
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and if all units are delivered in one single consignment,  i.e. i
Q  = im  =100, the total

movement costs per day are iiv d . If each unit of im  is delivered individually, as in a
pure JIT mechanism (McCann and Fingleton 1996), the total distance travelled per
day by the ship is 100 2× id and the total transport costs are 100 iiv d .4 What we see is
that as the delivery frequency increases for a fixed total quantity of material im  to be
shipped per time period, the total transport cost per unit of  im   carried also increases.
In this particular case the ratio has increased from ( / )i i iv d m to ( / )100 i i iv d m as the
number of deliveries per time period increased from one to one hundred. In the
formulations we used earlier, the parameter it   represents the transport cost per ton-
mile i.e. per unit weight-per unit distance. In other words it  represents the cost of
transporting one unit of im  through one unit of distance id . In the example above, in
the first case where there was only one delivery per day, we saw that it  = iv /100 im
whereas in the second case where there were 100 deliveries per day, it  = iv / im . In
other words, for a fixed  total volume of  material, im ,  the per ton-mile transport cost

it , depends on the size of the individual delivery batch shipment i
Q . In this particular

case where the carrying capacity of an individual vehicle-vessel is not exceeded, we
have the general expression  it  = iv / i

Q . The reason for this is that for any fixed
geographical delivery distance a change in the delivery frequency implies that the total
shipment-distance travelled per unit of im  changes. In other words, the relationship
between economic distance and geographical distance depends on the shipment
frequency. Bacon (1984) therefore suggests that these issues should be dealt with
sequentially, with location being the first choice and delivery frequency being the
second choice. This is exactly the approach of the inventory and logistics optimisation
techniques employed in reality.

From the above discussion we can reconcile the two shipment size optimisation

approaches (a) and (b) by substituting the expression i i it v Q= /  into our equation (1)
to give:

TLC
m
Q

S d v
I Q c I d v

i
i

i
i i i

i i i i= + + +( )
2 2

(7)

which differentiating and setting gives equations (5) and (6) as before. The only
difference is that (7) is actually more comprehensive than (4) in that it also includes
the capital time costs of fuel and labour usage, as discussed in footnote 1. This means
that for a single type of vehicle-vessel, we can convert a shipment size optimisation
problem of type (a) into one which is of type (b), by substituting the expression

i i it v Q= / * into any model of type (a).

In the case of a single vehicle-vessel, in order to see how transport cost per

ton-mile rates it  typically behave we can observe how i i it v Q= / *  changes with
respect to im  and id . From equation (6) we see that the optimum delivery batch size
increases with respect to the square root of im , and with respect to the square root of

                                                
4 A pipeline carrying a fluid has the same mathematical properties.
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id . Thus, assuming id  is held constant, as im  increases, the optimum delivery

frequency im / iQ*
 will increase in proportion to im  and the total batch distance

travelled per unit of im  will fall with respect to 1 / im . Therefore, the fall in it  will

be with respect to 1 / im  as im   increases. This is the nature of quantity discounts. A
similar line of reasoning can be used to analyse the impact on it  of a change in the
distance id   between the input source and the location of the market. Assuming a
fixed volume  im   of material is to be moved through a distance id  per time period,
we can see that as id  increases, the optimum batch size will increase with respect to

id , the delivery frequency will fall with respect to 1 / id , and consequently, so will
the value of the parameter it . Thus the distance increase is somewhat offset by a rise
in batch size. This is the nature of economies of distance. This fall in it  will continue
until the value of id  is large enough to mean that all goods are shipped in a single
batch per time period5 beyond which there will be no further fall. The point here, is
that even for a single vehicle which exhibits linear movement costs with respect to
distance, as long as the carrying capacity of the vessel is not exceeded, the optimum
shipment size means that the transport cost per ton-mile falls with respect to the
square root of both the haulage distance. Therefore, under these conditions, for a given
ton of shipment, the ton-mile transport cost and the transport cost per ton will both
rise in proportion to the square root of the haulage distance, as has often been
observed (Isard 1951; Tyler and Kitson 1987; Bayliss and Edwards 1970). This
observation provides a partial reconciliation between the paradox suggested by Fig. 1
and 2, for the case of a single vehicle-vessel.

However, in order for this observation to become a general principle we must
be able to show that this ‘square root law’ (Baumol and Vinod 1970) holds for
transport rates when we also any incorporate port-terminal handling costs which are
related to the size of a shipment, and also the question of multiple vehicle-vessel sizes.
Variable port-terminal handling costs are incorporated into our model in a
straightforward way in section 6 onwards6. The next section explains how the insights
from this section into the relationship between the optimised shipment size and the
structure of vehicle-vessel transport costs can also be generalised from the case of a
single vehicle-vessel to the case of multiple vehicle-vessel choices.

5. Generalised Transport Rates with Multiple Vehicle-Vessel Choices

So far we have ignored is the question of the use of multiple vessel or vehicle types on
the behaviour of transport rates within the shipment size optimisation problem.
Indeed, the assumption that a transport or logistics planner is constrained to use a

                                                
5 At this point, the total costs of transportation become greater than the total inventory holding costs.

This is a corner solution. As id  is increased beyond this critical value, the frequency of delivery cannot

fall any further and so the value of  it   cannot fall any further and will remain constant beyond this

point. Thus, where all goods  im   are shipped in a single batch delivery, it  will remain both constant

and a minimum as  id   changes.

6 See Appendix A.
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particular vessel-vehicle for organising all goods shipments, which we have made up

to now in order to employ the formula i i it v Q= /  in our logistics model, seems to be
very limited and inappropriate for most real world situations, given that logistics
calculations normally involve fleet management considerations, in which the optimum
size of the vehicle-vessel is the key question. However, we can adopt a similar
approach as in section 4, but now extend it to the case of multiple vehicle-vessel sizes.

Where we have a range of vehicle-vessel types and sizes to choose from, we
consequently also have a range of values of iv  which can be included into the
calculation formulated in equations (4) to (7). Each different value of iv  will generate

a different iQ*  and for the firm the value of iQ*  which is the most preferable is that

particular value of iQ* , which over the range of vehicle-vessel choice alternatives,
minimises the minimum total logistics costs calculated on the basis of any particular
vessel type i.e. the optimum optimorum. If there are multiple vehicle-vessel types and
sizes to choose from, each type with its own particular shipment capacity limit, the
usual logistics approach is to calculate the optimum shipment frequency for each
mode of transport, assuming that we are constrained to use a particular mode of
transportation, and then to compare the relative minima of each of these vessel
options. Such an approach is used to determine the general size, frequency, vehicle-
vessel mode and size of individual deliveries, and one of the aims of the logistician
will be to ensure maximum vehicle-vessel capacity utilisation, i.e. full load shipments
of individual vehicle-vessels where at all possible, although as we have seen, full-load
vehicle-vessel utilisation will not be the primary criterion governing the organisation
of shipment deliveries.

We cannot know the value or behaviour of the parameter t in a type (a) model
involving multiple vehicle-vessel choices without a priori knowledge of the values of
all the other parameters. However, it is possible to provide a general principle.

Individual vessel or vehicle types often tend to exhibit shipment economies of
scale. In other words, when we compare the relative costs of movement between
different vessel or vehicle types and sizes, we see that the variation is normally much
less than proportionate to the relative carrying capacities of the vessels (Jansson
1980). In other words, if we plot the per-mile movement costs iv  against the full-load
carrying capacity iQ  for each vehicle-vessel, over a range of vehicle-vessel sizes and
types, i=1…….n, in general we will see an upward sloping relationship as shown in
Fig.5.

    iv
x

x x
x

        x x

  i
Q

Fig 5
The relationship between vessel movement
        costs and vessel carrying capacity
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We can describe this relationship in terms of a regression function:
i iv a bQ= +

where a represents the positive intercept, given that the smallest vessel appropriate for
industrial haulage purposes will generally incur non-zero movement costs, and b
represents the positive slope, given that in general larger shipment carrying capacity
vehicle-vessels will imply larger movement costs.

Now from our earlier discussion, if the logistics planner ensures that all
individual shipments take place as full load shipments with respect to the capacity of
the vehicle-vessels being employed across the range of vehicle-vessel choices
available, such that the optimum optimorum is always achieved, we can represent a
generalised transport rate function as:

t
a bQ

Q

a bQ

Q

a

Q
b=

+
=

+
= +

*

* *

where a and b are the estimated intercept and slope parameter values across the range
of vehicle-vessel choices available. This transport rate expression is much broader and
more flexible than our previous expression because it allows for transport rates
generated by shipment size optimisation behaviour within a choice set involving
multiple vehicle-vessel sizes and types.

If we have a range of vehicle-vessel choices which exhibits economies of scale in
individual shipment the gradient b will tend towards being zero with a being a non-
zero intercept. Under these conditions the transport rate parameter t will tend towards
being:

t
a

Q

a

Q
= = *

over the range of different vehicle-vessel types as well as for a single vehicle-vessel
type, as had been represented by our earlier expression i i it v Q= / . The greater is the
value of a and the smaller is the value of b, the more significant are the static
economies economies of scale in shipment transportation. Alternatively, if our choice
range of vehicle-vessels happens by chance to experience constant returns to scale in
shipment size, in our above expression this would be represented by:

t
bQ

Q

b Q

Q
b= = =

*

*

and in Fig.5 this will be represented by a straight line from the origin with a positive
slope of gradient b. However, as we see in the Appendix C, in discrete shipment
operations, the presence of the port-terminal handling cost indivisibilities means that it
is not possible to experience an absolutely fixed value of t=b even if we were to
happen experience constant returns to scale in shipment transportation. The only case
where t=b is where there are no port-terminal costs and where we also happen
experience constant returns to scale in shipment transportation. Under these
circumstances, all goods will be delivered in a continuous-flow/JIT manner as
discussed in section 4, and all per ton-mile transport rates will be fixed and
independent of the haulage distance and quantity.

This more general approach as to how the structure of transport rates in models of type
(a) are generated by optimised shipment calculations from models of type (b), but
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which also involve multiple vehicle-vessel choices, now allows us to discuss the
question of the relationship between the haulage distance and the optimum vehicle-
vessel size. In order to do this we simply need to calculate the optimum shipment size

under this more general transport rate specification, given that i iQ Q= * under
conditions of vehicle-vessel full-load carrying capacity.

6. Proof of the Relationship between the Optimum Vehicle-vessel Size, the Haulage
Distance and the Structure of Transport Rates

PROPOSITION 1: The theoretical optimum vehicle-vessel size is not always
positively related to the haulage distance, although empirically this is the usual result.

Proof of Proposition 1
If we incorporate space costs and our general description of transport costs into our
initial total logistics costs expression for shipments given in equation (1) we have:
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Q

Q
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i i
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        (8)
which rearranges to:
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Once again, differentiation and setting to zero gives:
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which gives an optimised shipment size as:
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        (11)
In order to determine how the optimised shipment size is related to the haulage
distance we need to take the derivative of (11) with respect to haulage distance thus:

[ ]
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What we see is that the behaviour of the optimised shipment size, and consequently
the optimum vehicle-vessel size, with respect to haulage distance, depends on the
relationship between the vehicle-vessel movement costs and the vehicle-vessel
carrying capacity, as defined by the values of a and b.
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In order for the optimum vehicle-vessel size to increase with the haulage distance,
equation (12) must be positive. In other words:

[ ] [ ]
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The relationship between the optimised shipment size and the haulage distance
depends on the extent of the static economies of scale inherent in vehicle-vessel
shipment capacity. In order to understand the general conditions under which the
optimised  vehicle-vessel size will increase or fall with the haulage distance, we can
once again discuss the two cases of significant economies of scale in vehicle-vessel
movement costs relative to carrying capacity, and the case of constant returns to scale
in this relationship.

If we experience significant static economies of vehicle-vessel movement costs
relative to carrying capacity, where a is highly positive and b is equal or close to zero
as in the Type (b) example outlined above, larger shipments will incur less than
proportionately increased fuel-time costs per shipment. In other words, as the
geographical haulage distance increases, the shipper can reduce the fuel-time costs per
unit of cargo shipped both by increasing the size of an individual shipment and by
reducing the shipment frequency. What is important here is that it is not the
geographical haulage distance which is important, but the economic batch-distance
travelled per unit of cargo hauled, where the batch distance is defined as the
geographical distance multiplied by the shipment frequency. Therefore, assuming that

the chosen vehicle-vessels are always at full load i
Q  capacity, such that i iQ Q= * , we

can see that the optimum size of a vehicle-vessel will increase with respect to haulage
distance if there are static economies of scale in vehicle-vessel movement costs
relative to vessel carrying capacities.

On the other hand, if vehicle-vessel movement costs experience more or less
constant returns to shipment size, i.e. a is equal or close to zero and b is highly
positive, as represented by the Type (a) model outlined above, bulk shipments will
incur fuel-time and stock inventory costs directly proportional to the shipment size.
Under these conditions, over any given geographical haulage distance the only
advantage in having bulk shipments is the reduction in total port-handling costs,
which are a multiple of the number of shipments per time period. However, as the
geographical haulage distance increases, the total fuel-time inventory costs will also
increase, for any given shipment size. The result of this is that the optimised shipment
size actually falls, and the optimised shipment frequency actually increases, in order to
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offset this increased cost, ceteris paribus. Therefore, the optimum vehicle-vessel size
also falls.

Hypothetically, there is also a third possibility, and this is the unique case where:

a

b

I S

I c s
i

i i

=
+

Under these conditions, we see that the optimised shipment size, and consequently the
optimum vehicle-vessel size is invariant with respect to the haulage distance.
However, this situation is purely a chance occurrence, which will not continue to hold
in the face of interest rate or product price changes.

There is good empirical evidence that vehicle-vessel transportation generally
does indeed experience significant economies of scale in the essentially static
relationship between vessel movement costs relative and vessel carrying capacities
(Jansson 1980). The observed result of the existence of these vehicle-vessel
economies of scale is that observed shipment sizes are empirically observed to
increase with the haulage distance (Kendall 1972; Jansson and Shneerson 1982,
1987). However, as we have seen here, there is no analytical reason why this should
necessarily be the case. This observed empirical result is simply the outcome of the
optimisation process being carried under conditions of significant economies of scale
in vehicle-vessel movement costs and carrying capacities.

QED

PROPOSITION 2: Freight transport rates per ton are always concave with respect to
the haulage distance, except for the unique case in which the optimised shipment size
is invariant with respect to the haulage distance.

The observed freight rates charged by hauliers to customers will comprise a profit
mark-up on top of the total logistics costs involved in any haulage operation, and the
size of this mark-up will depend on the competitiveness and contestability of the
industry over the particular haulage route in question (Davies 1986). However, there is
no reason why the level of this mark-up should be systematically related to the
haulage length or haulage quantity over all shipment routes. The result of this is that
observation of the structure of total logistics costs with respect to haulage distance and
haulage quantity will explain the behaviour of observed transport rates with respect to
haulage distance and haulage quantity.

Proof of Proposition 2
In order to see why observed transportation costs per-ton vary with respect to haulage
distance and haulage quantity in the way that they do, from our preceding discussion it
is necessary to discuss how optimised total logistics-transport costs per ton of cargo
carried vary with respect to the haulage distance and the haulage quantity. To do this it
is first necessary to substitute equation (11) into equation (9), to give a total logistics-
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transportation costs expression and then to divide by im to give a cost per ton measure,
thus:

[ ]TL C m m S a d I c bd s d
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To observe the relationship between total logistics-transportation costs per ton and
haulage distance we take the first and second derivatives of  (13) with respect to
haulage distance id :
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and:
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Equations (14) and (15) are always positive and negative, respectively; i.e. equation
(13) is strictly concave in distance, if either a or b is zero. However, the general
conditions under which equation (13) is concave in distance is:
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This expression must always be true, except where:
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which is the same condition as for equation (12) to be zero. In other words, there is a
unique case where the optimised shipment size and vehicle-vessel size is invariant
with respect to the haulage distance, and where equation (13) must therefore also be
linear with distance, given that the total shipment-distance travelled must be linearly
related to the geographical distance. Apart from this unique chance case, however,
equation (13) is always concave in distance, irrespective of whether we experience
constant or increasing returns to scale in vessel movement costs relative to carrying
capacity. The reason is that the total shipment distance travelled is a function of the
square root of the geographic distance.

QED

PROPOSITION 3: Freight transport rates per ton are always convex with respect to
the total haulage quantity.

Proof of Proposition 3
In order to observe the cost per ton relationship between total logistics-transportation
costs and haulage quantity we take the first and second derivatives of  (13) with
respect to haulage distance im  thus:
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Equations (19) and (20) which are negative and positive respectively, define a cost per
ton relationship as described by Fig.6, in which the cost per ton falls with increasing
shipment quantities per time period, although at a decreasing rate.

Cost/ton

im
Fig.6

The variation in transport cost per ton with respect to the
haulage quantity per time period.
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This proof implies that as the total quantity per time period of freight to be shipped by
an individual haulier over any given distance increases, the average freight rate falls
with respect to the square root of the individual firm’s market size. Given that the
optimised shipment size is itself a square root function of the total shipment quantity
per time period, this also implies that the cost per ton freight rate charged to individual
customers will generally fall with respect to the square root of the individual
customer’s shipment size. However, there are many exceptions to this principle
dependent on questions of service quality and scheduled freight consolidation
practices, as discussed in Appendix B.

QED

Equations (14), (15), (16) and (17) indicate that the reason why observed transport
costs behave in general as they do with respect to haulage distance and haulage
quantity (Allen 1977; de Borger and Nonneman 1981) is due to the relationship
between the optimised shipment and vehicle-vessel size, and the haulage distance and
haulage quantity, rather than simply the static relationship between the movement
costs, the port-terminal handling costs, and individual vehicle-vessel sizes. Moreover,
this general relationship holds whether we have only a single vehicle-vessel or
multiple vehicle-vessels to choose from, even allowing for the fact that transport rates
will experience discontinuities and integer problems associated with limited vehicle-
vessel choices.

7. Conclusions
Existing theoretical attempts at explaining the relationship between the

optimum vehicle-vessel size, the haulage distance and haulage quantity have always
foundered on the problem of how to incorporate the observed structure of transport
costs into such analyses. This has meant that these questions have been dealt with in
rather a heuristic manner, and when empirical observations are included in such
models the results have been shown to be at best inconclusive. This paper has shown
that it is possible to provide a consistent theoretical explanation of the previously
paradoxical relationship between the optimum vehicle-vessel size, haulage distance,
and the observed structure of transport costs, by combining standard inventory
optimisation techniques with a model incorporating the scale relationships between
vehicle-vessel shipment carrying capacities and vehicle-vessel movement costs. Under
these assumptions, we see that the relationship between the optimum vehicle-vessel
size and the haulage distance depends on the static relationship between vehicle-vessel
movement costs and carrying capacities. At the same time, we see that the observed
structure of transport costs with respect to haulage distance and quantity for each ton
or ton-mile of cargo carried, is itself endogenously determined by the optimum
vehicle-vessel size calculation, and not vice-versa, as has been described in some
previous papers. By calculating the optimum shipment size on the basis of the
movement costs of individual or multiple types of vehicles, transport costs per ton
shipped will always be directly related to the square root of the haulage distance, and
inversely related to the haulage quantity per time period, because of the impact of the
haulage distance and haulage weight on the number of shipments made per time
period for any given geographical distance, i.e. on the optimised shipment-miles
distance, rather than simply on the geographical distance, Moreover, this general
square root observation will hold even if we allow for the indivisibilities associated
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with limited vehicle-vessel choices. The optimum vehicle-vessel size will also be seen
to depend on the characteristics of the goods being shipped, with more valuable,
bulky, perishable or fragile goods generally requiring more frequent shipments in
smaller individual loads. This implies that the optimised total shipment distance, and
consequently the absolute levels of the transport rates for these types of goods, will
tend to be higher for any given geographical distance (Chisholm 1971), than for other
goods. However, competition and contestability in transport markets still implies that
the behaviour of transport rates with respect to the haulage distance and quantity will
be as described here.
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Appendix A: Variable Port-Terminal Handling Costs
For analytical simplicity, we have so far ignored the question of handling costs which
are proportional to the size of the shipment, and have assumed a fixed port handling
cost iS  which is independent of the size of the shipment. However, the existence of
any such costs can be incorporated into the model quite easily. For a single type of
good or mix of goods being moved by the shipper, it may be the larger the individual
shipment, the greater the number of units of labour required to load and unload a
vehicle-vessel in the terminal or port. Also, handling these larger shipments may incur
greater land costs and the labour costs involving in inventory handling operations. In
this case, the effect of these terminal-port handling costs due to larger shipments will
be included in our framework via a space-handling coefficient term is .7 On the
variable Q. Once again, assuming that the demand for material remains constant over
a time period, the total annual space costs incurred in holding inventory can be
expressed as i is Q / 2  where is  is the logistics space-cost coefficient defined as
(McCann 1996; 1998):

[ ]i i is r R w L= × × +2
bulk

weight
ratio

and where:
r = annual rent per square meter of warehouse/factory space
w = annual unit wage of a warehouse/materials-handling worker

iR = area required to store one cubic meter of inventory of a particular product

iL = number of units of labour required to handle one cubic metre of inventory of a
particular product.

Meanwhile, any variations in port-handling costs which are due solely to the
characteristics of product being handled, will be reflected in variations in the values

iS  and is , depending on whether these costs are independent or dependent of the size
of shipment, respectively. In general, products which are fragile, perishable and/or
bulky will have high values of iS  and is . In order to account for the effects of these
costs on the optimum shipment size problem, it is simply necessary to also incorporate

i is Q / 2  into equation (7) and then continue the optimisation procedure as described in
section 6.

                                                
7It may be that in some circumstances, newer, larger ships actually incur lower absolute levels of port-
handling costs than some smaller ships. In our model, this will tend to reduce the value of the parameter

is  such that in some circumstances it may be that it tends towards being zero or even negative.
However, as Garrod and Miklius (1985) point out, the role of the inventory capital costs will ensure that
the optimum ship size is not infinitely large.
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Appendix B:  The Role of Consolidated shipments and Service Quality
For long distance consolidated haulage, the haulier will employ large vehicle-

vessels carrying large consolidated consignments, whereas for short distances, small
vehicle-vessels carrying small consignments are used. Haulage contractors dealing
with many clients will realise this principle by ‘break bulk’ logistics methods. Here,
individual small deliveries from firms are picked up using various small vehicle-
vessels, carrying small total shipments. These travel a short distance to a consolidation
depot. These individual shipments are then grouped together to form a single very
large consignment, which travels the long-haulage length to a similar distribution
depot. From here, small individual consignments travel the short distances to the
various customers. The vast majority of the haulage operation is carried out by having
a large volume consolidated consignment batch travelling the long distance using a
large vehicle-vessel, which will be calculated according to Economic Order Quantity
principles described here. The structure of the logistics-costs faced by the haulage firm
is the same as that of our logistics-costs expressions here, except that unless the firm
is a bonded carrier, it will not pay capital finance costs on its inventory, only insurance
plus space handling costs. In the case where the haulage firm has control over the
logistics operation involving the consolidation of deliveries to and from a variety of
firms, the total transport costs facing an individual customer firm rise in proportion to
the square root of the haulage distance, but will be more or less linear with respect to
the haulage weight. There are two reasons for this. First, where third party hauliers
control the logistics operation, they organise a standard timetable of shipments
according to the overall expected level of demand for their services between various
locations per time period. The concern of the haulier here is to fill each individual
vehicle shipment capacity so as to maximise the revenue per shipment, and so be able
to charge as low a rate as possible. As the shipment contains goods from many firms,
all individual units of goods will be charged the same per ton-mile rate as each other.
Therefore, for any distance of haulage, the transport rate will be invariant with respect
to the weight of material being moved for an individual client (Bayliss and Edwards
1970), except for discount. Similarly, in order to cover the insurance costs of their
shipments the haulier will charge each customer a fixed rate per individual shipment
per customer, which when consolidated with those from other customers, will cover
the shipment insurance costs of the consolidated shipments (Chisholm 1971).

The second reason why haulage transport costs should be invariant with
respect to the haulage weight of any particular customer is the quality of the delivery
service (Allen and Liu 1995; Allen et al. 1985). The quality of the delivery service can
be defined as the probability that any individual unit of good carried between two
points will be delivered within a particular time period. If m

 
rises unexpectedly, if Q*

is proportional to the square root of m, as m increases, the delivery frequency falls

with respect to 1 / m
 
, and the transport cost per ton-mile falls in proportion to

1 / m . What this means is that for a particular single unit of m, the probability of this

being delivered within a particular time period falls in proportion to 1 / m . In the
case of a haulage firm carrying consolidated consignments containing individual units
of m from many customers, in order to ensure that the particular service level between
two points is maintained whatever the level of m, the delivery batch size must be

proportional to m while still being proportional to 1 / d . In this case, the transport
cost per ton-mile will be constant for any level of m . However, this form of delivery
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is only appropriate where the firm only has a small quantity of goods to be delivered
to a particular place per time period. In the usual case where a firm consistently has a
very large volume of materials to be moved per time period to a particular set of
locations, it is more economical for the firm to have control over the logistics
operation, irrespective of whether it is using ‘own account’ or third-party haulage
services, and in practice, this is indeed the policy of most large firms.

Appendix C:  Proof that the transport rate parameter t cannot remain fixed even with
constant returns to scale in shipment transportation.

Under the hypothetical situation that we experience constant returns to scale in
transportation, we would still not observe that t is fixed in a logistics-costs model
calculated on the basis of the relationship between vehicle movement costs and
vehicle carrying capacities, over a single or multiple vehicle-vessel types. The reason
is that the assumption that t is fixed means that the relationship between vehicle-
vessel movement costs v and carrying capacities Qc is linear. However, within an
Economic Order Quantity model, the assumption that t is fixed means that in general,
v is a linear function of Q*, rather than Qc. Yet, this can never be the case. It is
possible to see this simply by comparing any two types of vehicle-vessels, whose
movement costs are va and vb, respectively, where b av k v=  (for any positive constant
k), and whose carrying capacities are Qa and Qb, where b aQ k Q= . The relationship
between these two vehicle-vessels exhibits constant returns to scale when we compare
carrying capacity per shipment with the vehicle-vessel movement costs. Assuming
that the logistics planner has a sufficient variety of vehicle-vessel types and sizes that
we can assume there are no less than full-load shipments at the optimum arrangement,
then we can set a a

Q Q= ∗  and b b
Q Q= ∗ . However, we see that constant returns to

scale in vehicle-vessel shipment movement costs will not also imply that the
transportation costs for any given haulage distance are fixed, i.e. a bt t≠ , because:
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Moreover, even if by chance the per ton-mile transport rate happened to be equal for
two different haulage shipment sizes over a given spatial haulage distance, it is clear
that this result would not also hold over haulage distances in general, and that the
transport rate would continually change. This point is important, because it means that
we cannot write a spatial analytical model with a fixed per ton-mile transport rate t=b
parameter as an assumption, as is often done, when we are discussing the question of
frequency and shipment sizes, unless we have both no terminal costs per shipment and
also no economies of scale in the relationship between vehicle-vessel movement costs
and carrying capacities. Under these conditions all goods will be shipped in a
continuous-flow/JIT manner in which t=b irrespective of the haulage quantity and
haulage distance.


