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Abstract

Spatial analysis is an important area of research which continues to make major

contributions to the exploratory capabilities of geographical information systems. The

use and application of classic clustering methods is being pursued as an exploratory

approach for the analysis of spatially referenced data. Preliminary indications are that

this is both an effective and promising approach for identifying obscure or hidden

attribute based patterns in spatial and non-spatial applications. However, a variety of

clustering methods does exist, with different interpretations and meanings. It is

essential that a better understanding of these approaches in the geographic domain be

pursued in terms of their respective computational requirements and clustering

implications. This paper evaluates two optimization based clustering approaches for

use in the context of exploratory spatial data analysis.

Introduction

A significant amount of spatial information is being created, updated and manipulated

on a daily basis. The major contributors to this spatial data explosion are geographical

information systems (GIS) and remote sensing techniques which have enhanced

capabilities for generating, storing and managing spatial data. Of course this is also

driven by the needs of analysts, planners and policy makers who are attempting to

make better and more informed decisions concerning issues such as regional growth

and development, environmental sustainability, and natural resource utilization. It is

one thing to have digital geographic information, but a far more challenging issue is



how this information can be understood in decision making environments. That is,

what does the data indicate or suggest and what are the implications. Advanced

methods for analyzing and synthesizing spatial information in a GIS environment

continues to be an important area of current research.

One research focus has been on automated methods for assisting in the investigation

and summarization of spatial information - exploratory spatial data analysis (ESDA).

Clustering techniques have emerged as a potential approach for analyzing complex

spatial data in order to determine whether or not inherent geographically based

relationships exist. One example is the application of clustering to identify and detect

potential cancer or disease patterns in populations based on the analysis of a set or

subset of spatial attributes. Another application is the analysis of criminal offenses

where trends in occurrence as well as potential shortcomings in policing practices are

of interest. The use of clustering in the spatial domain is currently based on notions of

pattern spotting and data mining. This is a natural progression of the use of classic

statistical approaches for hypothesis testing.

There are a number of alternative optimization based modeling approaches for

identifying clusters in spatial data. A recent review of these approaches may be found

in Murray and Estivill-Castro (1998). Two approaches will be investigated in this

paper. The first is based on the spatial modeling work of Cooper (1963), which may

be considered a geographically sensitive variant of the k-means approach (MacQueen

1967) found in most, if not all, statistical software packages. In this paper this

approach is referred to as the center points clustering problem. The second approach

is based on the spatial analysis research of Hakimi (1965), which is actually a spatial

extension of the grouping work of Vinod (1969). In this paper this approach is

denoted the median clustering problem. The focus of this paper is on the need to

better understand the similarities and differences between these two alternative

clustering approaches, primarily in terms of the spatial ramifications of identified

clusters.

This paper begins by detailing the center points and median clustering models. Spatial

groups identified by these approaches are then investigated. One focus of comparison

is on functional differences between the center points and median model objective



measures. The second focus of evaluation contrasts produced cluster groupings in

order to develop an understanding of possible spatial variation. Finally, a discussion

and conclusions are given.

Clustering Models

There are three general optimization based models which may be applied to identify

clusters in spatial information (Murray and Estivill-Castro 1998). The differences

between these approaches are in how clusters are defined and evaluated. Two of these

approaches will be evaluated in this paper: the center points approach (i.e. Cooper

1963) and the median approach (i.e. Hakimi 1965).

Clustering using center points enables groupings of observation sites to be identified

based upon the use of artificial points in space. These points, or center points, serve as

a means for creating spatial clusters. The following notation will be used in the

specification of this clustering approach:

); number (total sites nobservatio ofindex = ni =

); number (total points center ofindex = pk =
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It is worth pointing out that there are a number of ways to specify the spatial

difference measure. Throughout this paper, the spatial difference is defined to be the

Euclidean distance measure.

Center Points Clustering Problem (CPCP)

Minimize ∑∑=
i k

ikiki ydaZ (1)

Subject to:
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The objective (1) of the CPCP is to minimize the total difference in the assignment of

observation sites to cluster center points. Unfortunately, determining the location of

the center points is also a significant component of the problem. Thus, the objective is

non-linear as it is based upon the use of center point location decision variables and is

particularly difficult to solve (see Rosing 1991). Constraint (2) ensures that

observation sites are assigned to a cluster. Constraint (3) imposes integer restrictions

on decision variables.

The CPCP is well known in the statistics literature as the k-means clustering approach

(see MacQueen 1967), where a distance squared difference measure, 2
ikd , is utilized in

objective (1). Given this, the center points in the k-means approach correspond to the

cluster centroids. It has been shown in Murray and Estivill-Castro (1998), among

others, that the use of the distance squared measure, and hence the centroid, is

problematic and should not be utilized for either spatial or aspatial clustering

applications.

An alternative to the use of center points is to use the spatial observations themselves

as a means for identifying spatial clusters. The use of observations corresponds to a

median in the location literature as discussed in Murray and Estivill-Castro (1998),

which distinguishes this as a median clustering approach. The following notation will

assist in the specification of this alternative clustering model:

); number (total sites nobservatio ofindex = ni =

); as (same medians potential ofindex ij =

; median potential and  nobservatio between difference spatial jidij =

selected; be to medians cluster of number=p
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Median Clustering Problem (MCP)

Minimize ∑∑=
i j

ijiji zdaZ (4)
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The objective (4) of the MCP is to minimize the total weighted grouping of

observation sites to selected medians. Constraint (5) ensures that observation sites are

assigned to a median. Constraint (6) requires a median to be selected before it may

serve as a representative location for grouping observation sites. Constraint (7)

specifies that p clusters be identified. Constraint (8) imposes integer restrictions on

decision variables.

The two clustering models are very much related in that they both use locations in

space to create clusterings. Unfortunately, the CPCP uses points which are a function



of individual cluster membership. Alternatively, a median location is predefined as it

is a member of the observation sites. This distinction is important and does have

implications for the computational difficulty one can expect in solving either the

CPCP or MCP using exact or heuristic solution techniques. Beyond this, there is

currently no understanding of the similarities or differences between these two

approaches in terms of the clusterings produced – functionally or spatially. The major

focus of this paper is to develop a better understanding of such relationships and

properties within the context of ESDA.

Obtaining Cluster Solutions

Both the CPCP and the MCP are difficult and challenging problems to solve either by

exact or heuristic methods. Exact solution techniques for the CPCP are limited to

relatively small problem applications (see Rosing 1992), so heuristic approaches are

essential. The most widely acknowledged and applied heuristic for the CPCP is the

alternating approach developed by Cooper (1964):

(i) Generate p clusters.

(ii)  Identify a representative center point for each cluster.

(iii)  Assign observation sites to their closest center point.

(iv) If the cluster groupings have changed, then return to (ii). Otherwise, a

local optima has been reached and the heuristic terminates.

Others heuristics for the CPCP have been developed and applied (Cooper 1967; Love

and Juel 1982; Houck et al. 1996), but it is not clear whether they identify solutions of

higher quality using spatial information than the original alternating heuristic. Given

this, the alternating heuristic for the CPCP was utilized for obtaining application

solutions. The best solution identified is reported for the CPCP from 10,000 randomly

generated initial clusterings to which the alternating heuristic was applied. For the

MCP, both exact and heuristic solution techniques have been developed and applied

to medium and large problem instances (see Murray and Church 1996). Solutions

reported here for the MCP have been identified using Lagrangian relaxation with

branch and bound and are optimal to within 0.001%. Details on this approach for



solving the MCP and extensions of the MCP may be found in Murray and Gerrard

(1997).

Three spatial applications have been solved on a Pentium II/300 personal computer

for a range of p cluster values. The first application contains 33 observation sites from

Austin, Texas and represents emergency service calls in this region (Daskin 1982).

The second application contains 55 observation sites in Washington D.C. (Swain

1971). The final application contains 152 observation sites from the Busoga, Uganda

region, representing coffee buying centers (Migereko 1983).

Reported in Tables 1-3 are objective function values for the CPCP and the MCP using

the three detailed spatial applications for a range of cluster values. For each value of

p, the tables report the best cluster solution found by the two approaches, identified by

the shadowed boxes, as well as the functional value of this solution evaluated using

the other clustering model. For example, the best clustering found for the CPCP in

Table 2 for p=5 has an objective (1) functional value of 2927.46, as indicated in the

shaded box, and evaluating this clustering using the MCP results in an objective (4)

functional value of 2945.70. The optimal clustering found for the MCP is given below

this in the shaded box, having an objective (4) functional value of 2944.20 and

evaluating this clustering using the CPCP indicates an objective (1) functional value

of 2928.32. Thus, each value of p indicates the best solution found for each clustering

model (in the shaded box) as well as an evaluation of the clustering solution identified

using the other model. Given this reporting scheme, what would be expected is that

the shaded box always indicates a superior value (lower) for the corresponding

column heading and value of p than the evaluated clustering identified by the other

approach.

The clusters identified in Table 1 for each value of p are identical and result in the

same objective function measures when evaluated as either a CPCP or a MCP. Thus,

the CPCP solution for p=4 in the shaded box of 10,741.19 is repeated directly below

as the MCP identified the same clusters. This is not the case, however, for any of the

cluster solutions reported in Tables 2 or 3. Solution times for the problems

summarized in Table 1 were less than 0.02 seconds per solution using the alternating



Table 1. Clustering solutions using the 33 observation site data.

CPCP MCP
p=3 12,434.76 12,434.67

12,434.76 12,434.67
p=4 10,741.19 10,741.28

10,741.19 10,741.28
p=5 9312.08 9316.69

9312.08 9316.69
p=6 8180.67 8196.81

8180.67 8196.81

Table 2. Clustering solutions using the 55 observation site data.

CPCP MCP
p=5 2927.46 2945.70

2928.32 2944.20
p=6 2635.87 2651.33

2636.94 2649.55
p=7 2417.06 2422.30

2417.93 2420.79
p=8 2203.55 2230.08

2211.78 2217.85
p=9 2061.11 2091.49

2065.12 2071.19
p=10 1922.85 1936.66

1919.67 1927.45



Table 3. Clustering solutions using the 152 observation site data.

CPCP MCP
p=5 466,719.80 470,516.13

466,764.80 470,093.78
p=6 423,797.60 427,768.25

424,304.30 425,847.28
p=7 385,720.80 390,416.03

386,876.50 388,914.28
p=8 358,228.00 361,591.66

358,417.80 361,348.88
p=9 334,670.00 339,607.31

335,116.20 337,015.03
p=10 315,031.84 318,836.72

315,728.80 318,666.66
p=11 297,839.25 300,477.13

298,340.64 300,422.96
p=12 282,215.28 285,129.28

282,642.30 284,857.78
P=13 265,034.69 267,889.06

265,371.15 266,991.76
p=14 250,718.97 252,753.78

250,728.52 252,392.95
p=15 242,202.94 245,388.70

238,852.89 240,438.35



heuristic for the CPCP and less than 0.03 seconds using the Lagrangian relaxation

approach for the MCP for each value of p.

Table 2 differs substantially from Table 1 in that the two approaches do not identify

the same clusterings for any of the p values. Given this, it is interesting that there is a

significant amount of agreement between the CPCP and MCP in terms of each

approach identifying solutions which functionally rate well when evaluated using the

other model. As an example, for p=7 in Table 2 the CPCP identifies a clustering

which gives a functional value of 2417.06 and the optimal MCP grouping evaluated

as a CPCP results in a functional value of 2417.93. Alternatively, the MCP identifies

a clustering which gives a functional value of 2420.79 and the best CPCP clustering

evaluated as a MCP results in a functional value of 2422.30. It is important to note

that for p=10 in Table 2, the MCP actually identified a clustering which was superior

to the clustering identified by the alternating heuristic for the CPCP.  Specifically, the

alternating heuristic identified a clustering with a CPCP functional value of 1922.85,

whereas the optimal MCP grouping evaluated as a CPCP has a functional value of

1919.67. Obviously the alternating heuristic did not find a globally optimal solution

for the CPCP in this instance. Solution times for the problems summarized in Table 2

were less than 0.04 seconds per solution using the alternating heuristic for the CPCP

and less than 0.95 seconds using the Lagrangian relaxation approach for the MCP for

each value of p.

The results found in Table 3 are quite similar to those reported in Table 2. Significant

agreement between the two approaches would appear to exist. Further, there is also an

instance in Table 3 where the MCP identifies a functionally better solution for the

CPCP than does the alternating heuristic (p=15). The alternating heuristic obviously

was not able to find a globally optimal solution in this case. Solution times for the

problems summarized in Table 3 were less than 0.17 seconds per solution using the

alternating heuristic for the CPCP and as high as 34.10 seconds using the Lagrangian

relaxation approach for the MCP for each value of p.

In order to summarize the findings given in Tables 2 and 3, Figure 1 shows the

objective function difference percentages between the identified and evaluated

clusters. Specifically, for the CPCP this is the difference between the best clustering



Figure 1. Functional value differences for the 
results given in Tables 2 & 3.
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found and the evaluated MCP grouping. For the MCP, this is the difference between

the optimal MCP grouping and the evaluated CPCP grouping. The first 6 plotted

differences correspond to p=5-10 in Table 2 and the last 11 plotted differences are

associated with p=5-15 in Table 3. Examining the highlighted p=9 entry from Table 3

in Figure 1 shows that the best CPCP grouping evaluated as an MCP deviates from

the optimal MCP solution by 0.77%. Alternatively, the optimal MCP grouping

evaluated as a CPCP is 0.13% higher than the best CPCP solution. The only major

CPCP deviation in Figure 1 is attributed to the sub-optimal clustering found for the

CPCP in Table 3 for p=15. Given this, the MCP may be considered a very good

model for identifying clusters which will be high quality or optimal CPCP solutions.

The CPCP groupings are also high quality MCP solutions, but perhaps not to the

extent previously discussed.

Cluster Evaluation

As discussed previously, the functional evaluation and comparison of the MCP and

the CPCP groupings is very important, but the spatial extent of any differences is

certainly of particular interest in this paper. Examining spatial differences in

clustering solutions is a challenging task as they are difficult to represent, interpret

and summarize. The reason for this is that a spatial model, in general, may have a

large number of solutions (clusterings in this case) which are functionally similar, but

are very different from each other spatially. Thus, if spatial patterns are alike then it is

safe to draw conclusions from such an occurrence. However, if spatial patterns are

disparate then this may be an artifact of the solution space, which is partially defined

by the model objective function (equation 1 for the CPCP and equation 4 for the

MCP). Given this, the strongest case for establishing that two approaches are

producing similar clusterings is where the groupings evaluate favorably in terms of

the objective function measure and have a very comparable spatial pattern.

The previous section has established that the groupings produced by the MCP and the

CPCP for the three reported spatial applications demonstrate functional similarity.

This point is supported by the results summarized in Figure 1, where the objective

function percentage deviations for the identified clusters remain consistently low. In

fact, the worst comparative evaluation deviated by approximately 2%. A number of



these clusters will now be compared using a basic and spatially explicit evaluation

approach.

Figure 2 displays the five clusters (p=5) identified for the Swain application reported

in Table 2. The solid lines represent MCP groupings and the dashed lines represent

CPCP groupings. What is shown in Figure 2 is that the groupings identified by the

two clustering models vary by only one observation site. Specifically, observation site

49 has a different group membership when comparing the MCP groupings to the

CPCP groupings. Barring this, the cluster boundaries coincide for the two approaches.

It is fairly obvious that the clusters are similar in this case.

The nine groups (p=9) found for the MCP and the CPCP using the Swain application

are presented in Figure 3. The clusters displayed in Figure 3 are more varied than

those shown in Figure 2. For example, observation sites 2, 9, 25 and 39 largely

represent the major changes in cluster membership. Beyond this, the CPCP, in

contrast to the MCP, has combined observation sites 2, 4 and 42 into one group and

has split the MCP grouping of observation sites 1, 5, 11, 13, 40, 43, 44, 46, 47, 52, 53,

55 into two groups. Although the clusters are not as similar as those found in Figure 2,

there is certainly a significant amount of commonality between the identified clusters.

Figure 3 is in fact the most spatially disparate clustering found for the two

approaches.

The six groups (p=6) identified for the MCP and the CPCP for the Uganda application

are presented in Figure 4. Only five of the 152 observation sites change cluster

memberships in Figure 4. Specifically, there is a change for observation sites 18, 24,

45, 77 and 83. Otherwise, there is again almost complete boundary overlap between

the two sets of produced clusters. This is another instance where cluster similarity is

clearly present.

The final comparison is displayed in Figure 5 for the thirteen groups (p=13)

associated with the Uganda application. In this case, only three observation sites

change cluster membership between the two models. Specifically, observation sites

18, 41 and 150 are members of different groups in the CPCP as compared to the
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MCP. Here again, there is significant visible agreement between the produced

clusters.

Discussion and Conclusions

There is a strong case to support the contention that there is substantial similarity in

produced clusters using the CPCP and the MCP approaches. This being the case, it is

then a question of preference and computational requirements which dictate the

appropriateness of these two clustering approaches for a particular spatial application.

That is, all else being relatively equal, the selection of a particular clustering approach

for ESDA would be a matter of individual or institutional choice. Before going

further, it is worth discussing some important points regarding various aspects of the

results reported thus far. This may make the differences between these alternative

approaches more clear and apparent.

It is always important to have an understanding of heuristic performance when they

are utilized for obtaining solutions. The major question being whether or not the

solutions identified are of high quality (optimal or near optimal). Previous studies of

the performance of the alternating heuristic for the CPCP indicate that it does quite

well. In general, the results observed in this paper suggest that the performance of the

alternating heuristic is good. However, based upon the findings presented in Tables 2

and 3, the alternating heuristic for the CPCP is not always capable of findings

solutions which may be identified using an indirect approach, namely the MCP. That

is, in Table 2 for p=10 and in Table 3 for p=15 the MCP identified groupings which

when evaluated using the CPCP were superior to the best solutions obtained using

10,000 runs of the alternating heuristic. Another point is that the solutions reported for

the CPCP in Table 2 for p=9 and in Table 3 for p=14 are not optimal, but they are

better than the identified MCP groupings. Based upon these findings, the alternating

heuristic for the CPCP appears to have difficulty identifying globally optimal

solutions as the number of clusters increases, at least in the context of ESDA. It is

interesting to note that results based upon the use of randomly generated data do not

suggest this for the alternating heuristic, so this is an important observation. Heuristic

development for the CPCP remains an open area of research from an optimization

perspective whether the application is in the area of clustering based ESDA or the

original spatial modeling oriented analysis.



Related to the issue of heuristic development is the computational performance of

utilized techniques for solving either the CPCP or the MCP. The solution time

comparisons noted previously suggest that at present the Lagrangian solution

approach for the MCP is relatively efficient in comparison to the alternating heuristic

for the CPCP. Recall that the most difficult problem applications reported in Table 3

were solved optimally in a maximum of 34.10 seconds for the MCP, whereas the

10,000 runs of the alternating heuristic for the CPCP required approximately 1700

seconds to solve. Further, as noted previously, the CPCP solutions were not

necessarily optimal. At least four out of the 21 problem instances solved are known to

be sub-optimal for the CPCP.

Analyzing  the CPCP and the MCP in terms of functional and spatial differences

provided strong evidence for the two approaches producing similar clusterings. The

functional evaluation and comparison summarized in Figure 1 highlights the fact that

the two clustering approaches consistently identified groupings of high quality

according to both modeling approaches. The spatial comparison of the MCP and the

CPCP demonstrated that the produced clusters were not particularly different, even in

the worst instance. One question that may be worth pursuing further is whether there

exists a technique which may be used to assess the significance of cluster similarity

between alternative modeling approaches? This is certainly a valuable component for

carrying out such a comparative analysis. However, the fact that clustering

approaches, in general, partition space, this enables identified clusters to be contrasted

visually as was done in Figures 2-5.

This paper has compared two clustering approaches which may be utilized for

exploratory spatial data analysis (ESDA). The first approach was the center points

clustering problem (CPCP) and the second approach was the median clustering

problem (MCP). A significant amount of similarity was demonstrated between the

two approaches in terms of their functional performance as well as the spatial

comparability of identified clusters. The use of the MCP for ESDA would be

recommended based upon the lack of any notable difference between groupings

identified by either the MCP or the CPCP. In fact, the MCP appears to consistently

identify optimal or near optimal CPCP groupings. Further, the fact that solving the



MCP required less computational effort than the CPCP and can be effectively solved

for optimal solutions when significantly larger spatial applications are pursued

supports this position as well. In a geographical information system (GIS)

environment these are certainly important considerations.
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