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Abstract
This paper deals with some of the features of static models of road traffic congestion that
have caused much debate in the literature. It first focuses on the difficulties arising with the
backward-bending cost curve defined over traffic flows in the context of ‘continuous
congestion’. The relevance of the backward-bending segment of this curve is questioned by
demonstrating that the ‘equilibria’ on this segment of the cost curve are dynamically
infeasible. Next, the implications for static models of ‘peak congestion’ are considered. In
doing so, attention is paid also to the implicit assumptions, particularly on the nature of
scheduling costs, that are necessary to render static models of peak congestion internally
consistent. The paper ends with a brief discussion of the implications for dynamic models of
peak congestion.
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1. Introduction

Notwithstanding the long history of the economists’ and engineers’ study of road traffic
congestion and congestion pricing (see Pigou, 1920; Knight, 1924; Wardrop, 1952; Walters,
1961; and Vickrey, 1969), academia has not yet reached general consensus on the
fundamentals that should underlie such analysis, witness the relatively large number of
comments and replies that papers on these topics seem to trigger (Else, 1981, 1982, versus
Nash, 1982; De Meza and Gould, 1987, versus Alan Evans, 1992; Andrew Evans, 1992, 1993,
versus Hills, 1993; and Lave, 1994, 1995, versus Verhoef, 1995). However, especially now
that the introduction of road pricing as a means of combating congestion becomes an
increasingly realistic policy option at various places (Small and Gomez-Ibañez, 1998), the
importance of at least transport scientists coming to a closer agreement on the analytical
backgrounds underlying the phenomenon of road traffic congestion and the derivation of
optimal fees increases likewise.

This paper is concerned with static economic models of road traffic congestion.
Although static models have obvious limitations in the analysis of traffic congestion, they are
still often used for both research and educational purposes. It is therefore worthwhile to
consider these models in some further detail. This paper addresses some of the key questions
that have dominated the debate on these models in the literature. These include issues related
to hypercongestion and the backward-bending segment of the average cost curve that can be
derived from the ‘fundamental diagram of road traffic congestion’. A related question concerns
the choice of the output variable in the definition of demand and cost functions. Two main
stances can be distinguished here: ‘flow-based’ measures, where the output measure has an
explicit ‘per-unit-of-time’ dimension (De Meza and Gould, 1987; Andrew Evans, 1992, 1993;
Else, 1981, 1982 and Nash, 1982), and ‘stock-based’ measures, such as densities or numbers
of trips (Alan Evans, 1992; Hills, 1993; Verhoef et al., 1995ab, 1996ab).

Although the time dimension is by definition not considered explicitly in static models,
it will turn out that this does not mean that time as such does not, or should not, play any role
at all. ‘Static’ only means that these models do not explicitly study (or allow for) changes of
variables over time. In what follows, some elements that would perhaps sooner be associated
with dynamic modelling, and that are consequently often ignored in static analyses, will play an
important role. Apart from making a fundamental distinction between ‘peak demand’ and
‘continuous demand’, the question of whether a proposed static equilibrium is dynamically
consistent will be considered explicitly, and is taken as a prerequisite for the equilibrium to be
meaningful.

The paper is organized as follows. Section 2 discusses some main features of static
models of road traffic congestion, presents some definitions, and distinguishes between models
directed towards the cases of ‘continuous demand’ and ‘peak demand’. Section 3 proceeds by
investigating the case of continuous demand, and focuses in particular on the difficulties arising
with the backward-bending cost curve. The relevance of the backward-bending segment of this
curve is questioned by demonstrating that ‘equilibria’ on this segment are dynamically
inconsistent. Section 4 studies the implications for static models of peak congestion. In doing
so, attention is paid also to the implicit assumptions, particularly on the nature of scheduling
costs, that are necessary to render static models of peak congestion internally consistent.
Because these assumptions turn out to be rather unrealistic, the section also discusses the
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implications of the analysis in Section 3 for dynamic models of peak congestion. Finally,
Section 5 concludes.

2. Static models of road traffic congestion: some introductory issues

Road traffic congestion in reality is a complicated dynamic process, and the analyst studying
congestion and congestion pricing is soon confronted with the dilemma between using either
an ‘as-realistic-as-possible’ modelling approach, in which analytical solutions are often difficult
to obtain (such as Newell, 1988), or to apply a simpler representation of reality, allowing
analytical solutions and the derivation of more or less general insights into the economic
principles behind the problems studied. This paper is concerned with the latter type of
approaches. Within this group of models, a distinction can be made between static and
dynamic models. In static models, no explicit time dimension is present. Speeds, densities,
generalized costs and the toll in case one is levied are, as it were, constant over time: they only
have one single equilibrium value. This may often be at odds with standard results in dynamic
models of road traffic congestion, where for instance travel times and optimal tolls usually vary
over the peak (see Arnott et al., 1993, 1998; Braid, 1989, 1996; Henderson, 1974, 1981; and
Chu, 1995), but it is simply a property of static models. Still, the time factor does play an
important role in these static models. No matter how abstract it may seem in a ‘time-less’
approach, the average generalized travel costs are assumed to increase with road usage
because speeds decrease and travel times increase. Moreover, as in any static economic model
of a market, a consistent pair of demand and supply relations can be specified only after the
time period to which they pertain has been identified (e.g., the average daily demand for a
certain good at a given price will be one-seventh of the average weekly demand).

Static models of road traffic congestion give a simplified representation of reality by
definition. For an unambiguous interpretation of these models it is, however, important to
make explicit exactly what type of real process they aim to represent. From that perspective, it
is important to distinguish between models dealing with ‘peak demand’ on the one hand, and
‘continuous demand’ on the other. ‘Peak demand’ refers to the case where a limited number of
potential users consider using the road during the same (peak) period, the duration of which
could be endogenized. The equilibrium number of actual users will depend on the equilibrium
level of user costs during this peak period, and the intersection of the inverse demand curve
with the horizontal axis gives the total number of road users during the peak in the hypothetical
case where user costs were zero – with zero usage and an empty road before and after they
have travelled. ‘Continuous demand’, in contrast, refers to the case where the demand function
is stable over time. This would normally result in an everlasting ‘stationary state’ situation,
where a road is continuously used at a constant intensity. For the description of such a
stationary state, the fact that speeds, flows, and densities each will have just one single
equilibrium value in a static model could be less unrealistic than it might be for static models of
peak demand. Here, the intersection of the inverse demand curve with the horizontal axis gives
the constant, everlasting number of users completing their trip per unit of time in case user
costs were zero. One could of course consider mixed cases, where a ‘peak demand’ interferes
with some ‘continuous demand’, but the main point here is just to distinguish between these
two basic types of demand.

Let us now turn to the various relevant variables. In defining these, one should in the
first place consider one single, well-defined market. The product ‘trip’ should therefore be
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homogeneous, which can be assured by considering a single road, to be used either completely
or not at all by individual drivers. Hence, all trips are assumed to have equal length (L).
Differences between trips in terms of speeds or arrival times, which could especially be relevant
in models of peak congestion, do not affect this homogeneity condition as long as such
variations are reflected in differences in generalized user costs.

A number of measures for ‘road usage’ can be distinguished. The first of these is total
road usage (N): the total number of trips completed, over the entire period considered. This
variable is relevant only for the case of peak demand. With continuous demand, total usage is
either zero, or increasing with the time period considered. A second measure for usage is flow
(F), measuring the number of vehicles passing a given point on the road per unit of time. A
third measure related to usage is density (D): the number of users per unit of road space –
where the total road space, in turn, can be measured as the product of two constants, namely
length L and width W, usually the discrete number of lanes. D and F are relevant measures for
peak demand as well as for continuous demand. Finally, the variable n will be used to represent
the number of users that are simultaneously present on the road.

Road users are in the most basic model identical in all respects, except for having a
possibly different maximum willingness to pay for making a trip. In particular, they share the
same value of time, and they all contribute to congestion in the same way. The speed (S) has,
through the value of time, an important impact on the generalized average social costs (AC).
Like most models, only time costs will be considered in what follows, although other cost
components could easily be introduced without affecting the results.

Apart from speeds and flows, there are some other ‘time-related’ variables that may be
relevant for the static analysis of congestion. The duration of the peak (T), for instance, is
often ignored in static analyses of congestion, even when dealing with peak demand. However,
when a ‘trip-based’ demand function is used, giving the total number of trips demanded during
the peak as a function of the equilibrium level of generalized user costs, the related cost
function can be defined only when the duration of the peak T is known. The reason is that the
average and marginal social costs of having a number of users completing a trip during the
peak will generally depend on the duration of the peak: the longer the duration, the lower these
costs.1 Two measures for the duration of the peak will be used below. The duration T, without
further qualification, denotes the period between the first and last driver in the peak passing a
given point along the road. The ‘grand duration’ TG will give the time-span between the first
driver’s arrival time at the entrance of the road, and the last driver’s arrival time at its exit. The
last time-related variable is the duration of a trip (t): the time it takes to drive from the road’s
entrance to its exit. This measure is relevant both for peak demand and continuous demand.
Therefore, the grand duration of the peak, in a purely static model with peak demand, is equal
to TG=T+t, because the peak starts and ends t seconds later at the road’s exit than at its
entrance.

With continuous demand, the following three identities can be given for a stationary
state equilibrium:

                                               
1 Alternatively, when using a ‘flow-based’ cost function in a static model of peak congestion, giving the
generalized costs as a function of passages per unit of time, the transformation of the demand curve defined
over total numbers of trips into the then relevant demand function defined over flows can also be made only
when the duration of the peak is known.
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Equations (1b) and (1c) are evident; equation (1a) can be checked by observing that all users
present on the road at a certain instant will have passed the point of exit after t time units.

Recalling that in a purely static model of peak congestion, all variables have one single
value in equilibrium, and should therefore have the same value at each instant and at each place
along the road as long as it is used at that instant at that place, (1a)–(1c) will have the
following counterparts for the purely static model of peak congestion:
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Equations (2a) and (2b) are evident; equation (2c) can be understood after realizing that D can
be determined as if N⋅t/T vehicles were present simultaneously on the road during the time-
span T. It should be emphasized that, like (2a) and (2b), (2c) only holds for places along the
road at instants that it is actually used. During the first (and last) t time units, when a
decreasing (increasing) segment of the road is empty, it would be incorrect to derive the
density by dividing the number of users present at an instant by the total length of the road,
because this would incorrectly assume these users to be distributed uniformly along the entire
road. Outside the duration of the peak for a certain point along the road, we simply have
F=D=0, and speed is not defined.

Finally, it is easily checked that both (1a)–(1c) and (2a)–(2c) are consistent with the
well-known property that traffic flow is proportional to the product of density and speed:
F D S W= ⋅ ⋅ (3)
W is often implicitly set at unity, and then disappears from (3).

3. The case of continuous congestion

The case of continuous congestion, where the demand function for road usage is stable over
time for an infinite time period – or at least long enough to allow one to concentrate on
stationary state equilibria – is probably not the most realistic representation of road traffic
congestion. Nevertheless, it is the situation that is often, implicitly, assumed to apply in static
models of congested road traffic; in particular those based on the ‘fundamental diagram of road
traffic congestion’ (see, for instance, Johansson, 1997). The model can be seen as a basic
‘bench-mark’ model for studying the economics of congestion, the insights of which can be
helpful in interpreting more realistic and complicated models in which, for instance, demand
curves are not stable, or not independent, over time. Even this probably most simple
representation of road traffic congestion, however, has triggered a remarkable level of



Time, speeds, flows and densities in congestion modelling 5

disagreement, which justifies further study of the model. The model also allows one to study
some fundamental differences between ‘ordinary’ static economic market models and the
market model of congested road usage, apart from the additional complications related to the
duration of the peak. The latter will be considered explicitly in Section 4.

3.1. The standard analysis

From equations (1a)–(1c), it turns out that the equilibrium flow F can be written only as a
function of at least two endogenous variables; for instance as the ratio of n and t according to
(1a), or as the product of D and S, multiplied by the constant W, according to (3). Therefore,
to find the relation between equilibrium values of F and one of these other variables, say S, one
has to take into account the relations between these endogenous variables; for instance the
relation S(D). It is normally assumed that speed decreases with an increasing density. This is
illustrated by the density-speed relation (DS-curve) in the first quadrant in Figure 1, which is
the so-called ‘fundamental diagram’ of road traffic congestion. As drawn, it is assumed that the
free-flow speed S* can be sustained for positive densities (the DS-curve starts with a flat
segment); and that there is some maximum density Dmax for which speed falls to zero.

Because F is proportional to the product of D and S by (3), F will obtain a maximum
value for some combination of speed and density, denoted S# and D# in the diagram. This gives
rise to the familiar backward-bending speed-flow curve (SF-curve) in the fourth quadrant of
Figure 1, and the density-flow curve (DF-curve) in the second quadrant of Figure 1. Under the
assumption that only time costs matter for generalized user costs, the speed-flow curve in
Figure 1-IV can subsequently be combined with the inverse relation between speed and travel
times in (1b) to obtain the standard backward-bending average social cost function (AC)
depicted in Figure 2. The lower section of the AC-curve, where speeds are relatively high and
travel times relatively short, corresponds with the upper section of the SF-curve in Figure 1-
IV. Likewise, the upper section of the AC-curve, representing situations that are usually
referred to as ‘hypercongestion’, corresponds with the lower section of the SF-curve. As
speeds go to zero in Figure 1-IV, generalized user costs go to infinity in Figure 2.

Therefore, each level of flow, except the maximum level and zero flow, appears to be
obtainable at two cost levels: a low one, where the density is relatively low and the speed
relatively high; and a high one, where the opposite holds. It is especially the backward-bending
cost or supply curve in Figure 2 that has led to heated debate, mainly because the confrontation
of this curve with a standard downward sloping demand curve may produce puzzling results.
Before discussing these, it should be emphasized that the translation of the SF-curve into the
AC-curve through the relation between speed and travel times presupposes that speeds,
densities and flows are constant over time and along the road. AC as a function of F would
otherwise not be meaningful, because F and S themselves would then vary during the trip, and
t=L/S could not simply be applied to derive the average cost for a trip.

In Figure 2, two demand curves, denoted E and E′, are included. These give the
marginal willingness to pay for making the trip as a function of traffic flow, which, in a
stationary equilibrium, is equal to the number of trips completed (and started) per unit of time.
These demand curves therefore do not give the marginal willingness to pay to pass that
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particular point where flow is measured, at the particular instant it is measured – unless the rest
of the trip could be made against zero costs. Because the AC-curve was designed to give the
generalized user costs of the entire trip as a function of traffic flow, also the demand curve
should give the marginal benefits of the entire trip.

The demand curve E is drawn so as to produce the three possible types of intersection
with the average cost curve that can be distinguished. In contrast to standard market models,
where unique equilibria are usually found, this curve seems to suggest no less than three
possible equilibria, denoted x, y, and z. At each of these points, the marginal benefits E are
equal to the generalized costs AC. Among these points, z is nearest to a standard market
equilibrium, with an upward sloping supply and a downward sloping demand curve. The
intersections x and y, in contrast, suggest that market equilibria could also occur on the upper
segment of the AC-curve, in which case a non-intervention stationary state equilibrium with
hypercongestion would arise. A standard argument is that one of the objectives of a toll is to
secure the transition to the lower segment of the AC-curve, because in an optimum, the flow
should be realized at the minimum possible cost. Apart from that, the toll should bridge the gap
between AC and marginal social cost (MSC). The latter, however, is ignored for the time
being, in order to keep the diagram decipherable.

When multiple equilibria seem possible, a logical next step is to investigate the local
stability of the candidates. Interestingly, in the present context, analysts do not agree on this
question. For instance, Nash (1982) asserts that equilibria like y are stable, where the demand
curve is steeper than the AC-curve, while Else (1982) proposes x, where the opposite holds.
Although this issue is only of limited relevance for the sequel, because it will be argued that
neither x nor y are dynamically consistent stationary states, one can explain the disagreement
from the type of perturbations considered. For price perturbations, in line with the Walrasian
tâtonnement process, x appears locally stable and y unstable. For a slightly higher price, an
excess supply (demand) is then found at x (y), leading to a downward (upward) price
adjustment by the auctioneer, and hence a move back to (further away from) the initial
equilibrium. For quantity perturbations, the opposite holds. A slight increase in usage cause
marginal benefits to exceed (fall short of) average cost at x (y), leading to a move further away
from (back to) the initial equilibrium. Note that z is stable according to both approaches.

3.2. Reconsidering the standard analysis

The representation in Figure 2 has been challenged in the literature (see Chu and Small, 1996,
for a recent contribution). One particular problem has received relatively little attention, and
that is the situation where a demand curve like E′ would apply. In that case, only the
equilibrium x′ remains. If one believes that quantity perturbations are the correct way to
evaluate local stability – which actually does seem more appropriate in the absence of tolling –
this equilibrium is unstable. Beyond that flow, flows will continue to increase, because
marginal benefits consistently exceed the average user costs. Road users can ‘avoid the cost
curve altogether’, and will presumably end up at the intersection of E′ with the horizontal axis,
expecting free trips for ever. It is evident on intuitive grounds that this cannot be correct.
However, the model presented so far is unable to explain what will happen in that case.

Several analysts have expressed unease with the choice of flow as an output variable in
Figure 2, because flow is an “…endogenous variable, resulting from the […] interactions



Time, speeds, flows and densities in congestion modelling8

among road users” (Alan Evans, 1992, p. 212). Hills (1993), for instance, suggests that the
total number of trips accomplished should be the relevant output variable. After the discussion
in Section 2, it will be clear that this measure certainly makes sense in the case of peak
congestion. However, it is a meaningless concept in a stationary state equilibrium with
continuous congestion, because it is then either equal to zero, or increases with the time period
considered. Alan Evans (1992) proposes densities. However, this output variable has the
unattractive implication that it is ‘being on the road’ that people demand, instead of
‘completing a trip’. In particular, in the stationary state where density is at a maximum, and
speed and flow are zero forever, a demand curve defined over density suggests maximum
benefits, although not a single trip is ever completed. Density could be a reasonable output
measure in models of, for instance, congested beach tourism. For road usage however, it seems
that in case of continuous demand, one should maintain normalization with respect to the time
dimension in the definition of the output variable. This is fully consistent with common practice
for the specification of demand and cost curves in static economic market models (Else, 1982
(p. 300)). However, this does not mean that the endogenous variable flow, as used in Figure 2,
should be the actual output measure. Instead, it will be proposed below to use the arrival rate
of new users at the road’s entrance: the number of trips started per unit of time. This variable,
r, is equal to the flow only in stationary state equilibria. Hence, for stationary states, the
demand curve E(F) should be the same as the demand curve E(r).

A second stance taken in this paper is that the ‘dynamic consistency’ of a static
equilibrium should be taken as a prerequisite for this equilibrium to be meaningful. This
requirement implies for the case of continuous congestion that a proposed static equilibrium,
where all variables have one single equilibrium value, can only be meaningful if these values
correspond to the long run stationary state values that these variables could or would obtain in
a corresponding dynamic model. There are two conditions that guarantee a static equilibrium
to be dynamically consistent. The stationary state condition is that the static equilibrium should
not somehow imply growing or declining stocks, in which case the equilibrium would be
nothing more than a ‘snapshot’ of an ever-changing system, rather than representing the
system’s long run equilibrium. The feasibility condition requires that the equilibrium is
dynamically stable, and hence could result from at least some set of (internally consistent)
initial conditions other than the conditions applying in that stationary state itself. If either of
these conditions is violated, the static equilibrium loses most of its appeal and relevance, as it
then does not represent a possible stationary state outcome of the dynamic process it aims to
describe.

In most static market models, this question of dynamic consistency is ignored, because
it is implicitly assumed that a certain good is produced, traded and consumed within a single
time period. As a result, no stocks accumulate or decline over time; prices, production levels
and consumption levels at different instants do not interact; and there are no inter-temporal
externalities. However, for the market considered here, such an assumption is clearly
unrealistic. The speed, and hence the costs, that a driver obtains during the trip will generally
not be independent of the travel conditions on the road (just) before he starts. By
distinguishing between r and F, and by acknowledging that F is also dependent on previous
values of r, instead of imposing beforehand that for all points along the road we have F=r at
every instant (as is implicitly done in Figure 2), this inter-temporal cost interdependence can be
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taken into account. Hence, the consideration of both r and F, and the imposed prerequisite of
dynamic consistency, are closely connected.

A number of propositions will be used to assess the dynamic consistency of all points
on the AC-curve. The first of these are related to the stationary state condition, and can be
made without making explicit the drivers’ behaviour – and hence the model’s behaviour –
during transitional phases. The only assumption that should be made explicit is that the road’s
maximum capacity Fmax is constant along the road, including the entrance.

Proposition 1a All points on the AC-curve in Figure 2 can be stationary states.

Proof It will be proven that, starting from an initial stationary state with a consistent set of S0, D0 and F0=
S0⋅D0<Fmax according to the AC-curve, if we have an arrival rate of new users at the entrance r0=F0, the
stationary state equilibrium sustains itself. This can be shown by considering what happens near the road’s
entrance during an arbitrarily short time frame of τ seconds between two clock-times τ0 and τ1, with τ1–τ0=τ. At
τ1, the last drivers that arrived at τ0 will have moved a distance of d=τ⋅S0 meters. The available road space for
those arriving between τ0 and τ1 is therefore W⋅τ⋅S0. The number of newly arrived cars is τ⋅r0, implying that the
(average) density Dd over the first d=τ⋅S0 meters can be written as:

(4)

(compare (3) for the last step). Note that the result is independent of the time frame τ considered, and therefore
also holds for lim

τ →0
Dd . Provided r0=F0, the density near the entrance will therefore remain constant and equal

to the density D0 that is consistent with the initial speed S0 and flow F0.n

Proposition 1b If r>Fmax, the system cannot be in a stationary state equilibrium.

Proof  If r>Fmax, somewhere a stock must be accumulating at a rate q≥r–Fmax>0 .n

In order to test the dynamic consistency according to the feasibility condition, one has to be
more specific about the model’s behaviour during transitional phases than the fundamental
diagram allows. This diagram presupposes and subsequently produces stationary states only.
Speed is only defined for a constant density along the road, and because all drivers along the
road will as a consequence obtain the same speed, the density will also remain constant over
time and place (drivers do not get closer to, or further away from each other). In testing the
dynamic feasibility of equilibria, one would ideally use a full-fledged dynamic model, which
should in stationary states be consistent with the fundamental diagram underlying the static
model. Verhoef (1998) presents one such model, based on the identities that density D as given
in (1c) and (2c) is the inverse of the distance between two subsequent cars for a single-lane
road, and that the arrival rate r is the inverse of the time elapsed between the arrival of two
subsequent cars at the entrance. A ‘car-following’ model is then be specified, which for
stationary states yields a density-speed relation like the one given in Figure 1-I.

In such a model, however, the determination of the position of subsequent cars along
the road over time involves solving differential equations, and the model unfortunately does
not yield analytical expressions that can easily be used for the present purpose. Moreover,
since the aim here is to prove that the points on the upper segment of the AC-curve are
infeasible, the car-following assumption that only the distance to the preceding car (not to the
following car) matters in the speed choice could be perceived as too restrictive. Therefore,
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only a minimum number of rather mild assumptions are used below to describe the drivers’
behaviour during transitional phases. For this purpose, the ‘forward local density’ df,x

(‘backward local density’ db,x) at a point along the road is defined as the average density over
the first x meters downstream (upstream), where x can have any value as long as it does not
exceed the distance to the road’s exit (entrance). Next, df,max (db,max) gives the maximum value
for df,x (db,x) that can be found by varying x. The assumptions made then are that:

(1) At a certain instant, a driver will not drive slower than S(max{df,max, db,max}), where S (⋅)
gives the density-speed relation as given in Figure 1-I.

(2) When a driver, who previously drove in stationary state conditions, observes that the
nearest driver behind him slows down, so that db,x decreases for some relatively small but
positive values of x, he will not slow down himself but maintains the stationary state speed,
even if db,x simultaneously increases for some relatively large values of x.

(3) A driver will not voluntarily cause hypercongestion himself:
(a) at the instant of starting a trip, when db,x is not defined, a driver will not select a

speed below S(df,max), for instance in anticipation of the high db,x that would
subsequently result from this choice itself;

(b) during a trip, a driver will not select a speed below S# when all speeds downstream
exceed S# and when hypercongestion would only be building up behind him because
of his own choice to drive slowly.

The second assumption makes sure that decreasing speeds upstream do not work as a
‘vacuum’ by hindering speeds downstream, and thus limits the potential consequences of the
very mild assumption (1) somewhat. The following propositions can now be derived:

Proposition 2a Starting from a stationary state 0 {S0, D0, r0=F0=S0⋅D0<Fmax} without
hypercongestion, there is no arrival rate r1≤Fmax that would lead to hypercongestion.

Proof First, define state 1 {S1, D1, r1=F1=S1⋅D1} as the ‘non-hypercongested’ stationary state consistent with
r1, and define τ0 as the clock-time from which moment onwards r1 applies. If the last drivers that arrived just
before τ0 would maintain S0 throughout their trips, at clock-time τ0+τ the average density Dd over the first
d=τ⋅S0 meters can, for each τ, be written as:

(5a)

where the inequality follows from r1≤Fmax and S0>S#.
If r1<r0, then D1<Dd<D0<D# for all τ. The assumption that the drivers who arrived before τ0 maintain

S0 is therefore in accordance with assumption (1): for those drivers df,max=D0>db,max, because Dd<D0 for all τ.
If r1>r0, one should take account of the possibility that the drivers who arrived just before τ0 will not

maintain S0, because a density higher than D0 is building up behind them. However, the drivers who started
their trip again just before these drivers will maintain S0 by assumption (2). Therefore, since r0<r1 and S0>S1,
the last drivers who arrived just before τ0 will have speeds not exceeding S0 but strictly exceeding S1 by
assumptions (1) and (3b). In particular, observe that because they have started their trips at a speed S0,
db,max<D1 for these drivers throughout their trips. Hence, (5a) can be written as:

(5b)
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Since (5ab) hold for all values of τ, a density consistent with hypercongestion can never build up on the road,
and as a consequence, speeds will consistently remain larger than S#. In particular, observe that both for (5a)
and (5b) we find:

(5c)
implying that at τ0, the speed at the entrance remains greater than S#. This in turn implies that the reasoning
leading to (5ab) can be reapplied for the entrance for every instant after τ0.n

Proposition 2b Starting from any initial situation – including non-stationary ones – without
hypercongestion, where speeds exceed S# and densities are below D# along the entire road,
there is no arrival rate r1≤Fmax that would lead to hypercongestion.

Proof Proposition (2b) can be proven analogous to Proposition (2a), after replacing τ⋅S0 (τ⋅S1) by S d+∫ υ
τ

0
 in

the denominator of (5a) ((5b)), where S+ gives the speed at instant τ of the drivers that arrived at τ=0. Since
S+>S# at τ0, the same reasoning as underlying (5abc) can be applied.n

Proposition 3 Starting from a stationary state 0 {S0, D0, r0=F0=S0⋅D0<Fmax} with hyper-
congestion, a change in the arrival rate to any r1 will not lead the system to converge to a new
stationary state 1 with hypercongestion {S1, D1, r1=F1=S1⋅D1}.

Proof If r1>r0=F0, then S1>S0 and D1<D0 (see Figures 1 and 2). However, assuming that the last drivers that
arrived at τ0 either maintain S0 or reduce their speed in response to the higher db,x building up behind them, for
all τ the average density over the first d=τ⋅S0 meters is:

(6a)

Likewise, if r1<r0, we find:

(6b)

 Taking lim
τ →0

Dd , which exceeds D0 for (6a) and is smaller than D0 in (6b), and subsequently using the result

when reapplying (6a) and (6b) for drivers arriving later than τ0, it is clear that we find for r1>r0 consistently
higher and increasing densities (and lower and decreasing speeds) near the entrance, whereas state 1 requires
lower densities and higher speeds. A decrease in the arrival rate, in contrast, will lead to consistently lower and
declining densities (and higher and increasing speeds) near the entrance, which are also inconsistent with the
required values for stationary state 1. Therefore, the system diverges from the densities and speeds consistent
with stationary state 1 after the arrival rate takes on the value r1=F1.n

According to Proposition 2, coming from any non-hypercongested initial situation,
hypercongestion cannot be explained as long as r≤Fmax. The intuition is that the road space that
becomes available per unit of time near the entrance is relatively large because of the relatively
high initial speeds. Therefore, the number of new users needed per unit of time in order to
build up a density consistent with hypercongestion is relatively large, partly because of the
relatively high speed that new users will obtain themselves. Since at an initial speed of S# one
already needs the maximum inflow Fmax in order to sustain the density D# (compare Proposition
1), it is intuitively clear – and directly follows from (5ab) – that at initial speeds exceeding S#,
one would need an inflow exceeding Fmax in order to build up a density of D# or larger. This
inflow is impossible by definition.
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Propositions 2 and 3 imply that as long as the arrival rate never exceeds Fmax, the ‘non-
hypercongested’ stationary states are the only feasible stationary states between which the
system can move. Coming from any initial situation without hypercongestion, the system
cannot reach a hypercongested stationary state at all. Even if the initial situation would be a
hypercongested stationary state, a reduction in the arrival rate will then take the system to
higher instead of lower speeds, while the opposite holds for increasing arrival rates. In the
former case, the system may as a consequence leave the hyper-congested regimes ‘for good’.
Therefore, a hypercongested stationary state 1 will never result from a process where, starting
from any other initial stationary state (hypercongested or not), the arrival rate takes on any
value r1<Fmax. Hypercongested stationary states in contrast are ‘razor’s edge’ dynamic
equilibria, which can only result from an initial situation in which that particular stationary
state’s equilibrium conditions already apply. These conditions can never arise if the road was
once opened empty (without-hypercongestion), and arrival rate’s and inflows below Fmax have
always applied. Since an inflow exceeding Fmax is inconsistent with the maximum capacity of
the road over the first meters, we conclude that the upper segment of the AC-curve in Figure 2
is dynamically inconsistent according to the feasibility criterion. Note that the standard static
model of course does not test for such questions related to the dynamic stability of equilibria.

3.3. The average and marginal cost curves for dynamically consistent equilibria

Because the upper segment of the AC-curve in Figure 2 is dynamically inconsistent according
to the feasibility criterion, the only possible dynamically consistent stationary state equilibrium
remaining in case the demand curve E applies is z. This, however, does not yet tell us what will
happen in case E’ applies. It seems that only a dynamically infeasible equilibrium x’ remains. In
particular for this question, the consideration of r instead of F as an output variable is helpful in
determining the stationary state equilibrium. For this purpose, it should first be made explicit
that the static equilibrium we want to find is the stationary state for a dynamic system where
the stable demand curve E’ applies from τ=0 onwards. Furthermore, it is postulated that the
initial situation at τ=0 is an empty road.

The first drivers, starting at τ=0, therefore expect to complete their trip at a speed not
above Smax by definition, but which will at the same time not be lower than S# during the trip,
because the maximum inflow at and after τ=0 is Fmax (compare Proposition 2). The implied
generalized costs provoke an initial arrival rate r0>Fmax. Now if the model does not somehow
allow a queuing possibility for excess arrivals, this arrival rate cannot be accommodated, and
the model breaks down. Note that this conclusion does not critically depend on the assumption
that at τ=0, the road is empty. It holds for any initial stationary state with S0≤S# at the moment
from which onwards the demand relation E’(r) applies. Also note that the system could not end
up at x’ in this case. With an arrival rate r=F(x’), a speed much higher than the speed
associated with this configuration would arise by Proposition 2a.

The model can be ‘saved’ only if we do allow a queue to develop before the road’s
entrance. It is assumed that whenever there is a queue, the maximum possible inflow on the
road fmax will apply. Usually, fmax= Fmax; only in a stationary state with hypercongestion would it
be smaller. Under this assumption, the queuing process takes the same form as is assumed in
the bottleneck model (Vickrey, 1969; Arnott et al., 1998). It is consistent with drivers
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minimizing the time span between their predecessor’s and their own entrance on the road,
which is the inverse of the flow at the entrance.

Under the queuing assumption, with an arrival rate r0>Fmax, a queue immediately starts
growing at a rate q0=r0–Fmax at τ=0. As a consequence, the total travel time (tt) for drivers
starting their trips later than τ0 will exceed the time spent on the road tr=L/S#, because of the
implied waiting time in the queue (tq). Owing to the not perfectly inelastic demand function, the
arrival rate therefore immediately starts declining at τ=0. As long as rτ exceeds Fmax, the queue
will keep on growing, and the arrival rate decreases. A stationary state is reached when rτ=Fmax

and the queue has a constant length.2 When queuing is allowed, the stationary state equilibrium
with the demand curve E′ applying therefore involves S#, D#, and Fmax on the road; an arrival
rate r=Fmax; and hence a stationary queue of constant length Q>0 which serves to keep away
excessive demand through the implied waiting time costs. When queuing is not possible, the
model has no equilibrium solution, because it then cannot handle r0>Fmax.

The AC*-curve in Figure 3 therefore shows the possible average cost levels for all dynamically
consistent feasible stationary state equilibria when queuing is allowed. The output variable r is
used. Only the lower segment of the standard AC-curve defined over F, representing
dynamically consistent stationary states cost levels, is part of AC*(r). At Fmax, however, AC*(r)
rises vertically, showing that any marginal willingness to pay for making trips exceeding the
travel costs at speed S# will in stationary states simply be translated into queuing costs (m–n in

                                               
2 Note that it is assumed that the demand relations defined over r are unrelated in time during the non-
stationary phase: users do not consider rescheduling. Hence, the implication that drivers in the first, non-
stationary part of the process are better off (have lower generalized costs) than those in the stationary part
causes no problem. The case where rescheduling would occur during transitional phases due to average cost
changing over time would merely add complexity while not changing the conclusion fundamentally.
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case of E′). Mun (1994) obtains a similar cost curve with a serial two-link network model,
based on kinematic wave theory.

A matching marginal social cost curve MC* can now be derived. This curve lies above
and is steeper than AC* for stationary equilibria with r=F<Fmax, and asymptotically approaches
a vertical line at r=F=Fmax. For the demand curve E, the non-intervention traffic flow is Fn; the
optimum Fo, where marginal benefits are equal to marginal social costs, can be realized with a
tax h–g. For E′, as described above, the non-intervention traffic flow is Fmax, with queuing
costs m–n, and the optimum F′o< Fmax can be realized with a tax j–i. Note that at F′o, no
queuing occurs. Finally, in case a demand curve E′′ applies, the optimal traffic flow is –
approximately – equal to Fmax. The optimal tax k–n then mainly serves to avoid queuing, but
hardly affects the non-intervention stationary state traffic flow r=Fmax. In the limit, the optimal
tax k–n is equal to the queuing costs that apply in the non-intervention case, which is in line
with one of the standard results in the bottleneck model (Vickrey, 1969; Arnott et al., 1998).

4. The case of peak congestion

Although the case of continuous congestion discussed above offers a useful starting point for
the economic modelling of road traffic congestion, congestion in reality is usually a peak event.
Most models of congestion, therefore, implicitly or explicitly aim to describe peak congestion.
This section considers the implications of the above analysis for static models of peak
congestion. In doing so, it addresses the implicit assumptions, particularly on the nature of
scheduling costs, that are necessary to render static models of peak congestion dynamically
consistent. In this context, dynamic consistency is defined by the condition that during the peak
period, (congested) speeds, densities, flows and travel costs should indeed be constant over
time, as is implicitly assumed by a static representation. Because the assumptions necessary to
render a static model of peak congestion dynamically consistent turn out to be rather
unrealistic, also the implications of the analysis in Section 3 for dynamic models of peak
congestion are discussed.

4.1. A static model of peak congestion

In contrast to dynamic models of peak congestion, where the duration of the peak is one of the
endogenously determined variables, static models based on the fundamental diagram are often
remarkably careless in the treatment of the duration of the peak. However, this duration is
actually a crucial variable for the consistent modelling of a market for peak road usage. The
reason is that the demand for peak travelling would naturally refer to the total number of trips
accomplished during the peak, while the cost function for road usage would naturally be
defined over flows or arrival rates (see Figure 3). Therefore, as argued in Section 2, for a
consistent static economic model of peak congestion, it is necessary to take full account of the
impact of the presumably endogenous duration of the peak, as an argument in either the flow-
based demand function, or in the trip-based cost function.

Unfortunately, it seems hard to consistently endogenize the duration of the peak in a
static model. This duration will in reality depend on users’ trade-offs between time delays,
scheduling costs, and – possibly – time-varying tolls. Once the desired arrival times and the
scheduling costs are made explicit, however, one would normally end up with a dynamic
model, where speeds and densities continuously vary over time. The only way out of this



Time, speeds, flows and densities in congestion modelling 15

dilemma for the static modelling of peak congestion is to assume that scheduling costs are
constant over the peak. In equilibrium, no driver should be able to benefit from rescheduling:
generalized user costs, including scheduling costs, should be constant over time. Therefore,
only with constant scheduling costs will travel times also be constant. This, in turn, implies
constant speeds and densities during the peak, which are required for a static model.

There are two assumptions that render constant scheduling costs over a well-defined
duration of the peak. The first possibility, explored further below, involves the assumption that
either T (the duration) or TG (the ‘grand duration’) is somehow exogenously given. Below, TG

is assumed to be exogenous: all peak-travelling related activities have to take place within a
given time span, within which scheduling costs are constant, and outside which they are
prohibitively high.3 Alternatively, a rather artificial endogenization of T in a static model could
be accomplished by assuming that average scheduling costs are the same for all users during
the peak, and increase with T. Because the implied assumption that all scheduling costs are a
purely public bad is rather unrealistic, this possibility will be ignored here.

It is perhaps surprising that either one of these peculiar assumptions on the pattern of
scheduling costs implicitly must underlie the static models of peak congestion that have been
presented in the literature, and that assume constant speeds during the peak. An alternative
assumption that scheduling costs do not exist simply will not work, since the duration of the
peak could then be increased costlessly, and congestion would not occur at all.

Consider the case where the grand duration of the peak is exogenous and denoted TG
*.

TG
* is then defined by an earliest departure time from home, τ0, which is assumed to be the

same as the arrival time at the entrance of the road, and a latest arrival time τ1 at the exit of the
road, which is where the workplace is. Therefore, τ1–τ0=TG

*. The scheduling costs are constant
– we assume zero – for those drivers departing after τ0 and arriving at the road’s exit before τ1,
no matter exactly when they travel; and prohibitively high for others. The implied step-wise
scheduling cost function can be seen as an approximation for the case where morning peak
commuters have no specific desired arrival time, but do not want to leave home before a given
time, nor to arrive at work after a given time. In reality, one would then expect the scheduling
costs to increase sharply, but not discretely. The comparable scheduling cost structure assumed
by Ben-Akiva et al., 1986, where scheduling costs are constant for some period and rise
linearly outside that period, allows this. As already stated, however, the present discreteness
assumption is a necessary requirement for using a static formulation. Finally, two additional
assumptions should be made in order to avoid irregularities at the beginning and ending of the
peak. The first assumption is that the very first driver(s) already choose the equilibrium speed.
The second is the no-overtaking condition that a driver cannot arrive earlier or at the same
time as someone who started the trip earlier, but will always arrive later.

Because the demand is defined in terms of total numbers of trips accomplished over the
entire peak, also the cost functions now have to be defined in terms of N. To make this
transformation, observe that the relation between F and N can be found by rewriting (2a) as:

N F T tG= ⋅ −( )* (7)

                                               
3 Alternatively, if T were taken to be exogenously given, TG would become endogenous. The reason for
considering the case with exogenous TG rather than exogenous T in the sequel is that it seems more realistic to
consider prohibitively high scheduling costs for a departure from home before a given clock time, and for an
arrival at work after a given clock time.
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On the right-hand side of (7), both F and t are endogenous. By converting the speed-flow
curve in Figure 1-IV into a travel time-flow (TTF-)curve, and using the fixed relation between
speed and travel time given in (1b), a function F(t) can be constructed that depicts the
equilibrium combinations of these two variables. This TTF-curve is shown in Figure 4-I.
Writing F as F(t), the derivative of the right-hand side of (7) with respect to t can then be taken
to investigate the equilibrium relation between t and N during the peak:
∂
∂

∂
∂

N

t

F

t
T t FG= ⋅ − −( )* (8)

From (8), it follows that the maximum number of users that can travel over the grand duration
of the peak, Nmax, is found for a flow smaller than the maximum flow Fmax, and hence a travel
time below t#: ∂N/∂t=0 requires ∂F/∂t>0. F* and t* in Figure 4-I could give that particular
combination of F and t consistent with the maximum number of users Nmax. This implies that
the average cost curve defined over N is backward-bending. Furthermore, it implies that the
cost level for which this average cost curve has an infinite derivative with respect to N, at Nmax

in Figure 4-II, is lower than the minimum cost level consistent with the maximum flow Fmax

shown in Figure 3. To see this, note that t* (for Nmax) is smaller than t# (for Fmax).

In Figure 4-II, the backward-bending segment is drawn up to the (minimum) cost level
consistent with Fmax in Figure 3 (at N#). The reason is that configurations with higher cost
levels necessarily involve queuing. The equilibrium principle that average costs should be
constant over the peak is then violated: a queue will immediately be building up at τ0. The
waiting time tq then cannot possibly be constant over the peak, whereas the time spent on the
road tr

#=L/S# will be constant. As a result, a consistent static equilibrium, with equal average
user costs for all users, does not exist for such cases. It should therefore be emphasized that
the backward-bending segment of the AC(N)-curve in Figure 4-II does not involve
hypercongestion. The minimum speed for which this curve is defined is S# (for N#), while it can
be recalled from Figure 1-IV that hypercongestion sets in only at speeds below S#.
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The lower segment of the AC-curve in Figure 4-II implies a marginal social cost curve
MSC. These two curves can then be used to derive the non-intervention and optimal total
numbers of users (Nn and No, requiring a toll h–g) in case the demand curve E applies, as well
as the optimal total number of road users in case E′ applies (N′o, requiring a toll j–i) or E′′
applies (approximately Nmax, requiring a toll k–n). For the non-intervention case when a
demand curve such as E′ or E′′ applies, the model simply has no static equilibrium solution
with AC equal for all users, and equal to the marginal benefits.

Because of the backward-bending shape of the AC-curve defined over N, multiple
intersections with the demand curve are in principle possible. Unless the demand curve is rather
irregular, one would normally expect a maximum of two intersections, because the AC(N)-
curve has no inflection point.4 The question of which configuration will then finally come about
as the unregulated market equilibrium depends on the size of the penalty for travelling outside
TG

*. As is argued and proven in the appendix of a longer version of this same paper, the lower
the penalty, the more likely the more favourable equilibria are to arise.

It should also be noted that even if the demand E is flatter than AC(N), an intersection
of the demand curve with the backward-bending segment of the AC(N)-curve can be a locally
stable unregulated market equilibrium when considering quantity perturbations (provided, of
course, the penalty is sufficiently high). This may seem odd in the light of the discussion in
Section 3.1, Figure 2, where the configuration x was classified as unstable for quantity
perturbations because beyond that point, drivers would keep on entering the road as average
costs consistently fall short of marginal benefits. The reason that this argument does not apply
here is that drivers not only have to decide whether to use the road, but also when to depart.
An additional departure at any of the relevant instants available in the equilibrium would, given
the departure times of the other drivers, imply marginally higher travel costs for those starting
at that instant, because of the implied higher density. Therefore, in any of the possible
equilibrium configurations depicted by AC(N), with constant travel costs during the peak, the
‘marginal private costs’ are increasing at each possible instant of arrival at the entrance, and
therefore cannot coincide with the falling average social costs on the backward-bending part. 

Indeed, considering quantity perturbations, the ‘marginal private costs’ are higher than
what is suggested by AC(N) also for configurations on its upward sloping part. They would
coincide with AC(N) only if all other drivers would respond optimally to perturbations, and
new equilibria with constant average costs would result. A perturbation, however, is a
disequilibrium concept by definition, and it would be inconsistent with the assumption of price-
taking behaviour to assume that the perturbing driver would (rightly) expect all others to
respond optimally to his own (unexpected) decision to make the additional trip. Hence, when
studying perturbations, one should not ignore that the AC(N)-curve gives the average costs
only for equilibrium departure patterns, where average costs are constant during the peak.

Although configurations on the lower segment of the AC(N)-curve described above
may still be a reasonable approximation for real peak congestion, the model clearly becomes
problematic when demand is relatively high. A static non-intervention equilibrium then even

                                               
4 Note that by differentiating (8) once more, it follows that the inverse of AC(N), N(t), has a strictly negative
second derivative: d2N/dt2 = d2F/dt2⋅(TG

*–t)–2⋅dF/dt < 0 (dF/dt > 0 and d2F/dt2 < 0 in the relevant region
tmin<t<t#, as is shown also in Figure 4-I). I owe this observation to one of the anonymous referees.
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may not exist. Still, it is striking that for this static model of peak congestion with exogenous
grand duration, based on the fundamental diagram, two conclusions arise from the analysis in
terms of numbers of road users that are usually drawn from the model of continuous
congestion defined over flows, and that were rejected in Section 3. These conclusions are (1)
that the average cost function is backward-bending, and (2) that the optimal toll may lead to an
increase in road usage. The static model can properly describe all optima, as well as non-
intervention outcomes with S>S#. Hypercongestion does not occur in optima, nor in (purely
static) non-intervention outcomes, even if these involve equilibria on the backward-bending
segment of the AC(N)-curve defined over total numbers of road users.

4.2. Implications for dynamic models of peak congestion

The above analysis actually sets the stage for a dynamic model of road traffic congestion based
on the fundamental diagram, which would integrate elements from the bottleneck model with
flow congestion models (see Rouwendal, 1990, for an earlier attempt along these lines). A full
treatment would require a paper all of its own, but some discussion is warranted, in particular
because an internally consistent static model of peak congestion appeared to require rather
heroic assumptions on the structure of scheduling costs. Moreover, as demonstrated above,
when demand is relatively high, the assumed stepwise scheduling cost function becomes the
main driving force in the model, and it becomes increasingly worthwhile to relax this
assumption and to consider the situation where the duration of the peak is endogenized.

As soon as scheduling costs (denoted k) are a continuous function of the difference
between the actual arrival time and the jointly preferred arrival time, travel delays and average
speeds should vary over the peak in order to obtain a non-intervention equilibrium in which
total travel costs k+c are equal for all users (c gives the travel time costs). For flow congestion,
this means that one has to find a formulation that can replace the relations in Figure 1 also for
non-stationary processes. Henderson (1974, 1981) and Chu (1995) both make the convenient
assumption of ‘zero group velocity’, in which case the speed experienced by a driver is a
function of the arrival rate at the entrance of the road at the instant the trip is started
(Henderson, 1974, 1981), or at the exit of the road at the instant the trip is ended (Chu, 1995).
Drivers drive at constant speeds, so varying speeds can be observed along the road at every
instant.5 Such formulations have as an advantage over the bottleneck model that it is no longer
assumed that up to the maximum inflow, no travel delays occur. However, neither model
explicitly considers the above mentioned process that if arrival rates at the entrance exceed the
maximum possible inflow, a queue will build up (note that, although bottleneck congestion is a
limiting case of the congestion function considered by Chu (1995), in order to reach this limit
the elasticity of travel delay has to approach infinity, so that the model then only has bottleneck
congestion, and no flow congestion, as will be assumed below).

Although Chu (1995) has pointed out that overtaking could be a problem in
Henderson’s (1974, 1981) formulation, for the present purpose it is convenient to consider the
‘Henderson-type’ of flow congestion, and to make the additional assumption, like Henderson

                                               
5Alternatively, Agnew (1973) assumes ‘infinite group velocity’, where at every instant speeds are constant
along the entire road. This seems an even less realistic representation of the dynamics of road traffic congestion
than zero group velocity (Henderson, 1974). Reality is likely to be somewhere in between these two extremes.
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does, that overtaking is not possible.6 Suppose that the speed s is a function of the arrival rate r
at the instant τ the trip is started and is given by s(rτ), that the inflow has a maximum value
Fmax, and the average travel costs function c(rτ) is comparable to the AC(r) function depicted in
Figure 3: as soon as rτ>Fmax, a queue develops before the entrance of the road. Two types of
non-intervention equilibria can then be considered, the first of which involves rτ≤Fmax for all τ.
This is consistent with the situation where the very first and very last drivers, who experience
no congestion in dynamic models of traffic congestion and hence drive at free-flow travel costs
c* (Chu, 1995; Arnott et al., 1998), face scheduling costs kmax for which:

k c c Fmax
*

min max( )+ ≤ (9)

where cmin(Fmax) is the minimum travel time cost consistent with the maximum inflow (hence,
with zero queuing costs). We know that those users arriving at the desired arrival time and
facing zero scheduling costs can then not have experienced a queue, owing to the constancy of
user costs over the peak. This produces the standard Henderson (1974, 1981) model, for
which the following optimal time-varying tolls apply (Henderson, 1974, 1981; Chu, 1995):

toll r
c

rτ τ
τ

τ

∂
∂

= ⋅ (10)

If, however, (9) does not hold, we know that those users arriving at the desired arrival time
and facing zero scheduling costs must have experienced a queue in the non-intervention
situation. One could then at first glance expect a situation in which ‘Henderson’ tolls would
apply for the first and last phases of the peak where rτ≤Fmax; and ‘Vickrey’-bottleneck tolls
would be necessary to avoid all queuing for the middle period where rτ>Fmax in the non-
intervention outcome. Interestingly, however, the optimal Henderson toll in (10) prevents this
to occur, since the optimal toll approaches infinity as r approaches Fmax. Therefore, as in the
standard bottleneck model, queuing will not occur in the optimum. In contrast to the pure
bottleneck model however, with flow congestion, the entrance of the road will in the optimum
always operate below the maximum capacity Fmax. Furthermore, not all travel delays are
eliminated, as optimal flow congestion is positive.

This concludes our brief excursion to dynamic models of road traffic congestion. It can
be concluded that the static framework presented in Section 4.1 indeed can be extended to a
dynamic model which combines elements of flow congestion with bottleneck congestion. This
requires an alternative to the fundamental diagram, which is actually only valid for stationary
states with constant speeds, flows and density. A first possibility was presented above, based
on the notion of zero group velocity. A second possibility is a car-following model, as studied
in Verhoef (1997). This type of integrated modelling, also proposed by Rouwendal (1990),
certainly deserves further attention in future work.

5. Conclusion

This paper addressed some of the key questions that have dominated the debate on static
models of road traffic congestion. A distinction was made between models that deal with

                                               
6 Moreover, because both Chu (1995) and Henderson (1974, 1981) assume zero group velocity and constant
speeds, it can be argued that with the non-overtaking restriction, the Henderson formulation should in pinciple
replicate equilibria in Chu’s model: the arrival rate a driver experiences at the entrance of the road is then for
both models equal to the flow he experiences during the trip and the arrival rate he experiences at the road’s
exit.
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‘continuous demand’, normally resulting in stationary state equilibria, and those that aim to
describe ‘peak demand’.

In the context of the former, it was demonstrated that the backward-bending section of
the standard average cost curve is dynamically inconsistent, because the implied configurations
are infeasible: they are dynamically unstable, and moreover, in order to get there, inflows on
the road should have exceeded the maximum possible inflow at some point in the past. A
practical consequence is that whenever ‘hyper-congested’ speeds are observed in reality, it is
unlikely that the cause is to be found in ‘flow congestion’ on the road itself. Instead, the true
reason for such speeds may often be a downstream bottleneck. Therefore, optimal pricing rules
should then not primarily be based on the road’s characteristics, but rather on the bottleneck’s
capacity. A theoretical consequence is that the standard backward-bending supply curve is
flawed. Instead, it was argued that when replacing the endogenous output variable of ‘traffic
flow’ by the arrival rate of new cars at the entrance of the road – two variables that should be
equal to each other in stationary states only, but that do not presuppose this stationary state
like the traditional output variable ‘flow’ does – a non-backward-bending supply curve can be
found, which coincides with the standard curve only for its lower segment, but rises vertically
at the road’s maximum capacity.

For static models of peak demand, it was argued that for such models to be dynamically
consistent, rather heroic assumptions on the pattern of scheduling costs have to be made.
Interestingly, once these assumptions are made, a backward-bending cost curve defined over
numbers of road users was derived from the non-backward-bending cost curve defined over
arrival rates that was found earlier for the case of continuous demand.

Finally, because the assumptions necessary to render a static model of peak congestion
dynamically consistent turn out to be rather unrealistic, also the implications of the analysis in
Section 3 for dynamic models of peak congestion were discussed. A dynamic model, which
combines elements of flow congestion with bottleneck congestion, was outlined. Such
integrated modelling deserves further attention in future research.
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