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Paper for Presentation at 38th European RSA, Vienna, 28 Aug to 1 Sept 1998

AREAS,  NODES  AND  NETWORKS :
Some Analytical Considerations

by  John  R.  Roy
ETUDES (Environmental, Transport and Urban DEvelopment Studies),

Mallacoota, Victoria, 3892, Australia

Abstract :
 In spatial interaction modelling, trips between origins and destinations within the same areal

zone have a predominant influence on both the value of the gravity parameter and on the associated
pattern of flows. Despite this, the relevant highly sensitive intrazonal impedance values are usually
based on approximate average intrazonal distances or times. This situation has been identified in the
literature as the ‘self potential’ problem. In this paper, integration over continuous space within the
origin-destination zones is applied to not only compute the intrazonal flows more accurately, but also
to evaluate the interzonal flows along shortest path routes meeting the interzonal links at efficient
intermediate points. In particular, this general approach permits more accurate corrections to the
conventional model, allowing, for instance, the usual approximations in determining average trip
length to contiguous zones to be overcome. In addition, all jobs can be taken as concentrated at zonal
centroids which are also nodes of the transport network. Alternatively, for outer zones, jobs may be
taken as dispersed throughout the zonal area. This latter option reflects the greater dispersion of
service jobs within suburban areas. The eventual aim is to develop practical ‘rules of thumb’ for
correcting the conventional analysis.

Flows between areal zones and several facility nodes can occur along plausible alternative
multi-destination paths, rather than via one ‘abstract’ interzonal path to one destination, as usually
considered in conventional spatial interaction models. Such destination/path choice is easy to handle
in the relatively uncongested conditions characterizing off-peak discretionary travel. This paper
examines facility choice via alternative round trip routes, attempting to discern the influence of
‘intervening opportunities’ on the potential for multi-stop trips without having to fully identify the
actual trip chain. Such intervening opportunities can only be properly considered along the alternative
paths of the actual network, as specified above.

INTRODUCTION

In characterization of spatial interaction in urban areas, certain key
assumptions are usually introduced for representing  in space the demand entities, the
supply entities and the networks via which these entities interact. These assumptions
include (i) the subdivision of the urban area into discrete zones, (ii) the concentration
of all demand activity or supply activity within a zone each at one discrete internal
node and (iii) for trip distribution, all travel occurring along one abstract interzonal
path connecting the demand node in the origin zone with one supply node in the
destination zone. Although we are often ‘stuck with’ assumption (i) due to data
availability, assumption (ii) may cause significant errors. Whereas many destination
facilities can reasonably be taken to be concentrated at discrete nodes in space, the
demand of households is dispersed throughout each zone. In addition, the increased
frequency and dispersion of service jobs and home-based jobs in outer areas create
considerable dispersion on the supply side. Finally, the restriction (iii) of travel
between a zone and facility to be along the one (usually abstract) path often implies
‘averaging’ of routes of quite different hierarchies, as well as preventing consideration



of different groupings of intervening opportunities, as potential  destinations in multi
stop trips along the alternative paths.

Of course, it is no accident that the above approximations have been part of
practical analysis. Conventional interzonal trip distribution models are difficult
enough to solve without the introduction of continuous geometry into the irregularly
shaped zones for which data is usually available (eg. municipality or census tract).
Also, alternative paths are usually considered in a separate trip assignment step, rather
than being integrated within the trip distribution process. In this paper, there is as yet
no attempt to formulate a model based on continuous geometry  and multiple paths to
directly handle spatial interaction in an actual urban area. Instead, the approach is to
create some idealized urban forms which lend themselves to integration over
continuous space and to compare the results of the new continuous geometry approach
with those of the conventional procedure. Thereby, the planner should be able to
identify situations where the conventional method may produce significant errors,
locate the main sources and magnitudes of these errors and appropriately correct the
conventional analysis. In the space of this one paper, it is only possible to characterize
some types of continuous geometrical distributions of demand and supply activities.
However, a quite general framework is set up which should help future researchers
devise further cases of practical interest.

It had been realized for many years that the results of trip distribution models
are particularly sensitive to the values of average trip times or distances chosen for the
intrazonal trips. A consideration of these issues has been classified by Bröcker (1989)
as ‘the self-potential problem’. Bröcker starts with the classical potential formula,
which is also derivable from the origin-constrained gravity model. He makes three
important advances on previous work (i) allowing for the increased probability of
choice of a node when situated close to that node within a zone, (ii) transforming the
potentials such that they are well-behaved at and approaching the upper limit β→∞ of
the gravity  parameter and (iii) providing upper and lower bounds on potential for β=0
and β→∞ respectively. At the same time, there are several points not yet considered in
Bröcker’s work, including (i) corrections to the potential of zones directly contiguous
with the origin zone, (ii) the consideration of some zones within which the destination
opportunities are dispersed rather than concentrated at one node, (iii) the existence of
variable residential or employment density within zones and (iv) an adaptation of the
approach to doubly-constrained journey-to-work models.

A later paper by Frost and Spence (1995), which unfortunately does not quote
Bröcker’s paper, despite appearing in the same journal, has a more empirical
approach, mentioning some points not covered by Bröcker. For instance, rather than
integrating over the circle with Bröcker’s general negative exponential impedance
function, they merely test a linear inverse power function over a circle divided into 5
annuli. However, they do test variable housing density within the circle, as well as
mentioning the increase in average trip length when opportunities are dispersed within
the circle. Above all, they indicate that assumptions on self-potential can significantly
affect the distribution of economic activity potential in the UK. In other words, these
questions are not just of theoretical interest, but can have a strong influence on
empirical analysis.

In attempting to rise to these challenges in the current paper, the entire trip
distribution analysis is performed using continuous geometry, identifying further
issues in addition to the use of corrected self-potential values.  At this stage, the



analysis concentrates on journey-to-work models, where trip generation rates are
known à priori. Whereas, housing and job densities are permitted to vary between
zones, they are generally taken as constant within each zone. However, the
consequences of this assumption are tested for two simple cases, allowing residential
or employment density to increase linearly towards the centre from a fixed outer
value. Whereas the estimation problem for the doubly-constrained gravity model is
expressed in general terms over continuous space following on from Angel and
Hyman (1972), the actual results are given for the lower bound β→∞ and the upper
bound β=0 of this strictly concave problem. Several interesting new results are
derived in the Appendices, especially for interzonal travel with continuous geometry
in the travel-cost-minimizing case of β→∞.  Although some implications for
modification of the conventional analysis are provided, further derivations and testing,
using the same general scheme, are required to form more detailed conclusions.

If the conventional trip distribution analysis is extended by allowing more than
one path for journeys starting and ending in any zone and passing several potential
destinations, an entropy formulation given exogenous trip speeds is quite simple.
This path-based approach will extend the combined gravity/intervening opportunities
model introduced by Gonçalves and Ulysséa-Neto (1993) and somewhat refined in
Roy (1993). After all, the opportunities are physically located along the actual paths of
the network, rather than along the single abstract path generally assumed in spatial
interaction models. Whereas for journey-to-work analysis, the existence of intervening
opportunities between the origin and the chosen destination may reduce the
probability of choosing that destination, the occurrence of intervening services on
paths exiting from and returning to any origin may conceivably increase the
attractiveness of that path. In other words, such ‘opportunity rich’ paths with their
associated destination chains would have a greater scope for being part of multi-stop
trips. The above principles are  used to formulate an origin-constrained retail/service
demand model.

The first section of the paper will address journey-to-work gravity models
based on continuous geometry, as a pre-condition to correction of the conventional
discrete geometry models. The shorter final section develops a multi-path trip
distribution model, which contains both path-related gravity components, as well as
the identification of intervening opportunities as potential stops along such paths.

CONTINUOUS GEOMETRY JOURNEY-TO-WORK MODELS

A General Formulation for Continuous Circular Zones

The Basic Mathematics  In the path-breaking paper of Angel and Hyman (1972), the
general problem of specification of the doubly-constrained gravity model for
continuous geometry was formulated. In Roy(1997), the same approach was used to
enhance retail gravity models with budget constraints, based on specifying as
continuous the amount of goods or services consumed by a customer in any one trip.
Otherwise, Angel and Hyman’s work seems hardly to have been quoted during the
past 25 years. Yet, a rigorous continuous geometry formulation should à priori be the
basis for not only ‘the self potential problem’, but also for considering the further
approximations introduced into the conventional analysis by discretization of
continuous space. As an illustration of Angel and Hyman’s formulation, we consider



that our region consists of a number of distinct circular zones connected by transport
links. The residential density within each circular zone is taken as constant and travel
occurs within each zone along shortest paths on a radial/circumferential network. All
jobs are taken as concentrated at the centre of each zone (see Appendix for relaxation
of this assumption). Let Tij(r,θ) be the intensity of travel from an origin at any point
(r,θ) of origin zone i to work at the centre of destination zone j. If for illustration, each
zone is taken to have the same residential density and the same radius R, the
continuous doubly-constrained problem for calibration can be specified as

                         2π   R                                                                                                                     2π    R

   Z  =  max - ∑ij ∫   ∫  Tij(r,θ) [log Tij(r,θ)-1] r dr dθ  +  ∑i λi [O - ∑j ∫    ∫ Tij(r,θ) r dr dθ]
                         0     0                                                                                                                       0     0

                               2π   R                                                                              2π    R

     +  ∑j ηj [D - ∑i ∫    ∫ Tij(r,θ) r dr dθ] + β [T d* - ∑ij  ∫    ∫ Tij(r,θ) dij(r,θ) r dr dθ]  (1)
                               0    0                                                                                0      0

where O and D are the number of workers and jobs respectively in each zone, dij(r,θ)
is the shortest path travel distance from any point (r,θ) in zone i to jobs at the centre of
zone j. Note that, as shown in the Appendix, for 0≤θ≤2, dij(r,θ)=lij + [rθ + (R-r)] + R
on the radial/ circumferential network, where lij is the shortest path distance between
the peripheries of zones i and j . For θ>2, travel to exit zone i on the way to zone j
occurs purely radially through the centre of i, and we have dij(r,θ)=lij + [r + R] + R.

As shown by Angel and Hyman (1972), the above problem type can be solved
by initially differentiating the Lagrangian under the integral sign and equating the
result to zero, after which the Tij(r,θ) expression is substituted into the constraints to
yield expressions for the unknown Lagrange multipliers λi, ηj and β. These can be
solved for iteratively, analogously as for the conventional discrete doubly-constrained
model. Note that, the continuous problem retains the strictly concave and strictly
positive nature of the discrete problem, implying that the solution for the flows is
unique and positive. Although, we could have straightforwardly solved the above
problem for a wide range of values of the gravity parameter β, this paper specializes
the comparisons to the lower bound travel-distance-minimizing case where β→∞, and
to the upper bound travel-distance-indifferent case β=0. As shown in the Appendices,
analytical solutions are possible for these limiting cases, permitting a greater
transparency compared with numerical solutions.

General Criteria for Interpretation of the Results  In lieu of a continuous analysis of
real urban systems containing irregular zones, the continuous formulation is being
used in this paper with simple geometry as a means to potentially improve the solution
of the conventional models. It is well known that the gravity parameter β is roughly
proportional to the reciprocal of the average trip length dave over the entire system. For
instance, in our retail model LAIRD, we have found that β ≈ 1.3 / dave  provides a
reliable starting value for the iterative calibration procedure in most applications.
Thus, if the continuous analysis reveals systematic errors in the average trip length dave

, a possible strategy may be merely to correct β inversely, that is, if dave is expected to
be underestimated by say x% by the conventional model, we may increase β by x%
compared with its calibrated value. However, such an approach would tend tend to



rather evenly weight the corrections to both the intrazonal and interzonal flows, rather
than giving appropriate extra consideration to the larger potential errors in the
intrazonal trip distances and corresponding flows. Thus, it is suggested that β be
retained at its calibrated value, but that corrections be made directly to both the
intrazonal and interzonal impedance values [exp - β dij], confining the latter
corrections usually to the distances to contiguous zones. Finally, the gravity model can
be re-run with the revised impedance values. Thus, the results below give not only the
errors in overall average trip distance, but decompose this to errors in intrazonal vs
interzonal average distances. In real problems containing a large number of zones, the
analyst can distribute the interzonal error over a chosen set of adjacent zones.

Some  Specific  Upper  and  Lower  Bound  Solutions

Linear City with 3 Circular Zones  The city consists of three circles of unit radius
with

  
                                1             l                                  l                1

                                                                 FIG.  1     

their outer rims separated by a distance l, as seen in Fig. 1. Whereas l may be positive
for discrete townships, it is set to zero to simulate an  urban area with a central
business district (CBD) and two outer sub-centres. As both housing and employment
is likely to be more dense in the inner zone, we designate as a≥1 the ratio of (uniform)
housing density between the central and outer zones, and b≥1 the ratio of jobs
between the central and outer zones. Although the jobs in the central zone are always
taken as concentrated at the CBD, the jobs in the outer zones are either taken as
concentrated at the zonal centroids (kj=0) or distributed uniformly throughout the
zones (kj=1). This latter option allows consideration of the increasing prevalence of
dispersed service employment in the outer suburbs of many large cities.

A computer program was written to test the influence of variations of relative
housing concentration ‘a’, relative employment concentration ‘b’ and  separation ‘l’
between the rims of the centres, for either concentrated outer jobs (kj=0) or dispersed
outer jobs (kj=1). This was performed for both the lower bound solution β→∞ and the
upper bound case β=0, using the results of the Appendices. In the lower bound special
case for dispersed outer jobs (kj=1) and relative job concentration ‘b’ greater than the
relative housing concentration ’a’, where some commuting occurs from the outer zone
to the CBD, a closed form analytical solution did not seem possible. Instead of
resorting to numerical integration, a simple heuristic was used which was conservative
with respect to the comparisons being made. Whereas all jobs in the outer zones in
this special case were assumed to be filled by workers living ‘next door’, the workers
commuting to the CBD were also taken as evenly distributed over the outer zones. As
seen later, this assumption was not crucial in the key comparisons.



In assessing the potential improvements of the continuous solution, it is
necessary to define the basis for the conventional solution. Firstly, as we are primarily
interested in relative errors, the analysis is confined to cases where the housing
density does not vary within a zone and the employment density does not vary within
an outer zone. Under this assumption, it is being  hypothesized that density variations
would affect the conventional result and the continuous result rather similarly.  Thus,
for the conventional solution it is assumed that (i) the average distance for intrazonal
travel in the unit circle is (2/3) [see Appendix 1B] and (ii) the distances for interzonal
travel are all centroid to centroid distances. Although the program was run for a very
wide spectrum of cases, only the most interesting results are quoted in the following.

For all cases, a finite separation of the circles (l>0) reduced (or kept constant)
the relative error compared to when the circles are touching (l=0). This was to be
expected, as  the effects of the ever present intrazonal approximations on overall
average trip distance are lessened as the less sensitive interzonal travel distance is
increased. For instance, average distance errors decreased in a typical case from 14%
to 10% when  the separation l was changed from zero to the unit radius. As a result,
the following results deal only with the l=0 case, typical for urban areas. The average
trip distance is defined as dave for the continuous model and dc for the conventional
case, with subscript a being added for the intrazonal part and z for the interzonal part.

Case  1 :   Outer jobs concentrated (kj=0)  Housing density in central zone = 2 times
housing density in outer zones (a=2)   No. of jobs in inner zone = 4 times no. of jobs
in each outer zone (b=4)
β→∞    Overall Averages     dave= .8275  dc= .8889   Error=+7.4%
                        Intrazonal Averages                            Interzonal Averages
        davea= .6482  dca= .6667  Error=+2.8%  davez=1.7236  dcz=2.0000  Error=+16.0%
β=0      Overall Averages     dave=1.7524   dc=1.6111  Error=-8.1%
                      Intrazonal Averages                              Interzonal Averages
              davea= .6667 = dca   Error=0%            davez=2.2120  dc=2.0000  Error=-9.6%

Case  2 :   Outer jobs dispersed (kj=1)   Housing density in central zone = 2 times
housing density in outer zones (a=2)     No. of jobs in inner zone = 4 times no. of jobs
in each outer zone (b=4)
β→∞     Overall Averages    dave= .7070  dc= .8889  Error=+25.7%
                     Intrazonal Averages                               Interzonal Averages          
       davea= .4000  dca= .6667 Error=+66.7%   davez=2.2422  dcz=2.0000  Error ≈-10.5%
β=0       Overall Averages    dave=1.8403  dc=1.6111  Error=-12.5%
                     Intrazonal Averages                               Interzonal Averages
          davea= .7321  dca= .6667  Error=-8.9%   davez=2.3028  dcz=2.0000  Error=-13.2%

The above two cases have residential density gradients and inner/outer job
distributions which are typical for actual cities. Thus, we can use them to draw rather
useful conclusions as follows :
(i) For almost all situations, the error in the conventional model is less when the outer
jobs are concentrated, rather than evenly dispersed, especially for β→∞ . For
dispersed jobs, the conventional model precludes tele-commuting (or jobs ‘next
door’), yielding errors in intrazonal trip distances of 50 to 60%. Errors for the
concentrated jobs solutions (0.0 to 16.0%) all lie within acceptable bounds.



(ii) Except for the case with the continuous heuristic solution (indicated by ≈), which
is anyhow conservative, the conventional model over-estimates the average trip
distances for the lower bound case (β→∞) and underestimates it for the upper bound
case (β=0). This is due for β→∞ to the lack of any optimal spatial selection of
workers for intrazonal vs interzonal jobs in the conventional model compared with the
optimal profile of the continuous model in Case 3B of the Appendix. For β=0, the
continuous model in Case 3A of the Appendix shows that the dispersed workers
commute 24.2% more to exit from their zone than in the conventional model, where
all exits are taken to emanate from the centroid.
(iii)  For the case of β→∞ and concentrated outer jobs, the error in interzonal distance
(16%) is greater than that for intrazonal distance (2.8%). In this case, as shown in
Case 3B of the Appendix, the interzonal workers are all clustered close to the zonal
exit node A rather than at the more distant centroid.
(iv)  For the case of β=0, the errors in interzonal distances (9.6 to 13.2%) are greater
than those for intrazonal distances (0.0 to 8.9%). This is because, when jobs are
concentrated, intrazonal workers are forced to choose jobs at the centre of their zone,
not being able to exercise the random choice implied by the β=0 designation.

Although results from the other 22 cases which were run could be quoted, the
above case is strongly representative of the housing density variations and job
concentration levels in actual cities.  Also, as the relative errors did not vary widely
for the other configurations, the solution above is sufficient to characterize the
problem. Discussion of the implications for practical analysis of these results are
postponed until after consideration of the 5-zone problem below.

Quadratic City with 5 Circular Zones  Whereas the previous case typifies some
coastal

cities, the quadratic city in Fig.2 below is more generally representative. As before,
the

outer rims of each circular zone are separated by a distance
l  which is taken as zero for a contiguous urban area.

When proceeding from an outer zone to another outer
             zone at right angles to it, shortest path travel is taken

to proceed around the outer rim of the central zone.
Travel between outer zones in line with each other

is taken to proceed in a straight line
through the CBD at the centre of the
central zone. In future comparisons,

it would be possible to experiment
with alternative interzonal transport

networks. For instance, one could have
                                             FIG.  2         a ring road connecting the centroids of the  

four outer zones, which is an increasing trend
in modern large cities. At this stage, we concentrate

on the quadratic interzonal transport network as in
Fig. 2. The other definitions are similar to those in the

previous 3-zone case, with just the ‘urban’ l=0 case being considered, where each of
the outer zones is tangential to the central zone. Note that, the main difference
between the 3 zone and 5 zone cases is that the role of the central zone is more pivotal



for the 3 zone example, as it is accompanied by only two outer zones instead of four.
The results that now follow are for the same relative densities as previously.

Case  3 :   Outer jobs concentrated (kj=0)  Housing density in central zone = 2 times
housing density in outer zones (a=2)  No. of jobs in inner zone = 4 times no. of jobs in
each outer zone (b=4)
β→∞    Overall Averages    dave= .8059  dc= .8889  Error=+10.3%
                       Intrazonal Averages                               Interzonal Averages
        davea= .6418  dca= .6667  Error=+3.9%   davez=1.6267  dcz=2.0000  Error=+23.0%
β=0      Overall Averages    dave=2.2768  dc=2.1667  Error=-4.8%
                      Intrazonal Averages                                Interzonal Averages
                davea= .6667 = dac  Error=0%            davez=2.8135  dcz=2.6667  Error=-5.2%

Case  4 :    Outer jobs dispersed (kj=1)   Housing density in inner zone = 2 times
housing density in outer zones (a=2)    No. of jobs in inner zone = 4 times no. of jobs
in each outer zone (b=4)
β→∞      Overall Averages    dave= .5959  dc= .8889  Error=+49.2%
                      Intrazonal Averages                                Interzonal Averages
         davea= .2667  dac= .6667  Error=+150%   davez=2.2422  dcz=2.0000 Error≈-10.5%
β=0        Overall Averages    dave=2.4050  dc=2.1667  Error=-9.9%
                      Intrazonal Averages                                Interzonal Averages
        davea= .7757  dac= .6667  Error=-14.1%     davez=2.9481  dcz=2.6667  Error=-9.6%

In comparison of the 5 zone results above with those for the 3 zone example in Cases
1 and 2, it is seen that not only are the directions of the changes identical, but their
magnitudes do not vary markedly. The only real exception is in the β→∞ run for
dispersed outer jobs (Case 4), where the error for intrazonal flows is +150%, with the
average overall error still being 49%. This is due to the greater number of dispersed
jobs in the 4 outer zones, many of which are filled by tele-commuters or workers who
live ‘next door’. Otherwise, the comparisons are similar to those below Cases 1 and 2
and will not be duplicated here.

Implications of the Results for Practical Analysis

The provision of the above test cases and the corresponding relative errors of
the conventional vs the continuous analysis must always just be regarded as a general
guide for correcting the results of a conventional model. The analyst should not accept
the recommendations as a rigid formula - merely as a set of guidelines. Further
continuous formulations of the type developed in this paper will need to be developed
to cover a wider set of potential applications.

One of the most interesting aspects of the results is the overestimation by the
conventional model of the average distances for the β→∞ case and its underestimation
for β=0. In the former, the conventional model fails to allow for the fact that the most
cost-efficient pattern will have interzonal origins allocated to the part of the zone
closest to the exit node rather than to the centroid. Also, for intrazonal travel in zones
with dispersed outer jobs, the conventional approach neglects tele-commuting  and
jobs ‘next door’. Of course, the conventional models were developed at a time before
the large scale suburbanization of service employment. For β=0, the radius of the



circle used conventionally underestimates the average distance travelled, either from
randomly dispersed worker origins or to possible randomly dispersed outer jobs, as
illustrated in Cases 1A and 3A of the Appendix. Of course, this means that there is
some ‘magical’ intermediate value of β for which the error disappears. But, it is best
not to rely on such ‘miracles’ in practice. One can adopt the following general
strategy.

Firstly, having a knowledge of the actual average trip length dave, it is possible
to replace the β parameter, dimensioned as (distance)-1, by an ‘equivalent’
dimensionless gravity power ‘n’ via the relation

   n  =  β dave / log dave                                                                                            (2)

When n exceeds the ‘Newtonian’ value of 2, it can be considered that we are
approaching the area of applicability of the β→∞ guidelines, and for n<2 we give
most weight to β=0. Secondly, as shown in the Appendix, Case 2B for large n, an
increase of residential density as one approaches the CBD can reduce the intrazonal
travel from (2/3) the equivalent zonal radius to as low as (1/2) of this radius.
However, as this density change is usually spread over several zones as one moves
outwards, it is likely that only the zone which encloses the CBD should have its trip
distance reduced, and perhaps to no lower than 0.6 times the zonal ‘radius’.
Conversely, for small n and dispersed outer jobs, as seen in Case 1A of the Appendix,
the average distance is up to .994 times the radius, rather than (2/3). For the CBD zone
this could be reduced to say .85 to allow for the effect of increased density towards the
centre.

When the suburban jobs are strongly concentrated at a single point of their
zone, we should be guided by Cases 1 and 3. This implies the following :
n>2  The average intrazonal distance should be reduced by 3 to 4% from .6667, that
is to about .64 times the equivalent zonal radius. If significant decreases in residential
density occur from the CBD to the outer rim of the CBD zone, this value could be
reduced to as low as .57 times the radius. For interzonal travel to contiguous zones,
the average  centroid to centroid trip distances should be reduced by 10 to 20% ,
especially if the ‘gravity index’ n is 3 or 4. For values of n closer to 2, this reduction
could be say about 5-10%.
n<2  For the intrazonal cases, the average distances should be kept at about (2/3) of
the radius, except for the CBD zone when the residential density gradient is
significant, where it could be reduced as low as .57 times the radius. However, for
interzonal travel, the situation is reversed, with the average distance being increased
by 5 to 10%.

On the other hand, when the outer jobs are strongly dispersed throughout
their zones, more significant changes are required, especially to outer zone trip
distances, as illustrated in Cases 2 and 4.
n>2   For intrazonal travel to the CBD, the guidelines are as above. However, for the
outer zones, the degree of dispersal together with the extent to which n exceeds 2
should guide the choice of average distance. The lowest feasible value seems to be
about 0.3 of the radius, with 0.4 to 0.5 being more typical.  Information on the level of
tele-commuting will also guide this choice. For interzonal travel to contiguous zones,
and high values of n, one could make a slight reduction, by say 5 to 10%, to allow for



skewing of worker or job choice more towards the zonal exit points, rather than at
zonal centroids - this was not considered rigorously in our one heuristic solution.
n<2  For intrazonal travel in the outer zones, values of average distance of about .75
to .9 the radius should be used, especially as n becomes close to unity or less, as seen
from Case 1A in the Appendix. For the CBD zone, with concentrated jobs, the value
could be as low as say .57 times the radius, as seen above, to allow for the density
gradient. For interzonal travel, the average distance to contiguous zones should be
increased by about 10 to 15% to allow for ‘random’ exit and entry.

From the above, it is clear that the main ‘grey’ area is to account for cases
when the equivalent gravity index is about 2, as the recommended corrections are
reversed upon approaching such a value from above vs from below. However, if one
understands the reasons for the various corrections as explained above, one should be
able to make reasonable estimates for such borderline situations. One of the main
difficulties at such intermediate n values is that the ‘optimal’ choices of jobs made by
workers from close to the edges of zones  to just ‘across the border’ in adjacent zones
are diluted with some rather ‘random’ (distance-independent) job choices of other
workers which are more distant, on the average, than the centroid to centroid
distances. With this caveat, it is believed that the guidelines provided give a stronger
basis for appropriate corrections to the conventional than currently existing rules.

MULTI-PATH  GRAVITY / INTERVENING OPPORTUNITY  MODELS

As shown by Gonçalves and Ulysséa-Neto (1993) and Roy (1993), it is possible to
integrate the gravity and intervening opportunities models. This allows the traditional
distance-deterrence effect to be combined with the influence of the opportunities
intervening between the origin and final destination. Following the introduction of the
approach in the paper of Gonçalves and Ulysséa-Neto (1993), Roy (1993) pointed to a
combined entropy/maximum likelihood estimation procedure, as well as giving a
suggestion for avoiding potential multi-collinearity between the gravity constraint and
the intervening opportunities constraint. In Roy (1993), analogies with the approach of
Fotheringham (1986) were discussed, in relation to his extra term expressing the
relative accessibility of adjacent ‘competing’ destinations. As sets of ‘intervening
opportunities’ lie physically along alternative paths exiting from and finally returning
to any origin, one often needs a network-oriented approach to capture their influence.
At the same time, the identification of alternative network paths for the shoppers and
the destinations passed thereby allows recognition of the potential for trip chains.
These ideas are implemented in the following entropy formulation, which is
developed for retail/service travel on relatively uncongested networks. For such travel,
it is postulated that the intervening opportunities constraint will have a positive
parameter in terms of the total number of opportunities on each path, in contrast to the
usual negative ‘gravity’ parameter associated with the path travel time constraint.

Consider a set of plausible paths nij connecting each origin zone i through
each  destination j (and including other potential destinations) and consider that Sijn

trips occur along each path nij during the study interval within an overall total of S
trips. We also know the number of trips Oi emanating from each origin zone i and the
number of trips Dj which are registered at each destination facility j. Also, the number
of intervening opportunities wijn on each path nij exiting and returning to zone i via
facility j is known. Units of floorspace are appropriate intervening opportunities in a



retail/services model. The intervening opportunities include the floorspace units of all
potential destinations  on the path nij.  Finally, from surveys, one should determine the
average overall trip time ‘t’ and the average intervening opportunities ‘w’ which are
‘consumed’ per trip. Note that, in this formulation for relatively uncongested
networks, it is not necessary to identify individual links along the alternative paths.
The entropy maximization problem is specified as follows

  Z  =  max  -  ∑ijn  Sijn [log Sijn/(Oi Dj) - 1]  +  ∑i λi [Oi - ∑jn Sijn]  +  ∑j ηj [Dj - ∑in Sijn]
                 + β [ St - ∑ijn Sijn tijn]  -  α [Sw - ∑ijn Sijn wijn]                                        (3)

In this objective, it is being assumed that, whereas the probability of making a trip
between an origin and a destination is inversely related to the total travel time tijn

between them on any given path, it is positively related to the number of intervening
opportunities - but this is an empirical question relating to increased propensity for
multi-destination shopping along travel paths which pass by several alternative
facilities. The sign is typically in the other direction for journey-to-work models. The
maximization process yields the following expression for Sijn

   Sijn  = Oi Ai Dj Bj  exp (α wijn - β dijn)                                                                    (4)

where the ‘balancing factors’ Ai = exp - λi and Bj = exp - ηj are determined via the
usual recursive relations.  The above model can be solved iteratively using traditional
methods for the unknown flows Sijn and the unknown Lagrange multipliers α and β,
which are treated as parameters in impact analysis. As the number of trip destinations
Dj will not be known in impact analysis, it is necessary to express the destination
balancing factors Bj in terms of attractiveness characteristics of the destinations. If this
is limited to the role of the floorspace Wj alone, one can interpret Bj as a j-specific
power of the floorspace Wj. Alternatively, one could perform a log-linear analysis to
fit the set of (log Bj) to the relative level ‘consumed’ of each of the set of chosen
characteristics  (including floorspace).

It is interesting to compare the spatial relevance of the above approach with
that in the work on competing destinations by Fotheringham (1986). Our procedure
assumes implicitly that one takes one of several plausible paths exiting from and
returning to the origin via a destination j, potentially being in a position to ‘sample’
some of the intervening opportunities at destinations other than j during the
journey. On the other hand, the implicit assumption of Fotheringham’s approach is
that one arrives at the primary destination with the potential to take a ‘star pattern’  of
trips to competing surrounding destinations. We may conjecture that our model
relates to multi-purpose and multi-stop trips by car or subway from an origin which
passes several potential destinations before returning.  As one passes (and potentially
samples) all the intervening facilities during the overall trip, only the total number of
opportunities and the total path time are important, not the relative accessibility of
any one destination to the origin. The approach of Fotheringham (1986) seems
appropriate in cases where say one travels to a primary destination  by car or public
transport, perhaps parking there, and then potentially taking short independent trips,
perhaps by bus, to adjacent ‘competing’ destinations, whose relative accessibility to



the primary destination is the main consideration. The Central Business District would
be an appropriate primary destination from which such trips could emanate.

In conclusion, we have the genesis of a trip chaining approach as the first
step towards an activity-based analysis. In this ‘compromise’ procedure, shoppers are
sampled at a common time at all destinations to avoid double-counting. Thus, we
cannot and do not ask them to complete a complicated travel diary, but merely to
identify their expected path for the total journey. They may not necessarily stop at all
destinations passed during such a journey. However, we postulate on the average that
the potential attractiveness of the path is proportional to the total number of
opportunities along the path, including those in the destination j where the shoppers
are sampled.  By merely identifying the potential for trip chains as a major influence
on the choice of any given destination, the severe combinatorial problems in the
implementation of activity-based approaches can be avoided. The approach remains
similar in principle for work-based lunchtime shopping trips, as well as for shopping
journeys made on the way home from work.
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APPENDIX  A
Key Results for Random Job Choice  (β=0)

CASE  1A :    [ Also demonstrated in Anderson, Roy and Brotchie (1986) ]

Given that both jobs and workers are distributed uniformly over a unit circle and that
workers choose jobs randomly, find the average trip length tu , assuming that workers
travel on shortest path routes on the radial/circumferential transport network.

Let an incremental number (rj drj dθj) jobs be located at relative radius rj at angle θj

around from a datum. Then consider an incremental number of workers (ri dri dθi) be
located at relative radius ri at angle θi from the θj line and let these workers and jobs
interact with each other via work travel. Then, the average travel distance t0 can be
evaluated via the expressions
                        2π           1                       2      rj                                 1
   tu  =  (2/π2)  ∫   dθj  ∫  rj drj  { ∫  [ ∫  (ri θi +rj - ri ) ri dri + ∫  (rj θi - rj + ri) ri dri

                        0             0                      0       0                                                      rj

                                                     π            1

                                                + ∫  dθi  ∫  (ri + rj) ri dri  }
                                                    2            0

Within the  { .... }  brackets, the first term corresponds to the case of making the
circumferential part of the trip from the origin i, the second term denotes taking the
circumferential part to the destination j  and the third term occurs when the subtended
angle between the i and j lines is greater than two radians and shortest path travel is
purely radial, with the worker first travelling into the centre of the circle and then out
to the job. The result comes out as

  tu  =  [ 4 - 2/π] / 3      (≈  .9938)

Thus, the average distance travelled here is close to the unit radius of the circle.

CASE  2A :



Let workers be distributed radially over the unit circle according to the negative
linear relationship [a+b(1-ri)] where ri is the relative worker radius at any point and
let jobs also be distributed radially over the unit circle according to the negative
linear relationship [c+d(1-rj)] where rj is the relative job radius at any point,
adjusted such that the total number of workers equals the total number of jobs.
Assuming that workers choose jobs randomly, find the average trip length tv given
that workers travel on shortest path routes on the radial/circumferential transport
network.

This represents a generalization of Case 1A, allowing for probable increased
residential density and increased employment density as the centre of the circular zone
is approached. By an initial integration, it can be determined that the total number of
workers is (a + b/3) and the total number of jobs (c + d/3), where c or d are chosen to
ensure that these two terms are equal. Then, similarly as above, but allowing the
individual worker and job increments to be weighted by their respective densities, the
average travel distance tv for this variable density problem is expressed as

                                                  2π         1                                              2     rj

   tv  =  [18/ {π(3a+b)(3c+d)}]  ∫  dθj ∫ [c+d(1-rj)] rj drj { ∫ [ ∫ (riθi+rj-ri) [a+b(1-ri)] ri dri

                                                 0            0                                              0      0

                  1                                                                                        π             1

             + ∫ (rjθi-rj+ri) [a+b(1-ri)] ri dri ] dθi  +  ∫  dθi  ∫ (ri+rj) [a+b(1-ri)] ri dri  }
                 rj                                                                                       

2              0

After a considerable amount of quite tedious algebra, the result tv comes out as

   tv  =  [1/[(3a+b)(3c+d)] { [24ac+7(ac+bd)+2bd]/2 - [336ac+91(ac+bd)+26bd]/35π }

For the uniform case, where a=c and b=d=0, it is simply confirmed that tv comes out
as the uniform result tu given above in Case 1A. It is now straightforward to test
alternative distributions, especially those cases where the densities of both workers
and jobs increase in consonnance as one approaches the centre of the circle, that is,
a=c and b=d=na where n≥0.

CASE  3A :

Let A be any point on the rim of the unit circle. Given that either workers are
distributed uniformly or that jobs are distributed uniformly over the unit circle, find
the average travel distance tr  from A  to any job or to A  from any worker, given that
travel occurs via shortest path routes on the radial/circumferential transport network.

As the two cases give identical results, we confine ourselves to travel from A to any
job. Let the incremental area (r dr dθ) contain jobs at radius r and angle θ from a
datum. Then, the average distance per trip tr from the rim point A is given as

                          1                2                                                      π

   tr  =  (2/π)  {  ∫  r dr [ ∫  { rθ + (1-r) } dθ  +  ∫  {r+1} dθ ]  }



                          0                0                                                      2

where the first term in the [ .... ] brackets represents travel from A by the shortest path
radial/circumferential route to any job, and the second term denotes pure radial travel
from A to the centre and from the centre out to the job. The result comes out as

   tr  =  (5 - 4/π) / 3        (≈ 1.242)

In practice, the above result is important for interzonal travel, where A represents the
point either where one exits the zone via the transport network to reach the final
destination zone, or where one enters the zone via the transport network from an
adjacent zone en route from the origin zone.

APPENDIX  B
Key Results for Travel-Distance-Minimizing Job Choice  (β→∞)

CASE  1B :  [ Also shown by Bonsall(1975) ]

If workers are distributed uniformly over the unit circle and all commute to the centre
of the circle to work, determine the trip length tm averaged over all workers.

Note that, as the workers here have no choice of job location, the result below is also
valid for any value of β, including the previous value β=0. Using symmetry, it is clear
that the average trip length tm in terms of an increment (r dr dθ) of workers is given as

                       π/2              1

   tm  =  (4/π)  ∫   dθ    ∫  r2  dr   =   (2/3)
                       0                0

This is a standard result for intrazonal travel to the centre of the unit circle.

CASE  2B :

Let workers be distributed radially over the unit circle according to the negative
linear relationship [a+b(1-r)] where r is the relative worker radius at any point.
Then, if all workers commute to the centre to work, find the  trip length tw averaged
over all workers.

Using integration, the total number of workers (and jobs) is given as [π(a+b/3)]. Then,
as above, but using the density weighting [a+b(1-r)]], the result tw comes out as

                                       π/2            1

   tw  =  [4/{π(a+b/3)}]   ∫   dθ   ∫  [a+b(1-r)]  r2  dr  =  (4a+b)/[2(3a+b)]
                                       0              0



This is seen to yield the result (2/3) as for the uniform density Case 1B above when
the gradient b is set to zero. On the other hand when the outer density a approaches
zero, tw approaches its minimum value 0.5.

CASE  3B* :

Let A be any point on the rim of the unit circle. The workers are assumed to be
distributed uniformly over the circle, with  a ratio p of them commuting to A to obtain
jobs outside their own zone, and the remainder (1-p) obtaining the (1-p) jobs at the
centre of the circle. Find the average trip distance tc  for the central (intrazonal)
workers and the average exit distance tx  for the external workers leaving from A,
assuming that the total travel distance of all workers is to be minimized.

* The author is most grateful to his former CSIRO colleague, Joe Flood,  for collaboration on this proof.

The situation is illustrated in the Figure below. Consider that the bold dotted arc
includes all the commuters ‘πp’ who work outside the zone and exit at A.

This leaves area π(1-p) to commute to the centre O of the circle.
Let θ* be the angle subtended at the rim of the circle

                                           θ*     at the boundary between the two areas and let θ be   
 the angle subtended at any intermediate point.

                                                θ        The first step is to determine the function R(θ)
of the boundary line separating the two areas,                       

      O                   A              such that the  average travel distance of all             
   workers who are resident in the circle is minimized.

                Note that, whereas all workers who commute to O
     travel radially, those who exit at A  to jobs outside

the circle travel circumferentially and radially for 0≤θ<2
  and purely radially for 2≤θ≤π,  where they proceed to A via O.

Thus, the total travel distance D is minimized in terms of R(θ), constrained by the
requirement to have (πp) workers travelling to A, in the form

(i)  0≤θ*< 2
                          π           1                        θ

*       R(θ)                     θ
*       1

   D  =  min
R(θ)   ∫  dθ  ∫  r2 dr  +  ∫  dθ  ∫     r2 dr  +  ∫  dθ  ∫    [rθ + (1-r)] r dr

                        θ
*      0                        0             0                            0           R(θ)

                                         θ
*      1

                    - λ  [ πp/2 - ∫  dθ  ∫    r dr ]
                                        0           R(θ)

where λ is the Lagrange multiplier on the area constraint for workers with external
jobs. In the integrand, the first term is the total travel distance of  internal workers
resident in the sector θ* to π, the second term represents the travel of the rest of these
workers between the θ* line and the R(θ)  curve and the last term is the total travel to
A of the external workers bounded by the circle and the R(θ) curve. In this problem
without R(θ) derivatives, the variational calculus is not required. Realizing that only
those integrals with R(θ) limits contribute to the maximization process, and reversing



the sign on terms where R(θ) occurs as a lower limit, the extremum occurs for zero
value of the total integrand, yielding

   R(θ)2  - [ R(θ) θ + (1 - R(θ)) ] R(θ)  -  λ R(θ)  =  0

This simplifies to

   R(θ)  =  ( 1 + λ ) / ( 2 - θ )

The unknown multiplier λ can be eliminated from the above by substitution of R(θ)
above into the constraint equation. Knowing that θ* occurs when R(θ) is unity, θ*

comes out as

   θ*  =  ( 1 - λ )

allowing the constraint integral to be evaluated, yielding λ and thus θ* as

   λ  =  1 - √2πp  ;   θ*  =  √2πp

giving R(θ) in its final explicit form

   R(θ)  =  (2 - θ*) / (2 - θ)  =  (2 - √2πp) / (2 - θ)

As on the horizontal axis where θ=0, R(θ) is seen to be (2 -θ*)/2, the internal
boundary of the area enclosing the external workers flattens to a straight vertical line
at a value of θ*  yielding (2-θ*)/2 = cos θ*, that is θ*=1.110 radians. Thereafter, it
reverses curvature in respect to that illustrated above, finally becoming the radial
straight lines θ*=2 and θ*=2π-2 at the boundaries of the feasible area.

Given both R(θ) and θ*, it is possible to evaluate the total travel TA to A as the
third term in the expression for D above, yielding TA and the average distance tx as

   TA  =  θ*3 / 4       and      tx  =  [√2πp]3 / [4πp]  =  (√2πp)/2

Similarly, the first and second terms in D can be summed to yield the total travel TO of
the internal commuters and their average trip distance tc as

   TO  =  (2π/3) [ 1 - 3p/2 + (p √2πp)/4 ]    and   tc  =  (2/3) [ 1 - p(2-θ*)/{4(1-p)} ]

As expected, tc comes out as the classical result (2/3) at θ*=2, where the R(θ) curve is
a straight radial line and we just have the geometry of sectors. At all other values of
θ*<2, tc is less than (2/3) because some outer commuters go to A rather than to O.

(ii)  2≤θ*≤π

It is easy to show for this range of θ* that the boundary line between the external and
internal workers remains a straight radial line, as for θ*=2 above. Then, simple
integration over the sectors yields the following results



   tx  =  2(2πp - 1)/[ 3πp]     and    tc  =  (2/3)

CASE  4B :

Let A and B be two points in a straight line on opposite rims of the unit circle. The
workers are assumed to be distributed uniformly over the circle, with ratios (p/2) of
them commuting to both A and B to obtain jobs outside their own zone, and the
remainder (1-p) obtaining the (1-p) jobs at the centre of the circle. Find the average
trip distance tc  for the central (intrazonal) workers and the average exit distance tx
for the external workers leaving from A or B, assuming that the total travel distance
of all workers is to be minimized.

This problem, illustrated below, is a variation on the preceding, where the commuters
now exit in opposite directions to external jobs. As the proof is closely related to that
above, it is just sketched in the following.

θ*                                 θ*     The only expression which changes in the objective
                                            function above is in the λ constraint, which becomes
                                                                      θ*        1
B             O               A              - λ [ πp/4 - ∫   dθ   ∫      rdr ]
                                                                      0         R(θ)

         This yields  R(θ)=(2-θ*)/(2-θ) as before, but now θ* is given as

                                                           θ*  =  √πp

This leads to the average trip distance for external trips, to leave at either A or B, as

                                                            tx  =  θ* / 2  =  (√πp) / 2

The expression for the average internal trip distance ta is identical to that for Case 3B,
except for the different definition of θ*. Note that, even at θ*=π/2, p is not yet unity,
but equal to (π/4), with the remainder of the area being filled as θ* approaches 2.


