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Abstract 

 

European electricity market participants are encouraged to balance intraday deviations from 

their day-ahead schedules via trades in the intraday market. Together with the increasing produc-

tion of variable renewable energy sources, the intraday market is gaining importance. We inves-

tigate the explanatory power of a fundamental modeling approach explicitly accounting for must-

run operations of combined heat and power plants (CHP) and intraday peculiarities such as a 

shortened intraday supply stack. The fundamental equilibria between every hour’s supply stack 

and aggregated demand in 2012 and 2013 are modeled to yield hourly price estimates. The major 

benefits of a fundamental modeling approach are the ability to account for non-linearities in the 

supply stack and the ability to combine time-varying information consistently. The empirical re-

sults show that fundamental modeling explains a considerable share of spot price variance. How-

ever, differences between the fundamental and actual prices persist and are explored using re-

gression models. The main differences can be attributed to (avoided) start up-costs, market states 

and trading behavior. 
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1 Introduction 

Scarcities of electricity in day-ahead and intraday markets are reflected in the publicly 

observable prices on power exchanges. The prices of unobserved bilateral trades will not 

deviate systematically from exchange prices because traders have the option to trade ei-

ther on the exchange or bilaterally. They will not trade in one market if trading in the 

other yields a higher profit. To support the decision making of producers, consumers and 

traders, various modeling and forecasting approaches for electricity spot prices have been 

developed.1 According to Weron (2014), fundamental models form a prominent day-

ahead price modeling category. Other modeling approaches are game theoretic models (e. 

g. Batlle and Barquín, 2005; Ventosa et al., 2005), technical analysis and expert systems, 

econometric-stochastic models (e. g. Bowden and Payne, 2008; Cuaresma et al., 2004; 

Fleten et al., 2013; Huisman and Mahieu, 2003; Keles et al., 2012; Ketterer, 2014; Kian and 

Keyhani, 2001; Kristiansen, 2012; Misiorek et al., 2006; Nogales et al., 2002) and artificial 

intelligence models (e. g. Cruz et al., 2011). Fundamental models are in line with the stand-

ard economic theory that prices in competitive markets result from the equilibrium of 

demand and supply. The day-ahead market price then equals the marginal costs of the last 

operating power plant that is needed to satisfy demand (Borenstein et al., 2002; Joslow 

and Kahn, 2001; Karakatsani and Bunn, 2008, 2010; Möst and Genoese, 2009; Müsgens, 

2006; Weigt and Hirschhausen, 2008).  

For the German intraday market, no results from a fundamental modeling approach have 

been published so far, and only a few explicit intraday price models exist compared to the 

day-ahead pricing literature. Hagemann (2015) uses a multiple linear regression model 

to investigate the influence of intraday price determinants in Germany and explains that 

intraday supply side shocks may have different price effects. Selasinsky (2014) visualizes 

the causal relationship between German intraday prices and unforeseen intraday changes 

of the residual load in a contour diagram. Furió et al. (2009) analyze the price convergence 

between the Spanish day-ahead and intraday market from 2000 to 2005 and find signifi-

cant price differences between both markets. Further intraday literature covers trading 

strategies of agents who balance wind power forecast errors (Bueno-Lorenzo et al., 2013; 

Chaves-Ávila et al., 2013; Henriot, 2014; Morales et al., 2010; Moreno et al., 2012) and 

                                                        
1 Spot markets are the latest possibility to trade electricity before physical delivery. Commonly important 
energy exchanges in Europe define that the spot market includes the day-ahead and the intraday market. 
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research on market design and liquidity (Borggrefe and Neuhoff, 2011; Furió and Lucia, 

2009; Hagemann and Weber, 2013; Weber, 2010). 

The major strength of a fundamental modeling approach are the ability to account for non-

linearities in the supply stack and the ability to combine time-varying information such 

as fuel and CO2 prices or renewable feed-in consistently. Furthermore fundamental ap-

proaches are flexible in the sense that existing models can be integrated for certain fun-

damental factors (e g. wind forecasting tools). By applying Monte Carlo simulations, in-

sights into future spot price dynamics under various future demand and supply scenarios 

are possible. Therefore the first objective of this work is to develop a fundamental model 

to explain current day-ahead and intraday market prices in Germany. Fundamental mod-

els differ concerning the applied methodology and the forecasting target. Approaches to 

modeling the supply and demand side based on time series and econometrics are devel-

oped by different authors, e. g., Eydeland and Wolyniec (2003) or Lyle and Elliott (2009)  

aim to find prices from derivatives. The following works are comparable to our work be-

cause hourly electricity spot prices are modeled: Gonzáles et al. (2012) and Karakatsani 

and Bunn (2010), who forecast electricity spot prices for the British market; Vehviläinen 

and Pyykkönen (2005), who forecast electricity spot prices in the Nordic market; and Car-

tea and Villaplana (2008), who forecast electricity spot prices for PJM and the British and 

the Nordic markets. A recent work using a time series approach including a supply stack 

model was developed by Liebl (2013). Fundamental modeling including inter-temporal 

restrictions of plant operation and using optimization techniques is done by Ellersdorfer 

et al. (2008) or Hirschhausen et al. (2007) for the German market and by Borenstein et al. 

(2002) for the Californian market. More recently, Graf and Wozabal (2013) published a 

work with a similar approach for the German day-ahead market. 

Publications basing their fundamental modeling on the representation of power plants’ 

variable costs are used to investigate strength, competitiveness or strategic behavior in 

power markets. Usually their focus is not on electricity price forecasting but, instead, on 

identifying differences between prices predicted by the marginal cost theory and actual 

prices. Müsgens (2005) uses an advanced fundamental model for more than one region 

but only with marginal costs based on a monthly time resolution. Schwarz and Lang 

(2006) apply a similar modeling approach, focusing on Germany and assessing the hourly 

marginal costs to investigate price mark-ups as well as fly-ups. In line with this research 

stream, the second objective of this work is to explain differences between the prices pre-

dicted by the supply stack model and the prices actually observed. Using multiple linear 
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regression models, the price difference is tested for influences from (i) (avoided) start up-

costs, (ii) different market states and (iii) trading behavior. 

 

This paper contributes to theoretical intraday pricing literature as follows. The funda-

mental model for the intraday market is presumably the first application of this modeling 

approach to explain intraday prices. The fundamental modeling approach is modified to 

account for intraday market peculiarities. These peculiarities include a limited technical 

flexibility of conventional power plants to adjust their generation within short intraday 

lead-times. Furthermore, the supply stack from the day-ahead planning is divided into 

scheduled and unscheduled conventional power plants. Scheduled power plants may act 

as intraday purchasers (intraday demand curve) and unscheduled power plants as sellers 

(intraday supply curve) of electricity in the intraday market. This paper also contributes 

to academic literature by including a representation for must-run electricity production 

from combined heating and power production facilities (CHP) and a detailed considera-

tion of scheduled and unscheduled power plant unavailabilities.  

The practical relevance of this research paper is twofold. First, the fundamental models 

developed may be used for very short term price forecasting and may thus reduce the 

high level of uncertainty in both day-ahead and intraday markets. Trading in intraday 

markets requires frequent re-optimizations due to the constant improvements of infor-

mation quality after the day-ahead scheduling, e. g., wind and solar power predictions, 

load forecasts or unscheduled power plant outages. Second, the ability to understand and 

predict intraday price volatility may be used to optimize unit commitment and increase 

revenues from the operation of flexible power plants such as hydro pump storages, gas 

turbines or modern hard coal power plants. 

 

The remainder of this paper is organized as follows. In section two, overviews of the Ger-

man day-ahead, intraday and balancing markets are given. In the third section, the funda-

mental and regression models for the day-ahead and intraday markets are presented. Sec-

tion four contains the description of the data set and an overview of the empirical results. 

Afterwards, a discussion of the model results and an explanation of limitations follows. 

Finally, section five contains the conclusion. 
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2 The German power market 

Because electricity is not economically storable in relevant quantities, a balance of supply 

and demand is required at all times to maintain system stability. In Germany, this contin-

uous equilibrium is ensured through a sequence of interdependent wholesale markets. 

The day-ahead market closes at 12 pm on the day before delivery. In this market, partici-

pants may trade electricity with physical delivery on the next day either anonymously on 

a trading platform of the European Power Exchange (EPEX Spot) or bilaterally over the 

counter (OTC). In terms of trading volumes, the day-ahead auction of the EPEX Spot is the 

most important spot market for Germany with a total trading volume of approximately 

245 TWh for years 2012 and 2013.2 Here, supply and demand bids are matched in a uni-

form pricing auction to obtain a market clearing price and quantity for each of the 24 

hours of the next day. According to Viehmann (2011), the exchange based and the bilat-

eral day-ahead markets show trading volumes in the same order of magnitude in Ger-

many. The day-ahead market is of great importance for the integration of variable renew-

able energy sources because market participants forecast the expected production profile 

(e. g., for wind and solar power plants) for the next day and sell those expected quantities 

in the day-ahead market. 

After the gate closure of the day-ahead market at 12 pm on the day before delivery, trad-

ing continues from 3 pm on the day before delivery until 45 minutes before physical de-

livery on the electronic intraday platform of the EPEX Spot. Here, market participants are 

encouraged to self-balance unforeseen deviations from their day-ahead schedules. The 

German intraday market is a continuous and order driven market. Incoming limit buy and 

sell orders are stored in the limit order book and executed as soon as the buy price ex-

ceeds the sell price or vice versa. In contrast to limit orders, market orders are executed 

immediately at the best available market price. A large fraction of intraday trades stem 

from the increasing production of variable renewable energy sources. Market participants 

that are responsible for the marketing of wind and solar power may trade the quantity 

difference between the profile sold day-ahead and the more precise intraday forecast val-

ues in the intraday market to self-balance their portfolios. This quantity difference is 

called forecast error. The German intraday trading volumes have been constantly increas-

ing from 1.4 TWh in 2007 to 16 TWh in 2012 and to 20 TWh in 2013. Trading volumes 

                                                        
2 The German and the Austrian markets are treated as one market area by the EPEX Spot and thus the trad-
ing volume is reported together for both countries. 
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are much higher in the day-ahead market than in the intraday market. Hence the intraday 

market is of minor importance for trading and hedging but of higher importance for sys-

tem security. Any trade in the intraday market may contribute to reduce the activation of 

control energy through the TSOs. 

After the gate closure of the intraday market, the four TSOs in Germany – 50Hertz Trans-

mission GmbH, Amprion GmbH, TenneT TSO GmbH and TransnetBW GmbH – use the pre-

viously contracted control energy to level out demand and supply in real time and main-

tain the grid frequency at 50 hertz. In Germany, control energy is classified into primary, 

secondary and tertiary reserves. The three types of control energies have different acti-

vation times and durations of operation.3 Individual market participants are charged ex-

post for imbalances they cause. Therefore, they will generally try to avoid the use of con-

trol energy for two reasons. The first reason is that, in Germany, using balancing services 

is always more expensive than self-balancing on the intraday market (BNA, 2012). The 

second reason is that the TSOs may impose sanctions on market participants that cause 

many imbalances by abrogating their balancing contract. 

 

3 Methodology 

3.1 A fundamental modeling approach for electricity spot prices 

In competitive markets, prices are expected to correspond to the intercept of demand and 

supply. The supply curve in electricity markets is represented by all available power plant 

capacities sorted in ascending order according to their short run marginal costs. In a per-

fectly competitive market, the marginal costs of the last running plant for a certain deliv-

ery period (e. g. hour) set the electricity price. In the absence of market power, this bid-

ding strategy ensures maximum profits of suppliers in one-shot auctions with marginal 

pricing (David and Wen, 2000; Ventosa et al., 2005; Weigt and Hirschhausen, 2008). This 

bidding strategy is represented by a fundamental model. Fundamental models are often 

referred to as production cost, supply stack or merit order models, as in Burger et al. 

(2004), Weber (2005), Weron (2014). 

                                                        
3 More detailed presentation of the German balancing mechanisms can be found in Flinkerbusch and Heu-
terkes (2010); Möller et al. (2011). 
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A formal description of the fundamental model used for the day-ahead market is provided 

by the set of Equations (Eq. 1 to 6). The novelties are a detailed treatment of scheduled 

and unscheduled unavailabilities as well as the inclusion of electricity production from 

must-run facilities. For the intraday model, the capacity constraint in Eq. (4) is replaced 

by Eq. (7) to account for intraday peculiarities:4 

𝐶𝑡
 = ∑𝑐𝑝𝑙,𝑡

 

𝑝𝑙

= ∑[(𝑝𝑓𝑢𝑒𝑙,𝑡 + 𝑝𝐶𝑂2,𝑡 ∙ 𝜀𝑓𝑢𝑒𝑙) ∙ ℎ𝑝𝑙 + 𝑐𝑝𝑙,𝑡
𝑜𝑡ℎ𝑒𝑟] ∙ 𝑦𝑝𝑙,𝑡

 

𝑝𝑙

→ 𝑚𝑖𝑛 (1) 

𝐷𝑡
 = ∑𝑦𝑝𝑙,𝑡

 

𝑝𝑙

 (2) 

The objective function (1) minimizes the operational costs at a total power plant output 

 𝑦𝑝𝑙,𝑡 multiplied by the marginal costs per power plant. The marginal costs include the fuel 

prices 𝑝𝑓𝑢𝑒𝑙,𝑡 and emission certificate prices 𝑝𝐶𝑂2,𝑡 multiplied by the emission intensity for 

each fuel type 𝜀𝑓𝑢𝑒𝑙. The sum is multiplied by the plant heat rate ℎ𝑝𝑙  and adjusted by other 

variable costs 𝑐𝑝𝑙,𝑡
𝑜𝑡ℎ𝑒𝑟, such as fuel transport costs. Eq. (2) balances supply and demand.5 

The power plant with the highest marginal costs needed to satisfy demand is referred to 

as marginal plant (𝑚𝑎𝑟𝑔𝑝𝑙𝑡
 ). The operational costs of 𝑚𝑎𝑟𝑔𝑝𝑙𝑡

  determine the fundamen-

tal prices for the day-ahead market (𝐷𝐴𝑃𝑡
𝑓𝑢𝑛𝑑

). 

The supply stack is the linkage between operational costs and the installed capacity 𝐾𝑝𝑙. 

The installed capacity is adjusted by scheduled and unscheduled power plant unavailabil-

ities Υ𝑓𝑢𝑒𝑙,𝑡
 

 on an hourly time resolution. Due to the data availability and simplification, 

the plant availability is assumed to be identical within each fuel type. 

 υ𝑓𝑢𝑒𝑙,𝑡  = 1 − 
Υ𝑓𝑢𝑒𝑙,𝑡

𝑠𝑐ℎ𝑒𝑑
+ Υ𝑓𝑢𝑒𝑙,𝑡

𝑢𝑛𝑠𝑐ℎ𝑒𝑑

∑ 𝐾𝑝𝑙𝑝𝑙=𝑓𝑢𝑒𝑙
 (3) 

For the day-ahead and the intraday models, different power plant availabilities υ𝑓𝑢𝑒𝑙,𝑡 are 

relevant. In both markets scheduled and unscheduled unavailabilities influence the 

                                                        
4 Indices to differentiate between the day-ahead (DA) and intraday (ID) market models are used only if 
symbols are exclusively used for one of the models. All variables without a notation are either the same for 
both models (e. g. heat rate) or can be used with DA or ID information (e. g. wind) dependent to the model. 
5 Eq. (2) holds for 0 ≤ 𝐷𝑡

 ≤ 𝐾𝑝𝑙,𝑓𝑢𝑒𝑙 ∙ υ𝑓𝑢𝑒𝑙,𝑡
 . When 𝐷𝑡

 ≤ 0 (negative residual load), the resulting prices are 

set to -10€ per MWh, indicating that power plant operators accept negative bids to stay online. When 𝐷𝑡
 ≥

 𝐾𝑝𝑙,𝑓𝑢𝑒𝑙 ∙ υ𝑓𝑢𝑒𝑙,𝑡
 , the resulting prices are assumed to be equal to 𝑚𝑎𝑥 (𝑐𝑝𝑙,𝑡

 ). Resulting quantities of under-

supply can be interpreted as reserve energy demand. 
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prices. Depending on the time of occurrence, unforeseen power plant outages can be sub-

stituted with purchases in the day-ahead market, but they can be traded in the intraday 

market if they occur after the day-ahead gate closure and before the delivery period 

(Hagemann and Weber, 2013). Eq. (4) provides the capacity constraint for the day-ahead 

market including the plant availability υ𝑓𝑢𝑒𝑙,𝑡
𝐷𝐴

 
in the day ahead market.  

𝑦𝑝𝑙,𝑡
𝐷𝐴 ≤ 𝐾𝑝𝑙 ∙ υ𝑓𝑢𝑒𝑙,𝑡

𝐷𝐴 − 𝑦𝑝𝑙,𝑡
𝐶𝐻𝑃 (4) 

The available capacity is reduced by must-run production obligations 𝑦𝑝𝑙,𝑡
𝐶𝐻𝑃 related to 

combined heating and power production (CHP). This must-run production is directly de-

duced from electricity demand (cf. Eq. (6)). CHP must-runs are considered via a propor-

tional distribution per fuel type as described in Eq. (5).  

𝑦𝑝𝑙,𝑡
𝐶𝐻𝑃 = 𝑦𝑓𝑢𝑒𝑙,𝑦𝑒𝑎𝑟

𝐶𝐻𝑃 ∙ 𝑓(𝑡𝑒𝑚𝑝𝑡
 )

𝐾𝑝𝑙
𝐶𝐻𝑃 ∙ υ𝑓𝑢𝑒𝑙,𝑡

∑ [𝐾𝑝𝑙
𝐶𝐻𝑃 ∙ υ𝑓𝑢𝑒𝑙,𝑡]𝑝𝑙=𝑓𝑢𝑒𝑙

 (5) 

The capacity of must-run power plants 𝐾𝑝𝑙,𝑓𝑢𝑒𝑙
𝐶𝐻𝑃  includes CHP power plants with one and 

two degrees of freedom in their operations. The former have no variability of their elec-

tricity production if heating demand occurs in their system. The latter have some flexibil-

ity, yet still there is still a minimum electricity production accompanying heat delivery. 

CHP heat demand includes both a temperature dependent share, notably from residential 

heating, and a non-temperature dependent share related notably to industrial CHP plants 

that have to deliver process heat. To account for both, the electricity production from 

must-run CHP facilities is modeled by a stepwise functional relationship 𝑙𝑒𝑣𝑒𝑙𝑐ℎ𝑝 =

𝑓(𝑡𝑒𝑚𝑝𝑡
 ) between the hourly average temperature (𝑡𝑒𝑚𝑝𝑡

 ) and level of must-run utiliza-

tion (𝑙𝑒𝑣𝑒𝑙𝑐ℎ𝑝). The non-temperature dependent electricity production is represented by 

a minimum level of utilization that is not undercut (see Figure 1). 

 

 

𝑙𝑒𝑣𝑒𝑙𝐶𝐻𝑃 
 
 
 

𝑡𝑒𝑚𝑝𝑡
  °𝐶  

minimum level of utilization  

Figure 1: Schematic relation to model must-run CHP electricity production (𝑙𝑒𝑣𝑒𝑙𝑐ℎ𝑝).  
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Demand in the model is considered as residual load given by Eq. (6) after the deduction 

of renewable feed-in, considering foreign trade balance and reserve power demand.  

 𝐷𝑡
 = 𝐿𝑡 − 𝑊𝑡 − 𝑆𝑡 + 𝐸𝑥𝑡 − 𝐼𝑚𝑡 + 𝑅𝐸𝑡

𝑝𝑜𝑠 − ∑𝑦𝑝𝑙,𝑡
𝐶𝐻𝑃

𝑝𝑙

 (6) 

The must-run electricity production from CHP plants is subtracted from the electricity 

demand because the obligation to cover the heat demand is assumed to cause the mar-

ginal costs of electricity production to equal zero. Similarly, the fluctuating renewable 

feed-in (Wind 𝑊𝑡 and Solar 𝑆𝑡) is subtracted because the marginal costs are zero or close 

to zero. An increase in production (supply) implies a reduction in demand from conven-

tional plants and vice versa. As long as only the German market is modeled, the load data 

has to be corrected by exports and imports of electricity (cf. Graf and Wozabal, 2013; 

Schwarz and Lang, 2006). Exports from Germany 𝐸𝑥𝑡  increase the residual demand while 

imports 𝐼𝑚𝑡 reduce it.6 Plant capacity is not available for the spot market if it is committed 

in the reserve power market (Just and Weber, 2008). Consequently positive primary and 

secondary reserve demand 𝑅𝐸𝑡
𝑝𝑜𝑠 are added to the load data.7 

 

3.2 Fundamental modeling of intraday prices 

Either intraday prices can be modeled directly as the equilibrium price at the intercept of 

intraday supply and demand (as done in this paper) or the deviation of intraday prices 

from day-ahead prices can be modeled as done by Hagemann (2015). Therefore, the set 

of equations for the intraday model is basically equal to the one described in chapter 3.1. 

The differences are that intraday instead of day-ahead information is used and that Eq. 

(4) is adjusted to account for fundamental peculiarities of the intraday market. 

First, based on the day-ahead market results, the supply stack is separated into a lower 

part with operating power plants that are able to decrease the scheduled power output 

                                                        
6 For the day-ahead price formation, the day-ahead cross border schedules are relevant. For the intraday 
market model, we use the day-ahead data as well due to data quality limitations from the physical flows and 
the fact that physical cross boarder flows do not necessarily influence intraday prices. Physical cross border 
flows are likely to follow physical limitations (e. g. loop-flows) instead of commercial trading flows.  
7 Positive minute reserve is not considered in the model because it is provided by peak power plants with 
high marginal costs. These power plants are out of the money and do not influence the marginal price. Neg-
ative balancing energy is not considered because it is delivered by operating plants (or demand). 
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and an upper part with non-operating unscheduled power plants that may be started up 

or increase their scheduled power output (see Figure 2).8 The whole intraday supply stack 

(𝑦𝑝𝑙,𝑡
𝐼𝐷 ) is the concatenation of the intraday down-ramping (𝑦𝑝𝑙,𝑡

𝐼𝐷,𝐷𝑜𝑤𝑛) and up-ramping part 

(𝑦𝑝𝑙,𝑡
𝐼𝐷,𝑈𝑝). Second, the intraday supply curve is shortened to consider inflexibilities and 

shorter lead times. 

 

Figure 2: Day-ahead versus intraday market price from a supply stack model 

 

The capacity constraints for the intraday market are then given by Eq. (7), which is de-

rived from Eq. (4). 

𝑦𝑡
𝐼𝐷 = {

(𝐾𝑝𝑙,𝑓𝑢𝑒𝑙
 ∙ υ𝑓𝑢𝑒𝑙,𝑡

𝐼𝐷 − 𝑦𝑝𝑙,𝑡
𝐶𝐻𝑃 − 𝑦𝑚𝑎𝑟𝑔𝑝𝑙,𝑡

𝐷𝐴 ) ∙ 𝑠𝑢𝑝, 𝑝𝑙 < 𝑚𝑎𝑟𝑔𝑝𝑙
 

(𝐾𝑝𝑙,𝑓𝑢𝑒𝑙
 ∙ υ𝑓𝑢𝑒𝑙,𝑡

𝐼𝐷 − 𝑦𝑝𝑙,𝑡
𝐶𝐻𝑃 + 𝑦𝑚𝑎𝑟𝑔𝑝𝑙,𝑡

𝐷𝐴 ) ∙ 𝑠𝑑𝑜𝑤𝑛, 𝑓𝑜𝑟 𝑝𝑙 ≥ 𝑚𝑎𝑟𝑔𝑝𝑙
 (7) 

The upper part of the intraday supply stack includes all power plants that may be sched-

uled for delivery in the intraday market. Those power plants allow a dispatch in the short 

run and have marginal costs above the day-ahead price. Inflexible or partly inflexible 

                                                        
8 The marginal power plant in each delivery hour can be identified in two ways. Either the marginal plant 
can be determined within the day-ahead market model or it is identified by finding the plant whose marginal 
costs equal the actual day-ahead price. By using the fundamental model to determine the marginal plant, 
the errors from the day-ahead market model are carried on. In case the actual day-ahead price is used, an 
error can occur if the actual day-ahead prices differ from the theoretic fundamental prices. 

𝑦𝑡
𝐷𝐴 𝐷𝑡

𝐷𝐴 

𝑚𝑎𝑟𝑔𝑝𝑙𝐷𝐴 

𝐶𝑡 
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𝐎𝐍𝐋𝐈𝐍𝐄  

upramp potential 

𝐾 

𝑚𝑎𝑟𝑔𝑝𝑙𝐷𝐴 

downramp potential 

𝑦𝑡
𝐷𝐴 

𝐷𝑡
𝐷𝐴 𝐷𝑡∗

𝐼𝐷 𝐷𝑡
𝐼𝐷 

𝑦𝑡
𝐼𝐷 𝐶𝑡 

𝐼𝐷𝑃𝑡
  

𝐼𝐷𝑃𝑡
∗ 
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power plants have limited ramping potential and imply a steeper slope of the supply 

curve. The factor 𝑠𝑢𝑝 determines the extent of shortening the upper part of the intraday 

supply stack in the model. The lower part of the intraday supply stack consists of all oper-

ating power plants after day-ahead scheduling. The lower part of the intraday supply 

stack is restricted by limited down-ramping flexibilities of operating power plants. These 

limitations mostly stem from the power plants specific minimum stable operation limit 

(Nicolosi, 2010). Furthermore power plants which operate to deliver negative reserve 

power represent additional must-run capacities in the intraday market. They cannot be 

ramped down because then they could not deliver negative reserve power. The reduction 

of intraday down-ramping capacity in the model is determined by the factor 𝑠𝑑𝑜𝑤𝑛 to 

shorten the lower part of the intraday supply stack.  

Some factors affect the slope of the entire intraday supply stack (upper and lower part). 

First, shorter lead times for power plant dispatches can make flexibility restrictions of 

conventional power plants binding. Second, not all power plant owners and sales compa-

nies are able to participate in the intraday market or have a 24/7 intraday shift desk be-

cause a 24/7 shift work is economically beneficial only for larger companies. Third, redis-

patch interventions from the TSOs can influence the slope of the intraday supply stack. 

The TSOs monitor the status of the grid and require redispatch from power plants if some 

transmission lines are overloaded. 

The deviation between the intraday and the day-ahead residual load (forecast error 𝐹𝐸𝑡) 

determines whether up-ramping or down-ramping capacity in the intraday market is 

needed. In the fundamental model, all intraday deviations are aggregated. The residual 

load in the intraday market differs from the residual load in the day-ahead market be-

cause of forecast deviations for variable renewable energy sources (RES) and for load. 

 𝐹𝐸𝑡 = 𝐷𝑡
𝐼𝐷 − 𝐷𝑡

𝐷𝐴 (8) 

Market participants may sell or buy the quantity difference in the intraday market to min-

imize their balancing costs. Negative deviations result from less electricity load or addi-

tional production from RES in the intraday market. On the contrary, positive deviations 

result from additional electricity load or less RES production. Moreover, unplanned 

power plant outages may increase intraday demand. The availability factor of power 

plants in the intraday market υ𝑓𝑢𝑒𝑙,𝑡
𝐼𝐷  is on average lower than in the day-ahead market 

υ𝑓𝑢𝑒𝑙,𝑡
𝐷𝐴  because of unscheduled unavailabilities that occur after day-ahead gate closure. 
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3.3 Identifying price impacts beyond pure supply stack effects  

In addition to the marginal costs of operating plants, other factors may influence the ob-

served electricity prices. Therefore, multiple linear regression models are developed sub-

sequently to test the explanatory power of other spot price determinants beyond those 

included in the fundamental model. Apart from the fundamental price, the regression 

models capture the influence of (i) (avoided) start-up costs, (ii) market state variables and 

(iii) trading behavior. 

 

(i) (Avoided) start-up costs 

Ramping constraints due to base and mid load plant inflexibilities can lead to differences 

between actual and fundamental prices. According to Nicolosi (2010), must-run obliga-

tions of power plants due to operational constraints such as minimum and maximum 

down-times or start-up times (cf. Troy et al., 2010) may cause those differences.9 Further-

more prices may be influenced by limitations to changes in unit commitment during in-

traday trading or by (avoided) start-up costs. In a series of hours, if only single hours show 

prices below the marginal costs of an inflexible base load plant, the operators may not be 

able or willing to ramp down the power plant. This may lead to very low or even negative 

spot market prices.10 The 𝑅𝑎𝑚𝑝 variables (Eq. 9 to 10) are designed to capture the price 

effects due to conventional power plant ramping costs and inflexibilities. 

 𝑅𝑎𝑚𝑝𝑡
𝑈𝑝 = |(𝑅𝐸𝑆𝑡 −

∑ 𝑅𝐸𝑆𝑡−𝑖
𝐻
𝑖=1

𝐻
)

+

| (9) 

 
𝑅𝑎𝑚𝑝𝑡

𝐷𝑜𝑤𝑛 = |(𝑅𝐸𝑆𝑡 −
∑ 𝑅𝐸𝑆𝑡−𝑖

𝐻
𝑖=1

𝐻
)

−

| 
(10) 

In periods with an increasing residual load, start-up costs of conventional power plants 

are expected to increase day-ahead and intraday prices above the levels predicted by the 

fundamental model. In periods with a decreasing residual load, power plant inflexibilities 

                                                        
9 Other approaches to include start-up costs can be found in Müsgens (2005) or Schwarz and Lang (2006) 
10 Within the marginal cost framework, prices that are higher than the marginal costs may be demanded 
even in the absence of abusive market power and strategic behavior. In addition to start-up costs, the peak 
load pricing concept may explain price mark-ups. It states that peak load plants require more than their 
marginal costs in order to recover their fixed costs (Crew et al.,1995). 
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are expected to increase the sales in the spot market and decrease prices below the levels 

predicted by the fundamental model. Because one can expect different price effects during 

downward and upward ramping periods, two different regressors are modeled. They are 

calculated as the absolute difference between the current and average residual demand 

of the last H hours. 

 

(ii) Market state variables  

Furthermore, different market states may explain deviations between the fundamental 

and observed prices. For the definition of market states, various indicators can be found 

in the literature about regime switching models for energy prices (e. g. Bierbrauer et al., 

2004; Erlwein et al., 2010; Huisman and Mahieu, 2003; Janczura and Weron, 2009). In this 

work, we focus on markets states related to supply scarcities. Different works investigate 

scarcity factors and model their influence on spot price. Aïd et al., 2013 include a ‘margin 

capacity,’ the difference between current demand and installed capacity, to explain the 

differences between marginal costs and spot prices. Voronin and Partanen 2012 and 

Sensfuß et al., 2008 use a ‘supply-demand-index,’ which is the ratio between idle capacity 

and demand to investigate scarcity mark-ups. Price mark-ups may occur if market partic-

ipants committed most of their generating output before the spot market starts so that 

the short term supply in the day-ahead and intraday market is scarce. If the excess supply 

is low, temporal quantity retentions may occur in the intraday market as well. In our work, 

we use the ‘load supply ratio’ (LSR) as the measure for scarcity in the energy system. To 

obtain the LSR, the relation between the residual demand and total available capacity is 

calculated. Two variables are constructed to capture a market state with capacity scarcity 

and one with capacity excess. Capacity scarcity is deemed to occur when the LSR exceeds 

the mean LSR plus one standard deviation. Conversely, a LSR lower than the mean LSR 

minus one standard deviation then indicates a market state with excess capacity. 

 𝐿𝑆𝑅𝑡 =
𝐷𝑡

∑ 𝐾𝑝𝑙
 

𝑝𝑙 ∙ υ𝑓𝑢𝑒𝑙,𝑡
  (11) 

(iii) Trading behavior 

Finally, traders tend to use the present or past price information to forecast future prices. 

In the day-ahead market, the so called similar day-approach states that the future prices 

can be calculated using previous prices which are corrected by changes of fundamental 

influences (Weron, 2006). For models with hourly resolution, a similar hour-approach is 
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suitable. Weron and Misiorek, 2008 and Kristiansen, 2012 find significant influences of 

the day-ahead price of the same delivery hour of the previous two days and the previous 

week on the present price. In electricity systems with a high penetration of wind and solar 

power feed-in, changing weather conditions have a significant influence on the wind and 

solar power production and, thus, on the day-ahead prices (Sensfuß et al., 2008). Quickly 

changing day-ahead prices may reduce the explanatory power of past days. Therefore, 

only the autoregressive term for the same hour of the previous day is included in the day-

ahead regression model. Intraday traders are likely to include the price information of the 

previous hour in their trading decisions because intraday trading happens continuously. 

Therefore, the price of the preceding hour is included in the intraday regression model. 

Apart from trading behavior, the autoregressive variables may capture autocorrelated 

fundamental influences that are not directly observable and, hence, not included in the 

model. The complete regression models are specified in Eq. (12) for the day-ahead and in 

Eq. (13) for the intraday model: 

 
𝐷𝐴𝑃𝑡 = 𝑐1 + 𝑐2 ∙ 𝐷𝐴𝑃𝑡

𝑓𝑢𝑛𝑑
+ 𝑐3 ∙ 𝑅𝑎𝑚𝑝𝑡 

𝐷𝐴,𝑈𝑝 + 𝑐4 ∙ 𝑅𝑎𝑚𝑝𝑡
𝐷𝐴,𝐷𝑜𝑤𝑛

+ 𝑐5 ∙ 𝐿𝑆𝑅𝑙𝑜𝑤,𝑡
𝐷𝐴 + 𝑐6 ∙ 𝐿𝑆𝑅ℎ𝑖𝑔ℎ,𝑡

𝐷𝐴 + 𝑐7 ∙ 𝐷𝐴𝑃𝑡−24 + 𝜀𝑡 
(12) 

 
𝐼𝐷𝑃𝑡 = 𝑐1 + 𝑐2 ∙ 𝐼𝐷𝑃𝑡

𝑓𝑢𝑛𝑑
+ 𝑐3 ∙ 𝑅𝑎𝑚𝑝𝑡

𝐼𝐷,𝑈𝑝 + 𝑐4 ∙ 𝑅𝑎𝑚𝑝𝑡
𝐼𝐷,𝐷𝑜𝑤𝑛

+ 𝑐5 ∙ 𝐿𝑆𝑅𝑙𝑜𝑤,𝑡
𝐼𝐷 + 𝑐6 ∙ 𝐿𝑆𝑅ℎ𝑖𝑔ℎ,𝑡

𝐼𝐷 + 𝑐7 ∙ 𝐼𝐷𝑃𝑡−1 + 𝜀𝑡 
(13) 

𝐷𝐴𝑃𝑡  and 𝐼𝐷𝑃𝑡  denote the day-ahead and intraday price in delivery hour t, 𝑐1 is the con-

stant term, 𝑐𝑖 with i = (2,..,7) is the regression coefficients and 𝜀𝑡 is the independently and 

identically distributed error term. 
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4 Empirical analysis 

4.1 Data 

Because of the continuous trading in the intraday market, more than one price for one 

delivery hour is observed. In this study we employ the quantity weighted hourly average 

intraday price since it includes information about all trades for one delivery hour and con-

tains less outliers than, e. g., the last trade price. The data for the fundamental model is 

collected from the sources indicated in Table 1. 

Table 1: Data sources11 

Data Source Product 

Load ENTSO-E - 

Demand (Energy Supplied) IEA Statistics - 

Spot prices EPEX-Spot Info-User (EOD) 

Coal Price Energate.de API#2 Front year 

CO2 EEX EU-CO2-Emission Allowances 

Gas price Spectron TTF-Day-Ahead 

Wind and Solar feed-in EEX Transparency data service  Info-Vendor 

Unavailability’s EEX Transparency data service  Info-Vendor 

Cross Boarder Flow ENTSO-E.net D-1 Commercial Schedule 

Power plant information EWL database (based on Platts, etc.) - 

Electricity production from CHP BMWi and Destatis  

 

The hourly load data from ENTSO-E is defined as the ‘hourly average active power ab-

sorbed by all installations connected to the transmission network or to the distribution 

network’ (entsoe.eu, 2014). Those hourly load values do not match the domestic supply 

data provided by the IEA. Because the consumption and the energy produced from all 

power plants in a system always have to be in balance, the hourly load values from EN-

TSO-E are adjusted to fit the domestic supply data provided by IEA statistics. The adjust-

ment of the hourly load data is done on a monthly basis to account for the yearly season-

ality. A base load consumption for each month, e. g., from industries´ or power plants´ own 

use, is added proportionally. Furthermore grid losses are included over a quadratic func-

tion of the total consumption.  

                                                        
11 Fuel prices are either spot market or front year future prices for coal, gas, emission and oil. Lignite, ura-
nium, biomass, waste and other fuel prices are based on cost estimates. 
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Official data about electricity production from CHP power plants are available with a 

yearly time resolution. The hourly CHP electricity production per fuel type is then deter-

mined using Eq. (5). The temperature data are taken as the average temperature of main 

metropolitan areas in Germany (Düsseldorf, Stuttgart, Munich and Berlin). The must-run 

utilization levels in the model are defined as indicated in Table 2.12 

 

Table 2: Must-run utilization level depended on the average temperature. 

Average temperature < 7.5°C 7.5-10°C 10-12.5°C 12.5-15°C > 15°C 

Must-run level 100% 90% 80% 70% 35% 

 

The extent of the shortening of the intraday supply stack is not easily determined as it 

results from the interactions of different factors. Based on the considerations from chap-

ter 3.2, we find a reasonable shortening of the supply stack in the upper and lower part 

by setting the factor in Eq. (7) for  𝑠𝑢𝑝 to 0.5 and 𝑠𝑑𝑜𝑤𝑛 to 0.4 .  

The sources for the regression model data are depicted in Table 3.  

 

Table 3: Overview regressors and data sources in the regression models 

Coeffi-

cient 

Variable 

Name 

Description Source 

𝑐1 - Constant - 

𝑐2 𝐷𝐴𝑃 𝑎𝑛𝑑 𝐼𝐷𝑃𝑓𝑢𝑛𝑑 Prices calculated in the fundamental model Fundamental model 

𝑐3−4 𝑅𝑎𝑚𝑝 Dummy for changes in residual load  Own calculations 

𝑐5−6 𝐿𝑆𝑅 Dummy for low/high LSR  Fundamental Model 

𝑐7 𝐷𝐴𝑃𝑡−24/𝐼𝐷𝑃𝑡−1 Price from the same hour of the last day/previous hour EPEX Spot 

 

  

                                                        
12 The typical heating threshold in Germany where households start to heat is 15 degrees. Above 15 degrees, 
must-run obligations due to heat constraints are relevant only for CHP plants that deliver heat to industrial 
processes, for example.  
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4.2 Fundamental model results 

Key results of the fundamental models are presented in Table 4. The naïve benchmark 

uses the price information of the same hour on the previous similar day. The naïve bench-

mark already explains a remarkable share of the day-ahead (47%) and intraday (32%) 

price variance. The basic intraday model (𝐼𝐷𝑃1
𝑓𝑢𝑛𝑑

) determines the marginal plant within 

the model, as done in the day-ahead model (𝐷𝐴𝑃𝑓𝑢𝑛𝑑), and accounts for intraday peculi-

arities. Both achieve quite remarkable results, explaining 65 and 66% of the price vari-

ances, respectively. Using the day-ahead price to determine the marginal plant for the in-

traday model (𝐼𝐷𝑃2
𝑓𝑢𝑛𝑑

) further improves the model fit, as indicated by an R2 of 0.74. The 

point forecasts of the DAP and IDP model are, on average, too high, which is partly because 

the simple fundamental models struggle to reproduce negative prices, and negative prices 

cannot fall beyond all limits (see chapter 3.1 and footnote 5). Another possible explana-

tion is the fuel price assumptions. Notably, for coal, the fuel qualities used by power plants 

in Germany may differ from the reference grade (API#2), and, thus, coal prices may be 

lower than the reference prices used here. Moreover, the commodities prices used in the 

model might be an upper boundary. Because the normal backwardation argument implies 

that companies with long term contracts for fuels will pay prices below the spot prices on 

average. 

 

Table 4: Descriptive statistics and point forecast error from spot prices 2012 till 2013. 

  
𝐷𝐴𝑃 𝐷𝐴𝑃 𝑁𝑎ï𝑣𝑒 𝐷𝐴𝑃𝑓𝑢𝑛𝑑 𝐼𝐷𝑃 𝐼𝐷𝑃 𝑁𝑎ï𝑣𝑒 𝐼𝐷𝑃1

𝑓𝑢𝑛𝑑
 𝐼𝐷𝑃2

𝑓𝑢𝑛𝑑
 

  

Min. -221.99  -221.99  6.79  -270.11  -270.11  6.79  -10.00 

Max. 210.00  210.00  93.78  272.95  272.95  111.07  242.36 

Mean. 40.19  41.25  41.55  41.01  41.97  42.37  41.24 

SD 17.77  17.26  13.43  19.18  18.87  14.79  18.15 

ME   1.06 1.35   0.96 1.36 0.22 

MAE   8.21 6.28   10.84 7.26 6.37 

RMSE   12.96 10.47   15.84 11.01 9.70 

R2   0.4680 0.6532   0.3183 0.6628 0.7442 

Standard Deviation (SD), Mean Error (ME), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R squared  

*bold = best results, underlined = does not pass the naive test 
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Figure 3: ME, MAE and RMSE per hour for the three fundamental models 

The point forecast errors vary for different hours of a day (Figure 3). For the IDP1-Model, 

the mean error from the DAP-Model is carried on. The IDP2-Model shows almost no mean 

error at all, but the MAE still shows a daily structure, mainly caused by the structure of 

the original price time series, leading to MAEs between 4.8 and 9.1 EUR/MWh. The RMSE, 

which gives more weight to extreme forecast deviations, is high for hours 1 to 8 compared 

to the MAE measures. 

 

 

Figure 4: Cumulative Distribution Function of actual and fundamental prices 

The price distribution of the fundamental price estimates is not smooth (Figure 4). The 

steps in the cumulative density function indicate fuel switches in the model. This can be 

explained by the assumption that all power plants of one fuel type acquire the fuel for 

exactly the same price. In reality, supply contracts with different conditions exist. 
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4.3 Regression model results 

The overall results of the regression models in Table 5indicate adjusted R2 values between 

0.72 and 0.91 for the regression models, which indicates a substantial improvement in the 

model fit compared to the pure fundamental models. The high F-Statistics imply also that 

the identified determinants exert a significant impact on the price. The Durbin-Watson 

statistics indicate a positive autocorrelation in the regression residuals of the day-ahead 

model. Generally, a positive autocorrelation in the residuals violates the assumption that 

the regression residuals are independently distributed and may lead to biased standard 

error estimates and thus biased statistical significances of the regression coefficients. 

Consequently, the day-ahead regression parameters are estimated using the heterosce-

dasticity and autocorrelation consistent Newey-West procedure (Wooldridge, 2009). This 

affects only the significance but not the size of the regression coefficients. 

 

Table 5: Overall results of the multiple linear regression models 

 Day-Ahead Intraday 

R-squared 0.7175 0.9082 

Adjusted R-squared 0.7174 0.9082 

F-statistic 7412.78 28910.81 

Probability (F-statistic) 0 0 

Mean dependent variable 40.22 41.01 

S.D. dependent variable 17.76 19.18 

Durbin-Watson statistic 0.36 1.54 

Observations 17520 17543 

 

The unstandardized regression coefficients and their significance levels are summarized 

in Table 6. All price determinants except the 𝐿𝑆𝑅 
𝐻𝑖𝑔ℎ and the 𝑅𝑎𝑚𝑝𝐷𝑜𝑤𝑛 have a signifi-

cant impact in all regression models. The explanatory variables have been tested for mul-

ticollinearity. Most variance inflation factors show only moderate values between 1.21 

and 4.74 (O’brien, 2007). Thus multicollinearity should not bias the regression slope esti-

mators of those factors. Within the day-ahead regression model, the autoregressive vari-

able DAP(-24) has a centered variance inflation factor of 9.44, which is critical. Neverthe-

less, the variable is kept within the model. 
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Table 6: Regression coefficients of the multiple linear regression models 

 Day-Ahead Intraday 

𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 -2.314 1.602*** 

𝑷𝒓𝒊𝒄𝒆
𝒇𝒖𝒏𝒅

 0.778*** 0.249*** 

𝑹𝒂𝒎𝒑𝑼𝒑 0.408*** 0.676*** 

𝑹𝒂𝒎𝒑𝑫𝒐𝒘𝒏 -0.035 -0.295*** 

𝑳𝑺𝑹𝑳𝒐𝒘 -3.971*** -1.217*** 

𝑳𝑺𝑹
𝑯𝒊𝒈𝒉

 0.655 0.973*** 

𝑫𝑨𝑷𝒕−𝟐𝟒 0.251*** - 

𝑰𝑫𝑷𝒕−𝟏 - 0.693*** 

Significances are computed using standard errors obtained through the Newey-West procedure. Signifi-

cances at the 0.01 level are labeled with ***, while significances at the 0.05 level are labeled with **and at 

the 0.1 level with *. For our applications, H from Eq. (9)-(10) is set to four.13 

 

4.4 Discussion 

The results obtained indicate that a simple supply stack model is able to explain a large 

share of the price variance in current day-ahead and intraday markets. Thus, fundamental 

factors are the main drivers for both day-ahead and intraday markets for electricity 

(0.653 and 0.663R²). The intraday model fit significantly improves to an R² of 0.744 when 

the fundamental intraday price is determined based on the day-ahead price. Nevertheless, 

differences between actual prices and prices predicted by the fundamental model persist 

and can mainly be attributed to (i) (avoided) startup-costs, (ii) the impact of different 

market states, (iii) trading behavior and (iv) data inaccuracies. 

First, the results of the statistical analysis support the first hypothesis that fundamental 

market peculiarities such as (avoided) startup-costs also have an impact on prices. When 

the residual load is increasing, conventional power plants are ramped up, and start-up 

costs arise. If the current residual load value is by one GWh higher than the average of the 

past four values, the day-ahead and intraday prices are significantly higher in both mar-

kets by 0.408 EUR/MWh and 0.676 EUR/MWh, respectively. When the residual load of 

                                                        
13 It was also tested whether ramping costs may stretch over longer time horizons (6, 12 or 24 hours), but 
the specification with 4 hours has by far the highest explanatory power. One explanation may be that for 
the spot price formation, only start-up costs from peak and middle load plants are relevant. Base load plants 
typically run long periods without interruption. Spot price reductions in single consecutive hours may be 
caused by avoided start-up costs of base load plants.  
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the current hour is below the average residual load of the prior four hours, must-run ob-

ligation and power plant inflexibilities encourage power plant owners to market power 

plants below their marginal costs, which causes day-ahead and intraday prices to fall by 

0.035and 0.295(EUR/MWh)/GWh, respectively. The ramp down variable for the day-

ahead market is not statistically significant. Thus, downward ramps in the residual load 

do not further decrease the fundamentally expected day-ahead price. This implies that the 

effect of avoided start-up costs is already captured by the must-run obligations within the 

fundamental model. Avoided start-up costs and price mark-ups for the provision of flexi-

bility occur in the intraday market. This may be explained by balancing requirements in 

the intraday market. 

Second, different market states are also found to have a significant impact on spot prices. 

This also finds support in the data. System scarcity is measured by the LSR and has differ-

ent impacts on day-ahead and intraday market prices. In hours where the available supply 

capacity strongly exceeds the residual demand (low LSR), day-ahead and intraday prices 

are, on average, 3.917 (EUR/MWh)/GWh and 1.217 (EUR/MWh)/GWh lower than pre-

dicted by the fundamental model. Market participants are willing to bid at lower prices to 

be selected for supply. During hours where the available supply capacities are scarce and 

hardly exceed the demand (high LSR), intraday prices tend to be 0.973(EUR/MWh)/GWh 

higher, on average.14 This indicates that, in hours with intraday supply scarcity, market 

participants try to increase profits by demanding higher prices than predicted by the fun-

damental model. In contrast, market participants in the day-ahead market are, on average, 

unable to obtain higher prices when supply is scarce, probably due to stronger competi-

tion and regulatory oversight. 

Third, the empirical results underline that traders use the present or past price infor-

mation to forecast future prices and adjust their trading strategy accordingly. The auto-

regressive variables included in the regression models have a positive and significant in-

fluence. The regression coefficient of the AR(1) variable in the intraday regression model 

is larger than the regression coefficient of the AR(24) variable in the day-ahead model. 

This shows that the price of the previous hour is a better predictor than the price infor-

mation of the same hour of the previous day. Notably, the autocorrelation of unobserved 

                                                        
14 The LSR-variable is significant only if it is separated in extreme low and high scenarios and if outliers are 
not excluded from the time series. The applied outlier treatment follows the recommendation by Janczura 
et al. (2013) to replace all values that deviate more than three times the standard deviation from the mean 
by the mean plus/minus three times the standard deviation. 
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fundamental influences may be stronger between two subsequent hours than between 

the same hour of two different days. Obviously, the simple fundamental modeling ap-

proach used here shows some simplifications compared to the reality, which can explain 

the remaining unexplained variance in the regression models. The fundamental model is 

consistent with the one shot auction used in day-ahead markets but may fail to capture 

the full dynamics of trading decisions in the continuous intraday market. In particular, the 

fundamental model approach implicitly assumes that forecasts errors are aggregated per 

hour and traded once. Under consideration of portfolio internal matching of intraday po-

sition (Hagemann, 2015)and liquidity costs (e.g., price impact costs), market participants 

may prefer to trade nothing in the intraday market or do so in several steps with only 

partial quantities (Henriot, 2014).15All analyses are limited by imperfect data availability. 

For example, it remains unclear to what extent wind, solar and load forecast errors are 

actually balanced within the producers’ portfolios or not identified at all e.g., because of 

poor forecasting performances and thus not traded in the intraday market. 

 

5 Conclusion and outlook 

The paper provides the first detailed empirical evidence on the explanatory power of sup-

ply stack models for the German intraday market. A simple fundamental model with care-

fully selected input data and appropriate calibration is found to explain approximately 75 

% of the observed intraday price variance. The fundamental models yield significantly 

better price estimates when market peculiarities such as must-run obligations are con-

sidered, e.g., due to CHP constraints or intraday market peculiarities such as shorter lead 

times of power plants. Furthermore, the results indicate that it is beneficial to use the day-

ahead price information to improve the intraday forecasts. 

Remaining differences between the prices predicted by the fundamental model and ob-

served prices may be explained to some extent by (avoided) startup-costs, market states 

and trading behavior. Startup-costs of conventional power plants cause day-ahead and 

intraday prices to rise above the prices predicted by the fundamental model. On the con-

trary, must-run obligations and power plant inflexibilities set an incentive for power plant 

                                                        
15 Another weakness of the fundamental model is its implicit assumption that all power plants are perfectly 
flexible. Consequently, the model assumes that power plant owners will immediately ramp their power 
plants down as soon as prices fall below their marginal costs. Due to the inflexibilities of base load plants 
and must-run restrictions, this assumption is quite strong. 
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owners to keep power plants in operation in the intraday market, which may lead to sales 

below the short run marginal costs, thus decreasing intraday prices. In the day-ahead 

market, avoided start-up costs are already appropriately considered in the fundamental 

model via must-run restrictions. Furthermore, market states have significant price im-

pacts. In times of excess supply, power plant owners are willing to bid at prices below 

their marginal costs to be appointed for delivery. On the contrary, capacity scarcity leads 

to significant price increases but only in intraday prices. Moreover, the results indicate 

that traders use past price information to predict prices in the day-ahead and intraday 

markets and to trade accordingly. 

Further research may focus on improving the intraday price model. The results of the pre-

sent fundamental models already show that the consideration of power plant inflexibili-

ties and must run-restrictions via a shortened offer stack improve the model fit. Advanced 

approaches to cope with inflexibilities may further improve the modeling of intraday mar-

ket prices, e.g., varying the extent to which the intraday supply stack is shortened in each 

hour of the day. Another topic for further research is the analysis of the interdependencies 

between interconnected national intraday markets.  
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