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Abstract

Normality testing is an evergreen topic in statistics and econometrics and other disciplines.
The paper focuses on testing economic time series for normality in a robust way, taking spe-
cific data features such as serial dependence and time-varying volatility into account. Here,
we suggest tests based on raw moments of probability integral transform of standardized time
series. The use of raw moments is advantageous as they are quite sensitive to deviations from
the null other than asymmetry and excess kurtosis. To standardize the series, nonparamet-
ric estimators of the (time-varying) variance may be used, but the mean as a function of
time has to be estimated parametrically. Short-run dynamics is taken into account using
the Heteroskedasticity and Autocorrelation Robust [HAR] approach of Kiefer and Vogelsang
(2005, ET). The effect of estimation uncertainty arising from estimated standardization is
accounted for by providing a necessary modification. In a simulation study, we compare the
suggested tests to a benchmark test by Bai and Ng (2005, JBES). The results show that the
new tests are performing well in terms of size (which is mainly due to the adopted fixed-b
framework for long-run covariance estimation), but also in terms of power. An empirical
application to G7 industrial production growth rates sheds further light on the empirical
usefulness and limitations of the proposed test.

Key words: Normality testing; Probability integral transform; Estimated standardization; Nonpara-
metric estimator; Robust testing.

JEL classification: C12; C14; C22

1 Introduction

Testing distributional assumptions, in particular normality, is an important aspect of applied
work. For instance, nonnormality of disturbances may indicate a misspecification in regression
∗The authors would like to thank Philipp Sibbertsen for helpful comments.
†Corresponding author: Institute for Statistics and Econometrics, Christian-Albrechts-University of Kiel,

Olshausenstr. 40-60, D-24118 Kiel, Germany, email: mdeme@stat-econ.uni-kiel.de.

1



models. Also, nonnormality may be a prerequisite of certain modelling approaches; see e.g. the
analysis of non-causal time series models (Lanne and Saikkonen, 2011; Lanne et al., 2012; Lanne
and Saikkonen, 2013). In an iid sampling situation, the Kolmogorov-Smirnov statistic is usually
applied, but this is not straightforward to extend to serial dependence and the use of estimated
parameters. For instance, Bai (2003) resorts to the martingale transformation of Khmaladze
(1981). The martingale transform approach is quite complicated, though, so Bai and Ng (2005)
follow Jarque and Bera (1980) and resort to moment-based testing; see Lomnicki (1961) for an
early discussion for linear processes or Bontemps and Meddahi (2005) for an ingenious choice of
moment restrictions.

But serial dependence and estimation uncertainty are not the only issues to be faced with in
econometric practice. Consider for instance the situation where a series is marginally normal,
but exhibits one break in the variance. The marginal distribution is a mixture of two normals,
which is nonnormal (and typically leptokurtic), so a normality test ignoring the variance break
will reject the null more often than the nominal level of the test indicates. The reasoning
extends to more general patterns of variance changes. And indeed, economic data are often
found to exhibit time-varying volatility. Examples can be found in the field of financial data (see
among others Guidolin and Timmermann, 2006; Amado and Teräsvirta, 2014; Teräsvirta and
Zhao, 2011; Amado and Teräsvirta, 2013) and also macroeconomic time series (see e.g. Stock and
Watson, 2002; Sensier and van Dijk, 2004; Clark, 2009, 2011; Justiniano and Primiceri, 2008)
such as asset returns, economic growth or price changes. Typical patterns are permanent breaks
(like the “Great Moderation” as an example for a downward break) or trends in the variance.
As a consequence, robust inference for time-heteroskedasticity with dependent data has received
considerable attention in the last decade.1

We discuss in this paper tests based on moments of probability integral transforms [PIT]s of
the standardized series using estimated parameters. The main reason to do so is that PITs may
be more sensitive against alternatives with non-zero skewness and excess kurtosis since they
take higher-order moments into account. PITs have already been used successfully by Knüppel
(2014), though without accounting for estimation effects. The marginal mean and variance as
a function of time have to be estimated; one important contribution of the paper is to show
that the variance function may be estimated in a nonparametric fashion. As a consequence the
practitioner does not have to specify a model for the variance explicitly. This is not the case
about the deterministic mean component, whose estimation has asymptotic effects. We show
how to modify the naive moment-based test statistics such that pivotal inference is possible.

Regarding robustness against serial dependence, we adopt the approach by Kiefer and Vogelsang
(2005), who propose a new asymptotic framework, known as fixed-b asymptotics. The main
feature is that the bandwidth B used for long-run covariance estimation does not need to fulfill
the standard assumption that b = B/T → 0 as T → ∞. On the contrary, the bandwidth is
held fixed as a linear proportion of the sample size T , i.e. B = [bT ] with b ∈ (0, 1]. This leads
to new non-standard asymptotic limiting distributions of tests statistics (like t, Wald and F ).

1Phillips and Xu (2006) and Xu (2008) deal with stationary autoregressions, while, for unit root autoregressions,
the reader is referred to Cavaliere and Taylor (2008) or Cavaliere and Taylor (2009). Time-varying volatility have
even larger effects in panels of (nonstationary) series, prompting for suitable treatment; see e.g. Demetrescu and
Hanck (2012) or Westerlund (2014).
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Importantly, the critical values obtained from such distributions reflect the choice of bandwidth
and kernel even as T → ∞. Available simulation results convincingly demonstrate that the
fixed-b approach may provide much more accurate finite-sample inference.2 Another important
contribution of the paper is to show how to account for the adjustment for deterministic mean
components other than a constant mean.

The paper is structured as follows: In Section 2, the setup is described and newly proposed test
statistics for normality are introduced. The case of estimation uncertainty is located in Section 3.
It also contains some extensions to a more general mean function. Our Monte Carlo simulations
study is included in Section 4. Section 5 provides an empirical application of normality tests to
G7 industrial production growth rates. Section 6 concludes the study. Proofs, response curves
for critical values and a description of the Bai and Ng (2005) test statistic are given in the
Appendix.

In terms of notation, C stands for a generic constant whose value may change from one occurrence
to another and ′′ ⇒′′ for weak convergence in a space of cadlag functions endowed with a suitable
norm.

2 Setup

The series of interest xt is marginally normal under the null. The series exhibits a constant mean
µ, but a time-varying variance σ2

t as given by the following component model

xt = µ+ σtzt, t = 1, 2, . . . , T,

where zt is unconditionally homoskedastic and otherwise short-range dependent, while the time-
varying variance is induced by the deterministic triangular array σt = σt,T . The following
assumptions make the notions of short-run dependence and time-varying variance precise.

Assumption 1 Let zt be a zero-mean strictly stationary series with unity long-run variance,
L2+δ-bounded for some δ > 0, and strong mixing with coefficients α (j) for which

α (j) < Aj−β for some β>2+2δ
δ .

The strong mixing condition is a standard way of controlling for the persistence of stochastic
processes and ensures zt to have short memory; given the non-zero long-run variance, zt is actually
integrated of order zero. The condition also allows for mild form of conditional heteroskedasticity,
so the observed series xt may exhibit both conditional and unconditional heteroskedasticity.
Together with marginal normality (implying the finiteness of moments of any order) Assumption
1 ensures e.g. weak convergence of the suitably normalized partial sums of zt,

1√
T

[sT ]∑
t=1

zt ⇒W (s) , (1)

2Recent contributions to this field include inter alia Yang and Vogelsang (2011), Vogelsang and Wagner (2013)
or Sun (2014a,b).
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where W is a standard Wiener process (see e.g. Davidson, 1994, Chapter 29). Strict stationarity
is a more restrictive condition than needed for the convergence in (1), for which weak stationarity
would have sufficed in addition to the I(0) property and uniform boundedness of higher-order
moments. We shall consider nonlinear transformations of zt, however, and strict stationarity of
zt ensures that the transformed series have constant variance; see below.

Strict stationarity of zt also separates the variance fluctuations from the serial dependence prop-
erties. The unity long-run variance assumption on zt is an identifying restriction and allows for
the interpretation of σt as marginal (long-run) standard deviation. The variance function itself
is taken to satisfy typical conditions in the literature (cf. Cavaliere, 2004):

Assumption 2 The triangular array σt is given as σt = σ (t/T) where σ (·) is piecewise Lipschitz
and bounded away from zero on [0, 1].

We base our test of the null hypothesis on moments of transformed series rather than the original
series xt. With Φ being the cdf (and ϕ denoting the pdf) of the standard normal distribution,
the probability integral transform pt = Φ (zt) is marginally uniform on [0, 1] under the null. The
test for normality will be based on the first K moments (including at least the first and second
ones) of the uniformly distributed PITs. It holds under the null of uniformly distributed PITs
that

E
(
pkt

)
=

1

k + 1
; k ∈ N (2)

such that, under Assumption 1,

1√
T

[sT ]∑
t=1


pt − 1

2
...

pKt − 1
K+1

⇒


B1 (s)
...

BK (s)

 (3)

where (B1, . . . BK)′ is a K-variate Brownian motion with covariance matrix Ω. Because pt is only
marginally uniform, Ω depends in general on the specific data generating process at hand. We
shall resort to an estimate thereof (obtained by the standard spectral density based approach,
Newey and West (1987), Andrews (1991), Andrews and Monahan (1992)) to build Wald test
statistics of the moment restrictions in (2), so it is not required to know Ω. This follows the
approach of Bai and Ng (2005) or Bontemps and Meddahi (2005) to deal with serial dependence
of unknown form.

Suppose that the test can be based directly on empirical moments of pt (i.e. under known
parameters µ and σt). With mk = 1

T

∑T
t=1 p

k
t , a simple t-statistic for a single restriction on the

k-th moment is given by

tk =
√
T

(
mk − 1

k+1

ω̂k

)

with ω2
k being the long-run variance of pkt . Let ω̂2

k =
∑T−1

j=−T+1 κ
(
j
B

)
γ̂j denote an estimator

of ω2 with proportional bandwidth B = [bT ], b > 0. The γ̂j ’s denote the usual autocovariance
estimator at lag j:

γ̂j =
1

T

T∑
t=j+1

(
pkt − p̄k

)(
pkt−j − p̄k

)
.
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For b ∈ (0, 1) we have (see Kiefer and Vogelsang, 2005)

t2k ⇒ KV1,b,κ .

For simplicity we work with smooth, “Andrews-type” kernels κ (·, ·) with real support, but the
results extend in a straightforward manner to truncation kernels. The limiting distribution under
fixed-b can then be characterized in more detail as

KV1,b,κ ≡W (1)

(
−
ˆ 1

0

ˆ 1

0

1

b2
κ′′
(
r − s
b

)
(W (r)− rW (1)) (W (s)− sW (1))

′
drds

)−1
W (1) .

For b→ 0, the standard asymptotic framework applies and thus, t2k ⇒ χ2
1. We shall work in the

following with fixed-b asymptotics only, with the understanding that usual b → 0 asymptotics
are encompassed since KVK,b,κ converges to χ2

K for b→ 0 c.f. (Kiefer and Vogelsang, 2005).

Working with several raw moments (a portmanteau test so-to-say), we suggest to construct

TK = T

(
m1 −

1

2
, . . . ,mK −

1

K + 1

)
Ω̂−1

(
m1 −

1

2
, . . . ,mK −

1

K + 1

)′
with Ω̂ being the corresponding estimator of Ω, Ω̂ =

∑T−1
j=−T+1 κ

(
j
B

)
Γ̂j and Γ̂j is the usual

autocovariance matrix estimator for
(
pt, . . . , p

K
t

)′. Similarly,

TK ⇒ KVK,b,κ,

where

KVK,b,κ ≡W ′(1)

(
−
ˆ 1

0

ˆ 1

0

1

b2
κ′′
(
r − s
b

)
(W (r)− rW (1)) (W (s)− sW (1))

′
drds

)−1
W (1)

with K the dimension of the vector W of independent standard Wiener processes.

The use of p̂t instead of pt for a feasible statistic, say t̂k, affects the limiting distributions and
requires corrections. This is known in the literature as the Durbin problem; see Durbin (1973).
In previous work, Bai and Ng (2005) show how to robustify against estimating (constant) mean
and variance, while Bontemps and Meddahi (2012) derive conditions under which more gen-
eral parametric standardization does not affect the limiting distribution. Bai (2003) uses the
Khmaladze transform to tackle this issue. Since we also rely on PITs, a robustification will be
required. Because we rely on sample moments to build our test, a simple adjustment of the co-
variance matrix estimator will suffice, unlike in Bai (2003). See Section 3 for the precise details.
But we discuss the issue of time-varying volatility before proceeding to evaluating the effects of
estimation uncertainty.

For the PIT-based tests, it turns out that estimating an unknown mean requires a correction
which parallels that of Bai and Ng (2005). Yet our main finding is that estimating an unknown
variance function does not affect the limiting properties of the PITs. In particular, nonpara-
metric estimation of the unknown variance function can be allowed for under relatively weak
conditions as specified in Assumption 3 below. The mean function could be specified to be more
general as well, but requires setting up a parametric model since

√
T -consistency of the resulting

parameter estimators is required, unlike the case of the variance. In Section 3, we also discuss
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such extensions. The estimator σ̂t should satisfy the following requirements.

Assumption 3 The (in general nonparametric) estimator σ̂t satisfies

1. σ̂[sT ] is bounded away from zero with probability one;

2. sups∈[0,1]

∣∣σ̂[sT ] − σ[sT ]

∣∣ = Op (T−α) for some 1/4 < α ≤ 1/2;

3.
∣∣σ̂[sT ] − σ̂[rT ]

∣∣ ≤ T βQT |s− r| for all 0 ≤ r, s ≤ 1, where QT is uniformly bounded in
probability and 0 ≤ β < 2α− 1/2;

4. σ̂[sT ] has the same jump discontinuities as σ(·). σ̂.

Condition 1 is quite plausible fulfilled considering that σ2(·) is bounded away from zero and
the estimator is converging uniformly (Condition 2). The case where α = 1/2 simply takes the
possibility into account, that a parametric estimator of σ(·) is available and

√
T -consistency of the

corresponding estimators is given. E.g. when the variance is known to be constant, the natural
choice for an estimator is simply the sample variance; this estimator is also clearly satisfying
the Lipschitz-type condition 3. Condition 4 presupposes that the break dates, should there be
breaks in the variance, are known; this is not a critical restriction since such break dates can be
estimated superconsistently.

The following lemma shows that the standard Nadaraya-Watson estimator fulfils the conditions
of Assumption 3 if suitably choosing the bandwidth parameter.

Lemma 1 Choosing σ̂t =
√
σ̂2
(
t
T

)
with σ̂2 (s) the Nadaraya-Watson estimator of the variance

as a function of time,

σ̂2 (s) =

∑T
t=1 (xt − x̄)2 κ

(
s−t/T
h

)
∑T

t=1 κ
(
s−t/T
h

) , s ∈ [0, 1] ,

satisfies Assumption 3 for a bandwidth h = CT−β when β ∈
(

1
6 ; 1

4

)
, and κ, as well as κ′, satisfy

the usual regularity conditions.

Proof: see the Appendix.

Note that the optimal (at least for the iid case) bandwidth h = O
(
T−0.2

)
can be chosen under

the conditions of Assumption 3.

3 Estimation uncertainty

3.1 The effects of estimation uncertainty

Let
p̂t = Φ (ẑt) = Φ

(
xt − x̄
σ̂t

)
with σ̂t being an estimator of the standard deviation σt obeying Assumption 3 and x̄ denotes
the sample mean of xt. Let m̂k = 1

T

∑T
t=1 p̂

k
t denote the sample average of p̂kt .
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The limiting distribution of the ”naive” test statistics which simply replace mk with m̂k in the
definition of tk or TK will not follow a KV-distribution asymptotically any longer. Importantly,
the weak convergence in (3) is replaced by the following limiting behavior.

Lemma 2 Under Assumptions 1, 2 and 3 it holds as T →∞ that

1√
T

[sT ]∑
t=1

(
p̂kt −

1

k + 1

)
⇒ Bk (s)− s kϑk−1W (1) (4)

with W from (1), Bk from (3) and ϑk−1 = E
(
pk−1
t ϕ (zt)

)
. Moreover, the convergence holds

jointly for k = 1, . . . ,K for any fixed K ∈ N.

Proof: see the Appendix.

Note that ϑ0 = E (ϕt) =
´∞
−∞ ϕ

2 (x) dx = 1
2
√
π
; the higher-order expectations (for ϑk, k ≥ 1) can

be tabulated (see Section 4) but a closed-form expression does not seem to exist.

By examining the proof of Lemma 2, it can be seen that the drift term s kϑk−1 is due to
demeaning of xt and not due to scaling with an estimated variance function; this relates to the
relative broad array of choices in modelling the variance of the series to be tested for normality.
Still, the limiting theory for pt does not apply directly whenever the deterministic additive mean
component of xt is estimated, and a feasible correction is required.

3.2 Long-run covariance matrix estimation

By Lemma 2 we have that 1√
T

∑T
t=1

(
p̂kt − 1

k+1

)
⇒ Bk (1)−kϑk−1W (1) which makes the “numer-

ator” of the naive test statistic normally distributed in the limit. So the non-pivotality is rather
an issue of not adapting the long-run covariance matrix estimator to the fact that parameters
have been estimated. Consider therefore the statistic

T̂K = T

(
m̂1 −

1

2
, . . . , m̂K −

1

K + 1

)
ˆ̄Ω−1

(
m̂1 −

1

2
, . . . , m̂K −

1

K + 1

)′
(5)

with
ˆ̄Ω = V Ξ̂V ′ (6)

where Ξ̂ is a long-run covariance matrix estimator of
(
pt, . . . , p

K
t , zt

)′ (based on
(
p̂t, . . . , p̂

K
t , ẑt

)′),
and V =

(
IK ; ιK

)
with ιK = − (ϑ0, . . . ,KϑK−1)′. Although the long-run variance of zt is

assumed to be unity (c.f. Assumption 1), its estimation is required for the limiting distribution
to belong to the KV family of distributions; see the proof of Proposition 1 below. Moreover, the
long-run covariances of zt and powers of pt are unknown so imposing the unity restriction would
not lead to significant benefits, not even in relatively small samples.

Proposition 1 Under Assumptions 1, 2 and 3, it holds as T →∞ that

T̂K ⇒ KVK,b,κ.

Proof: see the Appendix.
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Several remarks are in order. First, the approach involves the expectations ϑk = E
(
pktϕ(zt)

)
which are specific to the normal distribution via ϕ(·). Our framework clearly allows testing
other null distributions in location-scale models. The values of ϑk would have to be determined
on a case-by-case basis, but the approach leads to test statistics with the same pivotal limiting
distributions. Finally, if e.g. the parameters of the distribution to be tested are known (or given
to the researcher), it is possible to apply the original test without corrections as in (6). This is
often the case when e.g. density forecasts are evaluated; see Knüppel (2014).

3.3 Extensions

Let us consider an extended model for the mean of the observed time series xt

xt = m (t/T ,θ) + σtzt ,

where we set σt = 1 for ease of presentation. The main arguments are not affected by this
simplification. Note also that normalizing the time is not restrictive, since one may redefine a
classical linear trend model m = θ1 + θ2t as m = θ1 + (Tθ2) t/T without loss of generality. We
take the mean component to satisfy the following requirements.

Assumption 4 Let m (s,θ) have uniformly continuous 2nd order partial derivatives. The first
and second order partial derivatives w.r.t. θ are weakly uniformly bounded in s in the sense that
there exists a nondecreasing function f such that max

{∥∥∥∂m(s,θ)
∂θ

∥∥∥ ;
∥∥∥∂2m(s,θ)

∂θ∂θ′

∥∥∥} ≤ f (‖θ‖) for all
s.

This assumption allows for polynomial trend models, m (s,θ) =
∑p+1

j=1 s
j−1θj , for breaks in

the mean, m (s,θ) = θ1 + θ2I (s ≥ τ), for smooth mean changes, m (s,θ) = 1
1+exp(θ3(s−θ4))θ1 +

exp(θ3(s−θ4))
1+exp(θ3(s−θ4))θ2, or for m (s,θ) = θ1 +

∑p
j=1 (θ2j sin 2πjs+ θ2j+1 cos 2πjs) motivated by approx-

imations via Fourier sums.

Based on this model, one obtains

p̂t = Φ (ẑt) = Φ
(
xt −m

(
t/T , θ̂

))
by plugging in an estimator θ̂ which is taken to be

√
T -consistent. The straightforward choice is

the NLS estimator, which we employ in the following; some of the requirements of Assumption
4, e.g. referring to the Hessian of m, help establish the limiting behavior of the NLS estimator.
Irrespective of what estimator is used, we note that

p̂t = Φ
(
zt −m

(
t/T , θ̂

)
+m (t/T ,θ)

)
(7)

such that the estimation has an effect, just like in Lemma 2. The following Lemma provides the
analogous result when m is not just an intercept.

Lemma 3 Under Assumptions 1 and 4 with σt = 1 known, it holds as T →∞ that

1√
T

[sT ]∑
t=1

(
p̂kt −

1

k + 1

)
⇒ Bk (s)− kϑk−1µ

′ (s,θ)Θ (1) (8)
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where Θ (1) =
(´ 1

0
∂m(s,θ)
∂θ

∂m(s,θ)
∂θ

′
ds
)−1 ´ 1

0
∂m(s,θ)
∂θ dW (s), µ (s,θ) =

´ s
0
∂m(r,θ)
∂θ dr and ϑk−1 =

E
(
pj−1
t ϕ (zt)

)
as before.

Proof: see the Appendix.

Before moving on, note that Bai and Ng (2005) show in their Theorem 5 that regressing xt on a
set of regressors has no effect on the limiting distributions beyond that of the intercept. There is
no contradiction however between their result and our Lemma 3, since the result in (8) applies
in the case where the regressors are deterministic. For a comparison with Theorem 5 in Bai and
Ng (2005), take one stochastic regressor and a linear model xt = θwt such that ∂m(t/T ,θ)

∂θ = wt.
We obtain for stationary regressors that 1

T

∑[sT ]
t=1 ϕ (zt)wt ⇒ s E (ϕ (zt)wt).Now, Bai and Ng

(2005) assume that an intercept is always present in the regression, which is equivalent to setting
E (wt) = 0; they also assume the regressors to be independent of zt, hence E (ϕ (zt)wt) = 0 and
correspondingly µ (s) = 0. This is not the case when wt is deterministic, say an intercept or a
trend, and the limiting distribution of θ̂ needs to be taken into account.

Clearly, the estimation effect described by Equation (8) will affect the limiting fixed-b distribution
of a statistic based on an estimated standardization. The normalized sample moments of p̂t
behave namely as

Bk (1)− kϑk−1µ
′ (1,θ)

(ˆ 1

0

∂m (s,θ)

∂θ

∂m (s,θ)

∂θ

′
ds

)−1 ˆ 1

0

∂m (s,θ)

∂θ
dW (s) ,

where the covariance matrix of
(
B1, . . . , BK ,

´ 1
0
∂m(s,θ)
∂θ

′
dW (s)

)′
is given by

(
Ω Γµ′ (1,θ)

µ (1,θ) Γ′
´ 1

0
∂m(s,θ)
∂θ

∂m(s,θ)
∂θ

′
ds

)

with

(
Ω Γ

Γ′ 1

)
being the long run covariance matrix of

(
pt, . . . , p

K
t , zt

)′. Even with a correc-

tion like in the previous subsection, the overall effect is much more intricate than in the simple
demeaning case, and no KV-type distribution can be recovered, not even when demeaning p̂kt
additionally. The bottom line is that different deterministic components will lead to different
distributions (with the exception of the small-b case, where χ2 asymptotics may be recovered).
This implies the need to simulate the distributions for each specific type of deterministic compo-
nent accounted for in the data. While this can be done in advance for some popular combinations
(such as intercept and trend), the feasible solution for a generic mean function m is to resort to
some form of bootstrap. Since zt is strictly stationary and mixing, the residual-based iid or wild
bootstrap is a valid method.

4 Monte Carlo study

In our Monte Carlo simulation study we compare the T̃K test to the procedure of Bai and Ng
(2005).3 The newly proposed test is carried out by using either the first one (T̃1), two (T̃2), three

3Details on the test proposed by Bai and Ng (2005) can be found in the Appendix.
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Table 1: Empirical size results.

T = 50
i.i.d. ARMA(1,1)

b T̃1 T̃2 T̃3 T̃4 b T̃1 T̃2 T̃3 T̃4

0.1 0.046 0.015 0.014 0.017 0.1 0.048 0.024 0.025 0.023
0.2 0.045 0.019 0.021 0.023 0.2 0.053 0.027 0.030 0.032
0.3 0.048 0.023 0.026 0.026 0.3 0.056 0.027 0.027 0.035
0.4 0.047 0.019 0.026 0.028 0.4 0.048 0.029 0.030 0.038
0.5 0.045 0.023 0.027 0.023 0.5 0.048 0.028 0.040 0.036
0.6 0.045 0.021 0.029 0.023 0.6 0.048 0.025 0.036 0.036
0.7 0.041 0.021 0.026 0.023 0.7 0.046 0.031 0.033 0.035
0.8 0.043 0.022 0.024 0.027 0.8 0.043 0.028 0.032 0.037
0.9 0.044 0.022 0.026 0.023 0.9 0.044 0.027 0.035 0.033
1 0.044 0.023 0.027 0.025 1 0.045 0.028 0.036 0.035

BN 0.097 BN 0.073

T = 250
i.i.d. ARMA(1,1)

b T̃1 T̃2 T̃3 T̃4 b T̃1 T̃2 T̃3 T̃4

0.1 0.054 0.018 0.027 0.024 0.1 0.063 0.032 0.042 0.036
0.2 0.051 0.022 0.031 0.019 0.2 0.064 0.030 0.046 0.044
0.3 0.053 0.021 0.035 0.030 0.3 0.059 0.035 0.047 0.040
0.4 0.058 0.021 0.031 0.024 0.4 0.060 0.033 0.047 0.042
0.5 0.057 0.020 0.035 0.029 0.5 0.065 0.034 0.050 0.040
0.6 0.054 0.022 0.031 0.031 0.6 0.061 0.033 0.050 0.042
0.7 0.052 0.018 0.027 0.023 0.7 0.059 0.033 0.045 0.038
0.8 0.056 0.019 0.030 0.031 0.8 0.059 0.032 0.048 0.041
0.9 0.055 0.020 0.026 0.027 0.9 0.056 0.032 0.049 0.039
1 0.056 0.020 0.029 0.028 1 0.057 0.032 0.052 0.044

BN 0.115 0.096

(T̃3) or four moments (T̃4). We use sample sizes of T = {50, 100, 250, 500} and report results for
T = 50 and T = 250 (the other results are similar and available upon request from the authors).

Regarding autocorrelation, we consider a causal and invertible ARMA(1,1) process with AR and
MA parameter φ = {0, 0.85} and θ = {0,−0.45}, respectively. The general form of the DGP is
given by

yt = µ+ σzt

zt = φzt−1 + εt − θεt−1

εt
i.i.d.∼ (0, 1) .

Since all procedures are scale-invariant, we do not normalize the long-run variance of zt to
unity. The distribution of εt is specified as follows. Under H0, innovations εt are standard
normally distributed. Under the alternative, we consider two standardized non-normal (mixture)

10



distributions with weights c ∈ [0, 1]

CHI: Mixture of a normal and a χ2(3)-distribution,

LOGN: Mixture of a normal and a lognormal-distribution.

The fixed-bandwidth parameter b is specified on the grid 0.1, 0.2, ..., 1. Results are presented
for the Bartlett kernel with linearly decaying weights. The nominal significance level equals
5% and the number of Monte Carlo replications is set to 5,000 for each single experiment. In
what concerns critical values for the fixed-b distributions, we provide them on the basis of the
limiting results with 1,000 observations and 50,000 replications forK = 1, 2, 3, 4. Estimated cubic
response curves cv(b) are reported in Table 3 together with an R2 measure for the precision of
approximation.

The expectations ϑk−1 = E(pk−1
t ϕ(zt)) are simulated for k = 1, 2, 3, 4 with 1,000,000 observations

and 10,000 Monte Carlo replications.4

Size results are reported in Table 1. While the Bai and Ng (2005) test is generally oversized (less
for the ARMA(1,1) case), the raw moment-based tests are much closer to the nominal significance
level of 5%. In some cases we observe that they are a bit undersized. But, for the larger sample
size of T = 250 with short-run dynamics, most of them are pretty close to the desired frequency
of rejections. It is of importance to note that the size does not vary much with the choice of
the bandwidth parameter b. This will be of great advantage when it comes to the power of such
tests which typically depend a lot on the bandwidth choice. In this sense, we are not facing a
size-power tradeoff as we can select the most suitable b in a way that power is maximized.

Power results are reported in Figures 1 to 4. We resort to the case with additional ARMA(1,1)
short-run dynamics.5 The weight c ∈ [0, 1] is located on the x-axis. For c = 0, full weight is
given to the normal distribution so that a size experiment is conducted. For c = 1, full weight
is given to the non-normal distribution (either χ2(3) or log-normal). We present results for four
different values of the fixed-bandwidth parameter: b = {0.1, 0.3, 0.6, 0.9}. In accordance with
our size results, we are in the pleasant situation to select b on the basis of the performance under
H1 only. We observe a general monotonic behaviour of the power with respect to b which makes
it a simple exercise: the lower b, the higher is the power. For T = 50, the newly suggested tests
clearly outperform the benchmark (Bai and Ng, 2005, labeled as BN for short in the Figures).
The cases where the BN test performs better (small values of c) are obviously due to its upward
size-distortions. For c > 0.5, the raw moment-based tests perform much better even though the
tests are undersized. These considerations apply for both non-normal distributions under study.
For the mixture with a χ2(3)-distribution, T̃1 and T̃2 perform best, while the T̃2-statistic is most
powerful against the mixture with a log-normal distribution. Overall, the particular bandwidth
choice does not influence the results too much. But, for the larger sample size of T = 250 the
choice gets much more important. As clearly seen from Figures 3 and 4, b = 0.1 appears to be

4The resulting simulated values are as follows: ϑ = (0.2820948, 0.1410473, 0.0857805, 0.0581472). Clearly,
the simulated value for k = 1 matches perfectly with its theoretical counterpart. We therefore expect that the
higher-order terms are simulated reasonably well.

5We also computed Monte Carlo averages of sample skewness and kurtosis to characterize the properties of
simulated distributions. The numerical averages match very well with their theoretical counterparts. Results are
available upon request from the authors.
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Figure 1: Rejection frequencies for mixed normal and χ2(3) with weight c ∈ [0, 1] (on x-axis),
T = 50.
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Figure 2: Rejection frequencies for mixed normal and log-normal with weight c ∈ [0, 1] (on
x-axis), T = 50.
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Figure 3: Rejection frequencies for mixed normal and χ2(3) with weight c ∈ [0, 1] (on x-axis),
T = 250.
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Figure 4: Rejection frequencies for mixed normal and log-normal with weight c ∈ [0, 1] (on
x-axis), T = 250.
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Table 2: Normality testing for G7 industrial production growth rates at the 5% level.
skew kurt T̃1 T̃2 T̃3 T̃4 BN

CAN -0.183 3.484 2.311 5.408 8.744 23.946 4.722
FRA -0.765 95.986 2.511 123.517 153.766 160.868 1.164
GER 0.022 9.990 0.706 31.967 36.719 37.300 3.274
ITA 0.255 11.173 3.310 11.707 12.362 46.081 3.209
JPN -2.122 19.471 2.758 67.236 73.401 78.418 2.729
UK 0.048 13.369 2.548 12.708 12.761 15.120 4.025
US 0.263 9.046 3.687 11.387 24.200 68.659 6.211

cv 5.016 8.872 13.200 18.258 5.991

the recommended choice.6 For b = 0.1, the BN test can still be dominated in terms of power for
both non-normal mixture distributions.

5 G7 industrial production growth rates

As an empirical application we consider monthly G7 industrial production growth rates obtained
from the FRED database. The sample period covers the time from 1965, Feb to 2014, Oct
yielding T = 597 observations. In Figure 5 we show the data together with QQ-plots against the
normal distribution. It can be seen that for most countries, some discrepancies from normality
are present, while Canada seems to be a counterexample. In Table 2 we report the outcome of
different tests together with sample skewness and kurtosis. The nominal significance level is 5%.
The fixed-bandwidth parameter is set equal to b = 0.1 as the Monte Carlo simulation results
suggest. Rejections are indicated by bold faced values.

It can be clearly seen that the newly proposed test statistics typically disagree with the Bai
and Ng (2005) test, except for the US, where the BN test barely rejects the null hypothesis of
normality. The moment-based tests lead to clear rejections in most cases. Interestingly, the test
based on the first moment (T̃1) is not significant in any case which reflects the fact that it is
only sensitive towards skewness, but not to kurtosis. The sample statistics for the series indicate
that actually kurtosis plays a much more important role in this application than skewness. An
interesting result is obtained for Canada, where only the (T̃4) statistics rejects. Apparently, it is
able to detect even a relatively small deviation in the kurtosis (3.484) from its theoretical value of
three. From a cross-sectional perspective, it can be seen that T̃2 and T̃4 statistics lead to clearest
test decisions in favor of non-normality. As a conclusion, the excess kurtosis in the distribution
of G7 industrial production growth rates seems to be significant and shall be included in forecast
models yielding predictive densities.

6It shall be noted that the power properties typically also depend on the kernel choice. So far, we have only
considered the Bartlett kernel (which is known to deliver competitive power), but we are currently exploring
further kernels as well.
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6 Concluding remarks

This work considers the long-standing issue of testing for normality. The newly proposed tests are
based on raw moment conditions of probability integral transformations. By doing so, we are able
to construct tests which are more sensitive towards deviations from zero skewness and zero excess
kurtosis. The framework which we provide makes use of the so-called fixed-bandwidth approach
for the estimation of long-run covariance matrices of different raw moments. As a result, the
empirical size is well controlled for even in small samples under different types of autocorrelation.
Time-varying unconditional heteroscedasticity is found in many economic series. In order to cope
with this typical empirical feature, our framework also allows for non-parametric time-varying
variance estimation. As both, the mean and variance function of the time series are estimated,
we provide a necessary correction which amounts to a modified long-run variance estimation.
Our simulation study demonstrates that the suggested tests perform very well in finite samples.
In an empirical application to G7 industrial production growth rates, we study the merits and
limitations of the robust raw moment-based statistics.

Appendix

Proof of Lemma 1

Write first the Nadaraya-Watson estimator as σ̂2 (s) =
1
T

∑T
t=1(xt−x̄)2κ

(
s−t/T
h

)
1
T

∑T
t=1 κ

(
s−t/T
h

) .

Note that the numerator of the Nadaraya-Watson estimator is positive w.p.1 since the summands
are positive with positive probability. Since the denominator easily shown to be positive, under
standard conditions for the kernel κ, the first condition follows.

For the second, recall that the uniform convergence rate of the Nadaraya-Watson estimator with
bandwidth h is, in the one-regressor setup, given by lnT√

Th
under our bandwidth restrictions;

see e.g. Hansen (2008, Theorem 2) for the case of mixing errors. With h = CT−β , we have
α = 1/2− β/2 such that, when β ∈

(
1
6 ; 1

4

)
, we have α ∈

(
3
8 ; 5

6

)
.

To establish the third condition, note that the first-order derivative of σ̂ (s) is given by the sum
of two components,

1

h
σ̂2
∗ (s)

1
T

∑T
t=1 κ

′
(
s−t/T
h

)
1
T

∑T
t=1 κ

(
s−t/T
h

)
where σ̂2

∗ (s) is the Nadaraya-Watson estimator of σ2(·) based on the same bandwidth but the
kernel κ′ and

−1

h
σ̂2 (s)

1
T

∑T
t=1 κ

′
(
s−t/T
h

)
1
T

∑T
t=1 κ

(
s−t/T
h

) ;

with both κ and κ′ satisfying the regularity conditions for the Nadaraya-Watson estimator, both
σ̂2
∗ and σ̂2 converge uniformly in probability and are thus uniformly bounded in probability (in

T ) for all s, and the result follows due to the boundedness of the ratio
1
T

∑T
t=1 κ

′
(
s−t/T
h

)
1
T

∑T
t=1 κ

(
s−t/T
h

) .
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Proof of Lemma 2

Write with a Taylor expansion

p̂t = Φ

(
zt +

(
xt − x̄
σ̂t

− zt
))

= pt + ϕ (zt)

(
xt − x̄
σ̂t

− zt
)

+ ϕ′ (ξt)

(
xt − x̄
σ̂t

− zt
)2

where ξt lies between xt−µ
σt

= zt and xt−x̄
σ̂t

= σt
σ̂t

(zt − z̄); note that ϕ′ (·) is bounded on R. In
other words,

p̂t = pt + ztϕ (zt)

(
σt
σ̂t
− 1

)
− ϕ (zt)

σt
σ̂t
z̄ + ϕ′ (ξt)

(
σt
σ̂t

(zt − z̄)− zt
)2

.

Let us now examine the behavior of the partial sums of the three terms on the r.h.s.

Under the null, ztϕ (zt) has zero expectation (it is an odd function of a symmetric random
variable so it is symmetric itself) and has finite variance with ϕ (·) being bounded. Then, split
the sample in B disjoint blocks of length J , B = T/J , and exploit the assumed smoothness7 of
σ and σ̂ to arrive at

[sT ]∑
t=1

ztϕ (zt)

(
σt
σ̂t
− 1

)
=

[sB]∑
b=1

J∑
j=1

zJ(b−1)+j ϕ
(
zJ(b−1)+j

) σJ(b−1) +O
(
J
T

)
σ̂J(b−1) +Op

(
JTβ

T

) − 1


=

[sB]∑
b=1

J∑
j=1

zJ(b−1)+j ϕ
(
zJ(b−1)+j

)(σJ(b−1)

σ̂J(b−1)
− 1

)
+RT (s) .

Now, σ̂t being away from zero implies that
∣∣∣σJ(b−1)+AT
σ̂J(b−1)+BT

− σJ(b−1)

σ̂J(b−1)

∣∣∣ ≤ CQT JTβT when AT = O
(
J
T

)
and |BT | ≤ QT JT

β

T . Hence,

|RT (s)| ≤ CT βQT
J

T

[sB]∑
b=1

J∑
j=1

∣∣zJ(b−1)+j ϕ
(
zJ(b−1)+j

)∣∣ = Op

(
T βJ

)
;

note furthermore that

[sB]∑
b=1

J∑
j=1

∣∣zJ(b−1)+j ϕ
(
zJ(b−1)+j

)∣∣ ≤ B∑
b=1

J∑
j=1

∣∣zJ(b−1)+j ϕ
(
zJ(b−1)+j

)∣∣
such that the Op

(
T βJ

)
order is uniform over [0, 1]. Thus,

[sT ]∑
t=1

ztϕ (zt)

(
σt
σ̂t
− 1

)
=

[sB]∑
b=1

(
σJ(b−1)

σ̂J(b−1)
− 1

) J∑
j=1

zJ(b−1)+j ϕ
(
zJ(b−1)+j

)
+Op

(
T βJ

)
7When there are breaks at known time, one may choose block boundaries at the break dates such that the

argument remains unchanged.
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with∣∣∣∣∣∣
[sB]∑
b=1

(
σJ(b−1)

σ̂J(b−1)
− 1

) J∑
j=1

zJ(b−1)+j ϕ
(
zJ(b−1)+j

)∣∣∣∣∣∣ ≤ sup
b

∣∣∣∣σJ(b−1)

σ̂J(b−1)
− 1

∣∣∣∣ [sB]∑
b=1

∣∣∣∣∣∣
J∑
j=1

zJ(b−1)+j ϕ
(
zJ(b−1)+j

)∣∣∣∣∣∣
where supb

∣∣∣σJ(b−1)

σ̂J(b−1)
− 1
∣∣∣ = Op (T−α) due to Assumption 3, and

[sB]∑
b=1

∣∣∣∣∣∣
J∑
j=1

zJ(b−1)+j ϕ
(
zJ(b−1)+j

)∣∣∣∣∣∣ ≤
B∑
b=1

∣∣∣∣∣∣
J∑
j=1

zJ(b−1)+j ϕ
(
zJ(b−1)+j

)∣∣∣∣∣∣ = Op

(
B
√
J
)
,

since 1√
J

∑J
j=1 zJ(b−1)+j ϕ

(
zJ(b−1)+j

)
is easily shown to be uniformly L2-bounded in sand as

such uniformly L1-bounded such that

E

 B∑
b=1

∣∣∣∣∣∣
J∑
j=1

zJ(b−1)+j ϕ
(
zJ(b−1)+j

)∣∣∣∣∣∣
 ≤ CB√J

with the Markov’s inequality completing the argument. Summing up,

[sT ]∑
t=1

ztϕ (zt)

(
σt
σ̂t
− 1

)
= Op

(
max

{
JT β, T−αB

√
J
})

uniformly in s ∈ [0, 1]; since one can pick J = T κ for some 1/2− β > κ > 1− 2α, both JT β and
T−αB

√
J are o

(
T 1/2

)
, and the order turns out to actually be op

(
T 1/2

)
as required.

Moreover, ϕ′ (ξt)
(
σt
σ̂t

(zt − z̄)− zt
)2

also stays negligibe upon cumulating because

[sT ]∑
t=1

ϕ′ (ξt)

(
zt

(
σt
σ̂t
− 1

)
− z̄ σt

σ̂t

)2

=

[sT ]∑
t=1

ϕ′ (ξt) z
2
t

(
σt
σ̂t
− 1

)2

+

[sT ]∑
t=1

ϕ′ (ξt) z̄
2σ

2
t

σ̂2
t

− 2

[sT ]∑
t=1

ϕ′ (ξt) zt

(
σt
σ̂t
− 1

)
z̄
σt
σ̂t
,

for whose three terms on the r.h.s. we may write uniformly in s

[sT ]∑
t=1

ϕ′ (ξt) z
2
t

(
σt
σ̂t
− 1

)2

≤ max
1≤t≤T

(
σt
σ̂t
− 1

)2

maxϕ′
[sT ]∑
t=1

z2
t = Op

(
T 1−2α

)
since

∑[sT ]
t=1 z

2
t /
∑T

t=1 z
2
t ⇒ s and σ̂t is uniformly Tα-consistent and bounded away from zero,

[sT ]∑
t=1

ϕ′ (ξt) z̄
2σ

2
t

σ̂2
t

≤ z̄2 max
1≤t≤T

σ2
t

σ̂2
t

[sT ] maxϕ′ = Op (1)

and ∣∣∣∣∣∣
[sT ]∑
t=1

ϕ′ (ξt) zt

(σ
σ̂
− 1
)
z̄
σt
σ̂t

∣∣∣∣∣∣ ≤ z̄ sup
t

∣∣∣∣σtσ̂t
∣∣∣∣ sup

t

∣∣∣∣σtσ̂t − 1

∣∣∣∣maxϕ′
[sT ]∑
t=1

|zt| = Op

(
T

1/2−α
)
.
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This way, when studying e.g. the partial sums of p̂t − 1
2 , we have

1√
T

[sT ]∑
t=1

(
p̂t −

1

2

)
=

1√
T

[sT ]∑
t=1

(
pt −

1

2

)
−
√
T z̄

1

T

[sT ]∑
t=1

σt
σ̂t
ϕ (zt) + op (1)

=
1√
T

[sT ]∑
t=1

(
pt −

1

2

)
− sE (ϕ (zt))

√
T z̄

−
√
T z̄

1

T

[sT ]∑
t=1

ϕ (zt)

(
σt
σ̂t
− 1

)
+ op (1) ,

and the result follows for k = 1 by noting that 1
T

∑[sT ]
t=1 ϕ (zt) ⇒ sE (ϕt) and recalling that the

op (1) term is uniform in s. Note also that E (ϕt) =
´∞
−∞ ϕ

2 (x) dx = 1
2
√
π
is positive and

∣∣∣∣∣∣ 1

T

[sT ]∑
t=1

ϕ (zt)

(
σt
σ̂t
− 1

)∣∣∣∣∣∣ ≤ sup
t

∣∣∣∣σtσ̂t − 1

∣∣∣∣
∣∣∣∣∣∣ 1

T

[sT ]∑
t=1

ϕ (zt)

∣∣∣∣∣∣ ≤ CsT−α = op (1)

uniformly in s ∈ [0, 1].

For the higher-order moments we have along the same lines

[sT ]∑
t=1

p̂kt =

[sT ]∑
t=1

pkt − kz̄
[sT ]∑
t=1

pk−1
t ϕ (zt) + op

(
T

1/2
)

with the op
(
T 1/2

)
term being uniform in s. Hence, for all 1 ≤ k ≤ K,

1√
T

[sT ]∑
t=1

(
p̂kt −

1

k + 1

)
=

1√
T

[sT ]∑
t=1

(
pkt −

1

k + 1

)
− ksE

(
pk−1
t ϕ (zt)

) 1√
T

T∑
t=1

zt + op (1)

with the op term being uniform for s ∈ [0, 1]. A multivariate functional central limit theorem for
mixing processes then completes the result (see e.g. Davidson, 1994, Chapter 29).

Proof of Proposition 1

We first need to examine the limiting behavior of the suitably normalized partial sums of ẑt. To
this end, note that

1√
T

[sT ]∑
t=1

(
σt
σ̂t
− 1

)
(zt − z̄) = op (1)

uniformly in s thanks to the arguments used in the proof of Lemma 2. Then,

1√
T

[sT ]∑
t=1

ẑt =
1√
T

[sT ]∑
t=1

σt
σ̂t

(zt − z̄) =
1√
T

[sT ]∑
t=1

(zt − z̄) +
1√
T

[sT ]∑
t=1

(
σt
σ̂t
− 1

)
(zt − z̄)

⇒ W (s)− sW (1) .
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Let
B̄ (s) = (B1 (s) , . . . , BK (s) ,W (s))′

and
B̃ = (B1 (s)− s ϑ0W (1) , . . . , BK (s)− sKϑK−1W (1) ,W (s)− sW (1))′ ;

using the arguments of the proof of Theorem 2 in Kiefer and Vogelsang (2005) together with the
Lemma 2, we obtain

T̂K ⇒
(
V B̄

)′
(1)

(
V

(
−
ˆ 1

0

ˆ 1

0

1

b2
κ′′
(
r − s
b

)(
B̃(r)− rB̃(1)

)(
B̃(s)− sB̃(1)

)′
drds

)
V ′
)−1

V B̄(1).

Note further that
V
(
B̃(s)− sB̃(1)

)
= V

(
B̄(s)− sB̄(1)

)
,

and let Y = V B̄ such that

T̂K ⇒ Y ′(1)

(
−
ˆ 1

0

ˆ 1

0

1

b2
κ′′
(
r − s
b

)
(Y (r)− rY (1)) (Y (s)− sY (1))′ drds

)−1

Y (1)

where Y is a multivariate Brownian motion; since its long-run covariance matrix cancels out,
the r.h.s. is the required KVK,b,κ distribution.

Proof of Lemma 3

Begin by discussing the limiting behavior of the NLS estimators θ̂. We have under Assumptions
1 and 4 that

√
T
(
θ̂ − θ

)
⇒
(ˆ 1

0

∂m (s,θ)

∂θ

∂m (s,θ)

∂θ

′
ds

)−1 ˆ 1

0

∂m (s,θ)

∂θ
dW (s) ;

this is a standard application of extremum estimator theory and we omit the details.

Begin with k = 1; with the application of the mean value theorem (or Taylor series expansion
with rest term in differential form) we obtain

p̂t = pt + ϕ (zt)
(
m (t/T ,θ)−m

(
t/T , θ̂

))
+ ϕ′ (ξt)

(
m (t/T ,θ)−m

(
t/T , θ̂

))2

where ξt lies between zt and zt−m
(
t/T , θ̂

)
+m (t/T ,θ) for each t. The exact values for ξt do not

matter since ϕ′ is bounded. A second expansion, here about θ, is required for the trend function
m:

m (t/T ,θ)−m
(
t/T , θ̂

)
= −∂m (t/T ,θ)

∂θ

′ (
θ̂ − θ

)
−
(
θ̂ − θ

)′ ∂2m (t/T ,θ)

∂θ∂θ′

∣∣∣∣
θ=ϑt

(
θ̂ − θ

)
again with ϑt between θ and θ̂ (note that since t is an argument of m, ϑ also depends on t hence
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the notation). Putting the two together we obtain

1√
T

[sT ]∑
t=1

(
p̂t −

1

2

)
=

1√
T

[sT ]∑
t=1

(
pt −

1

2

)
−

 1√
T

[sT ]∑
t=1

ϕ (zt)
∂m (t/T ,θ)

∂θ

′ (θ̂ − θ)

−
(
θ̂ − θ

)′ 1√
T

[sT ]∑
t=1

ϕ (zt)
∂2m (t/T ,θ)

∂θ∂θ′

∣∣∣∣
θ=ϑt

(θ̂ − θ)+RT

where RT is just the normalized partial sums of ϕ′ (ξt)
(
m (t/T ,θ)−m

(
t/T , θ̂

))2
.

Examining the third summand on the r.h.s., we note that the boundedness of ϕ′ and the fact

that
∣∣∣∣ ∂m(t/T ,θ)

∂θ

∣∣∣
θ=ϑt

∣∣∣∣ ≤ f (‖ϑt‖) ≤ f
(

max
{
‖θ‖ ;

∥∥∥θ̂∥∥∥}) make the partial sums of order Op (T ),

but θ̂ − θ = Op
(
T−0.5

)
and the normalization with

√
T make the entire summand vanish.

For the fourth summand, RT , we have with a first-order Taylor expansion,m (t/T ,θ)−m
(
t/T , θ̂

)
=

∂m(t/T ,θ)
∂θ

∣∣∣′
θ=ϑt

(
θ̂ − θ

)
with ϑt between θ and θ̂ for each t, that

RT =
(
θ̂ − θ

)′ 1√
T

[sT ]∑
t=1

ϕ′ (ξt)
∂m (t/T ,θ)

∂θ

∣∣∣∣
θ=ϑt

∂m (t/T ,θ)

∂θ

∣∣∣∣′
θ=ϑt

(θ̂ − θ) .
Similarly, ϕ′ is bounded and

∣∣∣∣ ∂m(t/T ,θ)
∂θ

∣∣∣
θ=ϑt

∣∣∣∣ ≤ f (‖ϑt‖) ≤ f
(

max
{
‖θ‖ ;

∥∥∥θ̂∥∥∥}) for all t, it

follows that supsRT = Op
(
T−1/2

)
.

Summing up, we are left with the first two summands,

1√
T

[sT ]∑
t=1

(
p̂t −

1

2

)
=

1√
T

[sT ]∑
t=1

(
pt −

1

2

)
−

 1√
T

[sT ]∑
t=1

ϕ (zt)
∂m (t/T ,θ)

∂θ

∣∣∣∣
θ

′ (θ̂ − θ)+ op (1) ;

the same arguments show that analogous relations hold for p̂kt . With
√
T
(
θ̂ − θ

)
⇒ Θ (1)

and 1
T

∑[sT ]
t=1 p

k−1
t ϕ (zt)

∂m(t/T ,θ)
∂θ ⇒ E

(
pk−1
t ϕ (zt)

) ´ s
0
∂m(r,θ)
∂θ dr = ϑk−1µ (s,θ), the desired result

follows.
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The Bai and Ng (2005) test procedure

The test statistic suggested by Bai and Ng (2005) is given by

µ34 = Y ′T (γ̂Φ̂γ̂)−1YT

where

YT =

[
1√
T

∑T
t=1(yt − ȳ)3

1√
T

∑T
t=1[(yt − ȳ)4 − 3σ̂4]

]
and

γ̂ =

[
−3σ̂2 0 1 0

0 −6σ̂2 0 1

]

ȳ, σ̂ and Φ̂ are consistent estimators. The theoretical long-run covariance matrix Φ is given
by Φ = limT→∞ TE(Z̄Z̄ ′) with Z ′ =

[
yt − µ, (yt − µ)2 − σ2, (yt − µ)3, (yt − µ)4 − 3σ4

]
and Z̄ being the sample mean of Zt. The limiting distribution of µ34 is χ2(2). This result
is motivated by the fact that under normality, one obtains YT = γ 1√

T

∑T
t=1 Zt + op(1) with

1√
T

∑T
t=1 Zt ⇒ N(0,Φ). We follow Bai and Ng (2005) and consider the Newey and West (1987)

estimator.
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Critical values

Table 3: Critical values via response curves from the KVK,b,κ-distribution. κ is the Bartlett
kernel. The regression is given by cv(b) = a0 + a1b+ a2b

2 + a3b
3 + error with corresponding R2.

Nominal significance levels are 0.9, 0.95, 0.975, 0.99 and 0.995.

a0 a1 a2 a3 R2

K = 1
0.9 2.7055 6.1598 8.6142 -3.3854 0.9998
0.95 3.8415 10.2574 15.6231 -7.0320 0.9997
0.975 5.0239 15.8489 24.5892 -12.5751 0.9995
0.99 6.6349 26.3361 36.1330 -19.6341 0.9994
0.995 7.8794 37.5823 41.2076 -21.6338 0.9991

K = 2
0.9 4.6052 15.5300 33.0455 -18.0050 0.9998
0.95 5.9915 24.2350 48.4528 -27.7431 0.9998
0.975 7.3778 35.6889 62.8696 -36.8917 0.9997
0.99 9.2103 53.2832 88.7896 -55.9722 0.9996
0.995 10.5966 71.9545 96.5536 -60.2045 0.9994

K = 3
0.9 6.2514 30.2793 67.5629 -42.2680 0.9998
0.95 7.8147 45.5956 88.1783 -56.1070 0.9997
0.975 9.3484 63.5918 109.2760 -70.7583 0.9997
0.99 11.3449 94.2752 127.9765 -84.0108 0.9996
0.995 12.8382 121.7357 137.7951 -91.2883 0.9994

K = 4
0.9 7.7794 54.1072 94.7069 -61.0147 0.9997
0.95 9.4877 76.3485 121.5104 -79.8180 0.9997
0.975 11.1433 102.1803 145.6040 -97.0618 0.9997
0.99 13.2767 142.5323 169.0490 -113.2457 0.9997
0.995 14.8603 177.5045 183.2276 -123.6561 0.9996
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