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Abstract

This paper compares endogenous social interactions models to determine which one
fits the classroom reality best. The analysis uses data from German 9th-graders and
considers the effect of the best and worst peers’ scores, the peers’ sum and peers’
average scores on own achievement. Although each model seems plausible when es-
timated separately, comparison and a selection test point to the classmates’ average
model, meaning that group-based policies are effective. The worst peers’ model comes
second, followed by the best peers’ and the sum of peers’ models. Examination of
different-ability students’ responses to increases of average peer achievement reveals
either competition for the first place or last-place aversion. Conditional on own course
preferences, own and peer characteristics, spillovers transmit only through cognitive
ability. Therefore, regrouping on the basis of characteristics such as immigration back-
ground is obsolete. Policies should aim at low achievers in small enough classrooms
because only then single-student influences can change the social norm. By improving
the average through the worst, the best become even brighter.
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1 Introduction

This paper examines different models of endogenous social interactions to understand how
achievement spillovers occur in 9th-grade German classrooms. Social interactions refer to
interactions among individuals that are not regulated by a price mechanism (Glaeser and
Scheinkman, 2000). In the economics of education, the outcome of interest is unobserved
ability - proxied by observed achievement in courses or test scores. Effects emanating from
peers’ ability, i.e. endogenous social effects, are important because they mask dependencies
responsive to current behavior. Each plausible model of social interactions has different
educational policy implications, pointing mainly to single or group-based rules. In turn,
educational policy is interesting because of its close relation to human capital formation and
long-term economic growth (Hanushek and Woessmann, 2010).

The relevant literature extensively studies the linear-in-means or peers’ average model
due to its technical and interpretational simplicity: what matters for own outcomes is the
mean of peers’ outcome or background, meaning that individuals tend to conform to the
social norm. Nevertheless, there is a wide range of alternative social interactions channels.
Hoxby and Weingarth (2005) and Sacerdote (2011) provide a taxonomy of 8 competing
models. This paper estimates models that go beyond the average and sheds light on the role
of aggregate influences and star networks, namely the peers’ sum and the best (stars) or worst
(bad apples) students in the classroom. The aim is threefold: first, discover which peers are
more important for the regular classmate; second, discover how peer effects transmit; third,
exploit the prevailing student influences to inform policy. To exclude spurious endogenous
social effects due to nonrandom assignment of students into classes or common environmental
factors, I drop schools that practice ability tracking and include school fixed effects in the
econometric models. The dataset includes test scores in mathematics, reading comprehension
and natural sciences with a negligible number of missing values.

The literature criticizes conformity, i.e. the peers’ average, as the most important model
(see Hoxby and Weingarth, 2005, and review in Sacerdote, 2011). Lazear (2001) introduces a
model that underpins the importance of bad apples due to congestion. Hoxby and Weingarth
(2005) reject the linear-in-means model in favor of tracking. Lavy, Silva, and Weinhardt
(2012) explore the role of the mean as well as the bottom and top 5% performers in English
schools to find negative predetermined-ability effects from low achievers. In a similar fashion,
Lavy, Paserman, and Schlosser (2012) use the proportion of classroom repeaters in Israel to
uncover negative effects on regular students. But more recently, Liu, Patacchini, and Zenou
(2014) with friendship networks in the U.S. and Tatsi (2014) with classroom interactions for
Germany provide evidence that favors the average against single individuals (peers’ sum) in
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simultaneous academic achievement spillovers. Still, little is known about how other forms
of simultaneous peer influence such as star networks compare with peers’ average in the
classroom.

To this purpose, I apply for the first time the Tao and Lee (2014) extreme order statis-
tic (best and worst performers) in an educational context.1 At a first step, I show that -
when estimated separately - each of the four social interactions models seems plausible. The
invidious model is implicitly rejected because the dependence among students’ scores is posi-
tive. Then, I estimate models including more than one effect: combinations of extreme order
statistics (stars or bad apples), the peers’ sum and the traditional peers’ average. Ultimately,
I pick the one that fits data best through a model selection test (Kelejian, 2008; Kelejian and
Piras, 2011). Furthermore, I explore possible heterogeneity in simultaneous spillover effects
because students at the extremes or the middle of the achievement distribution may not
be affected the same way by their peers. Finally, I specify a simultaneous equations model
that allows for estimating the effect of each competency on the other two. To the best of
my knowledge, this is the first paper to exploit system estimation in a purely educational
context.

The paper presents a variety of results: both stars and bad apples models seem to provide
a better fit to the data than the peers’ aggregate effect, while bad apples are more important
than classroom stars. Nevertheless, the linear-in-means model outperforms specifications
that consider specific individuals to matter more than the average. Thus, 9th-grade German
students tend to conform to the classroom norm, meaning that educational policy design is
challenging. The most effective policies are those targeting at changing the peer group’s norm
(group-based policies). Quantile regression reveals heterogeneity in response to increases in
average peer achievement: students at the top of the ability distribution respond the most to
increases in average peer performance. Finally, I estimate a system of simultaneous equations
so as to see exactly how effort in one subject affects effort in other subjects. Unlike recent
system estimation (Cohen-Cole, Liu, and Zenou, 2012; Liu, 2014), this paper discerns two
sources of decaying feedback loops when calculating impacts: one from the system itself
and the other from the social multiplier. A change in any explanatory variable, say in the
mathematics equation, has an effect not only on the mathematics score but also on the reading
comprehension and natural sciences scores. Also, a change in any explanatory variable for
a single student will affect not only his/her own scores but also his/her classmates’ scores.
Based on impacts incorporating both feedback loops, I find that conditional on a student’s

1Tao and Lee (2014) identify endogenous social interactions parameters stemming from the best and
the average of players’ performance in college basketball. The peers’ average performance measures are
not significant but the best performers’ endogenous effect is significant and negative, signalling a highly
competitive environment.
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gender, age and family background characteristics, only the classmates’ cognitive ability
affects own academic achievement and only test scores in mathematics have an effect on
another subject (reading comprehension).

The findings suggest that regrouping or reassigning students (see Fruehwirth, 2014) ac-
cording to observable predetermined traits, e.g. immigration background, are not valid poli-
cies in the case of the German educational system. Educational policies should target at
groups formed on the basis of ability alone. Since any effective policy for improving perfor-
mance entails changing the classroom norm, I propose improving the achievement of the bad
apples, for instance, through remedial classes or mentoring in mathematics, for small enough
classroom sizes. The reason is that policy effectiveness declines in classroom size, and bad
apples matter more than stars.

The rest of the paper continues with Section 2 describing the data and basic summary
statistics. Section 3 provides sufficient information to understand identification and estima-
tion of the econometric models, while Section 4 discusses the results. Section 5 concludes.

2 Data

The empirical analysis uses the 2006 extended German Programme for International Stu-
dent Assessment (PISA). The German PISA Consortium enlarges the international PISA
survey by testing two 9th-grade classrooms from the same schools chosen for the interna-
tional sample. The data are available at the Research Data Centre (FDZ) of the Institute
for Educational Progress (IQB).2 The students complete a questionnaire concerning their
background and a test based on several items. The scores reported on reading comprehen-
sion, mathematics and natural sciences are plausible values given the students’ performance.
Furthermore, the school principals fill out a questionnaire regarding school characteristics.

The plausible values in the three subjects serve as dependent variables and capture dif-
ferent aspects of verbal and quantitative skills or literacy. I use individual and family back-
ground characteristics as relevant explanatory variables for academic achievement. As in
Tatsi (2014) and Entorf and Tatsi (2014), regressors include the student’s gender, age, immi-
gration background and the PISA highest international socio-economic index of occupational
status in the family (HISEI). Additionally, I exploit new information from the 2006 PISA
wave, namely the score from a cognitive ability test (CAT). Gender and immigration back-
ground are indicator variables. The former takes value 1 if the student is female and the
latter if at least one of the parents/student was born abroad or the student speaks a foreign
language at home. In Germany students attending the 9th grade are around 15 years old.

2Details in English can be found under http://www.iqb.hu-berlin.de/fdz.

4



Thus, observed variations in age reflect grade skippers or repeaters. HISEI is a continuous
variable and roughly translates parents’ occupation into income.3 The cognitive ability test
is also a continuous variable and captures a significant part of a student’s unobserved abil-
ity. The latter is important for identification as the PISA data are cross-sectional, meaning
student fixed effects are excluded.

The 2006 PISA wave includes the marks students received in German language, mathe-
matics, natural sciences, physics, biology and chemistry at school. Unfortunately, the missing
information on physics, biology and chemistry marks amounts to more than 1,000 observa-
tions and for natural sciences to more the 4,000. Therefore, I use only the German language
and mathematics marks to construct excluded instruments. Nevertheless, the advantage of
using PISA scores for the identification and estimation of endogenous social effects is that
scores are comparable not only across schools but also across countries. The PISA emerged
from the need to perform international comparisons in 15-year-old students’ basic literacies
and competencies. Thus, estimates are not subject to teachers’ preferences or grade inflation
as the school marks would be.

The German educational system thrives on early tracking at the age of 10. Hence, students
are nonrandomly assigned to schools at this stage. A student’s transition to schools offering
vocational training or university education is based on the student’s academic ability (marks),
teachers’ recommendations and the family’s wishes (Entorf and Tatsi, 2014). In order to
tackle further nonrandom assignment of students into classrooms, I exclude schools whose
principal reports ability tracking. First, the school principals provide information whether
they organize teaching by performance either to different classes or within the same class.
Possibilities include “in all subjects”, “in some subjects”, “for no subject” or “missing”.
Second, these two questions are combined to form information about “ability grouping”. I
keep a school in the sample only if the principal reports ability grouping “for no subject”.

After deleting missing values, the working sample corresponds to approximately 95.45%
of the original observations. Also, around 90% of the classrooms contain more than 90% of
original observations. Most importantly, none of the (second) best/worst students’ observa-
tions are missing. Therefore, I expect contamination in the estimates due to missing values
to be negligible. Approximately 52% of the subsample belongs to the “Gymnasium” schools,
which lead to university education, 41% to the “Realschule” type - the second best academic
quality schools in Germany - and only the remaining 7% comes from the “Hauptschule” type
offering vocational training paths.

Table 1 provides summary statistics covering the mean and standard deviation for all
3The OECD glossary provides an exact definition: http://stats.oecd.org/glossary/detail.asp?ID=5405.

5



variables and different quantiles of the distribution for the continuous variables.4 For the
latter, distributions are almost symmetric as the mean and median assume close values.
The three PISA scores have similar means and standard deviations. Among them, natural
sciences has the highest mean and standard deviation. In the sample, around 52% of the
students is female. The age of the average student is 15 years and 7 months old; 10% of the
sample is younger than 15 years old, and another 10% older than 16 years and 5 months.
Around 1 out of 5 students reports having some immigration background. 8 of them were
born abroad while both parents were born in Germany. The mean of the highest index of
occupational status in the family is around 53 points with variation of 15.7 points. Students
at the lower percentile have an occupational-status index below 33 points and those at the
upper percentile above 73. The observed mean for the cognitive ability test is around 0.4 -
a bit lower than the median. A student belongs to the 90th percentile if the CAT score is
greater than 2.17 and to the 10th percentile if the score is smaller than -1.16 points.

3 Econometric Models

For identification and estimation of social interaction parameters - especially endogenous - I
employ a spatial autoregressive type model as in Lee (2007a) and Lee, Liu, and Lin (2010):

Ys = λWsYs +Xsβ1 +WsXsβ2 + ιmsαs + εs, s = 1, ..., S (3.1)

in which s denotes the school and ms the number of observations in each school; Ys is the
ms × 1 vector of observations on the dependent variable, i.e. PISA scores on mathematics,
reading comprehension or natural sciences; Ws denotes the ms ×ms socio-matrix mapping
influences among students so that WsYs is the ms × 1 vector of peers’ scores. The scalar
parameter λ - coined by Manski (1993) as the endogenous social interactions coefficient -
captures the effect of peers’ academic achievement on own achievement. Xs is the ms ×
k matrix of observations on the k exogenous explanatory variables, namely gender, age,
immigration background, highest index of occupational status in the family and scores of
the cognitive ability test; thus, the k × 1 vector coefficient β1 measures the effect of own
characteristics on academic achievement. WsXs represents peers’ characteristics, so that the
k × 1 vector coefficient β2 captures exogenous social interactions or contextual effects. The
latter makes sense if Ws is nonstochastic and Xs is predetermined. The ms × 1 vector of
error terms, εs, is independent and identically distributed with mean zero and variance σ2

ε .
The model also allows for school-specific effects through the ms× 1 vector ιmsαs. The school

4The data provider (FDZ) prohibits presenting aggregate results for less than 5 students; hence, I can not
mention minimum and maximum values as these represent single observations.
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effects can be correlated with any of the elements in Xs and, hence, are treated as fixed.
For a generic socio-matrix, the equation in (3.1) represents a stable Nash Equilibrium

provided |λ| < 1. Following the spatial econometrics literature I discern three cases for the
parameter space of λ:

1. λ ∈ (−1, 0). Negative social influences describe individuals whose utility decreases if
the peer group performs well. Hence, an increase in peers’ scores reduces own scores be-
cause students get discouraged, unmotivated or even intimidated by higher-performing
classmates. This channel of social interactions resembles the invidious model (Sacer-
dote, 2011). Values very close to −1 signify intense behavioral dissimilarity.

2. λ = 0, meaning endogenous social interactions are absent as no specific pattern of
similarity or dissimilarity emerges.

3. λ ∈ (0, 1). Positive values of λ are very common in the educational context, because
they signify similarity in classmates’ achievement. The closer the value is to 1, the
higher the resemblance among peers. What is more, this case triggers a virtuous circle
of interdependencies that propagate already existing influences.5 As a result, aggregate
coefficients do not correspond to the sum of individual coefficients due to the social
multiplier. Consecutively, the social multiplier serves as a policy tool: target a policy
only at a subset of the classroom and expect it to affect every classmate.

The socio-matrix for each school is block-diagonal:

Ws =
 Wc1 0

0 Wc2

 , s = 1, ..., S (3.2)

because the sample includes two classrooms per school, c1 and c2, and interactions occur at
the classroom level. Below I provide the socio-matrix structure in the classroom for each of
the social interactions models under consideration.

Stars and Bad Apples

Estimation of the stars’ and bad apples’ behavioral effect follows the extreme order statistic
model developed by Tao and Lee (2014). I order the PISA score for each subject and class-
room and identify the first and second best(worst) performing students. The best (worst)

5It can also trigger a vicious circle through which educational inequality multiplies and enhances low social
mobility (see Entorf and Tatsi, 2014).
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student affects all classmates and is affected by the second best (worst). In a sense, the ex-
treme order statistic is a special case of a star network. To illustrate, the stars socio-matrix
for the classroom is:

Wc,star =



worst
0 0 · · ·

2nd best
0

best
1

0 0 · · · 0 1
... ... . . . ... ...
0 ... · · · 0 1
0 · · · 0 1 0


. (3.3)

For a generic observation in classroom c = 1, 2, ..., C equation (3.1) is described by the
following two equations:

yi−best,cc = λybest,c + xi−best,ccβ1 + εi−best,cc (3.4)

ybest,c = λysecond best,c + xbest,cβ1 + εbest,c (3.5)

An analogous expression holds for the bad apples socio-matrix and corresponding single-
observation equations. The socio-matrix in this case is not exogenous because the order of the
students’ PISA scores decides the structure of student influences. Furthermore, contextual
effects are not meaningful for an extreme order statistic model, meaning β2 = 0 in equation
(3.1) because they model the characteristics of the best/worst student alone. The specific
form of the adjacency matrix in equation (3.3) does not guarantee that condition |λ| < 1 is
satisfied. Therefore, the proposed estimation method is instrumental variables (IV), two-stage
least squares (2SLS) or generalized method of moments (GMM) - instead of quasi-maximum
likelihood (QML). Moments estimation does not require the existence of a unique stable
solution as ML. The former is a valid estimation method as long as appropriate instrumental
variables exist. The instruments proposed by Kelejian and Prucha (1998) as well as Lee (2003)
serve as relevant and valid excluded instruments. Kelejian and Prucha (1998) suggest using
higher order spatial lags of the exogenous variables, (W 2X, W 3X, ...). In social interactions,
W 2 denotes the second order effect or the effect through the peers’ peers. Thus, it describes a
channel of influence that reaches the student only indirectly. Lee (2003) refines the Kelejian
and Prucha (1998) instruments with a two-step procedure to obtain the Best IV.6 Including

6Calculation of the Best IV entails two steps. First, estimate equation (3.1) with 2SLS and
IV =

(
X WX W 2X

)
to obtain

(
λ̂, β̂1, β̂2

)
. Second, the Best IV is simply BIV =

W
(
I − λ̂W

)−1 (
Xβ̂1 +WXβ̂2

)
. The same procedure applies on within-transformed data.

8



the second and third powers of the Best IV improves efficiency, especially when comparing
alternative socio-matrices specifications. Additionally, an exclusion restriction comes from
the second or third order social effects of German language and mathematics school marks.
Note that instruments are constructed using the average socio-matrix shown below.

Peers’ Sum and Average

Aggregate and average social interactions in the classroom form a complete network with
uniform weights. The socio-matrix for a generic classroom is:

Wc,aggregate = ιmcι
′

mc
− Imc =



0 1 · · · 1
1 . . . . . . ...
... . . . . . . 1
1 . . . 1 0

 , c = 1, ..., C (3.6)

whereas the model for a generic student i in a generic classroom c becomes:

yci = λ
mc∑

j=1,j 6=i

ycj + xciβ1 +
mc∑

j=1,j 6=i

xcjβ2 + αs + εci (3.7)

in which mc denotes classroom size.
The row-normalized version of socio-matrix (3.6) is:

Wc,average = 1
mc − 1(ιmcι

′

mc
− Imc) =



0 1
mc−1 · · · 1

mc−1
1

mc−1
. . . . . . ...

... . . . . . . 1
mc−1

1
mc−1 . . . 1

mc−1 0

 , c = 1, ..., C (3.8)

implying the following generic-student model:

yci = λ

 1
mc − 1

mc∑
j=1,j 6=i

ycj

+ xciβ1 +
 1
mc − 1

mc∑
j=1,j 6=i

xcj

 β2 + αs + εci. (3.9)

Thus, each student is equally affected by every classmate. In the first case, what matters
is the number of peers, while in the second the average influence from peers. Obviously,
an increasingly larger classroom size reduces individual influence for the latter but not for
the former. Contextual effects or peers’ characteristics also generate social effects but only
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endogenous social interactions affect current behavior. The peers’ average and aggregate
models can be estimated by both method of moments (Kelejian and Prucha, 1998; Lee,
2003) and (quasi-)maximum likelihood (Lee, 2007a; Lee, Liu, and Lin, 2010). The row-
normalization of the socio-matrix in (3.8) ensures |λ| < 1.7 To avoid an arbitrary parameter
space related to socio-matrix (3.6), I apply the inconsequential normalization suggested by
Kelejian and Prucha (2010). The single normalizing factor is simply the maximum number
of links. The structure of the aggregate and average socio-matrices does not depend on
student achievement, and since the sample excludes classes formed on the basis of ability, it
is plausible to assume that both Wc,aggregate and Wc,average are exogenous.

Quantile Estimation

In order to shed light on the relationship between scores and explanatory variables other
than the mean of the distribution, I resort to quantile regression. Let λ (τ), β1 (τ) and β2 (τ)
denote dependence of the coefficients on quantile τ , 0 < τ < 1. The quantile estimates reflect
effects from endogenous social or exogenous explanatory variables at different points in the
conditional distribution of the test scores. I mainly explore how peers’ achievement affects
low-achieving students (bad apples), those at the 25th, the median, the 75th quantiles and
high-achieving students (stars). Kim and Muller (2004), Chernozhukov and Hansen (2006)
and Lee (2007b) discuss estimation of a quantile model with an endogenous variable. The
first stage estimates the mean regression with Ordinary Least Squares. Lee’s (2003) Best
instruments serve as excluded instruments. The second stage estimates the quantile regres-
sion at τ = 0.1, 0.25, 0.5, 0.75, 0.9 using the residuals from the first stage as an additional
explanatory variable. In a sense, the estimation procedure is a parametric version of Lee’s
(2007b) control function approach with bootstrapped standard errors.

System of Simultaneous Equations

To allow for simultaneity effects in the PISA competencies, I estimate a system of equations
in the three subject scores. Kelejian and Prucha (2004) discuss system estimation is a spatial
setting, while Cohen-Cole, Liu, and Zenou (2012) and Liu (2014) lay down a taxonomy of
models and identification conditions. The current application estimates the “square model”
with simultaneity effects:

7Lee (2007a) points out that λ > 1− inf(mc) and Tao and Lee (2014) that λ > 1 but λ 6= 1. The condition
|λ| < 1 ensures that (In − λWn)−1exists, allowing for the calculation of the Best IV as well as the possibility
of a social multiplier (n denotes the full sample size).
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Y1s = λ1WsY1s + ρ2Y2s + ρ3Y3s +Xsβ11 +WsXsβ12 + ιmsαs + ε1s (3.10)

Y2s = λ2WsY2s + ρ1Y1s + ρ3Y3s +Xsβ21 +WsXsβ22 + ιmsαs + ε2s (3.11)

Y3s = λ3WsY3s + ρ1Y1s + ρ2Y2s +Xsβ31 +WsXsβ32 + ιmsαs + ε3s (3.12)

for each school s = 1, ..., S. The system is estimated with ML without imposing normality
of the error terms. After estimation, I calculate impacts incorporating effects across the
system’s equations as well as the social multiplier matrix (In − λWn)−1 for the full sample
n.8 I derive standard errors with the delta method.

Fixed Effects

The school fixed effects in equation (3.1), ιmsαs, reflect common environmental factors as
well as sorting of students across schools. The general teaching quality and resources in a
school affect students’ academic performance. Also, parents tend to select neighborhoods
on the basis of their income and surrounding school quality. All of the above might induce
biases in the peer effects estimates. Thus, a within transformation of the model is necessary.
For method-of-moments estimation I demean each observation from its school mean. The
demeaning matrix is:

Js = Ims −
1
ms

ιmsι
′

ms
=



1− 1
ms

− 1
ms

· · · − 1
ms

− 1
ms

1− 1
ms

. . . − 1
ms... . . . . . . ...

− 1
ms

· · · − 1
ms

1− 1
ms

 , s = 1, ..., S (3.13)

and, thus, equation (3.1) becomes:

JsYs = λJsWsYs + JsXsβ1 + JsWsXsβ2 + Jsεs s = 1, ..., S. (3.14)

For quasi-maximum likelihood estimation, I within-transform the model using matrix Fs, the
columns of which are the eigenvectors of matrix Js corresponding to eigenvalue one. Equation
(3.1) becomes:

8See Bentler and Freeman (1983) and Tatsi (2014).
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F ′sYs = λ(F ′sWsFs)F ′sYs + F ′sXsβ1 + (F ′sWsFs)F ′sXsβ2 + F ′sεs s = 1, ..., S. (3.15)

The within-transformed error term, F ′sεs, contains ms − 1 linearly independent vectors and
its variance matrix is σ2Ims−1.

The main problem from demeaning with respect to the school instead of the classroom, is
that I do not eliminate the classroom-teacher specific effect but the general school teaching
quality. First, since ability tracking is excluded, there is no reason to believe that more
able or experienced teachers get assigned systematically to certain classrooms. In general,
in the absence of tracking, classrooms should in principle receive similar schooling resources.
Second, “teacher shopping” is highly unlikely for students at the age of 15. Third, Sacerdote
(2011) considers the teacher impact as a peer effect, referring to externalities in a broader
sense. For instance, some teachers might assign group exercises, which leads to more intense
interactions among students, or spend time answering questions posed by the bad apples
even if the answer is obvious for the majority of the classmates. Finally, for the 9th grade
in Germany it is usually the case the same teacher delivers lectures on a specific subject to
many classrooms.

Identification

Identification of endogenous and exogenous social interaction parameters suffers from the
so-called reflection problem. Technically, the reflection problem (Manski, 1993) is a perfect
collinearity problem: the expected peer outcome is collinear with the rest of the right-hand-
side variables. Thus, the problem describes the inability to disentangle the endogenous from
the exogenous social parameter even in the absence of correlated effects. Only functions
of the two social effects can be uncovered. Intuitively, it describes the inability to explain
dependencies among peers’ outcomes: is it because of peer interaction or because of peer
characteristics? Furthemore, peer group members may experience exposuse to some common
external stimulus or share similar preferences, which the empiricist might erroneously perceive
as the result of social interactions.

Regarding the reflection problem, Lee (2007a) offers a solution in the simplest of settings:
a cross-section of data with peers who interact in a group and are affected by common group
factors. Identification of the single-equation models stems from sufficient group size variation
(Boucher, Bramoullé, Djebbari, and Fortin, 2014), meaning that one classroom has 11 stu-
dents, another 13, another 15, etc. Insufficient classroom size variation, namely few distinct
classroom sizes, manifests in multicollinearity. To increase variation and achieve identifica-
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tion, I subtract observations from their respective school mean - instead of classroom. Notice
that Tatsi (2014) demonstrates the non-identification of the aggregate effects model in the
case of classroom interactions with classroom fixed effects.

For system identification, a sufficient condition with a row-normalized socio-matrix re-
quires that matrices Jn, JnWn, JnW

2
n JnW

3
n are linearly independent. (see Cohen-Cole, Liu,

and Zenou, 2012). I verify the condition by checking the rank of matrixQ = (Jn JnWn JnW
2
n JnW

3
n).

Furthermore, since the system in equations (3.10)-(3.12) is nonrecursive, I verify its stability
through the eigenvalues of matrix B: let B be the square coefficient matrix containing the
effects of the endogenous variables. The system is stable if the absolute value of the largest
eigenvalue of B is less than 1.

Apart from technical considerations, there are many reasons why the empirical evidence
presented in this paper is reliable. First, I do not have to assume the possibility of student
interactions because they emerge naturally from the setting. As Tatsi (2014) argues, students
spend many hours a day with their classmates in the same space. The learning procedure
is affected, for instance, by a noisy classmate who does not let others follow the teacher or
a classmate who poses smart questions. What is more, students can directly observe the
outcome of their peers, herein achievement. This argument relates to peer group misspecifi-
cation as is the case when considering endogenous social interactions at the school level: it
implies that hundreds of students know each others’ academic performance, which is highly
unlikely. Second, estimated endogenous social effects can not reflect exposure to common
shocks because the econometric models include school fixed effects. Third, in this applica-
tion selection does not occur at the individual level because the 9th grade is compulsory and,
moreover, the student does not choose which school or classroom to attend. Selection is more
problematic for students attending non-compulsory education, e.g. university. Fourth, any
estimated dependence among students’ scores can not reflect endogenous group formation
or common preferences because I exclude schools forming classrooms on the basis of ability.
To illustrate the nature of the bias imagine a classroom comprised only by high-achievers
in mathematics. Then, the estimated endogenous effects parameter might simply capture a
pre-existing propensity to excel in mathematics and not students imitating or learning from
each other. The former is an example of endogenous group formation while the latter of
social interactions. In this sample, students are not systematically assigned to classrooms
according to ability; therefore, the endogenous effect indeed represents interactions. Fifth,
estimating a system of simultaneous equations in the three scores allows for the first time to
control for own preferences regarding courses, which might also be responsible for observed
dependence among scores. Sixth, endogenous effects can not reflect measurement error in
the outcome because the PISA scores are absolutely comparable across schools.
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4 Empirical Results

Which Students Matter?

The analysis starts with estimating social interaction models including only one socio-matrix
at a time to match the usual practice in the literature so far. Then I compare four competing
social interactions models: the two star networks, the aggregate effects and the traditional
average. Comparison pertains to the endogenous effects parameter λ in equation (3.1). Panel
A of Table 2 shows that endogenous effects parameters are statistically significant if the
econometric equation includes a single socio-matrix (with the sole exception of aggregate
effects in reading comprehension). Thus, all four alternatives would separately appear as a
plausible social interactions model. This result implies first, that the peers’ average effect
is free from the “mechanical” bias in the Angrist (2014) sense because the estimated λ is
positive and significant for models that go beyond the average; second, the invidious model
of social interactions is not valid in this case because of the positive sign of the estimated
λ. Regarding policy, the choice of model is clear: pick any of the individual influences -
aggregate effects, stars and bad apples - because they imply individual-based as opposed to
group-based rules (peers’ average channel). Of course, policies aiming at single students are
much easier and less costly to implement; moreover, they reach every classmate through the
social multiplier. With more than one endogenous social effect, though, technical problems
arise in estimation, especially with respect to efficiency and instruments’ relevance. A good
solution is to include only two socio-matrices at a time and obtain a preliminary picture of
which one fits the data best. An even better solution is to resort to model selection by means
of a J-Test (Kelejian, 2008; Kelejian and Piras, 2011, and Liu, Patacchini, and Zenou, 2014).

Each specification in Panel B of Table 2 compares two social interaction channels so that
estimation entails two endogenous variables. The peers’ aggregate estimated parameter is
insignificant in all combinations. Students are not so responsive to changes in the sum of
generic classmates’ scores as they are to specific classmates at the extremes of the distribution,
i.e. the stars or the bad apples. Notwithstanding the lack of statistical significance in the
subject of mathematics, the stars’ and bad apples’ endogenous effects have positive signs. Liu,
Patacchini, and Zenou (2014) compare local average with local aggregate social effects and
find evidence to support the former in the educational context by means of a spatial J-test.
Also, according to Tatsi (2014), the linear-in-means model slightly outperforms the linear-
in-sums model based on the log-likelihood values. The peers’ average endogenous parameter
estimate is always positive and statistically significant, apart from the specification including
the stars’ reading comprehension scores. These simple models show that endogenous social
effects from stars, bad apples or the peers’ sum do not matter once I control for the peers’
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average.
Perhaps the most interesting result of Table 2 is the specification with the two star

networks: bad apples are more important than stars for all three subjects. Improving the
performance of the 2 worst students has a positive effect on own scores. One plausible
explanation is that bad apples tend to be disruptive and noisy (see Lazear, 2001); therefore
they impede the learning process for the rest. A second plausible explanation is that they
slow down the learning process, either because they need more time to finish an assigned
task or because they receive most of the teacher’s attention. A third explanation is simply
“last-place aversion” (see Kuziemko, Buell, Reich, and Norton, 2013): when the performance
of the worst students improves, the rest get motivated; otherwise they risk becoming the
classroom’s new bad apples.

Although Table 2 conveys a clear message on the appropriateness of group-based policies,
ideally each specification should include three or all four competing endogenous social effects.
As the latter would be a formidable task, I turn to a standard way of testing nonnested
models, namely the spatial J-test. Under the null hypothesis the peers’ average model is the
true model. I test the null hypothesis against multiple alternative models (stars, bad apples
or peers’ sum). At a first step I estimate the stars, bad apples and peers’ sum specifications
with 2SLS including school fixed effects and obtain the predicted values. At a second step, I
estimate the peers’ average model with 2SLS including school fixed effects and the predicted
values from the stars, bad apples and the peers’ sum as additional regressors. Statistical
significance of the estimated parameter on the predicted value(s) provides evidence against
the null. Table 3 presents the J-test results. None of the predicted values bears statistical
significance, which verifies the main conclusions of Table 2.

Hence, the socio-matrix that fits the data best for classroom interactions among German
9th-graders is the average effects matrix. This is not surprising, given that students in
Germany have already experienced tracking at the age of 10, dividing them into higher and
lower ability institutions. The early tracking system does not leave much room for policy,
since specific individuals do not matter significantly more than the average. Large variations
in ability have already vanished.

Inside Peers’ Average

Table 4 gathers the coefficient estimates for the social interactions model according to a
student’s placement in the achievement distribution, namely the 10th, 25th, 50th, 75th and
90th quantiles. For mathematics, the effect from the peers’ average increases as we move
across the quantiles of the distribution. Thus, everybody benefits from an increase in the
average performance but students at the 90th and especially the 75th quantile the most. For
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reading comprehension, students at the bottom of the distribution do not react to changes
in the average scores but those at the median and especially the upper quantiles respond
positively. In natural sciences, only those at the extremes of the distribution are affected by
changes in mean classroom performance. Overall, the magnitude of the endogenous param-
eter estimates reveal that average peer achievement spillovers are more intense for students
at the 75th and 90th quantiles in the three subjects. The results in Table 4 are in line with
much of the literature that favors heterogeneous social interactions (see Sacerdote, 2011, for
a comprehensive review and results in Fruehwirth, 2013).

In reality, a student’s abilities and competences are inherently intertwined. Preferences
for a career in engineering motivate some students towards the study of mathematics and
natural sciences, in the same way the desire to become a literature teacher motivates others
to focus on the German language course. The time a student spends studying for the Ger-
man language course takes away effort and time from other subjects such as mathematics
or science. On the other hand, when a student develops verbal abilities through the study
of German language and quantitative abilities through mathematics, he/she simultaneously
improves understanding of natural sciences by easily comprehending the textbook. Thus,
in principle performance in any course is interdependent with performance in the rest of
the courses. Fruehwirth (2014) emphasizes that peer achievement masks unobserved char-
acteristics. To partially control for individual preferences and efforts in the three subjects,
I estimate the simultaneous effect of own scores in the other two subjects by means of a
nonrecursive system of equations.

Table 5 presents marginal effects after system estimation. After including feedback within
the system’s equations, the endogenous social effects parameter estimates are 0.250 for math-
ematics, 0.373 for reading comprehension and 0.265 for natural science - all significant at 1%.9

The average own impacts are calculated as the partial derivative of student i’s score with
respect to a change in student i’s explanatory variable, and peer impacts as the partial deriva-
tive of student i’s score with respect to a change in student j’s explanatory variable. Both
contain feedback not only from student j to student i but also from student i back to student
j through other classmates. Since |λ| < 1, the feedback through the social multiplier matrix
(In − λWn)−1 = In +λWn +λ2W 2

n + ... eventually vanishes. The sum of the two impacts gives
an average total measure of changes in an explanatory variable from both i and j, and makes
sense when both own and peer average impacts are economically and statistically significant.

The PISA score in mathematics has a positive own and peer impact on reading compre-
hension scores. Thus, other things equal, putting more effort in mathematics or being among

9Results of single equation estimation as well as the system’s direct and indirect effects are available upon
request.
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classmates who are better in mathematics positively affects own reading literacy. The im-
pacts for natural sciences are also positive but lack statistical significance. Interestingly, the
impact of reading comprehension scores is zero for mathematics and very small for natural
sciences, regardless of the fact that estimates are statistically insignificant. The natural sci-
ences impacts on the other two scores have a positive sign but again they are not statistically
different from zero. Notice that, although it would be interesting to see the cross-peer effect,
meaning impacts from the peers’ other two scores on the third, identification of the nonre-
cursive system is not feasible unless some of the own characteristics differ across equations
(exclusion restriction). With the simultaneous effects, the conclusion drawn is that students
should put more effort in the study of mathematics because it improves their performance in
another subject.

Coming to predetermined characteristics, there is a significant gender differential for own
impacts. In mathematics and natural sciences the sign is negative, while for reading com-
prehension is positive. Girls outperform boys only in verbal skills. For the latter there is a
significant positive peer impact: being among females increases reading comprehension scores
more than putting own effort. Although insignificant, the peer impact is positive for natural
sciences as well. An explanation could be that girls are more disciplined and well-behaved.
Less disruption helps the classmates’ learning process. A student’s age has adverse effects
only for himself/herself. The result makes sense because much older students are grade re-
peaters and much younger grade skippers. Similarly, immigration background students score
significantly less than native classmates. The effect is less prominent in mathematics, a sub-
ject in which solid knowledge of the German language is not so important. It is striking to
see that a student’s socio-economic status does not play a role for mathematics scores and
does not generate any peer spillovers. From all predetermined characteristics, only cognitive
ability test scores impact directly and indirectly PISA scores. Actually, for mathematics
and natural sciences the peer impact is greater in magnitude than the own impact. Hence,
own scores improve substantially in the presence of classmates with higher cognitive ability,
reaching a total impact of around 38 points.

Understanding the lack of peer spillovers from individual traits - other than cognitive
ability - lies in the core of the German educational system and the specific working subsample.
As mentioned in Section 2, only 373 observations out of 5144 come from the low achievement
school type, the so-called “Hauptschule”. Entorf and Tatsi (2014), with a similar dataset for
year 2003, report that older students as well as students with immigration and low socio-
economic status are more likely to attend the “Hauptschule” type than the “Realschule” or the
“Gymnasium”. This fact is due to the early tracking at the age of 10. The low achievers, whose
parents are most probably immigrants or low-income earners, end up more frequently in a
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path that leads to vocational training rather than a university degree. Therefore, immigration
background students or students of lower socio-economic status who reach the “Gymnasium”
are very similar to the rest with respect to academic achievement. Early tracking has already
filtered out large variations in ability.

Policy Implications

The working subsample consists of classes formed - more or less - randomly. At a first glance,
regrouping policies would make sense because gains are free from the effect of matching
higher ability teachers to higher ability students. Regrouping students usually relies on some
observed predetermined characteristic, for instance immigration background. Then, given
students are not systematically assigned to classrooms, a suggestion is to compare among
classes with higher and lower immigration status variations and decide whether immigration
background homogeneity or heterogeneity is better for the regular student. But the main re-
sults of this paper show that none of the observed predetermined peer characteristics matter
for own achievement. Therefore, regrouping policies are obsolete; for instance, a student’s
performance will not increase by placing him/her in a classroom with a low proportion of
immigrants, exactly because there are no spillovers from immigration background classmates.
A similar argument holds for the other variables. The quantile estimation reveals that behav-
ioral effects are heterogeneous, with the classroom stars benefiting the most from increases in
average peer performance. This nonlinearity further complicates calculating expected gains
from regrouping. The message of Table 5 regarding peer effects is clear: conditional on
own performance in the three subjects and other relevant individual and family background
characteristics, classmates affect each other only through their cognitive abilities. Even if
reassignment or regrouping takes place according to ability, under the linear-in-means model
the resulting welfare is zero, provided classroom sizes are equal (see Hoxby and Weingarth,
2005). The results by Carrell, Sacerdote, and West (2013) provide yet another argument
against regrouping on the basis of average peer ability: after regrouping, endogenous group
formation might take place in unpredictable ways and to the detriment of the group whose
improvement was the initial goal.

The empirical findings uncover the superiority of the linear-in-means model against a
number of competitors: the star, the bad apple and the aggregate effects models. The re-
sult implies, though, that policy implementation is challenging because it has to change the
classroom norm. Group-based policies are appropriate as students perceive individual peer
influence only as a fraction of the total. Nevertheless, for small enough classroom sizes indi-
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vidual influence can be used to alter the norm.10 In conjunction with bad apples being more
important than stars, in small classrooms average performance can change through improv-
ing the achievement for the bad apples, for instance, through remedial classes.11 Remedial
classes cost in terms of paying teachers for additional working hours. Therefore, another
proposal is mentoring, during which the stars mentor the bad apples. The latter is a policy
with zero cost for the school and can be implemented easily through the teacher: assign stars
and bad apples to work together. The proposed policies fit well with the results by Lazear
(2001): bad apples are either disruptive or take time from the teacher by asking questions
from which the rest do not learn. Raising the performance of the bad apples raises the aver-
age performance in small enough classrooms, which in turn raises the scores mostly for the
stars. Quantile estimation shows that the upper quantiles’ scores respond more intensely to
increases in peers’ average score. Thus, the explanation is that improving the bad apples
frees time and efforts for the teacher to speed up the syllabus. Stars benefit themselves from
mentoring because explaining or teaching others deepens own understanding.

5 Conclusion

Peer effects in the economics of education is an immensely studied field. The linear-in-means
model is the channel that has been studied most extensively. Nevertheless, it has received
considerable criticism because either it imposes homogeneous effects or ignores effects from
specific individuals (Sacerdote, 2011). Thus, I explore several social interactions channels
in the classroom, and especially star networks and the peers’ sum. The current paper is
the first to apply the extreme order statistic estimator by Tao and Lee (2014). The data
come from the OECD’s extended PISA (FDZ-IQB), and allow for estimation of ability social
interaction parameters at the classroom level, where the core of the learning process takes
place. Estimates do not reflect selection or endogenous group formation because I drop
schools whose principals admit forming classes on the basis of ability. Also, missing values
are not an issue of distress: the sample comprises more than 95% of the original dataset and
none of the extreme values is a missing observation. Another identification concern comes
from common external factors and selection of students into schools on the basis of parental
income or preferences. I address biases of this sort by including school fixed effects in the
econometric models. Model comparison and selection, either through estimating models with
two socio-matrices or by testing directly their predictive power, point to the appropriateness
of the traditional linear-in-means model. Furthermore, the bad apples model is second to the

10I will not argue in favor of smaller classrooms because it entails school spending.
11For recently documented benefits of remedial classes see Stillings-Candal (2015).
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peers’ average as it outperforms the stars and the peers’ sum. It seems that the disruption
and delay of the lecture’s delivery has an adverse effect for the whole classroom that surpasses
effects from good peers.

Then, I examine deeper the implications of conformity. In line with much of the previous
literature (see Hoxby and Weingarth, 2005; Sacerdote, 2011, and Fruehwirth, 2013), I verify
that endogenous social effects are indeed heterogeneous. Students placed at the upper quan-
tiles of the ability distribution experience interdependencies more intensely than those at
the median or the lower quantile. The classroom’s good and top students benefit most from
increases in their peers’ average, possibly because they compete to become the best student
in the classroom. Those at the bottom of the distribution also react positively to increases
in the peers’ average but to a lesser extent and with the exception of reading comprehension.
A possible explanation is “last-place aversion”: they increase own efforts to avoid the stigma
of the lowest achiever in the class.

The literature considers separate equations in each subject score when estimating so-
cial interaction parameters. Contrary to this practice, I estimate a system of simultaneous
equations in the three core competencies, namely mathematics, reading comprehension and
natural sciences. The system not only includes endogenous and exogenous social interaction
parameters but also simultaneity effects. Thus, we can see how a student’s performance in
each subject affects other subjects. Despite the fact that the system is nonrecursive and in-
cludes both endogenous and contextual social effects, I ensure that identification conditions
are met. Unlike similar studies, e.g. Cohen-Cole, Liu, and Zenou (2012) or Liu (2014), the
current paper considers feedback loops from within the system’s endogeneity and decaying
social multiplier effects when interpreting impacts. Conditional on student characteristics,
only peers’ cognitive ability test scores affect own achievement for all subjects and, of course,
in a positive manner.

Finally, combining all of the empirical findings I suggest the following in order to improve
achievement for the regular student: aim at improving the performance of the bad apples
in small enough classrooms because only then the influence of single students can effectively
change the social norm. Interestingly, by improving the average through the worst, the stars
become even brighter.
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6 Appendix

Table 1: Summary Statistics

Quantiles
Variable Mean 10th Median 90th
PISA Score in:
Mathematics 535.26 434.09 535.74 636.62

(78.42)
Reading Comprehension 537.56 435.67 545.53 627.90

(76.47)
Natural Sciences 548.39 444.08 552.11 650.34

(80.03)
Female 0.52 - - -

(0.50)
Age 15.58 15 15.5 16.42

(0.57)
Immigration Background 0.19 - - -

(0.39)
Highest Index of Occupational Status 53.16 33 53 73

(15.70)
Cognitive Ability Test Scores 0.38 -1.16 0.57 2.17

(1.35)
Notes: Author’s own calculations using the FDZ-IQB PISA 2006, Germany. n = 5144.
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Table 2: Endogenous Social Interactions Parameters - Model Comparison

Mathematics Reading Comprehension Natural Sciences
Panel A
Stars’ PISA Score 0.213*** 0.321*** 0.237**

(0.060) (0.092) (0.096)
Bad Apples’ PISA Score 0.436*** 0.355*** 0.511***

(0.132) (0.111) (0.128)
Peers’ Aggregate PISA Score 0.127*** 0.030 0.133***

(0.039) (0.074) (0.051)
Peers’ Average PISA Score 0.383*** 0.449*** 0.437***

(0.086) (0.119) (0.102)
Panel B
Stars’ PISA Score 0.258 0.419*** 0.583***

(0.185) (0.110) (0.187)
Peers’ Aggregate PISA Score -0.032 -0.099 -0.120

(0.121) (0.064) (0.110)
Bad Apples’ PISA Score 0.267 0.416*** 0.502***

(0.210) (0.117) (0.132)
Peers’ Aggregate PISA Score 0.066 0.098* 0.030

(0.063) (0.057) (0.047)
Stars’ PISA Score 0.054 0.112 0.186*

(0.092) (0.147) (0.103)
Bad Apples’ PISA Score 0.670*** 0.380*** 0.461***

(0.136) (0.133) (0.142)
Stars’ PISA Score -0.062 0.110 -0.163

(0.116) (0.171) (0.136)
Peers’ Average PISA Score 0.459*** 0.337 0.601***

(0.168) (0.222) (0.164)
Bad Apples’ PISA Score 0.025 0.072 0.230

(0.190) (0.169) (0.191)
Peers’ Average PISA Score 0.370*** 0.397** 0.310**

(0.127) (0.186) (0.153)
Peers’ Aggregate PISA Score -0.031 -0.013 -0.087

(0.066) (0.055) (0.058)
Peers’ Average PISA Score 0.438*** 0.464*** 0.574***

(0.145) (0.122) (0.131)
Notes: Author’s own calculations using the FDZ-IQB PISA 2006, Germany. n = 5144. Estimation of single socio-matrix

specification with 2SLS and of two socio-matrices with Two-Step GMM including school fixed effects, gender, age, immigration

background, highest index of occupational status in the family and cognitive ability test scores. Excluded instruments include

the Best IV in mathematics/reading comprehension/natural sciences, their second/third powers and second order social effect

of school marks in mathematics and German. All specifications pass tests for underidentification, weak instruments and overi-

dentification. Robust to heteroscedasticity standard errors in parentheses. *, **, and *** denote significance at 10%, 5% and

1% level respectively.
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Table 3: Endogenous Social Interactions Parameters - J-test for Model Selection

Mathematics Reading Natural
Comprehension Sciences

Average Peers’ PISA Score 0.483*** 0.531** 0.645***
(0.154) (0.232) (0.176)

Predicted Value from Stars -0.402 -0.104 -0.181
(0.268) (0.261) (0.133)

Predicted Value from Bad Apples -0.179* -0.204 -0.157*
(0.105) (0.181) (0.094)

Predicted Value from Peers’ Sum 0.046 1.090 -0.222
(0.212) (0.934) (0.233)

Notes: Author’s own calculations using the FDZ-IQB PISA 2006, Germany. n = 5144. Estimation with 2SLS including school

fixed effects, gender, age, immigration background, highest index of occupational status in the family and cognitive ability

test scores. Excluded instruments are the BEST IV in mathematics/reading comprehension/natural sciences as well as second

and third powers. The specification passes tests for underidentification, weak instruments and overidentification. Robust to

heteroscedasticity standard errors in parentheses. *, **, and *** denote significance at 10%, 5% and 1% level respectively.
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Table 4: Endogenous Social Interactions Parameters - Quantile Estimation

10th 25th Median 75th 90th
Peers’ Average PISA Score in 0.298** 0.226** 0.346*** 0.582*** 0.470***
Mathematics (0.136) (0.114) (0.102) (0.115) (0.147)

Peers’ Average PISA Score in 0.340 0.301 0.325*** 0.621*** 0.618***
Reading Comprehension (0.265) (0.209) (0.121) (0.136) (0.187)

Peers’ Average PISA Score in 0.380** 0.379** 0.236* 0.494*** 0.663***
Natural Sciences (0.183) (0.172) (0.121) (0.140) (0.216)

Notes: Author’s own calculations using the FDZ-IQB PISA 2006, Germany. n = 5144. Estimation with 2SLS including school

fixed effects, gender, age, immigration background, highest index of occupational status in the family and cognitive ability

test scores. Excluded instruments are the BEST IV in mathematics/reading comprehension/natural sciences as well as second

and third powers. Bootstrapped standard errors in parentheses. *, **, and *** denote significance at 10%, 5% and 1% level

respectively.
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