
Strohsal, Till; Proaño, Christian R.; Wolters, Jürgen

Conference Paper

Characterizing the Financial Cycle: Evidence from a
Frequency Domain Analysis

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2015: Ökonomische Entwicklung -
Theorie und Politik - Session: Empirical Finance, No. E19-V2

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: Strohsal, Till; Proaño, Christian R.; Wolters, Jürgen (2015) : Characterizing
the Financial Cycle: Evidence from a Frequency Domain Analysis, Beiträge zur Jahrestagung des
Vereins für Socialpolitik 2015: Ökonomische Entwicklung - Theorie und Politik - Session: Empirical
Finance, No. E19-V2, ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-
Informationszentrum Wirtschaft

This Version is available at:
https://hdl.handle.net/10419/113143

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/113143
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Characterizing the Financial Cycle:

Evidence from a Frequency Domain Analysis

Till Strohsal ∗a, Christian R. Proañob, and Jürgen Woltersa

aFreie Universität Berlin, Germany

bThe New School of Social Research, New York

February 24, 2015

Abstract

A growing strand of literature argues that the financial cycle is considerably longer and larger

than the business cycle and that its importance is increasing over time. This paper proposes

an empirical approach which is suitable to test these hypotheses. We parametrically estimate

the whole spectrum of financial and real variables to obtain a complete picture of their cyclical

properties. We provide strong statistical evidence for the hypothesized features of the financial

cycle for the US and only slightly weaker evidence for the UK. For Germany, however, distinct

characteristics of the financial cycle are, if at all, much less visible.
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1 Introduction

Fluctuations in financial markets play a key role in the macroeconomic dynamics of modern economies,

often leading to significant economic booms as well as to severe economic crises, see e.g. Kindleberger

and Aliber (2005) and Schularick and Taylor (2012). The last twenty years have been no exception

in this respect, from Japan’s lost decade following the asset market crash in the early 1990s to the

2007-08 global financial crisis which led the world economy to the brink of a new Great Depression.

Against this background, a renewed interest in financial market dynamics is emerging. In a growing

strand of literature the cyclical behavior of financial aggregates is not solely understood as a pure

reflection of the real side of the economy, but also as the outcome of underlying fluctuations in the

general perception and attitudes towards financial and macroeconomic risk, see Caballero (2010) for

a survey.

To emphasize the distinguishing features of the financial cycle, one important and convincing argument

put forward in recent studies is that its amplitude is considerably larger and its cycle duration is

considerably longer than those of the classical business cycle, see e.g. Claessens et al. (2011). As

suggested by Borio (2014), for instance, the financial cycle mainly operates at lower, medium-term

frequencies, usually associated with a cycle length between eight and thirty years. This extended length

of the financial cycle is often assigned to the build-up of macro-financial instability contributing to

the recent financial crisis. Despite its crucial importance for macroeconomic developments, however,

it is not clear how the financial cycle should be assessed empirically.

Most of the existing insights in the financial cycle are based on either the analysis of turning points

(Claessens et al., 2011, 2012) or frequency-based filter methods (Drehmann et al., 2012). The turning

point approach requires to pre-specify a rule which is applied to an observed time series in order to find

local maxima and minima. Frequency-based filter methods require to pre-specify a frequency range

at which the financial cycle is assumed to operate. Therefore, both approaches are rather descriptive

and do not allow to test hypotheses on the properties of the financial cycle. Indeed, while there is a

broad consensus in the literature concerning the main characteristics of the business cycle (see e.g.

Diebold and Rudebusch, 1996 for a survey), this is not true yet for the financial cycle.

This paper proposes a straightforward econometric methodology to obtain a complete picture of the

cyclical properties of key financial aggregates. Making use of the fact that any covariance-stationary

stochastic process can be equivalently characterized in the time and in the frequency domain, we

apply a parametric method to estimate spectral densities. That is, we fit time series models from

the autoregressive moving average (ARMA) class to standard financial activity indicators and use the

estimated processes to compute their corresponding frequency domain representations. This enables

us to get an overview of the length and relevance, in terms of variance contributions, of cycles at

all possible frequencies. Hence, our approach does not require to a priori assume a range where the

financial cycle operates. Moreover, it is an inferential method in the sense that it allows us to test
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existing hypotheses by statistical means.

Specifically, we use the estimated spectral densities and their bootstrap standard errors to address the

following questions. First, has the financial cycle a longer duration, as well as a larger amplitude than

the classical business cycle? Second, have the characteristics of the financial cycle changed over time?

Our main results are as follows. Strong evidence is found in support of the hypothesized features

of the financial cycle in the United States. Somewhat weaker evidence is provided for the United

Kingdom. In case of Germany, distinct characteristics of the financial cycle are, if at all, much less

visible.

The remainder of this paper is organized as follows. Section 2 motivates and discusses our methodology

in detail. Section 3 contains our empirical results on the financial cycle in the US, the UK, and

Germany. Finally, we draw some concluding remarks in Section 4.

2 Methodology

2.1 Existing Approaches: Analysis of Turning Points and Frequency-Based Filters

The first important empirical approach to assess the financial cycle is the traditional turning point

analysis. The method goes back to Bry and Boschan (1971) and is adapted to quarterly data by

Harding and Pagan (2002). While originally used to analyze business cycles, recent studies of Claessens

et al. (2011, 2012) and Drehmann et al. (2012) adopted it to investigate financial cycles. The turning

point analysis requires to pre-specify a rule which defines a complete cycle in terms of the minimum

number of periods of increases (expansion phase) and decreases (recession phase). Therefore, this

method is descriptive in nature and hypotheses testing is not possible.

The second prominent approach is to work with frequency-based filters (Drehmann et al., 2012) which

are usually based on Baxter and King (1999) or refinements thereof, see e.g. Christiano and Fitzgerald

(2003). When filters are used to analyze cycles, a crucial point is that the frequency range has to be

pre-specified by the researcher. This may lead to the tendency of biased results into the direction of

the pre-defined range. The intuition behind this difficulty is best described by briefly discussing the

general functioning of filters.

In the time domain, any linear filter can be written in the form of a two-sided moving average

yt =

n∑

j=−m

ajxt−j . (1)

The filtered series yt depends simultaneously on the properties of the filter (the coefficients aj) and

the data (the observed series xt). To convert equation (1) into the frequency domain, one uses the
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corresponding filter function

C(λ) =
n∑

j=−m

aje−iλj , i2 = −1 , (2)

and its transfer function

T (λ) = |C(λ)|2 , (3)

where λ ∈ [−π, π] denotes the frequency range, see e.g. Wolters (1980a, 1980b). The relationship

between the spectra of the original and the filtered series is given by

fy(λ) = T (λ)fx(λ). (4)

When compared to the time domain, a major advantage of the representation in (4) is that now the

filter effect T (λ) is separated from the data fx(λ). For the spectrum of the filtered series fy(λ) to

accurately identify cycles in the spectrum of the observed series fx(λ), the ideal filter candidate would

be the one that has the value 1 at the frequency range of interest [λlow, λhigh] and 0 otherwise. In view

of equation (4), this is because T (λ) = 1 implies fy(λ) = fx(λ) for λ ∈ [λlow, λhigh] and fy(λ) = 0

for λ /∈ [λlow, λhigh]. Theoretically, the ideal time domain filter can be achieved by moving averages

of infinite order. Yet, in practice, this is not possible since only a limited number of observations is

available.

The main idea of frequency-based filters is to pre-specify a range from λlow to λhigh, to choose finite

values for m and n in equation (1) and to find the weights aj which approximate the ideal filter as

good as possible. Due to the approximation, the spectrum of the filtered series is in general different

from the one of the observed series in [λlow, λhigh] and reflects a mixture of filter and data properties

in the form of T (λ)fx(λ). More precisely, it can be shown that any filter has the tendency to overstate

the contributions of cycles in the pre-defined frequency range [λlow, λhigh] to the overall variance

of the underlying time series. In that sense, artificial cycles may be produced even if the true data

generating process has no cycles.1

In this study, we emphasize that the appropriate λlow and λhigh are unknown. Indeed, while there

seems to be a large consensus in the literature about the relevant frequency range at which the business

cycle operates (2 to 8 years), it is far more unclear what would be the relevant frequency range at

which the financial cycle operates. For instance, Drehmann et al. (2012) construct their financial cycle

measure from the underlying series with a priori chosen cycle length between 8 and 30 years.

2.2 An Alternative Approach: Parametric Estimation of Spectral Densities

This paper proposes a simple method to characterize cycles in the frequency domain. Instead of

focusing on certain frequency ranges, we analyze the complete spectrum. Our approach thus seeks to

1This issue has been raised already in the 1950’s and 1960’s. For a discussion of the general problem see e.g. König

and Wolters (1972), Baxter and King (1999), Christiano and Fitzgerald (2003) and Murray (2003).
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exploit all the information included in the data by statistical methods.

We make use of the fact that any covariance-stationary process has a time domain and a frequency

domain representation which are fully equivalent.2 In contrast to the time domain representation,

however, the frequency domain representation is particularly suitable for the analysis of cyclical fea-

tures, as the importance of certain cycles for the total variation of the process can be easily derived

from the spectrum.3 This is possible because the spectrum represents an orthogonal decomposition

of the variance of the process.

The starting point of the indirect spectrum estimation is to specify the DGP of the underlying time

series as an ARMA model:

A(L)xt = δ + B(L)ut , ut ∼ WN(0, σ2) . (5)

In equation (5), A(L) and B(L) denote polynomials in the lag operator L of order p and q, respectively.

For stable processes, the MA(∞) representation has the form

xt − µ =
B(L)

A(L)
ut , µ =

δ

A(1)
. (6)

Equation (6) shows that an ARMA representation can be interpreted as an estimated filter that

transforms the white noise process ut into the observed time series xt. This filter is of infinite length

but depends only on a finite number of parameters. The ARMA model is in fact a filter which captures

the whole dynamics of the observed process xt in form its complete spectrum from −π to π. In direct

analogy to (4) it holds that

fx(λ) =
|B(e−iλ)|2

|A(e−iλ)|2
fu(λ) , (7)

where |B(e−iλ)|2/|A(e−iλ)|2 = T (λ) and fu(λ) = σ2

2π
as the spectrum of the white noise process.

Equation (7) represents the indirect spectrum estimation and allows to derive the cyclical properties

of xt.
4 From the estimated fx(λ) we can identify, without any a priori assumptions, which frequency

range is the most relevant one for the dynamics of the time series under consideration in terms of its

variance contribution.

Normalizing the spectrum by the process variance, one obtains the spectral density which provides

the relative contributions of particular frequencies to the total variance of the process. The spectral

density will exhibit a peak at a given frequency if cyclical variations occurring around that frequency

are particularly important for the overall variation of the process. Also, the more spectral mass is

concentrated in a given range around the peak, the larger is the amplitude of the process’ fluctuations

in the time domain.

2This was first discussed in Wiener (1930) and Khintchine (1934).
3Technically, the spectrum is the Fourier transformation of the autocovariance function.
4This is a valid approach, as “If the model is correctly specified, the maximum likelihood estimates [of the ARMA(p,q)

model] will get closer and closer to the true values as the sample size grows; hence, the resulting estimate of the population

spectrum should have this same property” (Hamilton, 1994, p.167).
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To statistically assess the characteristics of the financial cycle across variables and different sample

periods, the inference in the empirical part will be based on bootstrap methods.5 We apply the

following bootstrap procedure (see e.g. Benkwitz et al., 2001):

1. Estimate the parameters of the ARMA model in equation (5).

2. Generate bootstrap residuals u∗
1, . . . , u∗

T by randomly drawing with replacement from the set of

estimated residuals.

3. Construct a bootstrap time series recursively using the estimated parameters from step 1 and

the bootstrap residuals from step 2.

4. Reestimate the parameters from the data generated in step 3.

5. Repeat step 2 to step 4 5000 times.

6. From the bootstrap distributions of the statistics of interest, e.g., cycle length, amplitude etc.,

we compute the standard errors and the corresponding 95% confidence intervals.

An obvious alternative to the indirect parametric estimation would be the direct non-parametric

estimation of the spectrum, see e.g. Fishman (1969). In order to get consistent estimates, however, one

has to use a kernel estimator. Such estimates depend heavily on the chosen kernel and its bandwidth

parameter M , implying that a large amount of observation is necessary to have enough degrees of

freedom. For instance, if we estimate the spectrum from T observations by transforming the first M

estimated autocovariances, we have C · T
M

degrees of freedom. The constant C is kernel-specific and

usually takes on values of around 3. A small value of M decreases the variance but increases the bias

of the estimator. Having in mind the data in our empirical analysis below, let us consider a sample

size of about T = 100. In that case, a reasonable choice for M maybe 20, leading to only about 15

degrees of freedom. In contrast, the indirect estimation approach, starting from an ARMA model

with e.g. 5 parameters, leaves us with 95 degrees of freedom and hence implies a strong efficiency

gain.

3 Empirical Analysis

3.1 Data Description: Indicators of Financial and Real Developments

As perceptions and risk attitudes are not directly observable it is unclear which particular financial

indicator or set of financial variables might reflect the financial cycle best.6 In the following analysis

we use the most common proxy variables for the financial cycle, i.e., quarterly, seasonally adjusted

5To the best of our knowledge, analytical expressions for such standard errors are not available.
6On the one hand, in Drehmann et al. (2012) and Borio (2014) it is argued that the financial cycle can be most

parsimoniously described in terms of credit and property prices. On the other hand, other studies such as English et al.
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aggregate data on credit volume, the credit to GDP ratio, house prices and equity prices (see Claessens

et al., 2011, 2012 and Drehmann et al., 2012). Real GDP is taken as a proxy for the business cycle.

We study three representative industrialized countries: the US, the UK, and Germany.7

To allow for a meaningful comparison to existing studies, we employ the data transformations as e.g.

in Drehmann et al. (2012). All series are measured in logs, deflated with the consumer price index

and normalized by their respective value in 1985Q1 to ensure comparability of units. Growth rates

are obtained by taking annual differences of each time series.8 The only exception is given by the

credit to GDP ratio which is expressed in percentage points and measured in deviations from a linear

trend.9 We use the longest possible sample for each individual time series which is mostly 1960Q1

until 2013Q4 for the US and the UK, see Figures 7 and 8. Due to data availability the German time

series start only in 1970Q1, see Figure 9.

We split the data in two subsamples to analyze possible changes in the characteristics of the financial

cycles over time. According to Claessens et al. (2011, 2012) and Drehmann et al. (2012), the break

point is specified at 1985Q1 for the US and UK.10 In the case of Germany, we choose the break point

close to the German reunification, i.e., 1990Q2.11

All data we use in the analysis are shown in Figures 1 to 3, where the vertical gray line highlights the

sample split. Concerning the real GDP dynamics, a first visual inspection suggests that the amplitude

of the US GDP growth rate fluctuations diminished from the 1990’s up to the outbreak of the 2007-

2008 global financial crisis, when real GDP dropped by about 4%. This seems to be different, however,

in the UK and Germany, where the variance of the GDP growth rate appears to have remained more

or less constant. Compared to GDP, the credit and house price growth rates show more pronounced

swings in the US and the UK. In Germany, this is only true for housing. The last graphs in Figures 1

to 3 illustrate the dynamics of equity prices in the three countries. As it can be observed, these series

do not only feature a high volatility, but their dynamics seem to be very different from the previous

proxy variables for the financial cycle.

(2005), Ng (2011), and Hatzius et al. (2010) have used principal components and factor analysis to identify the common

factors of a number of financial price and quantity variables for the characterization of the financial cycle. Recently,

Breitung and Eickmeier (2014) use a multi-level dynamic factor model to extract the main driving forces behind business

and financial cycles at an international level using a large set of macroeconomic and financial indicators.
7A more detailed description of the definition and sources of the variables can be found in Appendix A.
8This implies that we investigate cycles in growth rates.
9Unit root tests of the level series indicate that, with the exception of the credit to GDP ratios which are found to

be trend-stationary, all other time series can be considered as integrated of order one. Therefore, working with annual

growth rates for GDP, credit, housing and equity, i.e., annually differencing the data, is in line with the unit root test

results. In case of the credit to GDP ratio, we eliminated a deterministic linear trend. Results are available upon

request.
10This is often seen as the starting point of the financial liberalization phase in mature economies. Moreover, during

this period monetary policy regimes being more successful in controlling inflation are established, see Borio (2014).
11From 1990Q2 on, official data for the unified Germany are available.
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Figure 1: Real GDP and Financial Cycle Proxy Variables in the United States.

Note: All series are annual growth rates, except the credit to GDP ratio, which represents deviations from a

linear trend measured in percentage points. The vertical gray line shows the sample split.
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Figure 2: Real GDP and Financial Cycle Proxy Variables in the United Kingdom.

Note: All series are annual growth rates, except the credit to GDP ratio, which represents deviations from a

linear trend measured in percentage points. The vertical gray line shows the sample split.
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Figure 3: Real GDP and Financial Cycle Proxy Variables in Germany.

Note: All series are annual growth rates, except the credit to GDP ratio, which represents deviations from a

linear trend measured in percentage points. The vertical gray line shows the sample split.

3.2 Time Domain Estimation Results and Frequency Domain Representation

The empirical estimates of the spectral densities are based on the ARMA models reported in Tables

7 to 9 in Appendix B.12 The model specification procedure follows the principle of parsimony. We

initially allow for a maximum autoregressive order of 5 and subsequently remove any remaining residual

autocorrelation by the inclusion of appropriate moving average terms. As reported in Tables 7 to 9,

all parameters in the final specifications are statistically significant at standard confidence levels and

the estimated residuals are free from autocorrelation according to the Lagrange multiplier (LM) test.

In order to provide an example of how we use the estimated ARMA models to obtain the spectral

densities, consider the following process of US real GDP growth during the pre-1985 period with

t-values in parentheses (cf. Table 7) and the notation as in equation (5):

xt = 0.002
(2.97)

+ 1.144
(19.21)

xt−1 − 0.224
(−4.37)

xt−3 − 0.985
(−42.04)

ut−4 + ut .

These estimates are applied to equation (7) to calculate the corresponding spectrum as

fx(λ) =
|1 − 0.985 e−i4λ|2

|1 − 1.144 e−iλ + 0.224 e−i3λ|2
σ2

2π
,

12To statistically double-check the specified break dates, we also estimated ARMA models for the full sample. Chow

breakpoint tests show overwhelming evidence for a break at 1985Q1 for the US and the UK. For Germany, the statistical

support for a break at 1990Q2 is weaker, but for GDP and credit we clearly reject the null hypothesis of no break.

Nonetheless, the German reunification is a natural break date from an economic point of view.
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with e−iλ = cos(λ) − i · sin(λ) by Euler’s relation and i2 = −1. According to this procedure, we

calculated the spectra for all countries and sample periods under consideration. Dividing fx(λ) by

the variance of xt yields the spectral densities.

The estimated spectral densities are shown in Figures 4 to 6 in the range [0 , π/2], i.e., for periods of

∞ to 1 year.13 We do not show frequencies in [π/2 , π] since almost no spectral mass is located in this

range. An initial visual inspection of Figures 4 to 6 delivers at least two noteworthy results.

First, especially for the US and UK the spectral densities of credit, credit to GDP and house prices

are substantially shifted to the left in the later period compared to the first one, indicating - at least

superficially - that longer cycles became present, see Figures 4 and 5. Moreover, the peaks of the

spectral densities are much more pronounced, suggesting that these longer cycles have also become

more important for the variation of the process. As illustrated in Figure 6, in case of Germany, this is

only true for house prices. We obtain no clear results for German credit and credit to GDP. Therefore,

German data seems not to provide much evidence in favor of the postulated financial cycle properties.

Second, for GDP and equity we can clearly see from Figures 4 to 6 that for none of the three countries

it appears that the spectral densities significantly changed from the period before the sample split to

the one thereafter. The interesting exception is the spectrum of UK GDP growth which may indeed

have experienced a change. The general impression is, however, that in almost all cases GDP and

equity show very similar spectral shapes with less pronounced peaks compared to the other variables.

Thus, it seems that if financial markets actually reflect the real side of the economy, then this is only

visible in equity prices.

Having obtained a frequency representation of the time series under consideration which is particularly

suitable for the analysis of their cyclical properties, we continue in the next section by statistically

testing various hypotheses concerning key features of the financial cycle which have been postulated

in recent studies.

13When using quarterly data, all cycles of length infinity to half a year are described by the spectrum in the range

from 0 to π because fx(λ) is an even symmetric continuous function. We approximate the continuous spectrum by 1000

equally spaced frequency bands from 0 to π.
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Figure 4: Spectral Densities in the United States. Note: Figures show the spectral densities from

frequency zero to π/2, corresponding to a cycle length of infinity to 1 year. Authors’ calculations.
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Figure 5: Spectral Densities in the United Kingdom. Note: Figures show the spectral densities from

frequency zero to π/2, corresponding to a cycle length of infinity to 1 year. Authors’ calculations.
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Figure 6: Spectral Densities in Germany. Note: Figures show the spectral densities from frequency

zero to π/2, corresponding to a cycle length of infinity to 1 year. Authors’ calculations.

3.3 Characterizing Business and Financial Cycles from a Frequency Domain Perspective

Statistics to Characterize Cycles

We propose 4 different statistics derived from the spectral densities to describe the main features of

business and financial cycles. Table 1 summarizes the statistics for all countries under consideration

and the two estimation subsamples. The first two columns of Table 1 include the main cycle length

in years measured at the peak of the spectrum. It is given by 2π
λmax

with λmax as the frequency where

the spectral density has its unique maximum. The remaining columns include information about the

distribution of the spectral mass measured in percentage points. For instance, we report the spectral

mass located around the amplitude of the main cycle. The amplitude is defined as the spectral mass

in the frequency band symmetric around λmax with a length of about π
20 .14 The last four columns

present estimates of the spectral mass for pre-defined ranges which are often used in the literature,

i.e., 8 to 40 years for the financial cycle and 2 to 8 years for the business cycle. The values in brackets

below the point estimates are the 95% bootstrap confidence intervals.

14This frequency band is defined as λmax ±
π

1000
· 25.
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Table 1: Frequency Domain: Length and Variance Contribution of Cycles

spectral mass in percent located. . .
length of main cycle

in years . . . at the amplitude . . . at longer-term . . . at shorter-term

of the main cycle cycles (8 to 40 years) cycles (2 to 8 years)

pre post pre post pre post pre post

GDP 6.2 7.1 29.9 31.9 17.4 27.9 71.4 63.3
[4.6, 7.2] [4.9, 17.2] [22.3, 35.8] [27.2, 42.3] [10.0, 23.4] [11.4, 41.5] [66.6, 74.9] [45.1, 77.7]

credit 6.9 13.9 46.1 75.4 39.6 77.3 51.4 19.3
[5.7, 12.2] [12.8, 14.7] [39.1, 59.7] [71.9, 78.6] [17.0, 51.4] [72.5, 80.5] [34.9, 80.6] [15.4, 23.3]

US credit to GDP 6.8 23.8 33.7 86.4 23.7 67.9 66.0 6.8
[5.1, 9.4] [14.7, 45.4] [27.8, 36.7] [75.2, 91.2] [13.7, 32.3] [56.3, 76.2] [54.7, 71.0] [4.1, 12.8]

housing 7.6 12.8 41.4 73.0 26.2 73.2 66.2 24.9
[4.0, 9.6] [10.2, 14.7] [20.6, 72.3] [61.4, 81.0] [3.3, 38.0] [56.2, 81.1] [53.5, 89.9] [17.5, 41.3]

equity 4.6 7.0 25.3 23.9 10.7 19.5 74.2 65.4
[3.3, 5.6] [5.4, 8.5] [21.7, 30.9] [21.0, 27.1] [3.9, 15.3] [14.3, 23.0] [67.5, 82.0] [61.6, 69.3]

GDP 6.9 10.9 19.4 41.8 16.8 39.1 58.6 55.8
[6.2, 8.1] [8.2, 12.5] [19.3, 19.5] [32.0, 47.0] [15.3, 18.1] [26.4, 46.8] [57.3, 59.6] [48.3, 65.2]

credit 7.8 17.8 39.5 60.6 26.4 65.1 63.5 27.6
[4.6, 9.4] [15.1, 20.0] [21.4, 54.3] [53.7, 64.9] [8.2, 38.9] [57.0, 68.9] [53.5, 77.3] [23.0, 35.3]

UK credit to GDP 9.8 14.3 62.1 73.2 55.6 72.0 39.7 13.1
[5.7, 13.9] [8.8, 31.2] [46.5, 79.4] [52.0, 87.1] [18.3, 64.5] [46.8, 85.2] [29.5, 76.6] [6.3, 41.3]

housing 5.3 13.1 69.2 58.1 5.1 58.8 93.0 37.8
[3.7, 6.4] [11.1, 14.3] [35.0, 96.8] [33.5, 72.2] [0.3, 16.7] [30.1, 73.5] [76.8, 99.4] [24.9, 63.0]

equity 3.6 5.4 25.2 23.0 12.4 14.1 75.3 68.4
[2.4, 6.4] [3.3, 6.8] [20.7, 47.9] [20.6, 27.1] [2.2, 20.0] [4.4, 18.6] [61.5, 89.5] [62.8, 77.2]

GDP 5.6 4.5 25.4 27.0 14.0 9.5 62.2 74.2
[5.0, 7.8] [2.9, 5.7] [20.7, 32.1] [21.7, 33.1] [11.3, 23.7] [3.0, 15.7] [58.0, 62.8] [66.0, 81.6]

credit 6.9 45.4 29.8 23.3 21.0 23.6 67.9 56.6
[6.1, 8.5] [−, −] [25.2, 36.9] [−, −] [16.7, 29.1] [−, −] [63.6, 69.3] [−, −]

GER credit to GDP ∞ ∞ 86.9 91.4 53.0 29.5 4.1 5.7
[−, −] [−, −] [69.7, 94.5] [45.2, 96.5] [34.9, 57.8] [13.0, 58.7] [1.7, 10.4] [2.2, 41.2]

housing 7.9 18.5 59.8 60.6 39.6 63.6 59.4 27.7
[4.9, 12.8] [11.6, 20.8] [33.2, 72.8] [35.8, 70.3] [11.4, 56.8] [34.4, 72.4] [38.7, 84.4] [19.6, 55.0]

equity 7.9 4.9 30.7 24.9 24.3 12.2 63.0 72.5
[4.8, 10.2] [3.0, 6.4] [18.6, 40.7] [21.5, 31.4] [10.6, 33.7] [3.0, 17.8] [56.0, 71.1] [65.3, 82.3]

Notes: The cycle length is defined as 2π

λmax
, where λmax is the frequency where the spectral density has its unique maximum. The amplitude

of the main cycle is defined as the spectral mass in the frequency band symmetric around λmax with a length of about π

20
. The terms

pre and post refer to the sample periods 1960Q1 until 1984Q4 and 1985Q1 until 2013Q4, respectively, for the US and the UK. In case of

Germany the samples are 1970Q1 until 1990Q1 and 1990Q2 until 2013Q4. 95% bootstrap confidence intervals are given in brackets. By

”−” it is indicated that there is no distinct solution (maximum and percentiles) in the frequency range 0 < λ ≤ π.
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As reported in Table 1, our indirect estimation approach delivers indeed estimates in line with the

literature. For instance, the average length of the business cycle (as described by GDP growth) is

6.2, 6.9 and 5.6 years in the US, UK, and Germany, respectively, in the first subsample, and 7.1, 10.9

and 4.5 in the second subsample. This confirms – with a single exception – the standard notion that

business cycle fluctuations have a duration between 2 and 8 years, see Hodrick and Prescott (1997).

Hypotheses Tests

For the following hypotheses tests on the properties of the financial cycle, we restrict our attention to

the two series credit and housing and do not report the tests for the credit to GDP ratio and equity.

The reasons for that selection are as follows. In no country equity shows any dynamic property

that can be related to the ones stated for financial cycles. The results for credit to GDP are very

similar to those obtained from credit alone. Further, following Borio (2014), credit and house prices

should capture the most important features of financial cycles. Credit represents a direct financing

constraint and house prices are seen as a proxy variable for the average perception of value and risk

in the economy.

To begin with, we are interested in testing whether the financial cycle is a more medium-term phe-

nomenon with a longer cycle length than that of the business cycle as suggested by Claessens et al.

(2011), Drehmann et al. (2012) and Borio (2014). This addresses the very important question of

whether financial market fluctuations are mere reflections of the business cycle, in which case they

should operate at similar frequencies, or whether financial market fluctuations are driven by intrin-

sic and self-reinforcing forces which would make such fluctuations last longer, and feature a larger

amplitude.

Table 2 reports the test results of the null hypothesis that the financial cycle and the business cycle are

of equal length against the alternative hypothesis that the financial cycle is longer than the business

cycle. According to one-sided two-sample t-tests, for none of the countries the null hypothesis can

be rejected in the first subsample. This is no longer true in the second subsample, where the null is

rejected at any conventional confidence level. With respect to the estimation results in Table 1 this

is not surprising. In the second subsample the average business cycle across the three countries is 7.5

years, while the average financial cycle of 15.2 years – excluding German credit – is twice as large.

Additionally, we ask whether the medium-term nature of the financial cycle is a rather recent phe-

nomenon, i.e., whether the cycle length has increased over time. Statistical evidence is shown in Table

3. The results clearly support the hypothesis that the financial cycle is indeed longer during the

second sample period. The mean value of the financial cycle length across the three countries more

than doubled from about 7 years in the first period to almost 16 years in the second period. These

findings, together with the test results reported in Table 2, do not only corroborate the insights from

Figures 4 to 6 – where a general left-shift of the spectral densities of credit and housing growth (as
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well as of the credit-to-GDP ratio) can be observed – but they also deliver statistical support for the

descriptive findings of Claessens et al. (2011), Drehmann et al. (2012) and Borio (2014).

Table 2: Is the Financial Cycle Longer Than the Business Cycle?

H0: The financial cycle and the business cycle are of equal length.

H1: The financial cycle is longer than the business cycle.

pre break post break

t̂-stat p-value t̂-stat p-value

US
credit 0.26 0.399 2.45 0.007

housing 0.76 0.224 1.95 0.025

UK
credit 0.64 0.259 4.28 0.000

housing −1.86 0.968 1.72 0.042

GER
credit 1.37 0.085 − −

housing 0.90 0.185 5.39 0.000

Notes: t̂-stat represents the estimated value of the t-statistic of a one-sided two-sample t-test. By

”−” it is indicated that we could not obtain finite bootstrap standard deviations which implies

that it is not possible to conduct a t-test.

Table 3: Has the Financial Cycle Increased in Length Over Time?

H0: The length of the financial cycle

has not changed over time.

H1: The length of the financial cycle

has increased over time.

t̂-stat p-value

US
credit 2.32 0.010

housing 2.59 0.005

UK
credit 5.69 0.000

housing 7.26 0.000

GER
credit − −

housing 3.01 0.001

Notes: t̂-stat represents the estimated value of the t-statistic of a

one-sided two-sample t-test that compares the cycle lengths in the

pre and post sample period. By ”−” it is indicated that we could

not obtain finite bootstrap standard deviations which implies that

it is not possible to conduct a t-test.
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We now turn to analyze the relevance of the financial cycle by investigating the variance contributions

of given frequency ranges. Thus we first test whether the financial cycle and the business cycle featured

the same amplitude in the two analyzed subperiods. Table 4 shows somewhat mixed evidence in the

first sample period. In most cases we reject the null of equal amplitudes of business and financial

cycles, but for US house prices and German credit a rejection is not possible. In the second period,

the results are much clearer. The null hypothesis is rejected for any variable and any country. This

indicates that, particularly in recent times, the financial cycle is characterized by a larger amplitude

than the business cycle.

Table 4: Has the Financial Cycle a Larger Amplitude Than the Business Cycle?

H0: The financial cycle and the business have the same amplitude.

H1: The financial cycle has a larger amplitude than the business cycle.

pre break post break

t̂-stat p-value t̂-stat p-value

US
credit 2.64 0.004 6.48 0.000

housing 0.82 0.207 5.05 0.000

UK
credit 2.27 0.012 3.97 0.000

housing 3.01 0.001 1.66 0.049

GER
credit 0.96 0.169 − −

housing 3.17 0.001 3.54 0.000

Notes: The approximate amplitude is defined as the spectral mass in the symmetric frequency band

with a length of about π

20
around λmax, where λmax is the frequency where the spectral density has

its unique maximum. t̂-stat represents the estimated value of the t-statistic of a one-sided two-sample

t-test. By ”−” it is indicated that we could not obtain finite bootstrap standard deviations which

implies that it is not possible to conduct a t-test.

Next, we investigate whether the financial cycle has become more important over time. We address this

question by testing whether the main cycle’s amplitude has increased, the contribution of longer-term

cycles to the overall variation of the process has increased, and the variance contribution of shorter-

term (business) cycles has decreased. As can be seen from Table 5, the t-tests strongly support the

alternative hypothesis of a significant increase for the US using both the credit and housing series.

Concerning the UK, the t-test results deliver a significant result only for the credit series. Germany

seems again to be characterized by different dynamics, as the main cycle’s amplitude of the house

price series does not appear to have changed between the two time periods.

We also find strong statistical evidence supporting the idea that the contribution of longer-term cycles

in the dynamics of credit and housing has increased over time, both for the US and the UK, but much
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Table 5: Has the Importance of the Financial Cycle Increased Over Time?

H0: The relevance of longer-term cycles has not changed over time.

That is, the variance contribution. . .

. . . of the main cycle’s amplitude . . . of longer-term cycles . . . of shorter-term cycles

remained constant over time. (8 to 40 years) remained (2 to 8 years) remained

constant over time. constant over time.

H1: Longer-term cycles became more important in recent decades.

That is, the variance contribution. . .

. . . of the main cycle’s amplitude . . . of longer-term . . . of shorter-term

increased over time. cycles (8 to 40 years) cycles (2 to 8 years)

increased over time. decreased over time.

t̂-stat p-value t̂-stat p-value t̂-stat p-value

US
credit 5.38 0.000 4.25 0.000 2.72 0.003

housing 2.18 0.015 4.16 0.000 3.39 0.000

UK
credit 2.28 0.011 4.51 0.000 5.03 0.000

housing −0.59 0.722 4.86 0.000 5.10 0.000

GER
credit − − − − − −

housing 0.06 0.478 1.52 0.065 2.04 0.021

Notes: The approximate amplitude is defined as the spectral mass in the symmetric frequency band with a length

of about π

20
around λmax, where λmax is the frequency where the spectral density has its unique maximum. t̂-stat

represents the estimated value of the t-statistic of a one-sided two-sample t-test. By ”−” it is indicated that we could

not obtain finite bootstrap standard deviations which implies that it is not possible to conduct a t-test.

less significantly for Germany. This is further supported by the test results in the last two columns

in Table 5 which suggest that the variance contribution of shorter-term cycles in credit and housing

has significantly decreased in the US and UK, and, to a lesser extent, in Germany. Put differently,

these results indicate a significant change of the overall shape of the spectral density over time. In

more recent times, the largest share of spectral mass of the credit and housing series in the US and

UK is clearly located at cycles longer than the business cycle. This, however, does not seem to hold

to the same extent for the house price dynamics in Germany, but where nonetheless medium-term

frequencies seem to have become somewhat more relevant in the second period.
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4 Concluding Remarks

What are the main characteristics of the financial cycle?15 Is it a medium-term phenomenon, meaning

it is longer than the business cycle, as it has been suggested in the literature, or does it feature similar

characteristics as the business cycle? Has its importance increased over time? In this paper we

intended to shed some light on these and other related questions. We do that by estimating the data

generating processes of the financial and business cycle variables by means of econometric methods,

which is in contrast to the more descriptive approaches pursued e.g. by Claessens et al. (2011, 2012),

and Drehmann et al. (2012). In particular, we made use of the correspondence between the time

domain and the frequency domain representation of linear stochastic processes to obtain a complete

characterization of the series’ DGP. This allows us to take into account all possible cycles without a

priori assuming different ranges for financial and business cycles. Applying bootstrap methods, we

are able to statistically test the characteristics of the financial cycle.

In a nutshell, our results concerning the United States, United Kingdom and Germany can be sum-

marized as follows. First, while the financial and the business cycles had a similar length in the first

subsamples of our analysis of about 7 years, since 1985 or 1990 (in Germany) the duration of the finan-

cial cycle has dramatically increased. This has indeed turned the financial cycle into a medium-term

phenomenon, operating at cycles with an average length of about 15 years. We also found strong sta-

tistical evidence supporting the notion that financial cycles have also larger amplitudes than business

cycles, as suggested in particular by Drehmann et al. (2012) and Borio (2014).

While many of these features have been previously addressed in the literature, the strong statistical

significance of our findings highlight the relevance of these issues not only from a pure theoretical,

but also from a much more policy-oriented perspective. They indicate a significant decoupling of the

dynamics of the financial cycle (measured here in terms of credit and housing dynamics) from those of

the business cycle in the recent decades. While both cycles seem to have been closely related in terms

of length and amplitude before the financial liberalization process of the 1980s, the financial cycle has

significantly changed ever since, featuring now long and persistent upward movements followed – as

the recent financial crisis has shown – by abrupt downward corrections.

A straightforward and particularly interesting extension of our univariate approach would be a multi-

variate setting, which is suited to capture the dynamic interaction between real and financial variables.

Therefore, using vector autoregressive models and transforming them into the frequency domain gives

the possibility to investigate relations at different frequency ranges. We intend to do this in further

research.

15At the theoretical level the notion of the existence of such an underlying “financial cycle” is not new: Seminal works

by Fisher (1933), Keynes (1936), von Mises (1952), Hayek (1933) and Minsky (1982) stressed the inherently procyclical

behavior of the financial system and the role of extrapolative behavior by financial market participants.
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Appendix A Data Sources and Definitions

All series are measured in logs and deflated using the consumer price index. All series are normalized

by their respective value in 1985Q1 to ensure comparability of the units. We obtain annual growth

rates by taking annual differences of the time series. The only exception is the credit to GDP ratio

which is expressed in percentage points.

Table 6: Definition and Sources of the Data

Source Identifier Notes

GDP OECD.Stat CARSA national currency

CPI OECD.Stat Consumer Prices national index

credit Datastream USBLCAPAA, UKBLCAPAA, national currency, credit to private

BDBLCAPAA non-financial sector from all sectors

housing OECD.Stat House Prices national index

equity IMF
USQ62...F, UK62...F,

BDQ62.EPC
national index
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Figure 7: Real GDP and Financial Cycle Proxy Variables in the United States. All series are log

levels excepting the credit to GDP ratio, which represents in percentage points. The vertical gray line

shows the sample split.
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levels excepting the credit to GDP ratio, which represents in percentage points. The vertical gray line

shows the sample split.
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Figure 9: Real GDP and Financial Cycle Proxy Variables in Germany. All series are log levels

excepting the credit to GDP ratio, which represents in percentage points. The vertical gray line shows

the sample split.
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Appendix B Time Domain Results: Estimated ARMA Models
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Table 7: ARMA Models for the US

parameters GDP credit credit to GDP housing equity

total pre post total pre post total pre post total pre post total pre post

const 0.028 0.031 0.022 0.039 0.044 0.038 −1.180 0.239 −1.795 0.009 0.001 0.010 0.050 −0.049 0.043

(18.7) (21.3) (2.95) (24.2) (5.10) (10.5) (−0.50) (1.40) (−0.43) (4.15) (0.14) (2.48) (2.04) (−5.77) (3.25)

AR(1) 1.202 1.144 1.318 1.185 1.237 1.170 1.251 0.873 1.381 1.373 1.130 1.664 1.350 1.302 1.285

(29.9) (19.2) (27.1) (79.7) (19.6) (47.3) (28.8) (18.4) (35.8) (18.7) (17.2) (18.5) (20.8) (13.5) (14.3)

AR(2) −0.332 −0.827 −0.365 −0.410 −0.333

(−2.58) (−4.66) (−5.64) (−4.33) (−3.77)

AR(3) −0.230 −0.224 −0.328 −0.346 −0.600 −0.402 0.270 0.484

(−5.76) (−4.37) (−6.64) (−5.69) (−6.49) (−10.3) (2.10) (2.68)

AR(4) 0.939 −0.342 −0.201 −0.345

(62.68) (−4.64) (−3.28) (−3.69)

AR(5) −0.222 −0.201 −0.611

(−14.9) (−7.92) (−10.2)

MA(3) 0.403 0.360

(3.68) (3.95)

MA(4) −0.978 −0.985 −1.144 −0.904 −0.374 −0.929 −0.429 0.212 −0.973 −0.983 −0.932 −0.977 −0.943 −0.972

(−92.2) (−42.0) (−18.1) (−29.5) (−3.75) (−31.6) (−5.65) (2.76) (−37.2) (−29.5) (−25.9) (−65.2) (−47.2) (−60.5)

MA(5) 0.241 0.487 −0.516

(2.21) (5.95) (−8.47)

MA(6) 0.302 −0.185

(2.95) (−2.75)

MA(7) −0.429

(−5.87)

MA(12) 0.182

(3.02)

diagnostics

Chow 3.37 1.74 3.66 3.97 3.38

(0.01) (0.14) (0.00) (0.00) (0.01)

LM(4) 0.75 0.89 0.35 0.82 0.16 0.21 0.47 0.62 0.28 0.14 0.69 0.83 0.94 0.51 0.99

LM(8) 0.36 0.46 0.42 0.53 0.38 0.14 0.79 0.94 0.54 0.11 0.63 0.69 0.81 0.44 0.99

LM(12) 0.13 0.34 0.17 0.22 0.44 0.35 0.57 0.68 0.63 0.14 0.57 0.56 0.71 0.26 0.93

Notes: The terms pre and post refer to the sample periods 1960Q1 until 1984Q4 and 1985Q1 until 2013Q4, respectively. Total denotes the full sample period. Below the parameter estimates t-values

are given in parentheses. Chow tests with p-values in parentheses refer to a break in parameters at 1985Q1. For LM(k) tests of no autocorrelation up to order k the table shows p-values.
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Table 8: ARMA Models for the UK

parameters GDP credit credit to GDP housing equity

total pre post total pre post total pre post total pre post total pre post

const 0.024 0.021 0.023 0.057 0.043 0.037 −4.367 −0.094 −1.538 0.037 0.001 0.039 0.032 −0.024 0.023

(23.3) (5.95) (10.8) (12.7) (2.71) (3.71) (−2.87) (−0.07) (−0.37) (7.24) (0.16) (4.64) (3.03) (−0.83) (3.05)

AR(1) 1.101 0.941 1.464 1.113 1.174 1.060 1.099 1.046 1.151 1.480 1.321 1.573 1.309 1.372 1.206

(32.0) (27.2) (17.2) (36.4) (39.6) (19.6) (37.3) (17.8) (36.0) (36.9) (33.0) (17.1) (18.0) (11.8) (13.3)

AR(2) −0.291 −0.291 −0.400 −0.571 −0.289

(−1.98) (−1.65) (−3.37) (−3.05) (−3.32)

AR(3) −0.198 −0.596 −0.446 −0.300 0.166 0.446

(−2.33) (−8.03) (−12.1) (−3.17) (1.37) (2.32)

AR(4) −0.135 0.267 0.479 −0.235 −0.596

(−3.82) (2.28) (4.43) (−1.98) (−3.19)

AR(5) −0.400 −0.192 −0.137 −0.589 −0.120 −0.192 0.095 0.123 0.280

(−4.00) (−6.34) (−2.29) (−7.04) (−2.01) (−5.99) (2.27) (1.70) (2.40)

MA(4) −0.922 −0.946 −0.986 −1.148 −0.954 −0.930 −0.474 −1.120 −0.956 −1.261 −0.979 −0.939 −0.979

(−113.6) (−34.9) (−81.8) (−14.9) (−39.2) (−30.4) (−5.33) (−12.3) (−41.1) (−12.6) (−74.5) (−30.1) (−38.6)

MA(6) −0.229 −0.246

(−3.47) (−2.42)

MA(8) −0.237 0.150 0.156 0.317

(−3.40) (3.02) (1.75) (3.33)

MA(12) 0.174 −0.832

(2.41) (−28.0)

diagnostics

Chow 1.86 5.54 1.92 3.24 1.90

(0.12) (0.00) (0.07) (0.01) (0.07)

LM(4) 0.83 0.62 0.77 0.88 0.74 0.44 0.83 0.75 0.72 0.15 0.98 0.99 0.95 0.40 0.70

LM(8) 0.39 0.39 0.85 0.41 0.74 0.78 0.83 0.81 0.52 0.18 0.99 0.57 0.85 0.82 0.92

LM(12) 0.43 0.40 0.56 0.51 0.81 0.84 0.71 0.31 0.36 0.30 0.99 0.87 0.94 0.94 0.98

Notes: The terms pre and post refer to the sample periods 1960Q1 until 1984Q4 and 1985Q1 until 2013Q4, respectively. Total denotes the full sample period. Below the parameter estimates t-values

are given in parentheses. Chow tests with p-values in parentheses refer to a break in parameters at 1985Q1. For LM(k) tests of no autocorrelation up to order k the table shows p-values.
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Table 9: ARMA Models for Germany

parameters GDP credit credit to GDP housing equity

total pre post total pre post total pre post total pre post total pre post

const 0.017 0.022 0.013 −0.159 0.035 −0.047 − −2.168 −0.933 −0.005 −0.001 −0.004 0.038 0.065 0.029

(8.59) (14.1) (14.2) (−0.16) (15.0) (−0.83) (−0.71) (−0.10) (−1.93) (−0.30) (−0.31) (5.12) (1.66) (2.06)

AR(1) 1.032 0.820 1.201 1.091 1.159 1.018 0.999 0.586 1.094 1.545 1.769 1.440 1.233 1.076 1.291

(24.7) (12.2) (12.4) (28.2) (16.8) (22.3) (55.4) (5.11) (19.7) (19.9) (23.0) (14.0) (16.6) (16.9) (13.2)

AR(2) −0.363 0.298 −0.429 −0.811 −0.337 −0.307 −0.386

(−3.80) (2.53) (−3.06) (−10.7) (−2.54) (−4.17) (3.97)

AR(3) −0.223 −0.139

(−3.75) (−1.77)

AR(4) −0.072 −0.092 −0.725 −0.518 −0.136

(−1.72) (−2.37) (−8.61) (−3.09) (−2.16)

AR(5) 0.688 0.396 −0.116

(9.74) (2.39) (−2.80)

MA(4) −0.751 −0.615 −0.782 −0.647 −0.912 0.402 0.520 0.764 −0.736 −0.751 −0.905 −0.969 −0.923 −0.957

(−9.90) (−5.34) (−6.94) (−8.86) (−28.6) (5.74) (5.11) (5.93) (−10.9) (−7.59) (−24.5) (−74.5) (−21.3) (−45.0)

MA(8) −0.228 −0.302 −0.182 −0.239 −0.907 0.814

(−3.03) (−2.68) (−1.63) (−3.18) (−38.2) (19.3)

MA(12) 0.563 −0.198 −0.183

(6.28) (-3.09) (-1.87)

diagnostics

Chow 3.63 3.68 1.74 1.22 0.30

(0.00) (0.00) (0.18) (0.30) (0.88)

LM(4) 0.96 0.80 0.15 0.88 0.66 0.32 0.43 0.76 0.83 0.57 0.74 0.58 0.57 0.31 0.86

LM(8) 0.28 0.90 0.58 0.20 0.86 0.19 0.43 0.40 0.92 0.59 0.95 0.75 0.89 0.73 0.87

LM(12) 0.42 0.97 0.86 0.38 0.92 0.31 0.54 0.50 0.59 0.76 0.81 0.81 0.78 0.57 0.80

Notes: The terms pre and post refer to the sample periods 1970Q1 until 1990Q1 and 1990Q2 until 2013Q4, respectively. Total denotes the full sample period. Below the parameter estimates t-values

are given in parentheses. Chow tests with p-values in parentheses refer to a break in parameters at 1990Q2. For LM(k) tests of no autocorrelation up to order k the table shows p-values.
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