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Note on Higher-Order Statistics for the Pruned-State-Space of
nonlinear DSGE models

Willi Mutschler∗

Center for Quantitative Economics, Westfälische Wilhelms-Universität Münster

Abstract

This note shows how to derive unconditional moments, cumulants and polyspectra of

order higher than two for the Pruned-State-Space of nonlinear DSGE models. Useful

Matrix tools and computational aspects are also discussed.

Keywords: higher-order moments, cumulants, polyspectra, nonlinear DSGE, pruning
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1. Introduction

Since a Gaussian process is completely characterized by its first two moments, most

linear DSGE models focus on Gaussian innovations for simplicity. If, however, we relax

linearity or use non-Gaussian innovations, it is natural to analyze whether we are able to

exploit information from higher-order moments for the identification and estimation of

parameters. Researchers in mathematics, statistics and signal processing have developed

tools, called higher-order statistics (HOS), to solve detection, estimation and identifica-

tion problems when the noise source is non-Gaussian or we are faced with nonlinearities;

however, applications in the macroeconometric literature are rather sparse.1 The basic

tools of HOS are cumulants, which are defined as the coefficients in the Taylor expansion

∗Corresponding author. Center for Quantitative Economics, Westfälische Wilhelms-Universität
Münster, Am Stadtgraben 9, 48143 Münster, Tel.: +49-251-83-22914, Fax: +49-251-83-22012, Email:
willi.mutschler@wiwi.uni-muenster.de.

1For introductory literature and tutorials see the textbooks by Brillinger (2001), Nikias & Petropulu

(1993), Priestley (1983) and the references therein. Most theoretical and applied econometric literature

is either concerned with tests on normality (e.g. Bao (2013); Rusticelli et al. (2008)) or method of

moments estimation (e.g. Dagenais & Dagenais (1997); Erickson & Whited (2002)).
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of the log moment generating function in the time-domain; and polyspectra, which are

defined as Fourier transformations of the cumulants in the frequency-domain. In this

note, we derive closed-form expressions for unconditional third- and fourth-order mo-

ments, cumulants and corresponding polyspectra for nonlinear or non-Gaussian DSGE

models. We limit ourselves to fourth-order statistics, since third-order cumulants and the

bispectrum capture nonlinearities (or non-Gaussianity) for a skewed process, whereas the

fourth-order cumulants and the trispectrum can be used in the case of a non-Gaussian

symmetric probability distribution. Regarding the approximation of the nonlinear DSGE

models we focus on the pruning scheme proposed by Kim et al. (2008) and operationalized

by Andreasen et al. (2014), since the Pruned-State-Space (PSS) is a linear, stationary

and ergodic state-space system.2 In the PSS, however, Gaussian innovations do not im-

ply Gaussian likelihood, leaving scope for higher-order statistics to capture information

from nonlinearities and non-Gaussianity.

The ideas and procedures derived are useful both from a theoretical and applied point

of view. Theoretically, this paper adds to the literature on nonlinear DSGE models

by establishing procedures to compute analytically unconditional moments, cumulants

and polyspectra for higher-order approximations. An applied researcher may thus use

information from higher-order statistics in a moment matching estimation approach or a

particle likelihood-type estimation. Our Matlab-code is model-independent and can be

found on the homepage of the author.

2. Pruned-State-Space system

Let Et be the expectation operator conditional on information available at time t, then

Etf (xt+1, yt+1, xt, yt|θ) = 0 is called the general DSGE model with deep parameters θ,

states xt, controls yt, stochastic innovations ut, and perturbation parameter σ, which can

be cast into a nonlinear first-order system of expectational difference equations f . The

solution of such rational expectation models is characterized by so-called policy-functions,

2Pruning may seem an ad-hoc procedure, however, it can also be theoretically founded as a Taylor

expansion in the perturbation parameter (Johnston et al., 2014; Lombardo & Uhlig, 2014) or on an

infinite moving average representation (Lan & Meyer-Gohde, 2013).
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g and h, that solve (at least approximately) the system of equations f .

xt+1 = h(xt, ut+1, σ|θ), (1)

yt+1 = g(xt, ut+1, σ|θ) (2)

For the sake of notation, we assume that all control variables are observable. The vector

of innovations ut is temporally iid with E(ut) = 0 and finite covariance matrix E(utu
′
t) =:

Σ = σ2ηη′; thus, σ is set to be dependent on the standard deviation of one of the shocks,

while scaling all other variances and cross-correlations through η accordingly. Further,

ut has finite higher-order moments depending on the order of approximation.3 Apart

from the existence of moments we do not need to impose any distributional assumptions.

In our Matlab we implement both the Gaussian as well as the Student-t distribution, as

long as the moments exist.

The approximations of (1) and (1) are a straightforward application of Taylor se-

ries expansions in the state variables around the non-stochastic steady-state. However,

simulation studies show that due to artificial fixed points, higher-order approximations

may generate explosive time-paths even though the linear approximation is stable. Thus,

the model may neither be stationary nor imply an ergodic probability distribution, both

assumptions are essential for calibration, identification and estimation purposes. Thus,

Kim et al. (2008) propose the pruning scheme, in which one leaves out terms in the

solution that have higher-order effects than the approximation order. For instance, given

a second-order approximation, we decompose the state vector into first-order (x̂ft ) and

second-order (x̂st ) effects (x̂t = x̂ft + x̂st ), where x̂t = xt − x̄ and ŷt = yt − ȳ denote de-

viations from steady-state, and set up the law of motions for these variables preserving

3For a second-order approximation we require at least finite eighth moments. A weaker assumption

than iid is to consider ut being an eighth-order white noise process, which implies yt being stationary

of order four, see Subba Rao & Gabr (1984) for a definition of n-th order stationarity.
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only effects up to second-order (see Andreasen et al. (2014) for details):

x̂ft+1 = hxx̂
f
t + huut+1 (3)

x̂st+1 = hxx̂
s
t +

1

2
Hxx

(
x̂ft ⊗ x̂

f
t

)
+

1

2
Huu (ut+1 ⊗ ut+1)

+
1

2
Hxu

(
x̂ft ⊗ ut+1

)
+

1

2
Hux

(
ut+1 ⊗ x̂ft

)
+

1

2
hσσσ

2
(4)

ŷt+1 = gx(x̂ft + x̂st ) + guut+1 +
1

2
Gxx

(
x̂ft ⊗ x̂

f
t

)
+

1

2
Guu (ut+1 ⊗ ut+1)

+
1

2
Gxu

(
x̂ft ⊗ ut+1

)
+

1

2
Gux

(
ut+1 ⊗ x̂ft

)
+

1

2
gσσσ

2
(5)

with Hxx being an nx × n2
x matrix containing all second-order terms for the i-th state

variable in the i-th row, whereas Gxx is an ny × n2
x matrix containing all second-order

terms for the i-th control variable in the i-th row. Hxu, Hux, Gxu and Gux are accordingly

shaped for the cross-terms of states and shocks, and Huu and Guu contain the second-

order terms for the product of shocks. Thus, terms containing third-order and fourth-

order effects are left out, since they are higher than the approximation order. Also there

are no second-order effects in ut+1. Further gx and gu are the gradients of g with respect

to xt and ut+1 respectively. The same notation applies to hx and hu. All matrices are

evaluated at the non-stochastic steady-state.

Extending the state vector to zt := [(x̂ft )′, (x̂st )
′, (x̂ft ⊗ x̂

f
t )′]′, then equations (3), (4)

and (5) can be rewritten as a linear system of equations called the Pruned-State-Space:4

zt+1 = c+Azt +Bξt+1 (6)

ŷt+1 = d+ Czt +Dξt+1 (7)

4This approach also works for higher-order approximations. That is, appending the state vector

accordingly, we are always able to establish a system linear in the extended state vector. See Andreasen

et al. (2014) for the corresponding matrices of the third-order PSS. It has finite fourth moments, if ut

has finite twelfth moments.
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where

ξt+1 :=


ut+1

ut+1 ⊗ ut+1 − vec(Σ)

ut+1 ⊗ xft
xft ⊗ ut+1

 ,
c :=


0

1
2hσσσ

2 + 1
2Huuvec(Σ)

(hu ⊗ hu)vec(Σ)

 ,
d :=

[
1
2gσσσ

2 + 1
2Guuvec(Σ)

]
,

A :=


hx 0 0

0 hx
1
2Hxx

0 0 hx ⊗ hx

 , B :=


hu 0 0 0

0 1
2Huu

1
2Hux

1
2Hxu

0 hu ⊗ hu hu ⊗ hx hx ⊗ hu

 ,
C :=

[
gx gx

1
2Gxx

]
, D :=

[
gu

1
2Guu

1
2Gux

1
2Gxu

]
.

Thus, conceptually we work in a time-invariant linear state-space system. It can be shown

that if the first-order approximation is stable, i.e. all Eigenvalues of hx have modulus less

than one, then the Pruned-State-Space is also stable. In other words, all higher-order

terms are unique and all Eigenvalues of A have modulus less than one. Further, if ut has

finite fourth moments, then the Pruned-State-Space system has finite second moments,

see Andreasen et al. (2014) for closed-form expressions. We will show below that if ut has

finite eighth moments, then the Pruned-State-Space system has finite fourth moments.

Note, that apart from the existence of moments and temporal independence we do not

need to impose any distributional assumptions on ut. Even in the (common) case of

ut being normally distributed, ξt is clearly non-Gaussian, therefore leaving scope for

higher-order moments to contain additional information.

3. Unconditional moments, cumulants and polyspectra up to fourth-order

The mean of the extended state vector is equal to

µz := E(zt) = (Inz −A)−1c. (8)

with nz = 2nx + n2
x. Since there is a linear relationship between yt and zt−1 in (7), we

get

µy := E(yt) = ȳ + Cµz + d. (9)
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For the derivation of moments, cumulants and spectra we will work with zero-mean

processes to simplify notation and expressions. Therefore, we denote z̃t := zt − µz and

ỹt := yt − µy.

Formally, the kth (k=2,3,4)-order cumulants of the kth-order stationary, mean-zero

vector process z̃t (t1, t2, t3 ≥ 0) are given by the nkz vectors Ck,z as

C2,z(t1) := E[z̃0 ⊗ z̃t1 ],

C3,z(t1, t2) := E[z̃0 ⊗ z̃t1 ⊗ z̃t2 ],

C4,z(t1, t2, t3) := E[z̃0 ⊗ z̃t1 ⊗ z̃t2 ⊗ z̃t3 ]− C2,z(t1)⊗ C2,z(t2 − t3)

− P ′nz (C2,z(t2)⊗ C2,z(t3 − t1))− Pnz (C2,z(t3)⊗ C2,z(t1 − t2)) ,

where Pnz = Inz ⊗ Un2
z×nz and Un2

z×nz is a (n3
z × n3

z) permutation matrix with unity

entries in elements [(i − 1)nz + j, (j − 1)n2
z], i = 1, . . . , n2

z and j = 1, . . . , nz, and zeros

else. Here we adopt the compact notation of Swami & Mendel (1990) and store all

product-moments of a mean-zero vector-valued process in a vector using Kronecker-

products. For example the second moments of z̃t can either be stored in a nz×nz matrix

E(z̃t ·z̃′t) := Σz or in the n2
z×1 vector E(z̃t⊗z̃t) = vec(Σz); this idea naturally carries over

to higher orders. There is an intimate relationship between moments and cumulants: if

two probability distributions have identical moments, they will have identical cumulants

as well. In particular, the second cumulant is equal to the (auto-) covariance matrix

and the third cumulant to the (auto-) coskewness matrix. The fourth-order cumulant,

however, is the fourth-order product moment ((auto-) cokurtosis matrix) less the second-

order moments. In general, for cumulants higher than three, we need knowledge of

lower-order moments or cumulants. Nevertheless, using cumulants is for several reasons

preferable: For instance, all cumulants of order three and above of a Gaussian process are

zero, whereas the same holds true only for odd product-moments. Further, the cumulant

of two statistically independent random processes equals the sum of the cumulants of the

individual processes (which is not true for higher-order moments). And lastly, cumulants

of a white-noise sequence, such as ξt, are Kronecker-delta functions, therefore, their

polyspectra are flat (Mendel, 1991).5

5For a mathematical discussion of using cumulants instead of moments in terms of ergodicity and

proper functions, see Brillinger (1965).
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Assuming that Ck,z(t1, . . . , tk−1) is absolutely summable the kth-order polyspectrum

Sk,z is defined as the (k-1)-dimensional Fourier transform of the kth-order cumulant

Sk,z(ω1, . . . , ωk−1) :=

∞∑
t1=−∞

· · ·
∞∑

tk−1=−∞
Ck,z(t1, . . . , tk−1) · exp{−i

k−1∑
j=1

ωjtj},

with ωj ∈ [−π;π] and imaginary i, see Swami et al. (1994) for further details. The second-

, third- and fourth-order spectra are called power spectrum, bispectrum and trispectrum,

respectively. The power spectrum corresponds to the well-studied spectral density which

is a decomposition of the autocorrelation structure of the underlying process (Wiener-

Khinchin theorem). The bispectrum can be viewed as a decomposition of the third

moments (auto- and cross-skewness) over frequency and is useful for considering systems

with asymmetric nonlinearities. In studying symmetric nonlinearities the trispectrum is

a more powerful tool, as it represents a decomposition of (auto- and cross-) kurtosis over

frequency. Further, both the bi- and trispectrum will be equal to zero for a Gaussian

process, thus, departures from Gaussianity will be reflected in these higher-order spectra.

Standard results from VAR(1) systems and insights from HOS can be used regarding

the computation of unconditional cumulants and polyspectra in the PSS. First, it is

trivial to show that ξt is zero-mean white-noise with finite moments, since it is a function

of x̂ft , ut+1 and ut+1 ⊗ ut+1. The kth-order cumulants of ξt are

Ck,ξ(t1, . . . , tk−1) =

Γk,ξ if t1 = · · · = tk−1 = 0,

0 otherwise,

and corresponding polyspectra Sk,ξ(ω1, . . . , ωk−1) = Γk,ξ are flat. Regarding the com-

putation of Γk,ξ see also Appendix A. There we show that even if the underlying shock

process ut is Gaussian, ξt is not normally distributed, since its higher-order cumulants

are not equal to zero.

Letting [⊗kj=1X(j)] = X(1)⊗X(2)⊗ · · · ⊗X(k) for objects X(j), Swami & Mendel

(1990) show that given a zero-mean stationary, time-invariant linear state-space system,

the cumulants of the state vector z̃t

Ck,z(t1, . . . , tk−1) = [⊗k−1
j=0A

tj ] · Ck,z(0, . . . , 0)

7



are given in terms of their zero-lag cumulants

Ck,z(0, . . . , 0) = (Inkz − [⊗kj=1A])−1 · [⊗kj=1B] · Γk,ξ.

which can be efficiently computed using iterative algorithms for generalized Sylvester

equations, see Appendix B. Further there is a lot of symmetry (by using appropriate

permutation matrices): in particular, all second-order cumulants can be computed from

t1 > 0, all third-order cumulants from t1 ≥ t2 ≥ 0 and all fourth-order cumulants from

t1 ≥ t2 ≥ t3 ≥ 0. Since there is a linear relationship between yt and zt−1 in (7), we get

closed-form expressions for the kth-order cumulants of our observables (after substracting

the mean). That is, for tj > 0

Ck,y(0, . . . , 0) = [⊗kj=1C]Ck,z(0, . . . , 0) + [⊗kj=1D]Γk,ξ (10)

Ck,y(t1, . . . , tk−1) = [⊗kj=1C]Ck,z(t1, . . . , tk−1) (11)

For the polyspectra consider the vector-moving-average representation (VMA) of z̃t

z̃t = zt − µz =

∞∑
j=0

AjBξt−j .

Using equation (7) and lag-operator L, we get the VMA for our controls

ỹt = yt − ȳ − Cµz − d =

∞∑
j=0

CAjBξt−j−1 +Dξt = Hξ(L
−1)ξt

with transfer function Hξ(z) = D+C (zInz −A)
−1
B for z ∈ C. Setting zj = e−iωj , with

imaginary i and ωj ∈ [−π;π], we obtain the Fourier transformations of the cumulants of

ỹt, i.e. the power spectrum S2,y, bispectrum S3,y and trispectrum S4,y:

S2,y(z1) =
[
H(z−1

1 )⊗H(z1)
]

Γ2,ξ (12)

S3,y(z1, z2) =
[
H(z−1

1 · z
−1
2 )⊗H(z1)⊗H(z2)

]
Γ3,ξ (13)

S4,y(z1, z2, z3) =
[
H(z−1

1 · z
−1
2 · z

−1
3 )⊗H(z1)⊗H(z2)⊗H(z3)

]
Γ4,ξ. (14)

4. Conclusion

Whenever we are confronted with nonlinearities or non-Gaussian stochastic innova-

tions, it is natural to analyze whether we are able to exploit information from higher-

order moments for the identification and estimation of parameters. In this note, we
8



derive expressions for unconditional moments, cumulants and polyspectra of the Pruned-

State-Space representation of a nonlinear DSGE model. In particular, we see that an

approximation to higher orders yields nonlinearities and non-Gaussian innovations. Since

higher-order cumulants and polyspectra measure the departure from Gaussianity, these

expressions can be used to gain additional information from higher-order statistics. For

instance, Mutschler (2015) shows how to incorporate these expressions into formal iden-

tifiability criteria. Even though our exposition is based on the second-order, an extension

to higher-orders is straightforward, since the Pruned-State-Space always results in a sys-

tem which is linear in an extended state vector. The expressions can also be used for a

linear DSGE model with non-Gaussian innovations.
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Appendix A. Product moments of innovations

Given a second-order approximation, the innovations are defined as the nξ × 1 vector

ξt+1 =
(
u′t+1 (ut+1 ⊗ ut+1 − vec(Σ))′ (ut+1 ⊗ xft )′ (xft ⊗ ut+1)′

)′
with nξ = nu + n2

u + 2nxnu elements. We are interested in product moments M2,ξ :=

E(ξt ⊗ ξt), M3,ξ := E(ξt ⊗ ξt ⊗ ξt) and M4,ξ := E(ξt ⊗ ξt ⊗ ξt ⊗ ξt) with n2
ξ , n

3
ξ and

n4
ξ elements, respectively. In order to compute these objects efficiently, we first reduce

the dimension of ξt, since it has some duplicate elements. That is, we compute product-

moments for the nξ̃ = nu + nu(nu + 1)/2 + nunx vector

ξ̃t+1 :=
(
u′t+1 (DP+

nu(ut+1 ⊗ ut+1 − vec(Σ)))′ (ut+1 ⊗ xft )′
)′

since

ξt =


I 0 0

0 DPnu 0

0 0 I

0 0 Knx,nu

 ξ̃t := Fξ · ξ̃t
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with DP+
nu being the Moore-Penrose-Inverse of the duplication matrix DPnu and Knx,nu

the commutation matrix such that Knx,nu(ut+1 ⊗ xft ) = (xft ⊗ ut+1). Then we have

Mk,ξ := [⊗kj=1Fξ] ·Mk,ξ̃

denoting the k-th (k=2,3,4)-order product moment of ξ̃t. Since [⊗kj=1Fξ] does not change

with θ, we can focus on Mk,ξ̃. Mk,ξ̃, however, contains also many duplicate elements.

Denote with M̃k,ξ̃ the unique elements of Mk,ξ̃, we have the following relationships:

M2,ξ̃ = DPnξ̃ · M̃2,ξ̃, M3,ξ̃ = TPnξ̃ · M̃3,ξ̃, M4,ξ̃ = QPnξ̃ · M̃4,ξ̃,

with the duplication matrix DPnξ̃ defined by Magnus & Neudecker (1999), and the

triplication matrix TPnξ̃ and quadruplication matrix QPnξ̃ similarly defined by Meijer

(2005).6 Note that these matrices are independent of θ and their Moore-Penrose-Inverse

always exists, e.g. (QP ′nξ̃QPnξ̃)
−1QP ′nξ̃ ·M4,ξ̃ = M̃4,ξ̃. Further, DPnξ̃ , TPnξ̃ and QPnξ̃

are constructed such that there is a unique ordering in M̃k,ξ̃, see Meijer (2005) for an

example and more details.

To compute the product-moments of ξ̃t symbolically we therefore use the following

procedure in Matlab given the number of shocks nu, the number of state variables nx

and the order of product moments k=2,3,4.

1. Define ut+1 = (ut+1,1, . . . ut+1,nu)′, xft = (xft,1, . . . x
f
t,nx)′ and Σu = [sigij ]nu×nu

symbolically with i, j = 1, . . . nu. Set up

ξ̃t = (u′t, DP
+
nu(ut+1 ⊗ ut+1 − vec(Σ))′, (ut+1 ⊗ xft )′)′.

2. Get all integer permutations of [i1, i2, . . . inξ̃ ] that sum up to k, with ij = 1, . . . , k

and j = 1, . . . , nξ̃. Sort them in the ordering of Meijer (2005).

3. For each permutation [i1, i2, . . . inξ̃ ] evaluate symbolically

E
[
(ξ̃1,t)

i1 · (ξ̃2,t)i2 · . . . (ξ̃nξ̃,t)
in
ξ̃

]
and store it in the vector M̃k,ξ.

6Actually M̃k,ξ̃ has some further duplicate terms for nu, nx > 1 due to higher-order cross terms of

ut+1 and xft , which we can further reduce using indices from the unique function of Matlab.
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4. Optionally: Use Matlab’s unique function to further reduce the dimension of M̃k,ξ.

The expressions we get in step 3 contain terms of the form

const. · E[(u1,t+1)iu1 · (u2,t+1)iu2 · . · (unu,t+1)iunu ] · E[(xf1,t)
ix1 · (xf2,t)ix2 · . · (x

f
nx,t)

inxx ],

that is joint product moments of the elements of ut+1 and xft (keeping in mind that xft

and ut+1 are independent due to the temporal independence of ut). For instance, for

nu = nx = 1 the third-order product moment of ξ̃t is equal to

M̃3,ξ = vec


E



u3 u4 − σ2
uu

2

u3x σ4
uu− 2σ2

uu
3 + u5

xu4 − σ2
uxu

2 u3x2

−σ6
u + 3σ4

uu
2 − 3σ2

uu
4 + u6 xσ4

uu− 2xσ2
uu

3 + xu5

u4x2 − σ2
uu

2x2 u3x3



′
where we dropped sub- and superscripts and E(u2) = σ2

u. Given a function that evaluates

the moment structure of xft and ut+1 either analytically or numerically, we are able

to calculate these terms individually and save them into script files. Note, that these

computations need only to be done once for a model, after that we simply evaluate

the script files numerically given model parameters θ. Our code can evaluate product

moments from the Gaussian as well as Student-t distribution.

In the case that ut is normally distributed, xft is also Gaussian with covariance matrix

Σx. Therefore, ut+1

xft

 ∼ N
0

0

 ,

Σ 0

0 Σx


is multivariate normal. All joint product moments are therefore functions of the variances

and covariances in Σ and Σx and can be computed analytically. To this end, we use the

very efficient method and Matlab function of Kan (2008) to derive these joint product

moments symbolically. For our example with nu = nx = 1 and Gaussian ut, we get the
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unique entries

M̃2,ξ =
[
σ2
u, 0, 0, 2σ4

u, 0, σ2
uσ

2
x

]′
M̃3,ξ =

[
0, 2σ4

u, 0, 0, 0, 0, 8σ6
u, 0, 2σ4

uσ
2
x, 0

]′
M̃4,ξ =

[
3σ4

u, 0, 0, 10σ6
u, 0, 3σ4

uσ
2
x, 0, 0, 0, 0, 60σ8

u, 0, 10σ6
uσ

2
x, 0, 9σ4

uσ
4
x

]′
where E(xf2

t ) = σ2
x. The cumulants can then be computed as outlined in section 3.

Since the third-order cumulant of a Gaussian process must be zero, we now see, that ξt

is clearly non-Gaussian, since its third-order cumulant is different from zero, even if the

underlying distribution for ut is Gaussian.

In the case that ut is Student-t distributed with v degrees of freedom, we rewrite ut

in terms of a Inverse-Gamma distributed variable W = v−1/2 ∼ IGAM(v/2, v/2), and a

normally distributed variable εt ∼ N(0,Σ), ut = v−1/2εt. Since W and εt are indepen-

dent, we have E(utu
′
t) = E(W )E(εtε

′
t) = v

v−2Σ. Whereas all odd product moments of

ut are zero, the even product moments (n =
∑nu
j=1 iuj is an even number) are given by

E[(u1,t)
iu1 · (u2,t)

iu2 · . · (unu,t)iunu ] = E[W
n
2 ] · E[(ε1,t)

iu1 · (ε2,t)
iu2 · . · (εnu,t)iunu ].

The first term is equal to E[Wn] = v/2
(v/2−1)...(v/2−n) and since εt is multivariate normal,

we can use Kan (2008)’s procedure and Matlab function for the second product. Similar

arguments apply to the product moments of xft , for instance the variance is given by

vec(Σx) = E[xft ⊗ x
f
t ] = E[W ]︸ ︷︷ ︸

v
v−2

·(In2
x
− hx ⊗ hx)−1(hu ⊗ hu) · E[εt ⊗ εt]︸ ︷︷ ︸

vec(Σ)

.

Thus, odd product moments are also zero, whereas even product moments can also

be computed symbolically by Kan (2008)’s procedure and Matlab function, however,

adjusted for E[Wn/2].

Appendix B. Using generalized Sylvester equations for cumulants

The zero-lag cumulants (k=2,3,4)

Ck,z = (Inkz − [⊗kj=1A])−1 · [⊗kj=1B] · Γk,ξ
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require the inversion of the big matrix
(
Inkz − [⊗kj=1A]

)
. Since Ck,z and Γk,ξ are vectors,

we can use properties of the Kronecker-product and rewrite the equations to

[ C2,z
nz×nz

] = A[ C2,z
nz×nz

]A′ +B[ Γ2,ξ
nξ×nξ

]B′,

[ C3,z
n2
z×nz

] = (A⊗A)[ C3,z
n2
z×nz

]A′ + (B ⊗B)[ Γ3,ξ
n2
ξ×nξ

]B′,

[ C4,z
n2
z×n2

z

] = (A⊗A)[ C4,z
n2
z×n2

z

](A⊗A)′ + (B ⊗B)[ Γ4,ξ
n2
ξ×n

2
ξ

](B ⊗B)′,

where [
n×m

] reshapes a n ·m vector into a n×m matrix. In other words, we reduce the

inversion problem to a generalized Sylvester equation, which can be efficiently solved.
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