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Abstract

Structural change affects the estimation of economic signals, like the underlying

growth rate or the seasonally adjusted series. An important issue, which has at-

tracted a great deal of attention also in the seasonal adjustment literature, is its

detection by an expert procedure. The general–to–specific approach to the detec-

tion of structural change, currently implemented in Autometrics via indicator sat-

uration, has proven to be both practical and effective in the context of stationary

dynamic regression models and unit–root autoregressions. By focusing on impulse–

and step–indicator saturation, we investigate via Monte Carlo simulations how this

approach performs for detecting additive outliers and level shifts in the analysis

of nonstationary seasonal time series. The reference model is the basic structural

model, featuring a local linear trend, possibly integrated of order two, stochastic

seasonality and a stationary component. Further, we apply both kinds of indicator

saturation to detect additive outliers and level shifts in the industrial production

series in five European countries.
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1 Introduction

Structural change affects the estimation of economic signals, like the underlying growth

rate or the seasonally adjusted series. An important issue is its detection by an ex-

pert procedure. Automatic outlier detection is already implemented in official seasonal

adjustment procedures, like TRAMO–SEATS (Gómez and Maravall, 1996) and X–12

ARIMA (and its enhanced version X–13 ARIMA–SEATS). Both procedures consist of two

main stages. First, the observed time series is modeled by means of a seasonal ARIMA

(SARIMA) model with possible regression effects, which may include outlier effects. In

the subsequent step, based on the identified model, the series is decomposed into differ-

ent components, e.g.trend or seasonal component, according to the so–called canonical

decomposition (TRAMO–SEATS) or by using a cascade filter (X–12 ARIMA). Outlier

detection is carried out in the first stage and follows a specific–to–general approach based

on sequential addition (potential outliers are identified one after the other), followed by

backward deletion.

In this paper, we take a new look at the detection of structural change in seasonal

economic time series. In particular, we consider the structural time series approach pro-

posed by Harvey (1989) and West and Harrison (1997), according to which a parametric

model for the series is directly formulated in terms of unobserved components. The ref-

erence model for the adjustment purpose is the basic structural model (BSM), proposed

by Harvey and Todd (1983) for univariate time series, and extended by Harvey (1989) to

the multivariate case. The BSM postulates an additive decomposition of the series into

a trend, a seasonal and an irregular component. Though this model is relatively simple,

it is flexible and provides a satisfactory fit to a wide range of seasonal time series. The

model can be represented in state space form, which enables the use of efficient algo-

rithms, such as the Kalman filter and smoother, for likelihood evaluation, prediction and

the estimation of the unobserved components. We refer to Durbin and Koopman (2012)

for a comprehensive and up–to–date treatment of state space methods.

Seasonal adjustment using structural time series models is well established and can

be performed by the specialized software STAMP 8 (Koopman et al., 2009). However, in

contrast to the officially used software packages for seasonal adjustment, the latter offers

only a basic facility for automatic treatment of outliers. This aspect justifies the necessity

for investigation of different approaches to outlier detection in this particular framework.

We follow here the indicator saturation (IS) approach which is a new, yet very promis-

ing strand of research on outlier detection. It has been proposed by Hendry (1999) and

constitutes a general–to–specific approach. In his seminal work, Hendry (1999) introduced

the impulse–indicator saturation (IIS) as a test for an unknown number of breaks, occur-
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ring at unknown times, with unknown duration and magnitude. The procedure relies on

adding a pulse dummy as an intervention at every observation in the sample. Significant

dummies at individual points in time indicate additive outliers. Properties of this method

have been studied by Johansen and Nielsen (2009), Hendry et al. (2008) and Castle et

al. (2012). Economic applications of IIS have been provided by, e.g., Hendry and Mizon

(2011), Ericsson and Reisman (2012), and Hendry and Pretis (2013).

Recently, also other types of indicator saturation have been discussed in the literature.

They are related to different types of intervention functions representing level shifts,

slope changes etc. Considering different indicator functions should aid finding the most

appropriate types of a structural change; see, for example, Doornik et al. (2013). From

the computational point of view, IIS and its extensions pose a problem of having more

regressors than observations, which can be solved by dividing all dummies into blocks

and selecting over blocks; see, e.g., Hendry and Krolzig (2004). A more elaborate search

algorithm, also accounting for collinearity between indicators, is provided by Autometrics

(Doornik, 2009c) which is an integral part of PcGive (Doornik and Hendry, 2013). Even

though indicator saturation has proven to be both practical and effective in the context

of the stationary dynamic regression model, its performance in the structural time series

models framework has not been examined yet.

This paper contributes to the literature in that it for the first time combines seasonal

adjustment using BSM with the general–to–specific approach to outlier detection. The

method presented here substantially differs from the procedures in TRAMO–SEATS and

X–12 ARIMA in both the modeling and the outlier detection strategy. In the first step, we

assess the performance of indicator saturation via Monte Carlo simulations. After that,

we provide an empirical application of the considered method to raw industrial production

series in France, Germany, Italy, Spain and UK in the time span 1991.M1 – 2014.M1. In

our analysis, we apply impulse–indicator saturation (IIS) and step–indicator saturation

(SIS). The reason for this specific choice is twofold. Pulse and step dummies are the

most simple and at the same time the most flexible way of modeling structural changes.

Moreover, in the empirical exercise our greatest interest lies in the question whether the

procedure is capable of identifying a potential level shift corresponding to the economic

and financial crisis starting in Europe around the end of 2008.

The remainder of the article is organized as follows. In Section 2, we describe the

framework for modeling seasonal time series with outlying observations and location shifts.

In particular, in Section 2.1 we set out the basic structural model with calendar effects,

whereas in Section 2.2 we present the concept of indicator saturation and explain how it

is integrated in the current framework. Section 3 summarizes findings on the performance

of IIS and SIS, obtained by Monte Carlo simulations. First, we discuss the findings on
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the detection power of IIS and SIS in relation to differing settings for the data generating

process and outlier detection. Then, we examine two aspects concerning the situation

without any outlier: the null rejection frequency, and the impact of IIS and SIS on the

estimated model parameters. In Section 4, IIS and SIS are applied to real data to detect

outliers and level shifts. Section 5 concludes.

2 Modeling framework

2.1 The basic structural time series model

The BSM postulates an additive and orthogonal decomposition of a time series into un-

observed components representing the trend, seasonality and the irregular component. If

yt denotes a time series observed at t = 1, 2, . . . , T , the decomposition can be written as

follows:

yt = µt + γt +
K
∑

k=1

δxkxkt + ǫt, t = 1, . . . , T, (1)

where µt is the trend component, γt is the seasonal component, the xkt’s are appropriate

regressors that account for any known interventions as well as calendar effects, namely

trading days, moving festivals (Easter) and the length of the month, and ǫt ∼ IID N(0, σ2
ǫ )

is the irregular component.

The trend component has a local linear representation:

µt+1 = µt+ βt + ηt
βt+1 = βt + ζt

(2)

where ηt and ζt are mutually and serially uncorrelated normally distributed random shocks

with zero mean and variance σ2
η and σ2

ζ , respectively.

The seasonal component can be modeled as a combination of six stochastic cycles

whose common variance is σ2
ω. The single stochastic cycles have a trigonometric rep-

resentation and are defined at the seasonal frequencies λj = 2πj/12, j = 1, . . . , 6. The

parameter λ1 denotes the fundamental frequency (corresponding to a period of 12 monthly

observations) and the remaining ones represent the five harmonics (corresponding to peri-

ods of 6 months, i.e. two cycles in a year, 4 months, i.e. three cycles in a year, 3 months,

i.e. four cycles in a year, 2.4, i.e. five cycles in a year, and 2 months):

γt =

6
∑

j=1

γjt,

[

γj,t+1

γ∗
j,t+1

]

=

[

cosλj sin λj

− sin λj cos λj

][

γj,t
γ∗
j,t

]

+

[

ωj,t

ω∗
j,t

]

, j = 1, . . . , 5, (3)
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and γ6,t+1 = −γ6t + ω6t. The disturbances ωjt and ω∗
jt are normally and independently

distributed with common variance σ2
ω for j = 1, . . . , 5, whereas Var(ω6t) = 0.5σ2

ω.

Calendar effects are treated by adding regression effects in the model equation for yt.

Trading day (working day) effects occur when the level of activity varies with the day

of the week, e.g. it is lower on Saturdays and Sundays. Letting Djt denote the number

of days of type j, j = 1, . . . , 7, occurring in month t and assuming that the effect of a

particular day is constant, the differential trading day effect for series i is given by:

TDit =

6
∑

j=1

δij (Djt −D7t) (4)

The regressors are the differential number of days of type j, j = 1 . . . , 6, compared to the

number of Sundays, to which type 7 is conventionally assigned. The Sunday effect on the

i-th series is then obtained as
(

−
∑6

j=1 δij

)

. This expedient ensures that the trading day

effect is zero over a period corresponding to multiples of the weekly cycle.

As far as moving festivals are concerned, in this paper we focus on the Easter effect

only. The reason is that Easter is the most important moving festival in the euro area

countries we are dealing with in the empirical application of this study. The Easter effect

is modeled as Et = δht where ht is the proportion of 7 days before Easter that fall in

month t. Subtracting the long run average, computed over the first 400 years of the

Gregorian calendar (1583-1982), from ht yields the regressor h
∗
t = ht − h̄t, where h̄t takes

the values 0.354 and 0.646 in March and April, respectively, and zero otherwise. Finally,

the length–of–month regressor results from subtracting from the number of days in each

month,
∑

j Djt, its long run average, which is 365.25/12.

2.2 Indicator saturation

Indicator saturation is a general–to–specific approach according to which for every obser-

vation an indicator of a specific type is included in the set of candidate regressors. This

means that, if T is the number of observations, T indicator variables are added. In this

article, we consider two types of indicator saturation: IIS and SIS.

IIS has been the first approach extensively discussed in the indicator saturation liter-

ature. If It(τ) denotes an indicator variable, then It(τ) is in the IIS case a pulse dummy

taking value 1 for t = τ , and 0 otherwise. Hendry et al. (2008) analyze the distri-

butional properties of IIS when the observations are generated according to the model

yt = µ + εt, t = 1, . . . , T, where εt is normally and independently distributed with mean

zero and variance σ2
ε . For that purpose, they integrate IIS into the model for yt using the
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so–called split–half approach. More specifically, in the first step [T/2] indicators for the

first half of the sample are added to the model, where [·] denotes integer division, i.e.:

yt = µ+

[T/2]
∑

k=1

δIkIt(k) + εt, t = 1, . . . , T

Once the indicators have been selected at the significance level α using the t-statistic, the

second T − [T/2] indicators replace the first ones, and the selection procedure is repeated.

Finally, both sets of significant dummies are combined to determine the terminal model.

On average, in the absence of any outlier, αT indicators are expected to be retained by

chance in the final stage, so that setting α = 1/T leads to the misclassification of only one

observation on average. Hendry et al. (2008) also show that the different number of splits

or unequal splits do not affect the retention rate. Johansen and Nielsen (2009) generalize

the analysis to stationary and nonstationary autoregressions.

SIS can be seen as an extension of IIS to the case when It(τ) represents a step variable

taking value 0 for t < τ , and 1 for t ≥ τ . SIS has been evaluated by Doornik et al. (2013)

in view of its ability to deal with level shifts. Their study is based on a comprehensive set

of Monte Carlo simulations within a simple static framework. While selecting significant

indicators, they apply the standard split–half approach as well as split–half with sequential

selection. The latter relies on the iterative elimination of the least significant indicators

in each split, until only the significant ones are retained. The finding is that sequential

selection considerably improves the power of SIS in detecting location shifts. Due to the

collinearity of step indicators, the variance of their coefficients is high thereby entailing low

t-statistics and low power of the non-sequential (one-cut) detection procedure. In contrast,

during sequential selection step indicators are removed which reduces the variance of

coefficients of the remaining indicators and thus increases the power of the test.

In situations when a single set of indicators constitutes the only set of regressors

in the model, like in the references previously mentioned, split–half is always a feasible

approach. It is, however, possible that the total number of regressors exceeds the number

of the available observations, for example if additional regressor variables are included in

the model, or different types of indicator saturation are considered at the same time. A

simple method to deal with this problem is the cross–block algorithm proposed by Hendry

and Krolzig (2004). After partitioning all the indicators into m blocks and performing

the initial selection, cross–pairings are formed for which the selection algorithm is run

again. This leads in total to m(m− 1)/2 runs of the selection algorithm. A disadvantage

of the cross–block algorithm is that it does not make use of learning and can be thus very

slow. A more elaborate method offering a more progressive search is the Autometrics
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block–search algorithm consisting of expansion and reduction steps (see Doornik, 2009a).

Moreover, in cases when different indicator saturation types are used, block–search with

an appropriate partitioning of indicators can solve the problem of perfect collinearity.

Doornik (2009b) demonstrates that Autometrics block–search is not only faster, but also

more successful in finding breaks than the cross–block algorithm.

The indicator saturation approach is integrated in the BSM in the following way. If

m denotes the number of blocks into which indicators are split, assuming that the blocks

are of equal size and that T is a multiple of m, then in the first stage eq. (1) is extended

to:

yt = µt + γt +

K
∑

k=1

δxkxkt +

(T/m)i
∑

k=(T/m)(i−1)+1

δIkIt(k) + ǫt, t = 1, . . . , T, i = 1, . . . , m (5)

where It(k) represents an impulse or a step indicator, depending on whether IIS or SIS is

considered.1 Eq. (5) along with models (2) and (3) is put into state space form.

Estimation is carried out by maximum likelihood; the initial states and the regression

effects are considered as diffuse and the likelihood is evaluated by the augmented Kalman

filter (see de Jong, 1991), which also yields estimates of the intervention effects, δ̃xk, k =

1, . . . , K, and δ̃Ik, k = 1, . . . , T .2 Once significant indicators are found for every block i,

cross–block search is applied to find the terminal model.3 It is to be noted that for impulse

indicators non-sequential (one-cut) selection is applied in each of the initial blocks as well

as during the cross–block search. For step indicators, we consider both types of selection

strategy in blocks, non-sequential and sequential selection.

3 A Monte Carlo experiment

3.1 Design of the experiment

We investigate the performance of the indicator saturation approach to outlier detection

by means of an extensive Monte Carlo experiment.4 For that purpose, we generate time

1It is to be noted that we do not consider both types of indicators simultaneously. In such a case,
the problem of perfect collinearity would arise. An elaborate algorithm which deals with this problem is
implemented in Autometrics.

2In the SIS case, It(1) is left out as it is perfectly collinear with the initial level effect.
3Since there does not exist any evidence on indicator saturation within structural time series models

at all so far, we want to concentrate on a search algorithm which is easier to implement. Applying
Autometrics block–search in context of structural time series models might be, however, an attractive
line of future research.

4All computations are performed with Ox 6.2 (64-bit version), see Doornik (2008).
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series from a BSM given in eq. (1).5 For the analysis in Sections 3.3–3.5, in the generated

series we include an additive outlier (outliers) or a level shift (shifts), thereafter abbre-

viated by AO and LS, respectively. The time series in Section 3.6 are, in contrast, not

contaminated by any outlier and level shift. For simplicity, calendar effects are omitted in

all simulations. First, we design a benchmark specification for the data generating process

(DGP) and the outlier detection procedure. We subsequently check the robustness of the

procedure by considering alternative settings. They are obtained by modifying a single

attribute of the DGP and/or the outlier detection procedure, keeping the remaining ones

fixed. Every single experiment is based on M = 1000 replications. For all specifications,

we generate in each replication an oversampled series and use a burn-in of the first 72

observations corresponding to 6 years of monthly observations. In so doing, we try to

reduce the transient effect of the initial values of all components.

As regards the simulation settings, we consider a reference DGP with the following

specifications:

• The variance parameters are set equal to σ2
ǫ = 1, σ2

η = 0.08, σ2
ζ = 0.0001, σ2

ω =

0.05. There is no loss of generality in setting the irregular variance equal to 1; the

remaining parameters are thus interpreted as signal to noise ratios. The benchmark

DGP is chosen on the basis of our experience in fitting the BSM to industrial

production and turnover time series.

• T = 144 observations (12 years of monthly data).

• A single additive (AO) or level shift (LS) outlier is located in the middle of the

sample (observation number 72).

• The magnitude of the AO/LS is 7 times the prediction error standard deviation

(PESD). The PESD is obtained from the innovations form of the model in the

steady state.

Examples of benchmark–based simulated series with an AO and LS are given in Fig-

ure 1a and Figure 1b, respectively.

As regards outlier detection with the IIS and SIS, we also specify a benchmark setting:

• the indicator variables are split into 2 blocks,

• the variance parameters are not re-estimated when the split–half indicators are

added to the model.

5The initial values for the components are: η0 = 50.597, ζ0 = 0.5, [γ1,0, γ
∗

1,0] = [10.255; 15.224],
[γ2,0; γ

∗

2,0] = [5.150;−0.015], [γ3,0; γ
∗

3,0] = [−0.02;−0.01], [γ4,0; γ
∗

4,0] = [0.02; 0.015], [γ5,0; γ
∗

5,0] =
[0.0122;−0.051], γ6,0 = −0.021.
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(a) Series with an additive outlier
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(b) Series with a level shift

Figure 1: Examples of series simulated using the benchmark specification

Computation of the vector of regressor effects is thus based on the parameter values es-

timated with the model excluding indicators. Holding the parameter values fixed can

introduce bias in the estimated parameter values, but in our framework it seems to be

of crucial importance for the feasibility of indicator saturation from the computational

standpoint. Each iteration step often requires several passes of the Kalman filter. This

involves several computations of a large vector of regressor effects which introduces in-

stability problems when applying a maximization algorithm. In an alternative setting,

we allow for one re-estimation using a single iteration to keep the computational burden

at a minimum level and still be able to reduce the bias in the variance estimates. The

same argument has been put forward by Atkinson et al. (1997) who propose, albeit in a

different framework, score–based one–step estimates of intervention effects.

We move away from the benchmark scenario in several directions:

• As regards the variance parameters regulating the DGP, we consider four alternative

DGPs: a stable trend – stable seasonal setup (labelled sT–sS), such that the level

and seasonal variances are small compared to the irregular variance; an unstable

trend–stable seasonal DGP (uT–sS) where the level evolution variance is 0.8; a

stable trend–unstable seasonal DGP (sT–uS), such that σ2
ω = 0.5; and finally we

formulate a DGP with unstable trend and seasonality (uT–uS).

• As for the sample size, we consider shorter time series (T = 72, corresponding to

6 years of monthly observations) and longer time series (T = 288, i.e. 24 years of

monthly data).

• We also consider different locations for a single outlier and different magnitudes.
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• Concerning the outlier detection settings, we use two alternative numbers of blocks,

3 and 4, respectively, so as to assess the role of further splits in the performance of

the outlier detection procedure.

• Finally, we also examine the role of re-estimation of the parameters within the

blocks.

A summary of all different settings is provided in Table A.1.

The ability of indicator saturation to detect multiple outliers is also evaluated. Ta-

ble A.2 provides details on the number of additive outliers and temporary level shifts and

their location as a fraction of the total sample size. A temporary level shift occurs when

two level shifts have the same magnitude but opposite sign.

For illustrative purposes, examples of series simulated with different settings are pre-

sented in Appendix B in Figures B.1 – B.3 for the AO case, and in Figures B.4 – B.6

for the LS case. Independently of the setup, the significance level for retention of respec-

tive indicators is always equal to α = 1/T . In the benchmark specification, it is thus

equal to 0.69%. If not stated otherwise, the selection of indicators is performed using the

cross–block search.

Before concluding this subsection, we would like to draw attention to the fact that the

simulation framework in this study differs from that of traditional indicator saturation.

Whereas traditional indicator saturation applies to a reduced form model with a single

source of disturbances, as in Doornik et al. (2013), in an unobserved components model,

like the one considered in this article, multiple sources of stochastic variation are present.

This implies several differences in the outcomes of outlier detection employed in this

framework compared to the traditional one. First, the outlier test statistics will be serially

correlated even in the additive outlier case as the test statistics are based on infinite

moving averages involving past and future observations. In finite samples, infinite moving

averages are approximated by finite ones. Second, the location of the outlier will affect

the ability of the procedure to detect it. The closer to the end of the sample, the less

precise will be the approximation of infinite moving averages and thus of the test statistics,

thereby making the outlier harder to uncover. Third, the effect of an outlier is smeared

across different sources of variation, like irregular, trend and seasonal variation in the

BSM case.

The multiple source of error framework entails consequences also for the outlier size

chosen in this study. After some experimentation, we have decided to fix σ2
ǫ = 1, and to

express the outlier size as a multiple of the PESD. For comparison with the literature,

see e.g., Chang et al. (1988) and Chen and Liu (1993). The PESD is increasing in the

structural variance parameters, so that in the uT–sS scenario, the outlier will be more
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prominent and thus more easily detectable. Hence, the effect of an outlier of size, say,

7·PESD will vary according to the levels of structural disturbance variances σ2
η, σ

2
ζ and

σ2
ω.

3.2 Assessing the performance of indicator saturation

The effectiveness of the procedure is throughout the current section assessed using the

concepts of potency and gauge. The former is the fraction of relevant indicator variables

that are retained in the final model, whereas the latter is the fraction of irrelevant variables

in the final model. More formally, let M denote the number of Monte Carlo replications

and let n be the number of relevant indicators, i.e. true outliers in any particular time

series of length T (e.g.in the benchmark case n = 1). Moreover, let In and IT−n be sets

of time indices corresponding to relevant and irrelevant indicators, respectively. Then,

potency and gauge are calculated based on the retention rate, denoted by p̃k, k = 1, ..., T ,

as follows:

p̃k =
1

M

M
∑

i=1

1[δ̃Ik 6= 0], k = 1, . . . , T

potency =
1

n

∑

k

p̃k, k ∈ In

gauge =
1

T − n

∑

k

p̃k, k ∈ IT−n

where δ̃Ik denotes the estimated coefficient on the impulse or step indicator, It(k), in

replication i, if It(k) is selected (0 otherwise); 1[δ̃Ik 6= 0] is variable taking value 1, if the

argument in brackets is true, and 0 otherwise.

Potency and gauge as well as their links with concepts commonly used in the multiple

testing literature can be illustrated by means of the following confusion matrix summa-

rizing the outcome of a single Monte Carlo experiment:

Decision

Actual No outlier Outlier Total

No outlier A B M(T − n)

Outlier C D Mn

Total A+B B+D MT

A and D denote numbers of correct decisions in the cases of no outlier and in the

cases of an outlier (at a particular observation), respectively. B and C, on the other

hand, summarize all false decisions when no outlier is present, and in situations when
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there is an outlier (at a particular observation), respectively. Potency is then defined as

the ratio D/(Mn), which is the true positive rate (also called hit rate, recall or sensitivity)

in the classification literature. Gauge is given by the ratio B/[M(T − n)], the so–called

false positive rate (or false alarm rate). The misclassification rate is (B + C)/(Mn),

B/(B + D) is the false discovery proportion, and P (B > 0) denoting probability of at

least one false retention is the family–wise error rate.

Using the benchmark specification for simulations and outlier detection, we also exam-

ine an effectiveness measure which we call probability of first detection. More specifically,

this probability is defined as the rate at which the true outlier is spotted for the first time.

Since it is crucial to detect potential structural breaks as quickly as possible, this property

is particularly important to assess the application of indicator saturation for forecasting

purposes if the break is close to the forecast origin. The idea of this concept is based on

the DGP:

yt = µt + γt + δIτIt(τ) + ǫt, t = 1, . . . , T, (6)

where µt and γt are formulated as in models (2) and (3), and τ < T . The variable It(τ)

denotes either an AO or a LS occurring in period τ . Data simulated with the DGP given

in eq. (6) is divided into two subsamples, from t = 1 to t = τ , and from t = τ + 1 to

T . The former constitutes the initial estimation sample which ends in the period of the

occurrence of an AO or a LS. Joint estimation of the BSM for the simulated data, and

the outlier detection with the IIS (in the case of an AO) or the SIS (in the case of a LS)

is performed recursively until the correct AO or LS is found. This means that, if at a

particular time point t ≥ τ the correct AO or LS is not detected, the estimation sample

is extended by one observation and the estimation jointly with the outlier detection is

carried out with the extended estimation sample.

Formally, the probability of first detection k periods (k = 0, . . . , T − τ) after the

occurrence of the AO or the LS can be described as follows. For k > 0, probability of first

detection, denoted by g̃τ+k, is given by:

g̃τ+k =
1

M

M
∑

i=1

1[δ̃Iτ |τ+k 6= 0 ∧ δ̃Iτ |τ+j = 0], j = 0, . . . , k − 1,

where δ̃Iτ |l denotes the coefficient on the impulse or step indicator, It(τ), estimated using

the sample ending in period l. For k = 0, g̃τ is given by:

g̃τ =
1

M

M
∑

i=1

1[δ̃Iτ |τ 6= 0],
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In the Monte Carlo experiment of our study, we set τ = 144 and T = 155, so that proba-

bility of first detection is computed for the 12 observations starting with the occurrence

of the change. The other simulation settings, i.e. the magnitude of the AO or LS, and the

variances of the components disturbances, correspond to the benchmark case outlined in

Section 3.1.

In the next subsection, the performance of IIS is evaluated in the presence of additive

outliers (in the benchmark as well as alternative setups). Section 3.4 reports the corre-

sponding results of applying SIS to the series with level shifts. Section 3.5 shows how the

performance of IIS compares to SIS in presence of additive outliers or level shifts. The

last subsection deals with the case in which no outliers are present in the data.

3.3 Additive outliers and impulse–indicator saturation

The simulation results for the benchmark specification featuring a single AO are reported

in the left corner of Table 1. It can be seen that IIS is capable of identifying the outlier

in nearly 100% of cases with a small error rate only. As the other columns show, different

variance combinations do not change the potency of the procedure. Gauge remains at a

low level, except for the case of a stable trend component (second and fourth column).

If the AO is of the size 4·PESD, the potency reduces by more than 10 percentage points

for every combination of trend level and seasonal disturbance variances. Gauge, on the

contrary, takes on similar values as in the benchmark scenario.

Table 1: IIS and AO in the benchmark setup and in alternative setups with different
parameter values for two different outlier magnitudes

Benchmark (sT–sS) (uT–sS) (sT–uS) (uT–uS)

Benchmark:
7·PESD

Potency in % 99.9 98.9 99.9 99.4 99.4
Gauge in % 0.13 0.33 0.11 0.28 0.18

4·PESD
Potency in % 87.6 81.5 81.6 84.3 83.8
Gauge in % 0.12 0.33 0.06 0.23 0.14

Results related to different simulation and outlier detection settings for a single AO

are presented in Tables A.3 – A.6 and can be summarized as follows:

• Similarly as with different parameter values, the potency does not change much if

different numbers of observations are considered (see Table A.3). Gauge, however,

seems to decrease with series length.

• As already mentioned in Section 3.1, the potency of the procedure is considerably

affected by the location of the outlier – it decreases towards the ends of the sample
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(see Table A.4). The lowest gauge values can also be observed against the ends

of the series. Moreover, the pattern displays symmetry as the potency and gauge

values for outliers located in the same distance from the middle are very similar.

• As regards the magnitude of the outlier, the effectiveness of IIS increases with outlier

size up to some point and then deteriorates (see Table A.5). Using 3 or 4 blocks

instead of 2, while keeping parameter values fixed, does not have any impact on

potency. In contrast, re-estimation of the variance parameters, when the respective

blocks of indicator variables are included, leads to a slightly lower potency of 96.2%

(see Table A.6).

As regards the probability of first detection (see Table A.7), it is conspicuous that the

performance of IIS strongly depends on the outlier magnitude. For the benchmark outlier

size, the probability of first detection of 35% at the time point of the AO is very low.

Moreover, small positive probabilities are still observed at the remaining 11 observations.

When the size of the AO is doubled, the chance of immediate detection of the AO increases

to almost 73%.

Table A.8 summarizes the results for multiple outliers. The findings suggest that it is

easier to detect outliers if they are placed in the same sample half, irrespective of whether

2 outliers (first column) or 4 outliers (fourth column) are considered. This finding can be

explained by the fact that using the indicators set covering the same half in which all the

outliers are present allows for immediate outlier detection.

3.4 Level shifts and step–indicator saturation

An important factor in the detection of LS using SIS is the sequential or non-sequential

nature of the outlier detection procedure in each block. As has been mentioned in Sec-

tion 2.2, sequential selection is shown to have beneficial effects on the efficiency of SIS.

The results for the benchmark case are presented in the left corner of Table 2. Even

though potency is smaller than in the benchmark case of detecting AO with IIS, a value of

about 90% for both non-sequential and sequential selection is still satisfactory, especially

when coupled with the low rates of false retentions. Examination of different combinations

of parameter values leads to three observations:

• Potency is smaller when both components are stable. It increases as the variance of

the trend or the seasonal component increases, and it eventually attains the highest

value when both components variances are high.

• Gauge is at its lowest level when trend and seasonal variances are high.
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Table 2: SIS and LS in the benchmark setup and in alternative setups with different
parameter values for two different shift magnitudes

Benchmark (sT–sS) (uT–sS) (sT–uS) (uT–uS)

Benchmark:
7·PESD

Potency non-seq. 89.5 72.9 75.0 95.5 98.5
in % seq. 90.7 79.4 82.0 96.8 98.8

Gauge non-seq. 0.10 0.22 0.17 0.07 0.06
in % seq. 0.05 0.12 0.22 0.03 0.04

4·PESD

Potency non-seq. 63.0 45.9 53.6 69.1 77.7
in % seq. 87.4 73.6 76.8 93.5 95.7

Gauge non-seq. 0.19 0.26 0.24 0.17 0.12
in % seq. 0.07 0.14 0.27 0.05 0.05

• Sequential selection improves the detection performance of SIS. This, however,

comes at a computational cost. For example, in the benchmark setting, the to-

tal simulations time for the non-sequential selection amounts to about 30 minutes

whereas for the sequential selection it extends to 1 hour and 4 minutes.6

The results corresponding to a single LS and alternative settings are given in the

Tables A.9 – A.12 of the Appendix. The following conclusions can be made:

• The length of the series seems to matter more for the effectiveness of the outlier

detection procedure than in the case of a single AO (see Table A.9). After doubling

the number of observations, potency increases to 99% with a concurrent decrease in

gauge to 0.01%, for both non-sequential and sequential selection.

• The location of the shift has similar implications as for a single AO (see Table A.10).

However, even though the general pattern of decreasing potency for shift locations

more distant from the middle of the sample is maintained, the location symmetry

is not existent anymore. A shift location in the second half of the sample allows for

higher detectability compared to its mirror location in the first half.

• Sequential selection plays a crucial role if SIS is applied to identify level shifts, as

it raises the chance of spotting the true shift once its location is moved away from

the middle.

• Sequential selection can also help detect shifts of smaller magnitude whereas there

is no gain of applying this procedure when the size is bigger than in the benchmark

case (see Table A.11).

6The times refer to the simulations run on a server computer with two 6–core 2 GHz processors.
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• As can be seen in Table A.12, using more blocks improves the accuracy of the de-

tection for both considered selection procedures. In contrast, this precision becomes

very poor if re-estimation of the model with each block of indicators is performed.

Next, we evaluate probability of first detection (see Table A.13). Similar observations

emerge to those made for IIS, as far as SIS is performed with non-sequential selection. In

this case, SIS is not reliable enough to detect the shift immediately if the shift is of the

benchmark size. Sequential selection, however, has again a beneficial effect for the SIS

performance. It is to be noted that in 98.5% of the cases, the shift can be spotted after

one observation at the latest. When the size of the shift is doubled, these discrepancies

between non-sequential and sequential selection vanish, and they both serve the purpose

of timely identification of level shifts.

In addition to a single LS, we also analyze multiple LS. In particular, we focus on

temporary LS, by which we mean level shifts that are reversed after some time, so that

the initial level is restored. Hence, modeling a temporary LS requires two step indicators

having countervailing effects on a series. Table A.14 reports results of the simulation

exercise dealing with 1 and 2 temporary shifts.

• As for 1 shift, it is more demanding to identify it using non-sequential selection when

the shift occurs close to the beginning of the series (first column). Interestingly,

a temporary LS spanning both halves of the sample can be detected with high

probability.

• Potency corresponding to non-sequential selection generally decreases when 2 tem-

porary shifts are present, especially when they are distributed over both sample

halves. The same observation has been made in the context of multiple AO spread

across both sample halves.

• Sequential selection essentially improves the performance of SIS, irrespective of the

number or position of temporary LS.

3.5 Comparison of impulse– and step–indicator saturation

In the preceding subsections we have investigated the effectiveness of indicator saturation

when the intervention (pulse or step dummy) coincides with the indicator type used by

the procedure (IIS and SIS, respectively). In practice, however, it is usually not known

which type of structural change occurs. It is therefore relevant to assess the performance

of SIS when an AO is present, as well as that of IIS in the case of a temporary LS. This

entails the necessity to redefine the concepts of potency and gauge. A single AO can in
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fact be modeled by two adjacent step indicators, whose effects have the same magnitude

but opposite signs. As a result, for a single AO to be identified by SIS, both relevant step

indicators have to be retained, which implies that, instead of a single relevant impulse

indicator, two relevant step indicators are the reference in the computation of potency and

gauge. As for a temporary LS, it can be represented by impulse indicators covering the

whole span of the shift and having effects of the same magnitude.7 Therefore, retaining all

indicators in this time span would be required to detect a temporary LS. However, as this

condition is very restrictive, we follow Doornik et al. (2013) and measure the effectiveness

of IIS in the case of a LS using the so–called proportional potency, defined as the average

percentage of the level shift captured by the impulse indicators.

The Monte Carlo results for a single AO with two different magnitudes and located

at three different fractions of the sample are summarized in Table 3. The results for IIS

are also provided for comparison.

• When the AO is located at 0.25 and 0.4 of the sample, SIS applied with non-

sequential selection performs manifestly worse than IIS, but a substantial improve-

ment can be gained by applying sequential selection. Gauge is low for both imple-

mentations of SIS. The overall conclusion is that SIS can successfully identify the

true outlier.

• When the AO is located in the middle of the sample, results are less satisfactory,

as a consequence of the application of the split–half approach. In the best of the

considered scenarios, potency reaches up to only 6.5% at the cost of 0.96% gauge.

This implies that, in contrast to IIS, SIS fails at finding the correct AO at the border

between two blocks with indicators.

The performance of SIS and IIS in the presence of a temporary LS at different loca-

tions and with different magnitudes is presented in Table 4. It is apparent that, compared

to SIS, the proportional potency of IIS is very low and gauge is relatively large, except for

the first considered shift location. However, some care has to be taken when interpreting

these results. As a matter of fact, to get a better insight into the results it is necessary

to examine which indicators are retained in the individual simulations.8 Detailed exam-

ination reveals that there are essentially two scenarios that account for the overall poor

potency values of IIS.

7Castle et al. (2012) examines the ability of IIS to detect multiple level shifts and outliers. Hendry
and Santos (2010) show in context of a single level shift that the detection power of IIS depends on the
magnitude of the shift, sample size, the duration of the shift, the error variance and the significance level.

8Due to large simulation output, additional results are not presented in the article. They can, however,
be made available upon request.
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Table 3: Comparison of IIS and SIS in presence of AO at different
locations and with different magnitudes

Locationa) 0.25 0.4 0.5

Magnitudeb) 7 14 7 14 7 14

Potency
in %

IIS 86.40 98.00 98.70 98.70 99.20 98.50

SIS
non-seq. 33.75 50.95 40.80 53.65 0.25 0.05
seq. 68.95 66.20 70.45 64.90 4.40 6.50

Gauge
in %

IIS 0.09 0.35 0.09 0.30 0.14 0.40

SIS
non-seq. 0.05 0.05 0.04 0.06 0.77 0.36
seq. 0.05 0.07 0.03 0.08 0.50 0.96

a) Location is given as a share of the sample length T .
b) Magnitude is given as a factor to be multiplied with the prediction error
standard deviation (PESD).

• In the first scenario, corresponding to the time span between 0.25 and 0.35 of the

sample, only a small fraction of impulse indicators from the relevant range is re-

tained, and the gauge is zero, so that no false positive outlier is found.

• In the second scenario, which corresponds to the remaining locations, IIS predom-

inantly identifies clusters of few adjacent indicators bordering the time span of the

LS on both sides. As the estimated effects of these dummies are negative, the peri-

ods before and after the actual LS are treated as periods of negative LS. Although

this can be considered as an equivalent way of modeling series with a temporary

positive LS, the concepts of potency and gauge are not tailored to deal with this

possibility, since they classify the retained indicators as false positives.9 As a result,

the performance of IIS is underestimated.

It is worth noting that for a LS occurring in the middle of the sample, i.e. on the boundary

of the indicator blocks, few dummies from the first block are retained only so that it is

nearly impossible to detect such a shift by IIS. A similar conclusion was drawn for SIS in

the context of detection of a single AO at the middle of the series.

9At first sight, it seems difficult to distinguish between a single positive temporary LS and 2 negative
temporary LS when only few indicators are kept on both sides of the true shift. All the same, the largest
t–values relate to indicators in the direct neighborhood of the borders and thus help recognize a positive
LS.
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Table 4: SIS and IIS in presence of temporary LS at different loca-
tions and with different magnitudes

Locationa) [0.25, 0.35] [0.45, 0.55] [0.5, 0.6]

Magnitudeb) 7 14 7 14 7 14

Potency

in %c)

IIS 0.64 9.76 4.64 5.67 0.13 0.00

SIS
non-seq. 74.00 89.35 89.15 97.50 83.05 98.30
seq. 91.15 87.20 95.80 97.20 97.30 98.20

Gauge
in %

IIS 0.00 0.00 1.26 2.94 1.26 2.17

SIS
non-seq. 0.10 0.15 0.04 0.04 0.07 0.02
seq. 0.04 0.03 0.02 0.04 0.02 0.01

a) Location is given as a share of the sample length T .
b) Magnitude is given as a factor to be multiplied with the prediction error
standard deviation (PESD).

c) For IIS, the numbers refer to proportional potency.

3.6 Performance of IIS and SIS under the null hypothesis of no

outlier

So far we have investigated the properties of IIS and SIS if an AO or a LS is present

in the data. In the following, we consider a situation in which the true DGP is not

affected by any outlier or location shift. We first examine the rejection frequency of the

null hypothesis of no outlier or no shift. For that purpose, we consider the BSM with

the benchmark specifications as regards the variance parameters and the length of the

series, as the true DGP. In the outlier detection with IIS and SIS, we split the impulse

or step indicators into 2 or 3 blocks. In both cases, the variance parameters are not re-

estimated when the respective portion of indicators is added to the model. In each block,

the significant indicators are selected with the one–cut decision using three significance

levels α = 0.69%, 1%, 5%, 10%. The first one corresponds to 1/T and has been considered

in Sections 3.3–3.5. Contrary to the experiments in the previous subsections, we do not

apply the cross–block algorithm after the significant indicators have been identified in

each block. Instead, we combine them to obtain the final set of retained indicators.

The results for the false retention frequency under the null of no outlier are reported

in Table 5. It is apparent that the empirical size of the outlier test based on IIS is very

close to the nominal size, especially when impulse dummies are split into 3 blocks. Even

though the gauge values are close to the nominal size, they are always slightly lower. The

test based on SIS seems to be slightly oversized for the lower significance levels (α =

0.69%, 1%), and slightly undersized for higher significance levels (α = 5%, 10%).

In the next step, we check how both indicator saturation types influence the estimated

model parameters if there is no AO and no LS in the simulated data. It is recalled that
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Table 5: Gauge of IIS and SIS (non–sequential selection)
under null hypothesis of no outlier for the significance levels
α = 0.69%, 1%, and 5%. Gauge values are expressed in %.

IIS SIS non–seq.

α in % 0.69 1 5 10 0.69 1 5 10

2 blocks 0.63 0.87 4.24 8.02 1.03 1.31 4.04 7.18
3 blocks 0.65 0.94 4.53 8.77 1.09 1.33 4.60 8.51

the true parameter values are: σ2
ǫ = 1, σ2

η = 0.08, σ2
ζ = 0.0001, σ2

ω = 0.05. We compare

the empirical distributions of the parameters estimated without and with indicator sat-

uration (IIS and SIS). Figure 2 displays the comparison for the case when the selection

of significant indicators is performed using 2 blocks and the significance level α = 0.69%.

First, it is evident that the empirical densities corresponding to the cases without and

with indicator saturation (IIS and SIS) are nearly congruent. This implies that neither IIS

nor SIS alters the distribution of the estimated variances compared to the case without

indicator saturation. Second, for each variance parameter, the modes corresponding to

the models without and with indicator saturation occur at the true value (for σ2
ǫ and σ2

η,

the densities are bimodal with the first mode occurring close to zero).

4 Applications

In the statistical analysis of economic time series, the detection of structural change has

important consequences for the purposes of signal extraction and forecasting. In this sec-

tion, we illustrate the application of indicator saturation to the monthly industrial produc-

tion time series referring to the manufacturing sector of five European countries: Spain,

France, Germany, Italy and the United Kingdom. More specifically, the series concern

the monthly seasonally unadjusted volume index of production in manufacturing (accord-

ing to the NACE Rev.2 classification). The data cover the time span 1991.M1 – 2014.M1

(277 observations) and is provided by Eurostat (download at: http://epp.eurostat.ec.

europa.eu/portal/page/portal/short term business statistics/data/main tables).

The objective is to assess how the recent recessionary episode, triggered by the global

financial crisis, is characterized by the application of IIS and SIS – whether it can be

accommodated by the regular evolution of the stochastic components, or it represents a

major structural change.
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Figure 2: Distribution of estimated disturbance variances under the null of no outlier if
the model is estimated without indicator saturation (histogram: green bars, density: solid
red line) and with indicator saturation (histogram: gray bars, density: dotted black line);
Indicator saturation type: IIS (left panel) and SIS with non–sequential selection (right
panel). Selection of indicators in the IIS and SIS case is performed at the significance level
α = 0.69%. The true parameter values are: σ2

ǫ = 1, σ2
η = 0.08, σ2

ζ = 0.0001, σ2
ω = 0.05.

4.1 Outlier detection with indicator saturation

The reference modeling framework for application of IIS and SIS is the BSM with calendar

effects, see Section 2.1. Selection of significant impulse or step indicators is governed by

the significance level 1/T = 0.0036. As far as the implementation of SIS is concerned,

we consider both non-sequential and sequential selection. In the sequential procedure, we

follow the strategy of splitting the indicators in two blocks. For IIS and non-sequential

selection in the SIS case, the number of blocks is an important factor affecting the outcome

in terms of detected AO or LS. Therefore, we have decided to take the results generated

with different numbers of blocks into consideration, and combine them suitably to obtain

the final results. To that end, we separately identify significant indicators choosing a

block number from the range between two and ten. Subsequently, we take the union of all
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the significant indicators and select the significant ones from this set. The choice of the

maximum of ten blocks can be justified by the fact that this is a reasonably high number

to reduce the risk of missing any important structural changes.10

The results for IIS are reported in Table 6. We can observe a similar pattern for all

countries – the procedure retains a couple of dummies with negative effects on the series,

starting from 2009.M1 for Spain, Germany and the UK, from 2008.M11 for France and

from 2008.M12 for Italy. This finding points to a LS corresponding to the economic and

financial crises and enables dating the inception of the recession. For France, Germany

and Italy, the AO pattern is very articulate, whereas for Spain and the UK only three

impulse indicators show a significant impact. Interestingly, for Spain, Germany and Italy,

a positive AO is detected in 2008.M4. Moreover, after a positive AO in 2011.M5, a

negative AO is identified in France and Germany in the next month.

Table 6: Outliers detected in five European countries using IISa),b)

ES FR GER IT UK

2008.M4 (4.77) 2008.M11 (−3.09) 2008.M4 (3.45) 2008.M4 (3.36) 2002.M6 (−6.20)
2008.M7 (3.08) 2008.M12 (−3.68) 2008.M6 (3.63) 2008.M12 (−3.98) 2005.M3 (−4.50)
2009.M1 (−3.55) 2009.M1 (−5.03) 2008.M9 (3.18) 2009.M1 (−3.85) 2009.M1 (−3.72)
2009.M3 (−3.87) 2009.M2 (−4.92) 2009.M1 (−4.83) 2009.M2 (−5.05) 2009.M2 (−3.17)
2009.M5 (−2.92) 2009.M3 (−5.90) 2009.M2 (−4.75) 2009.M3 (−6.48) 2009.M3 (−3.41)

2009.M4 (−4.33) 2009.M3 (−4.48) 2009.M4 (−4.39)
2009.M5 (−4.19) 2009.M4 (−4.79) 2009.M5 (−6.03)
2009.M6 (−3.64) 2009.M5 (−3.40) 2009.M6 (−5.29)
2009.M7 (−3.15) 2009.M6 (−3.77) 2009.M7 (−4.77)
2011.M5 (6.28) 2009.M7 (−2.92)
2011.M6 (−3.00) 2011.M5 (5.03)

2011.M6 (−3.25)

a) ES: Spain, FR: France, GER: Germany, IT: Italy, UK: United Kingdom
b) t–values of the indicator effects are reported in parentheses.

The results for SIS are presented in Table 7, separately for the non-sequential and

sequential implementations. For all countries except Spain, the non-sequential procedure

detects a LS in 2008.M11 (France, UK) or 2008.M12 (Germany, Italy), associated with

the beginning of the global recession. In the case of Spain, a LS is, however, detected

by the sequential selection already in 2008.M10. It is worth noting that SIS is capable

of detecting most of the AOs identified by IIS, such as those in 2011.M5 in France and

Germany, or in 2002.M6 and 2005.M3 in the UK. The comparison of the results obtained

with non-sequential and sequential procedure shows particularly striking differences for

Spain and Italy. In the case of Spain, non-sequential selection leads to a more generous

specification, whereas for Italy a richer specification is chosen by sequential selection. An

10In fact, increasing the number of blocks over ten did not lead to the detection of any additional AO
or LS in the examined series.
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interesting common pattern emerges from these two cases: every year starting from 2009,

a positive LS detected in August is followed by a negative level shift in September. This

systematic pattern may mimic a break in the seasonal component, associated with the

month August, which possibly occurred in Spain and Italy in 2009.

Table 7: Outliers detected in five European countries using SISa),b)

ES FR GER IT UK

non-seq.

2008.M3 (−3.18) 2008.M11 (−6.78) 2008.M12 (−8.48) 2008.M8 (−2.95) 1993.M6 (−3.62)

2008.M4 (3.30) 2011.M5 (5.22) 2010.M3 (3.74) 2008.M12 (−6.94) 1998.M1 (4.10)
2008.M5 (−3.48) 2011.M6 (−7.08) 2011.M5 (4.56) 2009.M8 (3.03) 2002.M6 (−5.93)
2009.M8 (5.20) 2011.M6 (−5.91) 2002.M7 (5.13)
2009.M9 (−4.46) 2011.M7 (3.13) 2005.M3 (−4.10)
2010.M8 (4.94) 2005.M4 (4.05)
2010.M9 (−5.03) 2008.M11 (−6.22)
2011.M8 (4.32)
2011.M9 (−4.52)
2012.M8 (5.24)
2012.M9 (−5.89)
2013.M8 (5.97)
2013.M9 (−5.13)

seq.

2008.M10 (−4.36) 2008.M11 (−6.78) 2008.M11 (−5.78) 2008.M12 (−7.50) 2002.M6 (−5.94)
2011.M5 (5.22) 2009.M1 (−4.72) 2009.M8 (6.90) 2002.M7 (4.76)
2011.M6 (−7.08) 2010.M3 (3.77) 2009.M9 (−5.37) 2005.M3 (−3.79)

2011.M5 (4.88) 2010.M8 (4.99) 2005.M4 (3.94)
2011.M6 (−5.57) 2010.M9 (−4.84) 2008.M11 (−6.41)

2011.M8 (4.60)
2011.M9 (−6.16)
2012.M8 (5.48)
2012.M9 (−6.35)
2013.M8 (6.55)
2013.M9 (−6.54)

a) ES: Spain, FR: France, GER: Germany, IT: Italy, UK: United Kingdom
b) t–values of the indicator effects are reported in parentheses.

The estimated trends resulting from the BSM model with the AO and LS identified

by IIS and SIS are jointly displayed in Figure 3 for each country11. In particular, the plot

represents the evolution of the underlying component µt, estimated by the Kalman filter

and smoother based on the entire sample. The trends obtained with the IIS approach are

more flexible than those corresponding to the SIS, in the sense that evolution of the former

is closer to the movement of the observed data. SIS, particularly applied with sequential

procedure, yields more steady trends. For France, the two SIS methods provide exactly

the same results and the results are similar for Italy and the UK. For Germany, there is

a sizable difference between the trends estimated by the two versions of SIS.

Figure 4 plots the sum of the estimated trend component and the outlier effects re-

sulting from IIS and SIS. The vertical displacement reflects the location and magnitude

11For the sake of clarity, the pictures are restricted to the periods 2005.M1 – 2014.M1 since no outlier
was detected before 2005, except in the UK case.
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Figure 3: Industrial production index series of five European countries along with the
respective trend components estimated using the BSM with IIS and SIS (with non–
sequential and sequential selection). For each country, different outcomes depending on
the type of indicator saturation and, in the SIS case, additionally on the selection method
(non–sequential versus sequential selection) are indicated by different line types.

of the identified level shifts. In general, SIS interprets the recession as a permanent level

shift, whereas according to IIS the recession is a temporary shift taking place around the
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Figure 4: Industrial production index series of five European countries along with the
respective trend components and outlier effects estimated using the BSM with IIS and
SIS (with non–sequential and sequential selection). Trend is in the figure represented
jointly with the outlier effects as one component. For each country, different outcomes
depending on the type of indicator saturation and, in the SIS case, additionally on the
selection method (non–sequential versus sequential selection)are indicated by different
line types.
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end of 2008 and affecting part of 2009. It is evident that the combined trends and outliers

effects obtained with the IIS approach are more flexible and they adjust more closely to

the observed data. IIS possibly leads to overfitting the data. A more parsimonious model

could be obtained by SIS, which yields more steady trends, in particular when applied

with the sequential procedure. The combined components are very similar across different

indicator saturation versions, except for Spain and Italy. As it was mentioned before, SIS

with non-sequential selection for Spain and with sequential selection for Italy leads to the

identification of a seasonal cluster of additive outliers occurring every August after 2008,

which may reflect the consequences of the global recession on the seasonal pattern.

To facilitate the comparison across models for different countries, we employ goodness–

of–fit measures for the BSM model without any interventions as well as for different

specifications following from indicator saturation. The goodness–of–fit measures include

the log-likelihood, the coefficient of determination, R2
S, suitable for series exhibiting trend

and seasonal movements (constructed as the ratio of the innovations variance and the

variance of the first differences around a seasonal drift), and the AIC and BIC information

criteria. Additionally, we provide the results of the following diagnostic tests: the Ljung–

Box autocorrelation test, the Durbin–Watson autocorrelation test, the Goldfeld–Quandt

heteroscedasticity test, and the Bowman–Shenton normality test. The results are reported

in Table A.15. The goodness–of–fit assessment is strongly in favor of the SIS specifications:

SIS with non-sequential selection performs best for Spain and the UK, whereas SIS with

sequential selection seems to be superior for Germany and Italy. SIS imparts the best fit

also in the case of France. For Spain, Germany and the UK, the specifications associated

with the best fit ensure that at least some of the model assumptions (no autocorrelation,

homoscedasticity, normality) cannot be rejected, or provide the smallest departures from

them compared to other specifications. In contrast, in the case of Italy and France no clear

improvement in the diagnostic test statistics relative to inferior models can be ascertained.

We can conjecture that the change in the behavior of European IPI series after the

end of 2008 cannot be fully attributed to the natural evolution of the stochastic trend.

The conjecture is based on the fact that the best specifications suggest either a shift in

the level of the trend (France, Germany, UK) or/and a change in the seasonal pattern

(Italy, Spain). Though the model allows for stochastic evolution in the trend, this cannot

fully explain the observed decline in the IPI series during the economic crisis.

4.2 Comparison with alternative outlier detection methods

In the following, we compare the results of the indicator saturation approach with those

obtained with alternative methods of automatic outlier detection for seasonal time series.
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The considered methods are implemented in publicly available statistical software pack-

ages, namely TRAMO (see Gómez and Maravall, 1996), TSW: TRAMO–SEATS version

for Windows (see Caporello and Maravall, 2004), X13–ARIMA (see U.S. Census Bureau,

2013), and STAMP (see Koopman et al., 2009).

In TRAMO, TSW, and X13–ARIMA, outlier detection is performed in the framework

of seasonal ARIMA models for the underlying series, with models chosen automatically

after a few user–predefined settings. Outlier detection is implemented as described by

Tsay (1986), Chang et al. (1988), Chen and Liu (1993). In brief, this procedure searches

for different types of outliers: additive outliers, level shifts, transitory changes, and inno-

vation outliers (not considered in X13–ARIMA) and consists of two stages. The first one,

forward addition, amounts to computing t–statistics for interventions referring to every

outlier type at each observation and adding the most significant ones to the model. In

the second one, backward deletion, the least significant interventions are eliminated.

In STAMP, the series are modeled in terms of unobserved components. For our anal-

ysis, we apply the BSM without any variance restrictions. Outlier detection in STAMP

is based on the so–called auxiliary residuals which are the smoothed estimates of the

disturbances driving the evolution of the components of the BSM (see Harvey and Koop-

man, 1992). Significant auxiliary residuals indicate outliers corresponding to particular

components, like irregular, trend level, trend slope or seasonal in the case of the BSM.

The outliers identified by the aforementioned procedures are listed in Table A.16. For

Spain, TRAMO, TSW, and X13–ARIMA identify only one outlier, a LS in 2008.M12,

while STAMP detects a number of AOs in addition to a LS in 2008.M12. Generally

speaking, these findings contrast with the indicator saturation outcomes. A LS related

to the economic crisis could be detected only with the SIS sequential procedure, albeit

already in 2008.M10. Further, none of these algorithms identifies a break in the seasonal

pattern, as suggested by SIS with non-sequential selection. For France, all software pack-

ages find a LS in 2008.M11 and an AO in 2011.M5, also detected by IIS and SIS. However,

TRAMO, TSW and X13–ARIMA additionally identify a LS in 2009.M1 and an AO in

2000.M5 (TRAMO, X13–ARIMA) or a transitory change in 2000.M6, not captured by

the indicator saturation. As for Germany, a LS in 2008.M12 detected by TRAMO, TSW,

and X13–ARIMA, as well as an AO in 2011.M5, detected by TSW, X13–ARIMA, and

STAMP, are consistent with the outcome of the preferred SIS with sequential selection.

In the case of Italy, all the above procedures identify a LS in 2008.M12, which accords

with the corresponding findings for indicator saturation. It is worth noting that, except

for STAMP, all softwares also find a LS in 2009.M8, which corresponds to one of the LS

associated with possible seasonality change uncovered by SIS with sequential selection.

As regards the UK, TRAMO, TSW, and X13–ARIMA date the LS referring to the eco-
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nomic crisis, just as both SIS versions, at 2008.M11. Both AOs, in 2002.M6 and 2005.M3,

detected by IIS and SIS, emerge also from the alternative methods considered. More

specifically, the AO in 2002.M6 is also found by TRAMO, X13–ARIMA, and STAMP,

and the AO in 2005.M3 is also detected by TRAMO and TSW. To sum up, the compar-

ison with different outlier detection procedures reveals that, whereas for some countries,

like Germany or the UK, the discrepancies are small and mostly related to AOs, in other

cases, with Spain as the most distinct example, the mismatch is larger.

4.3 Forecasting

We have seen in Section 4.1 that for the IPI series under investigation the BSM without

any interventions may not sufficiently explain potential structural changes, and that a

much improved fit can be achieved by applying the indicator saturation approach to

the BSM. In this situation, the major structural break identified by the procedures was

relatively distant from the end of the sample. It should be recalled that in such a case

outlier detection by both IIS and SIS is effective (i.e. has high potency), as was shown

by Monte Carlo simulation.

However, for forecasting purposes, an essential property is the timely recognition of

abrupt changes in the data occurring towards the end of the sample. Clements and Hendry

(2011) show that an unanticipated location shift at the forecast origin can heavily impair

forecast precision. The question also arises as to whether specifications resulting from

indicator saturation can still prove to be superior to those without any interventions.

To address this question, we perform a recursive forecasting exercise that aims at

testing the forecast ability of the BSM without interventions and the BSM with SIS.

In other words, we investigate whether the detection of structural change is timely and

whether it contributes positively to the accuracy of the predictions. We focus on SIS

only as it proved superior in terms of goodness–of–fit, with particular reference to the

information criteria computed on the full series. The series under consideration are the

five IPI series; the training sample period is the pre-recessionary period ending in 2008.M9,

and we use the subsequent observations up to 2013.M8 as a test period.

For every specification (BSM with no interventions, BSM with SIS non-sequential se-

lection, BSM with SIS sequential selection), starting with 2008.M9 as the first forecast

origin, we compute 1– to 12–period–ahead recursive forecasts. Then the sample is ex-

tended by one month and again 1– to 12–period–ahead forecasts are calculated. These

steps are repeated until 2012.M8, which is the last forecast origin. This pseudo real–time

forecasting exercise yields 48 forecasts at horizons from 1 to 12. The forecasting perfor-

mance is evaluated by the the root mean square errors (RMSE) for every specification

27



and every forecast horizon between 1 and 12.
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Figure 5: Root mean square error (RMSE) of recursive forecasts of the industrial pro-
duction index for five European countries. The reported RMSE values are computed for
every forecast horizon with reference to the 48 1–step and multi–step forecast errors for
the forecast lead times from 2008.M9 to 2012.M8.

Several observations emerge from the comparison of RMSE values presented graphi-

cally in Figure 5. For Germany and Italy, SIS, both with non-sequential and sequential

selection, by and large outperforms the specification without interventions. For Italy this

can be observed for forecast horizons from 4 on. Interestingly, the gap between the RMSE

values corresponding to the approach without SIS and with SIS increases with the forecast

horizon. For France and the UK, SIS with non-sequential selection does not impart any

improvement in the predictive accuracy. The accuracy improves considerably, however,
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when sequential selection is used. Similarly to the case of Germany and Italy, the RMSE

progressively declines as the forecast horizon increases. As far as Spain is concerned, SIS

performs worse than the approach without any interventions but the RMSE values of the

superior model do not diverge as strongly with the forecast horizon as in the case of the

other countries.

We additionally test the models without SIS and with SIS on equal predictive accuracy

using the Diebold and Mariano (1995) test with an adjustment proposed by Clark and

West (2007), henceforth the DMAD test.12 For the model with SIS, we focus on the

sequential selection only, since, as has been shown in the RMSE comparison before, it

gives more satisfactory results than non-sequential detection. The test considered here

is one–sided, meaning that under the alternative hypothesis the model with SIS provides

better predictive accuracy.13

The results of the DMAD test are reported in Table 8. They confirm the observations

from inspecting the RMSE. For the UK, the significance of the DMAD test at the 5% level

for most of the forecast horizons shows the clear dominance of the model with SIS. For

Germany, the model with SIS is superior at the 10% level at all forecast horizons. As

regards France and Italy, the null of equal predictive accuracy can be rejected at nearly

10% significance level at all forecast horizons (with a few exceptions). Only in the case

of Spain, SIS does not impart any improvement in the forecast accuracy.

Summing up, SIS, particularly applied with sequential selection, proves to be suitable

for forecasting purposes even when a structural break is close to the end of the sample.

This conclusion is consistent with the simulation results discussed in Section 3.4, according

to which, for large shifts, both non-sequential and sequential selection guarantee high

probability of first detection right after the shift. For a smaller LS size, sequential selection

is, though, of vital importance for timely outlier detection. An explanation for the different

findings across countries is provided in Table A.17. The disappointing results obtained

for Spain can be explained with the difficulty of identifying the LS associated with the

12The test of equal MSE originally proposed by Diebold and Mariano (1995), henceforth the DM test,
is based on the test statistic asymptotically distributed as a N(0, 1) random variable under the null,
and is suitable for non-nested models. If the models are nested, like the models without and with SIS
compared in our case, the inference from the standard DM test may be invalid as the test statistic has
degenerate limiting distribution. Clark and West (2007) show that the DM test is heavily undersized and
has low power. They suggest an adjustment of the DM statistic the leads to the correction of most of
the bias so that critical values of the standard normal distribution can still be used. The DMAD test is
equivalent to the test of forecast encompassing proposed by Harvey et al. (1998). Different other tests,
both of equal MSE and forecast encompassing, have been proposed in the literature to compare forecast
accuracy of nested models; see, e.g., Clark and McCracken (2001), McCracken (2007), Clark and Cracken
(2014), Chao et al. (2001).

13In the case of nested models, the tests should be formulated as one–sided tests (see, e.g., Ashley et
al., 1980).
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Table 8: Results of the adjusted Diebold–Mariano (DMAD) test based on recursive
forecasts of the industrial production index for five European countriesa),b)

Forecast horizon 1 2 3 4 5 6 7 8 9 10 11 12

ES

DMAD stat. -1.28 -2.13 -2.07 -0.49 -0.87 -0.99 -0.29 -0.47 -0.40 -0.69 -0.21 1.01
p-value 0.90 0.98 0.98 0.69 0.81 0.84 0.62 0.68 0.66 0.76 0.58 0.16

FR

DMAD stat. 0.48 1.38 1.52 1.47 1.36 1.22 1.29 1.28 1.26 1.21 1.25 1.18
p-value 0.32 0.08 0.06 0.07 0.09 0.11 0.10 0.10 0.11 0.11 0.11 0.12

GER

DMAD stat. 1.78 1.70 1.53 1.55 1.39 1.44 1.36 1.37 1.34 1.34 1.34 1.32
p-value 0.04 0.05 0.06 0.06 0.08 0.08 0.09 0.9 0.09 0.09 0.09 0.09

IT

DMAD stat. -0.15 0.22 0.78 1.12 1.17 1.16 1.23 1.21 1.22 1.24 1.24 1.28
p-value 0.56 0.41 0.22 0.13 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.10

UK

DMAD stat. 2.08 2.80 2.44 1.99 1.78 1.69 1.67 1.63 1.55 1.53 1.52 1.51
p-value 0.00 0.00 0.01 0.02 0.04 0.05 0.05 0.05 0.06 0.06 0.07 0.07

a) ES: Spain, FR: France, GER: Germany, IT: Italy, UK: United Kingdom
b) Model 0: without any interventions, Model 1: with SIS (sequential selection); H0: MSE1 = MSE0;
H1: MSE1 < MSE1. The test is based on 48 forecast errors corresponding to 1–step and multi–
step forecasts for the forecast lead times from 2008.M9 to 2012.M8. The DMAD statistic has been
proposed by Clark and West (2007). The p-values have been computed using the standard normal
distribution.

economic crisis. If, on the other hand, the relevant LS is detected timely, like for Germany

or the UK, SIS leads to models yielding substantially better results than the basic model.

5 Conclusions

This article has investigated the performance of the indicator saturation approach as a

methodology for detecting additive outliers and location shifts when dealing with non-

stationary seasonal series in a model based framework. While the currently available

automatic outlier detection procedures follow a specific–to–general approach to uncover

structural change, indicator saturation, as a general–to–specific approach, constitutes a

relatively new concept in the literature.

Indicator saturation has proven very effective in a regression framework and is cur-

rently implemented in Autometrics. Its use for the class of structural time series models

has not yet been investigated and this article aimed at filling the gap. The considered

model–based framework is interesting as the time series model is directly formulated in

terms of unobserved components that are evolving over time. Hence, stochastic change

occurs with every new observation, as the components are driven by random disturbances.

The issue is then to locate and quantify large economic shocks that configure a structural

break differing from the regular endogenous variation of the dynamic system.

We have implemented both impulse–indicator and step–indicator saturation (IIS and

SIS) in the framework of the basic structural time series model (BSM). IIS is customized

to detect additive outliers (AO), whereas SIS, both with non-sequential as well as with
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sequential selection, is tailored to detect level shifts (LS). First, we have evaluated the

effectiveness of IIS and SIS, by measuring their potency and gauge, in a comprehensive

Monte Carlo simulation exercise. It has been shown that, for a reference data generating

process and a baseline specification of the procedures, IIS and SIS are very effective

methods for outlier detection, especially when SIS is combined with sequential selection.

We then explored several factors that can affect the performance of indicator satura-

tion, and we concluded the following:

• The relative variability of the disturbances driving the evolution of the level and the

seasonality does do not matter for the performance of the IIS procedure in detecting

AOs. In the SIS case, on the other hand, the detection of LS is easier the higher

the evolution error variance of the trend and seasonal.

• The time location of an AO strongly affects the performance of IIS, with potency

and gauge deteriorating when the AO occurs towards the beginning or the end of

the sample. In the SIS case, similar considerations hold, but potency and gauge

do not vary symmetrically with respect to the location of the LS (LS are easier to

detect in the second half of the sample).

• The number of blocks considered in the implementation of the procedure are im-

portant drivers of its performance. For instance, if several AOs/LS are present, it

is beneficial for both IIS and SIS if they are located in the same sample split.

• SIS with sequential selection provides systematically better results than SIS with

non-sequential selection in all the alternative settings considered in the simulations.

• When SIS is used for AO detection, the success rate is satisfactory provided that

the AO is not placed at the border between sample splits. IIS, in contrast, does not

show acceptable properties when applied to identify LS.

• In a situation without any outlier, the empirical size of the test based on IIS and SIS

is close to the nominal one. For IIS, the false retention frequency lies slightly below

the nominal size, whereas for SIS the outcome depends on the significance level.

Indicator saturation does not change the distribution of the estimated parameters

in the absence of any outliers.

In the last part of the article, we have applied indicator saturation to the monthly

industrial production time series for five European countries, with the intent of investi-

gating how the different methodologies characterized the global recessionary movements

affecting the euro area economies towards the end of 2008. In general, SIS provided the
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best specification in terms of goodness–of–fit, capturing a LS in November or December

2008, depending on the series. The comparison with the currently available automatic

outlier detection procedures showed a good degree of similarity of the results for Germany

and the UK and some important differences for Spain.

Finally, we conducted a pseudo real–time recursive forecasting exercise comparing the

out–of–sample performance of the BSM with and without indicator saturation, so as to

investigate whether the timely detection of structural change leads to an improvement

in the quality of the predictions. As a test sample, we considered the sample starting

with the inception of the global recession and ending in 2013.M8. SIS proved effective

in detecting potential location shift close to the forecast origin. The overall conclusion

is that the detection of structural change is necessary to obtain accurate forecasts. The

sooner the relevant level shift is detected, like for Germany and the UK, the bigger is

the improvement in the forecast precision. Sequential selection substantially helps to

accomplish this goal.
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Appendix

A Tables

Table A.1: Simulation and outlier detection specifications for series with a
single additive outlier (AO) / single level shift (LS)

Attributes Benchmark Alternative settings

Data generating process

Parameter values σ2
ǫ = 1 1) (sT–sS) σ2

η = 8 · 10−5, σ2
ω = 5 · 10−5

σ2
ζ = 0.0001 2) (uT–sS) σ2

η = 0.8, σ2
ω = 5 · 10−5

σ2
η = 0.08 3) (sT–uS) σ2

η = 8 · 10−5, σ2
ω = 0.5

σ2
ω = 0.05 4) (uT–uS) σ2

η = 0.8, σ2
ω = 0.5

Number of observations 144 1) 72, 2) 288
Outlier locationa) 0.5 1) 0.05, 2) 0.1 3) 0.15 4) 0.25, 5) 0.4,

6) 60, 7) 0.75, 8) 0.85, 9) 0.9, 10) 0.95
Outlier magnitude 7·PESD, [2, 14]·PESD

Outlier detection settings

Blocks number 2 1) 3, 2) 4
Re-estimation in blocks no yes

a) Location is given as a share of the sample length T .

Table A.2: Outlier location for series with multiple additive outliers
(AO) / multiple level shifts (LS)

Number of outliers Locationa), b)

Additive outliers

2 outliers 1) 0.25, 0.35; 2) 0.3, 0.6
4 outliers 2) 0.2, 0.4, 0.6, 0.8; 2) 0.6, 0.7, 0.75, 0.9

Temporary level shiftc)

1 shift 1) [0.25, 0.35], 2) [0.45, 0.55], 3) [0.5, 0.6]
2 shifts 1) [0.2, 0.3], [0.35, 0.45]; 2) [0.25, 0.35], [0.65, 0.75]

a) Location is given as a share of the sample length T .
b) All other attributes used in simulations of series and outlier detection are as in
the benchmark setup described in Table A.1.

c) Temporary level shift requires two level shifts of the same magnitude but op-
posite signs.
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Table A.3: IIS and AO in the benchmark
setup and in alternative setups with different
numbers of observations

Benchmark: 144 72 288

Potency in % 99.9 97.0 100.0
Gauge in % 0.13 0.73 0.03

Table A.4: IIS and AO in the benchmark setup and in alternative setups with different
locations of the outliera)

Benchmark: 0.5 0.05 0.10 0.15 0.25 0.40 0.60 0.75 0.85 0.90 0.95

Potency in % 99.9 46.4 71.6 70.8 84.8 98.5 99.1 91.9 74.1 69.9 42.8

Gauge in % 0.13 0.04 0.09 0.10 0.14 0.11 0.09 0.10 0.14 0.10 0.04

a) Location is given as a share of the sample length T .

Table A.5: IIS and AO in the benchmark setup and in alternative setups
with different magnitudes of the outliera)

Benchmark: 7 2 4 6 8 10 12 14

Potency in % 99.9 17.4 87.6 99.3 99.6 99.4 98.0 97.5

Gauge in % 0.13 0.09 0.12 0.13 0.15 0.21 0.24 0.37

a) Magnitude is given as a factor to be multiplied with the prediction error standard
deviation (PESD).

Table A.6: IIS and AO in the benchmark setup and in alternative detection
settings

Benchmark:
2 blocks, no
re-estimation

3 blocks, no
re-estimation

4 blocks, no
re-estimation

2 blocks,
re-estimationa)

Potency in % 99.9 99.9 99.7 96.2

Gauge in % 0.13 0.10 0.11 0.11

a) Results are obtained after 1 iteration.

Table A.7: Probability of first detection of AO using IIS in the benchmark setup
and an alternative setupa)

Obs. no. 144 145 146 147 148 149 150 151 152 153 154 155

Benchmark:
7·PESD

35.2 4.6 4.2 2.7 2.6 1.6 1.1 1.3 0.7 1.0 0.5 0.6

14·PESD 72.8 11.8 7.6 1.4 1.7 1.3 1.0 0.7 0.2 0.1 0.1 0.0

a) Probability is expressed in %.
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Table A.8: IIS in presence of multiple AO at different locationsa)

2 outliers 4 outliers

0.25, 0.35 0.3, 0.6 0.2, 0.4, 0.6, 0.8 0.6, 0.7, 0.75, 0.9

Potency in % 92.4 87.0 73.3 94.6

Gauge in % 0.18 0.02 0.10 0.66

a) Location is given as a share of the sample length T .

Table A.9: SIS and LS in the benchmark setup and
in alternative setups with different numbers of observa-
tions

Benchmark: 144 72 288

Potency in %
non-seq. 89.5 70.5 98.9
seq. 90.7 77.6 98.9

Gauge in %
non-seq. 0.10 0.47 0.01
seq. 0.05 0.28 0.01

Table A.10: SIS and LS in the benchmark setup and in alternative setups with different
locations of the shifta)

Benchmark:
0.5

0.05 0.1 0.15 0.25 0.40 0.60 0.75 0.85 0.90 0.95

Potency non-seq. 89.5 35.8 55.5 56.2 68.3 79.1 93.3 85.8 66.2 66.8 47.6

in % seq 90.7 61.8 92.6 93.1 90.4 90.8 97.8 96.6 97.8 96.9 96.5

Gauge non-seq. 0.10 0.06 0.10 0.12 0.09 0.06 0.07 0.09 0.10 0.09 0.04

in % seq. 0.05 0.39 0.02 0.05 0.05 0.05 0.08 0.07 0.07 0.08 0.06

a) Location is given as a share of the sample length T .

Table A.11: SIS and LS in the benchmark setup and in alternative setups
with different magnitudes of the shifta)

Benchmark: 7 2 4 6 8 10 12 14

Potency non-seq. 89.5 14.1 63.0 85.8 92.1 92.1 94.0 94.5
in % seq. 90.7 70.5 87.4 90.8 92.8 92.1 93.8 94.4

Gauge non-seq. 0.10 0.13 0.19 0.14 0.11 0.11 0.14 0.11
in % seq. 0.05 0.08 0.07 0.05 0.05 0.06 0.04 0.02

a) Magnitude is given as a factor to be multiplied with the prediction error standard devi-
ation (PESD).
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Table A.12: SIS and LS in the benchmark setup and in alternative detection settings

Benchmark:
2 blocks, no
re-estimation

3 blocks, no
re-estimation

4 blocks, no
re-estimation

2 blocks,
re-estimationa)

Potency in %
non-seq. 89.5 99.5 99.9 20.3
seq. 90.7 99.9 100 –

Gauge in %
non-seq. 0.10 0.05 0.07 0.86
seq. 0.05 0.04 0.05 –

a) Results are obtained after 1 iteration; sequential selection is not considered in the re-estimation due
to high computational expense and high risk of estimation failures.

Table A.13: Probability of first detection of LS using SIS in the benchmark setup and
an alternative setupa)

Obs. no. 144 145 146 147 148 149 150 151 152 153 154 155

Benchmark:
7·PESD

non-seq. 42.5 9.0 2.9 0.8 0.3 0.2 0.1 0.1 0.0 0.1 0.1 0.2
seq. 85.9 12.6 1.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14·PESD non-seq. 96.6 2.7 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
seq. 90.1 9.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

a) Probability is expressed in %.

Table A.14: SIS in presence of temporary LS at different locationsa)

1 shift 2 shifts

[0.25, 0.35] [0.45, 0.55] [0.5, 0.6]
[0.2, 0.3],
[0.35, 0.45]

[0.25, 0.35],
[0.65, 0.75]

Potency
in %

non-seq. 74.0 88.8 84.1 73.3 58.4
seq. 91.2 95.0 97.1 85.8 94.6

Gauge
in %

non-seq. 0.10 0.07 0.05 0.22 0.02
seq. 0.04 0.02 0.03 2.49 0.03

a) Location is given as a share of the sample length T .
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Table A.15: Goodness–of–fit and diagnosis tests results for models without IS, with IIS and
SIS for five European countriesa)

Goodness–of–fitb) Diagnosticsc)

Log-likelihood R2
S

AIC BIC Q(24) DW H(93) BS

ES

no IS −573.568 0.850 2.520 2.743 49.313∗ 1.996 2.727∗ 69.524∗

IIS −550.238 0.869 2.504 2.897 46.382∗ 1.900 2.289∗ 27.091∗

SIS
non-seq. −515.408 0.892 2.395 2.892 34.590 1.953 1.954∗ 7.765∗

seq. −564.973 0.858 2.536 2.876 54.074∗ 1.995 2.497∗ 89.223∗

FR

no IS −533.839 0.815 2.195 2.417 44.007∗ 1.968 4.169∗ 94.560∗

IIS −471.754 0.873 2.001 2.472 51.892∗ 1.859 1.697∗ 1.566

SIS
non-seq. −490.836 0.863 1.985 2.352 53.689∗ 1.879 2.324∗ 19.513∗

seq. −490.836 0.863 1.985 2.352 53.689∗ 1.879 2.324∗ 19.513∗

GER

no IS −549.799 0.841 2.259 2.481 45.528∗ 2.191 1.148 41.605∗

IIS −485.167 0.885 2.124 2.608 51.892∗ 1.859 1.697∗ 1.566

SIS
non-seq. −494.171 0.886 2.035 2.427 44.016∗ 2.269 1.585∗ 11.260∗

seq. −490.111 0.889 2.010 2.403 44.761∗ 2.282 1.464 4.700

IT

no IS −575.599 0.822 2.532 2.755 66.929∗ 1.998 2.304∗ 98.834∗

IIS −537.196 0.854 2.491 2.936 60.213∗ 1.937 1.321 3.612

SIS
non-seq. −545.703 0.854 2.425 2.791 65.207∗ 1.983 1.566∗ 0.221
seq. −518.960 0.880 2.324 2.795 65.207∗ 1.956 1.185 10.841∗

UK

no IS −393.953 0.891 1.038 1.260 43.755∗ 2.002 1.145 40.822∗

IIS −349.641 0.915 0.903 1.296 24.539 1.995 1.008 28.059∗

SIS
non-seq. −325.007 0.930 0.740 1.159 29.742 2.061 1.071 2.727

seq. −336.676 0.925 0.796 1.189 23.852 2.046 0.909 2.801

a) ES: Spain, FR: France, GER: Germany, IT: Italy, UK: United Kingdom
b) R2

S : coefficient of determination suitable for data displaying trend and seasonal movements; AIC and BIC:
information criteria based on the prediction error variance

b) Q(p): Ljung–Box statistic based on the first p standardised innovations; DW: Durbin–Watson statistic;
H(h): heteroscedasticity statistic based on the first h and the last h standardised innovations, with h being
the closest integer to T/3; BS: Bowman–Shenton normality statistic; ∗ indicates statistical significance at the
5% level.
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Table A.16: Outliers detected for five European countries with different software
packagesa),b),c)

TRAMO TSW X13–ARIMA STAMPd)

ES

2008.M12 (LS) 2008.M12 (LS) 2008.M12 (LS) 1997.M4 (AO)
2002.M3 (AO)
2002.M4 (AO)
2005.M4 (AO)
2008.M3 (AO)
2008.M4 (AO)
2008.M12 (LS)

FR

2000.M5 (AO) 2000.M6 (TC) 2000.M5 (AO) 2008.M12 (LS)
2008.M11 (LS) 2008.M11 (LS) 2008.M11 (LS) 2011.M5 (AO)
2009.M1 (LS) 2009.M1 (LS) 2009.M1 (LS)
2011.M5 (AO) 2011.M5 (AO) 2011.M5 (AO)

2001.M6 (AO)

GER

2008.M12 (LS) 2000.M5 (AO) 2000.M5 (AO) 2000.M5 (AO)
2008.M12 (LS) 2008.M12 (LS) 2009.M6 (SC)
2009.M12 (TC) 2011.M5 (AO) 2011.M5 (AO)
2011.M5 (AO)
2011.M6 (AO)

IT

2008.M12 (LS) 1991.M4 (AO) 2008.M12 (LS) 2008.M4 (AO)
2009.M8 (LS) 1998.M12 (TC) 2008.M12 (AO) 2008.M12 (LS)

2002.M4 (AO) 2009.M1 (LS)
2008.M12 (LS) 2009.M8 (LS)
2009.M3 (LS)
2009.M8 (LS)

UK

1998.M1 (LS) 1993.M6 (LS) 2002.M6 (AO) 2002.M6 (AO)
2002.M6 (AO) 1998.M1 (LS) 2008.M11 (LS) 2008.M12 (LS)
2005.M3 (AO) 2005.M3 (AO)
2008.M11 (LS) 2008.M11 (LS)
2009.M1 (LS) 2009.M1 (LS)

a) ES: Spain, FR: France, GER: Germany, IT: Italy, UK: United Kingdom
b)Acronyms in the parentheses give the type of the outlier; AO: additive outlier, LS: level shift,
TC: transitory change, SC: slope change

c)TRAMO: see Gómez and Maravall (1996); TSW: TRAMO–SEATS version for Windows, see
Caporello and Maravall (2004); X13–ARIMA: see U.S. Census Bureau (2013); STAMP: see
Koopman et al. (2009)

d)Time points of breaks in particular unobserved components of the BSM are translated to time
points of changes in the observed series.
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Table A.17: Periods of first detection of the relevant LS
for five European countriesa),b)

Time point of LS Time point of first detection

ES
SIS

non-seq. – –
seq. 2008.M10 2009.M6

FR
SIS

non-seq. – –
seq. 2008.M11 2008.M11

GER
SIS

non-seq. 2008.M12 2009.M2
seq. 2008.M11 2008.M11

IT
SIS

non-seq. 2008.M12 2008.M12
seq. 2008.M12 2008.M12

UK
SIS

non-seq. 2008.M11 2009.M9
seq. 2008.M11 2008.M11

a) ES: Spain, FR: France, GER: Germany, IT: Italy, UK: United
Kingdom

b) Relevant LS refers to the beginning of the economic crisis and
and its time point, as detected by SIS with the full sample
1991.M1–2014.M1, generally differs across countries. Detection
is iteratively performed starting with the sample up to 2008.M9
and ending with the sample up to 2012.M8. Cases in which the
relevant LS is not detected in the whole time span are indicated
by –.
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Figure B.1: Examples of series of length T = 144 simulated with four different combi-
nations of variance parameters and an additive outlier located at τ = 0.5 T
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(b) Outlier magnitude given by 14·PESD

Figure B.2: Examples of series of length T = 144 simulated with an additive outlier of
two different magnitudes. The outlier is located at τ = 0.5 T
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(d) τ = 0.6T, 0.7T, 0.75T, 0.9T

Figure B.3: Examples of series of length T = 144 simulated with the benchmark specifi-
cation and multiple outliers (a), b): two outliers; c), d): four outliers) located at different
time points τ
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Figure B.4: Examples of series of length T = 144 simulated with four different combi-
nations of variance parameters and a level shift located at τ = 0.5 T
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Figure B.5: Examples of series of length T = 144 simulated with a level shift of two
different magnitudes located at τ = 0.5 T

42



0 2 4 6 8 10 12

80

100

120

140

160

180

(a) One shift: τ1 = 0.2T , τ2 = 0.35T

0 2 4 6 8 10 12

70

90

110

130

150

170

(b) One shift: τ1 = 0.5T , τ2 = 0.6T

0 2 4 6 8 10 12

70

90

110

130

150

(c) First shift: τ1 = 0.2T , τ2 = 0.3T ; Second
shift: τ1 = 0.35T , τ2 = 0.45T

0 2 4 6 8 10 12

80

100

120

140

160

180

(d) First shift: τ1 = 0.25T , τ2 = 0.35T ; Second
shift: τ1 = 0.65T , τ2 = 0.75T

Figure B.6: Examples of series of length T = 144 simulated with the benchmark spec-
ification and interval level shifts (a), b): one shift; c), d): two shifts) depending on the
initial time point τ1 and the end time point τ2
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