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Abstract

We develop a panel data count model combined with a latent Gaussian spatio-temporal het-

erogenous state process to analyze monthly severe crimes at the census tract level in Pittsburgh,

Pennsylvania. Our data set combines Uniform Crime Reporting data with socio-economic

data from the 2000 census. The likelihood of the model is accurately estimated by adapting

recently developed e�cient importance sampling techniques applicable to high-dimensional

spatial models with sparse precision matrices. Our estimation results con�rm socio-economic

explanations for crime and, foremost, the broken-windows hypothesis, whereby less severe

crimes in a region is a leading indicator for severe crimes. In addition to ML parameter

estimates, we compute several other statistics of interest for law enforcement such as elastic-

ities (idiosyncratic, total, short-term as well as long-term) of severe crimes w.r.t. less severe

crimes, one-month-ahead out-of-sample forecasts, predictive cumulative distribution functions

and validation test statistics based on these cdf's.

JEL classi�cation: C15; C23; C25; C51; C53; K42; R15.

Keywords: Broken-windows hypothesis; E�cient Importance sampling; Empirical crime model; Out-of-

sample crime forecasts; Spatio-temporal econometrics.



1 Introduction

The spatio-temporal urban distribution of crimes is receiving growing attention not only from

researchers (criminologists, sociologists, economists, geographers,...) but also from law enforcement

agencies. See, e.g., Ratcli�e (2013), Bernasco and El�ers (2013), Tita and Radil (2013), Roth et

al. (2013) or Li et al. (2014) for recent contributions, surveys and extensive lists of references.

Additional references are discussed in Section 2 below. Two quotes from the literature are directly

relevant to the present paper. In his overview of current crime analysis, Ratcli�e (2013, p. 14) states

that: �At present, the most under-researched area of spatial criminology is that of spatio-temporal

crime patterns�. Among their discussion of unmet needs for spatio-temporal crime analysis, Roth

et al. (2013, p. 238) highlight a need to �integrate geographic and temporal representation and

analyses�.

In the present paper, we aim at addressing such needs by proposing a spatio-temporal latent panel

model for high-dimensional urban crime count data, which we then apply to a data set consisting of

monthly (2008-2013) counts of severe crimes (classi�ed as Part I crimes) for the 138 census tracts in

Pittsburgh, Pennsylvania. By taking advantage of an E�cient Importance Sampling (EIS) approach

recently developed by Liesenfeld et al. (2015) for likelihood evaluations in spatial latent models,

we estimate a latent panel count data model that includes temporal as well as spatial dependence,

socio-economic census tract characteristics and unobserved heterogeneity (random e�ects) across

census tracts. Not only can the model be estimated by Maximum Likelihood (ML) but a wide range

of important auxiliary statistics (for out-of-sample prediction, model validation, model selection)

can also be routinely computed.

A further motivation for our paper originates from three earlier papers who analyzed a variety

of forecasting models for severe crime in Pittsburgh (Gorr et al., 2003, and Cohen et al., 2007)

and in Pittsburgh and Rochester, New York (Cohen and Gorr, 2005). In the absence of potential

socio-economic covariates and spatially and temporally lagged dependent variables, they �nd that

a linear multivariate leading indicator model is typically best for forecasting large decreases in
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crime volume, while various forms of exponential smoothing provide the best average forecast point

accuracy according to mean squared and mean absolute percentage forecast error. Relative to

these contributions, we bene�t from two key advantages. First, as mentioned above, we are able to

generalize the numerical EIS procedure developed by Liesenfeld et al. (2015) for likelihood functions

in latent spatial count models to account not only for spatial but also for temporal lags as well

as unobserved and observed (socio-economic) heterogeneity. Second, we bene�t from access to

highly disaggregated and, foremost, internally consistent data at the census tract level combining

Uniform Crime Reporting (UCR) data classi�ed according to the handbook of the U.S. Department

of Justice (2004) with socio-economic data from the 2000 census.

As a preview of our main results, we test alternative socio-economic explanations for severe

crime intensities and �nd strong con�rmation of the `broken-windows' phenomenon, whereby the

intensity of less severe crime in a census tract provides a leading indicator for more severe crimes.

See, e.g., Wilson and Kelling (1982), Anselin et al. (2000, p. 225), Cohen and Gorr (2005) and

Cohen et al. (2007). In particular, our model allows us to compute both short-term and long-term

elasticities of severe crimes w.r.t. less severe crimes. Foremost, by exploiting the spatial component

of our model, we can compute `total' elasticities for the city of Pittsburgh in response to a reduction

in less severe crimes in any given census tract. Such results highlight the critical importance of fully

accounting for urban spatial dependence but could also provide a useful tool for e�cient allocation

of law enforcement resources.

We also run sequential one-month-ahead out-of-sample forecasts that demonstrate the superior

predictive performance of our model relative to exponential smoothing (a widely used and typically

hard to beat benchmark). Moreover, we can produce complete predictive distributions, not just

point predictions, from which predictive forecasts intervals can be obtained. Last but not least, we

also use these predictive distributions to produce statistical validation of our forecasting model.

The paper is organized as follows. In Section 2 we provide a review of the literature on the socio-

economic determinants of variations in crime rates across geographic regions and their spatial and

temporal dependence. In Section 3 we describe the data. Section 4 presents the spatio-temporal
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panel count data model used to analyze severe crimes and in Section 5 we outline the numerical

spatial EIS procedure which we use for likelihood inference. The empirical results are discussed in

Section 6 and conclusions are drawn in Section 7.

2 Predictors and dependence in time and space of crime rates

2.1 Predictors

Empirical research in criminology commonly applies regression models to explain observed varia-

tions in crime rates across geographic regions with �xed boundaries such as counties (Baller et al.,

2001), police precincts (Gorr et al., 2003), census tracts (Helbich and Arsanjani, 2014), or census

block groups (Willits et al. 2013). The theoretical background consists of sociological theories of

crime including social ecology theories and place-based theories (see, e.g., Anselin et al., 2000).

Social ecology theories such as the social disorganization theory (Shaw and McKay, 1942) explain

the geographical variation in crime levels in terms of varying social conditions of the population.

Under place-based theories, including the routine activities theory (Cohen and Felson, 1979) and

the rational choice theory (Cornish and Clarke, 1986), the geographical variation of crime levels is

determined by the intersection in time and space of suitable targets, motivated o�enders and the

absence of crime suppressors. Those theories point to several indicators of structural (environmen-

tal, urbanistic, sociological and economic) conditions which may help predicting the geographical

distribution of crime rates. Structural predictors used in empirical studies include measures for pop-

ulation structure (size and density), composition of the resident population (percentage of white and

African-American population, age structure), family cohesion (percentage of female-headed house-

holds, divorce rate), socio-economic structure (income �gures, unemployment rates), and condition

of buildings and houses (rental and homeowner vacancy rates) � see, e.g., Land et al. (1990), Tolnay

at al. (1996), Baller et al. (2001), Kubrin (2003), and Helbich and Arsanjani (2014).
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2.2 Spatial dependence

A common stylized fact in empirical criminology is that levels of violence and crime activity are

not randomly distributed across geographical regions. Instead similar levels cluster in space, which

implies positive spatial autocorrelation, consistent with a fundamental property of spatial data

whereby there is a tendency for observations that are in close geographic proximity to be more alike

than those that are further apart (Tobler's, 1970, �rst law of geography). If criminal activities are

solely determined by the structural factors included in a regression model there should be no spatial

dependence beyond that generated by structural similarities of regions that are in close geographic

proximity (Baller et al., 2001). However, spatial clustering typically cannot be completely explained

by common measures of structural similarity between geographical regions (see, e.g., Moreno� and

Sampson, 1997, Moreno� et al., 2001, Baller, et al., 2001, and Tita and Radil, 2013, p. 107).

Spatial correlation has attracted growing attention in empirical criminological research for two

reasons (see, e.g., Baller et al., 2001). The �rst one is statistical. If spatial correlation in the

data is ignored, then estimates for the e�ects of covariates and the corresponding standard errors

may be biased and inconsistent (see Anselin, 1988). Thus, modelling spatial correlation is critical

when assessing the marginal e�ects of structural covariates on crime rates. The second reason

is that spatial dependence by itself is of substantive importance in crime analysis since positive

spatial autocorrelation is interpreted as evidence of the spatially di�usive and contagious nature of

certain types of crime (see, Tolnay et al., 1996 and Moreno� and Sampson, 1997). Such e�ects may

re�ect interacting criminals and gangs linked together by rivalry networks (Tita and Greenbaum,

2008) and/or `subcultural' processes in which case violence spreads throughout the population and

regional areas via direct social contacts (Loftin, 1986).

In order to explicitly incorporate spatial correlation, regression models used to explain the vari-

ation in crime rates are typically generalized to include either spatially correlated errors (spatial

error models) or spatially lagged dependent variables (spatial lag models) � see, e.g. Baller et

al. (2001), Morenho� et al. (2001) and Kubrin (2003). Spatial error models are appropriate in

cases where spatial dependence is treated as a nuisance resulting from omitted spatially correlated
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structural factors rather than being of substantive interest of its own. Instead spatial lag models

are more compatible with the notion of di�usion and contagion processes. However, it is important

to recognize that these models are designed to �nd only indirect evidence of di�usion and contagion

and that they are unable to discover the actual mechanisms through which criminal events in one

geographical area in�uence events in other areas at later times (see Baller et al. 2001, p. 567).

2.3 Temporal dependence

When observations are available in the form of panel data for a cross-section of regional areas with

�xed boundaries at di�erent points in time, it becomes possible to model complex combinations

of spatial heterogeneity and or spatial and temporal dependence in crime rates (see Anselin et

al., 2000, p. 241). A dynamic panel-data setting also provides a natural basis for joint time-space

forecasting of crime activity which can support tactical deployments of police resources (Gorr and

Harris, 2003, Gorr et al., 2003, Cohen and Gorr, 2005, and Roth et al., 2013).

There are several reasons to expect not only spatial but also temporal dependencies as well as

seasonal regularities in levels of criminal activity in areal units. For example, convergence of crime

opportunities in space and time, as emphasized by place-based routine activity theories, could be

facilitated by various physical and social features that provide a setting more or less conductive to

crime, such as local population composition or urbanistic conditions (Anselin et al., 2000, p. 220).

Temporal persistence and the slowly changing nature of such (observed or unobserved) features

lead to systematic temporal dependence in time series of frequency counts of crime observed for

geographic areas (Li et al., 2014, p. 181). If some of those physical and social features are stable

over time but unobservable, the implied spatial heterogeneity cannot be controlled for in a panel

regression analysis and gives rise to temporally correlated errors. In order to account for such

unobserved spatial heterogeneity we shall use a random e�ect approach with an area-speci�c time-

invariant error component1.

1An alternative way to capture time invariant spatial di�erences would be to use a model with �xed-e�ect area-
speci�c dummy variables. However, such a model requires the estimation of a larger number of additional parameters,
leading to a signi�cant loss of degrees of freedom.
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The interpretation of spatial autocorrelation in terms of di�usion and contagion also implies

inter-temporal linkages of crime rates within regional areas since these concepts inherently assert

time-sequential processes (see, Bernasco and El�ers, 2013, p. 710). For example, spatial di�usion

re�ecting interacting gangs implies a chronology of criminal actions and counter-reactions � due to

the retaliatory nature of gang violence � and leads to temporal persistence of crime rates. Such

persistence can also be expected if the contagious nature of crime is the result of `subcultural'

processes whereby violence spreads across the population via social contacts so that an increase in

assaults in a given area may set-o� a chain reaction of criminal events extending to neighboring

areas (Tita and Radil, 2013, p. 107). In a panel regression model such spatio-temporal persistence

can be accounted for by including not only spatially but also temporally lagged dependent variables.

Furthermore, high levels of urban crime are typically concentrated in relatively few small areas.

Empirical evidence suggests that such crime hot spots may arise �rst as a concentration of soft

crimes (e.g., vandalism, gambling and public order disturbances) that later hardens into more

serious crimes (e.g., assaults, robbery and homicides) � see, e.g., Anselin et al. (2000) and the

references cited therein. Explanations for this temporal development of crime hot spots emphasize

that public signs of disorder like vandalism, gambling and 'broken windows' foster increases in more

serious crime, since they signal a loss in the ability to exercise social control, further attracting and

perpetuating crimes (Wilson and Kelling, 1982). This `broken-windows' phenomenon suggests that

the intensity of soft crimes observed in a given regional area may serve as a leading indicator for

the number of serious crimes in that area (Anselin et al., 2000, p. 225 and Cohen and Gorr, 2005,

Cohen et al., 2007). In order to make use of the leading-indicator properties of soft crimes when

specifying a predictive panel model for severe crimes we shall include them as lagged explanatory

variables.

Finally, crime appears to be a seasonal phenomenon and empirical evidence suggests that, for

example, frequencies of violent crimes such as assaults and homicides are higher in summer and

lower in winter (see, Cohen, 1941). Under the `temperature aggression hypothesis' this seasonality

is attributed to weather which increases violent crimes via ambient temperature and anger arousal
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(see, Gorr et al., 2003). Within the routine activity theory regular temporal patterns can be

viewed as a result of seasonality which gives rise to changes in one or more of the conditions

propitious to crime (such as existence of suitable targets and motivated o�enders and absence of

crime suppressors). In order to take potential seasonality into account we shall include monthly

seasonal dummies in the panel regression model.

3 Data

3.1 Data sources

Our crime data set includes monthly (January 2008 to December 2013) counts of Part I and Part II

o�enses for each of the 138 2000-census tracts in Pittsburgh. Part I and Part II o�enses are de�ned

in the Uniform Crime Reporting (UCR) handbook of the U.S. Department of Justice (2004, p. 8).

Part I o�enses, also known as index crimes regroup serious felonies in the following eight categories:

criminal homicide, forcible rape, robbery, aggravated assault, burglary, larceny-theft (except motor

vehicle theft), motor vehicle theft and arson. The UCR program's founder selected these o�enses

because �they are serious crimes, they occur regularly in all areas of the country and they are likely

to be reported to police�. The count data for Part I o�enses consist of the numbers of o�enses in

these categories that are known to law enforcement. Part II o�enses includes 21 categories of non

serious felonies and misdemeanors ranging from other assaults to runaways (persons under 18) for

which only arrest data were collected.

Our dependent variable yit is de�ned as the number of Part I o�enses in census tract i (i =

1, . . . , 138) in month t (t = 1, . . . , 72) for a total of 9,936 individual observations. In Table 1 we

provide a list of the Pittsburgh census tracts with their i-ordering as used throughout the paper.

As discussed above and further below, the lagged number of Part II o�enses will prove to be a key

predictor variable for yit.

In addition, in order to account for heterogeneity across census tracts, we collected data from the
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Census 2000 (US Census Bureau and Social Explorer Tables) on the following 15 socio-economic

variables (i = 1, . . . , 138): Log of total population (Ltp), log of population density per square

mile (Lpd), log of median income (Lmi), dropout rate age 16-19 (Dra), civilian unemployment rate

(Cur), poverty rate (Pvr), percentage of total population under 18 (U18), group quarter proportion

(Gqp), percentage of total population that is African-American (Paa), percentage of population

(age 25 and over) with less than a high school degree (Hdl), percentage of population (age 25

and over) with a bachelor degree or higher (Bdh), rental housing units as percentage of occupied

housing units (Rhu), percentage of households having been in the same house for more than one

year (Sh1), percentage of female headed households (Fhh), and housing units vacancy rate (Hvr).

Occasional missing data for census tracts 203, 708, 9800, 9801, and 9803-9812, which do not have

a regular resident population, were replaced by corresponding census tract dummies2.

3.2 Some descriptive statistics

As we are dealing with a total of 9,936 observations, we computed time and census tracts averages

of Part I crimes ȳi (i = 1, ..., 138) and ȳt (t = 1, . . . , 72). In Figure 1 we provide a color coded map

of the time averages ȳi, highlighting signi�cant spatial clustering and heterogeneity across census

tracts (time averages and standard deviations of Part I crimes are reported in Table 1). In Panel

(a) of Figure 2, we provide a time plot of ȳt and of the corresponding averages for Part II crimes.

These plots illustrate signi�cant seasonal patterns in line with the �ndings of Gorr et al. (2003).

Less apparent at this aggregate level but more visible from the individual census tract time series

(not presented here), we observe a tendency for Part II crimes to lead Part I crimes. This is a

signi�cant observation and one that will be carefully tested and fully con�rmed by our statistical

analysis. It has important policy implications in line with the `broken-windows' hypothesis (Wilson

and Kelling, 1982, Anselin et al., 2000, and Cohen and Gorr, 2005).

In Panel (c) of Figure 2, we present the Moran's I statistics for spatial correlation period by

2These census tracts include business districts and hospitals (203, 9800), zoo and parks (708, 9801-9805), industrial
parks (9806-9809), cemeteries (9810-9811), and stadiums (9812).
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period (see Moran, 1948 or Cli� and Ord, 1972). They are computed under the spatial weight

matrix used for our spatial models (see Section 4 below). These statistics are standardized in Panel

(d) of Figure 2, with a critical value of 1.96 at the 5 percent level. We �nd that the null hypothesis

of no spatial correlation is rejected in all but two months.

Next we computed the temporal autocorrelation function of yit for the 138 census tracts. In

Panel (b) of Figure 2, we reproduce the mean autocorrelations across census tracts. The results

unambiguously point toward the inclusion of a lagged dependent variable in our count model.

In summary, our descriptive analysis highlights the need for a count model that allows for

temporal as well as spatial correlation, together with signi�cant heterogeneity across census tracts.

Part of that heterogeneity will be captured by selected regressors (including lagged Part II crimes)

and the remainder by random e�ects.

4 Model speci�cation

Our speci�cation for the number of severe crimes yit reported for census tract i in month t consists

of a panel data count model combined with a latent Gaussian spatio-temporal state process. It

assumes that the yit's are mutually independent conditional on the latent state variables λit, with

Poisson distributions whose non-negative mean is speci�ed as θit = exp(λit). The corresponding

conditional probability density function (pdf) of yit given λit is given by

f(yit|λit) =
exp{yitλit − exp(λit)}

yit!
, i = 1, . . . , N, t = 1, . . . , T, (1)

where λit represents the log of the conditional mean of yit. The latent process is assumed to be a

linear Gaussian dynamic panel model in space and time as discussed, e.g., by Elhorst (2010, 2012)

and Baltagi et al. (2014). It has the following form:

λt = κλt−1 + ρWλt +Xtγ + εt, (2)
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where λt = (λit) denotes the N × 1 vector of the state variables in period t, εt = (εit) the N × 1

vector of error terms, and Xt the N ×K matrix whose ith row xit = (xikt) consists of K covariates

observed for census tract i in period t. Potential covariates include (i) observed (time-invariant)

socio-economic variables which might a�ect the rate of severe delinquency, (ii) monthly dummy

variables that capture potential seasonality in severe crime activity, and (iii) the log of less severe

crime lagged by one month which, according to the broken-windows hypothesis, serves as a potential

leading indicator for severe crimes. The N × N matrix W = (wij) represents the contiguity

relations across the N census tracts, where we set wij > 0 only if the borders of tract i and j

share at least one common point and wij = 0, otherwise (`queen contiguity'). Following the usual

convention, the diagonal elements wii are set to zero. The spatially lagged state variable Wλt

captures potential di�usion and contagion e�ects in severe crimes and the parameter ρ measures

the intensity of the resulting global spatial correlation. The temporally lagged state variable λt−1

with persistence parameter κ accounts for potential census-tract speci�c intertemporal linkages of

crime rates. Moreover, the spatially and temporally lagged states imply that the covariates in xit

have not only a contemporaneous and census-tract speci�c impact but also time-persistent and

spatially expanding e�ects on severe crime rates.

In order to account for potential unobserved time-invariant heterogeneity in the crime rates

across census tracts we assume that the error terms in Equation (2) follow a Gaussian random-

e�ect speci�cation of the form

εt = τ + et, with et|Xt ∼ NN(0, σ2
eIN), τ |Xt ∼ NN(0, σ2

τIN), (3)

where the N × 1 vector τ = (τi) contains census tract-speci�c e�ects that are not accounted for by

variables inXt, and et = (eit) is the N×1 vector of idiosyncratic disturbance terms. NN(·, ·) denotes

an N -dimensional Gaussian distribution and IN the N -dimensional identity matrix. Moreover it is

assumed that τ and εt are independent of each other, conditionally on Xt.

Conditions for invertibility of (IN − ρW ) and temporal stability of the dynamic spatial panel
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speci�cation for the state variables as given by Equation (2) are discussed in Elhorst (2012) and

Baltagi et al. (2014). For a W matrix with real eigenvalues, a su�cient condition for invertibility

is that ρ ∈ (1/ζmax, 1/ζmin), where ζmin and ζmax are the extreme eigenvalues. For an invertible

(IN−ρW ), the model for the state variables in Equations (2) and (3) implies the following Gaussian

distribution for λt given (λt−1, τ,Xt):

λt|λt−1, τ,Xt ∼ NN(K∗λt−1 +m∗t + τ ∗, H−1), (4)

with

K∗ = κ(IN − ρW )−1, m∗t = (IN − ρW )−1Xtγ, τ ∗ = (IN − ρW )−1τ, (5)

H = (IN − ρW )′(IN − ρW )/σ2
e ,

and the temporal stability (conditional on the covariates) is guaranteed if the largest absolute

eigenvalue of the persistence matrix K∗ is smaller than one. As discussed further below in Section

5.1, likelihood based inference requires an appropriate, yet operational treatment of the initial

latent state λ1 in Equations (2) and (4). Finally, note that since census tracts share a common

boundary only with a small number of other tracts, the spatial weight matrix W and the resulting

precision matrix H as given in Equation (5) are sparse with a very large proportion of zero entries,

as typical for spatial applications.

In order to account for missing observations for socio-economic covariates in the 14 census tracts

without a regular resident population (parks, cemeteries, etc.) we specify the regression function

Xtγ = (x′itγ) in Equation (2) using a dummy-variable approach. Speci�cally, lets partition xit and

γ into

x′it = ([1− ιi]x(1)i
′
ιi x

(2)
it

′
), γ′ = (γ

(1)
1

′
γ
(1)
2 γ(2)

′
), (6)

where x
(1)
i denotes the vector of the (time invariant) socio-economic covariates, x

(2)
it the remaining

covariates and ιi a dummy variable (ιi = 1 if tract i has missing observations for x
(1)
i and ιi =

0, otherwise). The associated slope vectors are γ
(1)
1 , γ

(1)
2 and γ(2). Under this partitioning the
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regression function for census tract i is speci�ed as

x′itγ = (1− ιi)x(1)i
′
γ
(1)
1 + ιiγ

(1)
2 + x

(2)
it

′
γ(2). (7)

5 EIS based likelihood inference

Likelihood evaluation for the spatio-temporal Poisson panel model discussed in Section 4 requires

high-dimensional integration in order to marginalize the joint distribution of the yit's w.r.t. the

latent state and random-e�ect variables, for which we use the spatial EIS approach introduced

in Liesenfeld et al. (2015). Spatial EIS combines the original EIS principle developed by Richard

and Zhang (2007) for high-dimensional MC integration with sparse matrix algebra, which allows

for fast computation on the large sparse precision matrices typically found in high-dimensional

spatial applications. In fact, sparse matrix operations signi�cantly reduce operation counts and

memory requirements relative to the corresponding operations on dense matrices (see, e.g., Gilbert

et al., 1992, LeSage and Pace, 2009, Pace and LeSage, 2011). This combination of EIS with sparse

matrix algebra ensures that accurate MC likelihood evaluations remain computationally feasible

even in high-dimensional latent spatial Gaussian models. EIS also enables us to compute MC

estimates for the conditional mean of functions of the latent state variables λit and random e�ects

τi given the observed data (smoothing) as well as moments and probabilities of (out-of-sample)

predictive distributions for the dependent variable. As we shall see below, those MC estimates are

instrumental in the selection of the covariates to be included in the model and the assessment of the

predictive performance of the model. Spatial EIS is outlined in the next sections: In Section 5.1 we

discuss our assumption for the initial condition λ1 and present the resulting form of the likelihood

integral; Section 5.2 brie�y outlines the EIS principle (details of its spatial implementation for the

models are regrouped in Appendix 2); In Section 5.3 we present smoothing and prediction based

on EIS.
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5.1 Likelihood

Likelihood inference based on the unconditional likelihood function would require the stationary

distribution of the �rst-period state variables f(λ1|X1, τ) as implied by the conditional distribution

(4). However, that stationary distribution is not available due to the presence of time-varying

covariates in Xt
3. In order to cope with this `initial-condition problem' we treat λ1 = (λi1) as a

non-stochastic vector and set λi1 equal to ln(yi1), which represents our best guess for the latent log

conditional mean λi1 = lnE(yit|λit). This treatment of the initial-condition problem allows for an

easy implementation of (conditional) ML based on spatial EIS and appears to be justi�ed in our

application for two reasons. First, with T = 72 the likelihood contribution of the �rst period is

a relatively small part of the total likelihood; second, as we shall see in the application discussed

below, the estimated largest eigenvalue of the persistence matrix K∗ is of a moderate size, implying

that the impact of λ1 on future λt-values dies out quickly.

An alternative treatment of the initial condition consists of approximating f(λ1|X1, τ) by taking

the conditional distribution of λ1|X1, X0, X−1, ..., τ and capturing the spatial heterogeneity gen-

erated by the unobservable pre-sample values X1, X0, X−1, ... by a latent random-e�ect variable

(see Appendix 1). At the cost of additional modi�cations of the spatial EIS algorithm presented

in Section 5.2 and Appendix 2 below, we also implemented ML based on this approximation to

the unconditional likelihood. However, since the results we obtained for an initial baseline model

indicate that the conditional and approximated unconditional ML lead to essentially the same

conclusions, we decided to continue with the simpler conditional ML approach.

Evaluation of the conditional likelihood function requires integrating the joint density of the

counts, states and random-e�ects w.r.t. the latent N(T−1) state and the N random e�ect variables.

Let λ(t) = (λ′2, . . . , λ
′
t)
′, X(t) = (X2, . . . , Xt), and y(t) = (y′2, . . . , y

′
t)
′, where yt = (yit) denotes the

N × 1 vector of the count response variables in period t. Let ψ denote the parameters to be

3For a purely linear spatio-temporal panel model with a small time dimension (T of the order of �ve) Elhorst
(2012) implements an approximation to the unconditional ML-estimator as proposed by Bhargava and Sargan (1983).
However, the application of this procedure to our non-linear spatio-temporal Poisson panel model with a large time
dimension would amount to estimating an unfeasible large number of additional (auxiliary) parameters.
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estimated. The likelihood integral to be evaluated is of the form

L(ψ) =

∫
RNT

ϕ(λ(T ), τ) dλ(T )dτ, with ϕ(λ(T ), τ) = f(y(T )|λ(T )) · f(λ(T )|X(T ), τ, λ1) · f(τ), (8)

and

f(y(T )|λ(T )) =
T∏
t=2

N∏
i=1

f(yit|λit), f(λ(T )|X(T ), τ, λ1) =
T∏
t=2

f(λt|λt−1, Xt, τ) (9)

f(τ) =
N∏
i=1

f(τi), (10)

where f(yit|λit) is the Poisson density given in Equation (1) while f(τi) and f(λt|λt−1, Xt, τ) are

the Gaussian densities de�ned by Equations (3) and (4), respectively. Note that the likelihood

integral (8) can not be evaluated analytically since the response variables are non-Gaussian with a

mean that is non-linear in the temporally and spatially correlated latent states.

5.2 Spatial EIS

Following Richard and Zhang (2007), the EIS procedure for MC-evaluation of the likelihood function

in Equation (8) is based upon an auxiliary importance sampling (IS) density for λ(T ) and τ of the

form

m(λ(T ), τ ; a) =
k(λ(T ), τ ; a)

χ(a)
, with χ(a) =

∫
RNT

k(λ(T ), τ ; a)dλ(T )dτ, (11)

where {k(λ(T ), τ ; a), a ∈ A} denotes a preselected class of parametric density kernels indexed by a

vector of (auxiliary) parameters a and with known integrating factors denoted by χ(a). For any

given a, the corresponding IS MC estimate of the likelihood integral (8) obtains as

L̂S(ψ; a) = χ(a) · 1

S

S∑
s=1

ω(λ
[s]
(T ), τ

[s]; a), with ω(λ(T ), τ ; a) =
ϕ
(
λ(T ), τ

)
k
(
λ(T ), τ ; a

) , (12)

where {(λ[s](T ), τ
[s])}Ss=1 denotes S i.i.d. (independently and identically distributed) draws from the

IS density m(λ(T ), τ ; a). For any given ψ, EIS aims at selecting a value of a that minimizes the MC
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sampling variance of the IS ratio ω under these draws.

A (near) optimal value â obtains by selecting an initial IS density m(λ(T ), τ ; â[0]) and solving

iteratively the following sequence of least squares (LS) approximation problems

â[`+1] = arg min
a∈A

S∑
s=1

{
lnϕ

(
λ
[s,`]
(T ) , τ

[s,`]
)
− ln k

(
λ
[s,`]
(T ) , τ

[s,`]; a
)}2

, ` = 0, 1, 2, ..., L, (13)

where {(λ[s,`](T ) , τ
[s,`])}Ss=1 are S i.i.d. draws from m(λ(T ), τ ; â[`]). The optimal â is the �xed-point

solution to the resulting sequence {â[`]}L`=0. In order to ensure convergence to a (near) �xed-

point solution4 it is critical that all (λ(T ), τ)-draws generated for the sequence {â[`]} be produced

by using transformations of a single set of canonical random numbers {z[s]}Ss=1 (common random

numbers, CRNs). Moreover, since â is an implicit function of the model parameters ψ, the EIS

LS approximation in Equation (13) has to be rerun for each new value of ψ and the use of CRNs

across reruns ensures continuity of the EIS likelihood estimation L̂S(ψ; â) with respect to ψ.

In order to select an EIS kernel k, which approximates the target ϕ(λ(T ), τ) de�ned in Equations

(8)-(10), we note that the product f(λ(T )|X(T ), τ, λ1)·f(τ) in ϕ de�nes a Gaussian kernel in (λ(T ), τ).

Hence, it is natural to construct k as a Gaussian kernel in (λ(T ), τ) which includes that product

together with a Gaussian kernel approximation to the product of independent Poisson densities

f(y(T )|λ(T )) =
∏T

t=2

∏N
i=1 f(yit|λit), which is the sole non-Gaussian term in ϕ. It follows that k is

constructed as

k(λ(T ), τ ; a) = k∗(λ(T ); a
∗) · f(λ(T )|X(T ), τ, λ1) · f(τ), (14)

with

k∗(λ(T ); a
∗) =

T∏
t=2

N∏
i=1

k∗it(λit; a
∗
it), k∗it(λit; a

∗
it) = exp

{
−1

2
(αitλ

2
it − 2βitλit + κit)

}
, (15)

where a∗ = (a∗it) and a
∗
it = (αit, βit, κit). The product of the three Gaussian factors in Equation (14)

4In the present application, the number of iterations L is preset at L = 20, which proves su�cient for convergence
to a close �xed-point approximation â = â[21]. This relatively large value of L is necessitated by the fact that, as
explained below, the LS problem in (13) is transformed further into a total of NT = 9, 936 independent low-
dimensional auxiliary LS problems.
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produces an EIS kernel k for a Gaussian EIS density m, whose parameter a obtains analytically

from a∗ and ψ. Since factors common to ϕ and k cancel out in the EIS regression (13), it follows

that the latter simpli�es into N(T − 1) independent low-dimensional linear LS regressions of

{
ln f(yit|λ[s,`]it )

}S
s=1

on :

{(
λ
[s,`]
it

)2
, λ

[s,`]
it , intercept

}S
s=1

, for i = 1, ..., N, t = 2, ..., T. (16)

The initial EIS kernels k∗it in Equation (15) are de�ned as second-order Taylor-series approximations

of ln f(yit|λit) in λit. This produces an initial value for the a∗-vector which can be combined with

ψ into â[0] 5.

Note that the resulting optimal joint EIS density m(λ(T ), τ ; â) to be used for the MC likelihood

estimation according to Equation (12) is an NT -dimensional Normal, where â consists of its NT×1

mean vector and the NT (NT + 1)/2 parameters in its covariance/precision matrix (in our applica-

tion NT equals 9, 936). Their construction requires operations on a recursive sequence of auxiliary

parameter matrices with terminal size O(N2
∗ ), where N∗ = N(T − 1) denotes the dimension of

λ(T ). Hence, a `brute force' implementation of EIS becomes rapidly computationally prohibitive as

NT increases. However, the precision matrix H in our application is a sparse matrix with a large

portion of zero entries. Thus, the key to a computationally feasible high-dimensional EIS imple-

mentation for our model lies in a recursive construction of the joint EIS density that operates on the

sparse precision matrix H (instead of the dense covariance matrix H−1) and, foremost, preserve its

sparsity throughout the entire recursion. A description of our speci�c spatial EIS implementation

is provided in Appendix 2.

5As discussed in Liesenfeld et al. (2015), in more general latent Gaussian spatial models allowing for truncated,
censored or degenerated (Probit) response densities f(yit|λit), the EIS parameters â and â∗ would need to be
obtained by a recursive sequence of interdependent LS-EIS regressions. Such a sequential EIS implementation
becomes necessary in order to account for the integrating factors associated with response densities that depend
on latent state variables and, therefore, enter the targets to be approximated by the EIS kernels. For the Poisson
model under consideration with a response density which is neither degenerated nor censored or truncated we can
implement EIS based on independent EIS regressions (see Equation 16), so that we can construct the joint EIS
density m(λ(T ), τ ; a) directly rather than from a sequence of conditional EIS densities. As reported in Liesenfeld et
al. (2015), this reduces signi�cantly the computing time relative to a sequential EIS implementation.
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5.3 Smoothing and Prediction

Once the parameters ψ have been estimated by ML-EIS, the EIS procedure can be used to compute

additional statistics of interest such as the smoothed (posterior) estimates of the random e�ects τ

(as in Section 6.2) and functions of the state variables λ as well as moments and probabilities of the

out-of sample one-step-ahead predictive distribution of the dependent variable y (as in Section 6.4).

All such computations rely upon a straightforward extension (propagation) of the EIS procedure

implemented for likelihood evaluations in Section 5.2.

Let g(λT+1, λ(T ), τ) denote a function of interest (dependence on XT+1, X(T ) and the model

parameters ψ is ignored in the notation). Its conditional mean given y(T ) is given by

Γ(y(T )) = E
[
g(λT+1, λ(T ), τ)|y(T )

]
(17)

=

∫
RN(T+1) g(λT+1, λ(T ), τ) · f(λT+1|λT , τ) · ϕ(λ(T ), τ) dλT+1dλ(T )dτ∫

RNT ϕ(λ(T ), τ) dλ(T )dτ
,

where ϕ(·) denotes the EIS target given in Equation (8) and f(λT+1|λT , τ) is the Gaussian transition

density as de�ned by Equation (4). The conditional mean (17) is to be evaluated at the ML-EIS

estimates of ψ. The denominator is the likelihood function in Equation (8), estimated using the

EIS kernel k(λ(T ), τ ; â) and IS ratios ω(λ(T ), τ ; a) as de�ned in Equation (12). Since the transition

density f(λT+1|λT , τ) is already a Gaussian density it can be used to draw directly λT+1|λT , τ and

propagate the EIS trajectories {λ[s](T ), τ
[s]}Ss=1 into {λ

[s]
T+1, λ

[s]
(T ), τ

[s]}Ss=1. Thus, the ratio of integrals

in Equation (17) is estimated by

Γ̂S =
S∑
s=1

g
(
λ
[s]
T+1, λ

[s]
(T ), τ

[s]
)
· ω̄
(
λ
[s]
(T ), τ

[s]; â
)
, (18)

where ω̄ denotes the normalized EIS ratio

ω̄
(
λ
[s]
(T ), τ

[s]; â
)

=
ω
(
λ
[s]
(T ), τ

[s]; â
)

∑S
s=1 ω

(
λ
[s]
(T ), τ

[s]; â
) . (19)
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Note that this EIS ratio does not depend on λT+1 since f(λT+1|λT , τ) being already Gaussian need

not be EIS approximated. Also the fact that we use the same EIS draws to estimate both the

numerator and denominator in Equation (17) induces positive correlation between their respective

EIS estimates, thereby reducing further the MC variance of Γ̂S. Next we discuss how this MC-EIS

estimate of the conditional expectation of a function g(λT+1, λ(T ), τ) can be used to compute several

statistics of interest.

(i) The conditional (posterior) mean of the random e�ects τ̂ = E(τ |y(T )) and the dependent

variables E(yit|y(T )) (i = 1, . . . , N ; t = 2, . . . , T ) given the sample information obtain from

g(λT+1, λ(T ), τ) ≡ τ, and g(λT+1, λ(T ), τ) ≡ E(yit|λ(T ), τ) = exp (λit), (20)

respectively.

(ii) The one-step-ahead predictive mean E(yiT+1|y(T )) (i = 1, . . . , N) obtains from

g(λT+1, λ(T ), τ) ≡ E(yiT+1|λT+1, τ) = exp (λiT+1). (21)

(iii) The one-step-ahead predictive cumulative distribution function (cdf) P (yiT+1 ≤ y|y(T )) for any

integer value y ≥ 0 obtain from

g(λT+1, λ(T ), τ) ≡ P (yiT+1 ≤ y|λT+1, τ) =

y∑
`=0

exp{`λiT+1 − exp(λiT+1)}/(`!). (22)

(iv) We can also use the predictive cdf in Equation (22) to compute randomized Probability Integral

Transformation (PIT) residuals that can be used to test the validity of our predictive model (see

Jung et al., 2006 and Czado et al., 2009). Speci�cally, let yoiT+1 denote the (ex-post) observed value

of yiT+1 and

Pa(y
o
iT+1) = P (yiT+1 ≤ yoiT+1 − 1|y(T )), Pb(y

o
iT+1) = P (yiT+1 ≤ yoiT+1|y(T )), (23)
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with Pa(0) = 0. If the predictive model is valid, then the randomized predictive PIT residuals,

de�ned as

ξiT+1 = Pa(y
o
iT+1) + υi

[
Pb(y

o
iT+1)− Pa(yoiT+1)

]
, υi ∼ i.i.d.U[0,1], (24)

are uniformly distributed on [0, 1] (U[0,1]). Using the inverse of a standardized Gaussian cdf, denoted

by Φ, the variable ξiT+1 can be transformed into a N(0, 1) variable

ξ∗iT+1 = Φ−1(ξiT+1). (25)

Thus, if the predictive model is valid, the normalized predictive PIT residuals ξ∗iT+1 should follow

a standard normal distribution.

6 Empirical results

Our descriptive analysis in Section 3.2 suggests that, in addition to spatio-temporal dependence

and random e�ects for heterogeneity, our model needs to include seasonal dummies as well as lagged

Part II crimes as covariates. Furthermore, we propose to explore whether the socio-economic census

tract covariates we collected might explain some of the heterogeneity across census tracts, thereby

reducing the variance of the random e�ects. However, with a (potential) total of 11 seasonal

dummies and 15 covariates, a full joint speci�cation search would prove computationally expensive.

Moreover, it would fail to take full advantage of the orthogonality between the seasonal dummies

(constant across census tracts) and the socio-economic variables (constant over time). Thus, we

follow instead a sequential speci�cation search consisting of the four following steps:

Step 1: We estimate a `baseline model' in which the matrix of covariates Xt consists solely

of an intercept, lagged log Part II crimes and eleven months dummies, where we select February

(typically the lowest crime month) as the base month. Step 2: We rely upon Equations (18)-(20)

to compute MC-EIS estimates for the posterior means of the random e�ects τ̂i (i = 1, . . . , N) under

the baseline model. Next, we regress those estimates on our 15 socio-economic covariates together
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with the time averages of log part II crimes, whose inclusion follows from Mundlak (1978) and

Wooldridge (2002, p. 487), with the objective of selecting a parsimonious subset of random e�ect

covariates. Step 3: We re-estimate a `full model' by adding the selected covariates to the baseline

model. Step 4: We produce a `predictive model' by eliminating insigni�cant seasonal dummies and

covariates from the full model.

We now discuss in turn the results obtained from these four steps.

6.1 Baseline model

The ML-EIS estimates for the baseline model based on an EIS simulation sample size of S = 500

and L = 20 EIS iterations are reported in Table 2. We note immediately that the key parameters

of interest (coe�cients for the temporal lag κ, the spatial lag ρ, random e�ect standard deviation

στ and slope coe�cient for lagged Part II crime) are all highly signi�cant. Also, the maximum

eigenvalue of the persistence matrix K∗ is less than 1, which is a su�cient condition for the spatio-

temporal stability of the model. These results indicate substantial positive spatial and temporal

dependence in Part I crime rates, after controlling for lagged Part II crime and seasonal e�ects and,

also substantial unobserved census-tract speci�c heterogeneity. The signi�cant positive coe�cient

for lagged Part II crime is fully in line with the broken-windows hypothesis (Wilson and Kelling,

1982 and Cohen and Gorr, 2005). As for the seasonal dummies, which capture the di�erence in the

seasonality between Part I and Part II crime (see Panel (a) of Figure 2), it is apparent that we can

reduce their number since some of their slope estimates are fairly close to each other. However, as

mentioned above, such a reduction is essentially irrelevant for steps 2 and 3 and will be postponed

until step 4. Another important reason for such postponement is that log Part II crime being itself

seasonal, we do not want to restrict the seasonal pattern of Part I crime before we produce our

�nal (predictive) estimate of the coe�cient of lagged log Part II crime in step 4.
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6.2 Random e�ects covariates

In Table 3 (panel 1 to 4), we report the results of four auxiliary regressions for the estimated random

e�ects τ̂i as obtained from the baseline model by Equations (18)-(20). We use the abbreviation

Alp-k to denote average log Part k crime (k=I,II). The �rst regression uses Alp-II as sole regressor

and produces a R2 of 0.48. The second regression uses all 15 socio-economic covariates but excludes

Alp-II for an R2 of 0.42. It indicates that population size (Ltp), percentage of African-Americans

(Paa) and housing units vacancy rate (Hvr) have a signi�cantly positive e�ect on the estimated

random e�ect, while the e�ect of group quarters proportion (Gqp) is signi�cantly negative. These

results are in line with those reported in the literature suggesting that concentration of violence

typically occur in disadvantaged communities and regions with a large population size (see, e.g.,

Baller et al., 2001, Helbich and Arsanjani, 2014, Kubrin, 2003, and Tita and Radil, 2013, p. 106).

We also note that Alp-II alone provides a better �t than our 15 socio-economic covariates, with

an adjusted R2 of 0.48 versus 0.34, suggesting that Alp-II might provide a good proxy for the latter.

This is fully con�rmed by the results of a regression of Alp-II on the 15 socio-economic variables

with an R2 of 0.70, as reported in panel 5 of Table 3. Moreover, it reveals that the signi�cant socio-

economic factors for the estimated random e�ect in panel 2 are also key predictors for less severe

crimes. Additional signi�cant determinants for less severe crime are population density (Lpd),

percentage of population under 18 (U18), percentage with a bachelor degree of higher (Bdh), all

with a negative impact, and rental housing units (Rhu) and female headed households (Fhh) with

a positive e�ect.

In panel 3 of Table 3, we report a benchmark regression of the τ̂i's on Alp-II as well as the 15

socio-economic covariates. In line with the previous results, we �nd a fairly high R2 of 0.68. For

interpretation of the slope coe�cients it is important to note that with the inclusion of Alp-II in the

auxiliary regression the coe�cients of the socio-economic variables in panel 3 represent di�erential

e�ects between the intensity of Part I and Part II crime. Speci�cally, panels 3, 2 and 5 correspond
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respectively to the following auxiliary regressions:

τ̂ = π1Alp-II + π′2X
(se), τ̂ = π′3X

(se), ˆAlp-II = π′4X
(se), (26)

where X(se) denotes the matrix of the 15 socio-economic covariates. Equation (26) implies that the

coe�cients of the socio-economic variables in panel 3 are given by π2 = π3 − π1π4. The majority

of those di�erential e�ects are statistically insigni�cant; the most signi�cant di�erence we observe

for Bdh, suggesting that less severe crime is substantially more concentrated in regions with a low

education level than severe crime.

Finally, we proceed to a `general-to-speci�c' simpli�cation search, whereby we eliminate from

the regression in panel 3 the least signi�cant covariates one at a time. As reported in panel 4 of

Table 3, this produces a parsimonious regression with only 5 covariates (Alp-II, Lmi, U18, Bdh,

Fhh) for a minimal loss of �t (R2 of 0.676 versus 0.683, but adjusted R2 of 0.662 versus 0.636).

6.3 Full model

Next, we extend the baseline model by adding Alp-II, Lmi, U18, Bdh and Fhh to the list of co-

variates and a dummy for census tracts with missing observations for socio-economic covariates

according to Equation (7). The results are reported in the right panel of Table 2. The esti-

mated coe�cients of the additional covariates are consistent with those obtained in the auxiliary

τ̂i-regression in panel 4 of Table 3 but are less signi�cant since they are now unconditional on

{τ̂i}Ni=1, an issue to be addressed in the next section. Compared to the baseline model we �nd

that σ̂τ has been greatly reduced from 0.486 to 0.256, corresponding to a substantial 77 percent

heterogeneity variance reduction. In parallel with this variance reduction the estimated spatial lag

coe�cient ρ has also been reduced from 0.442 to 0.374 but remains statistically highly signi�cant

indicating that socio-economic similarities between census tract help to explain part, but not all,

of the spatial clustering in severe crime rates. Also, it con�rms the spatially di�usive and conta-

gious nature of severe crime (Tolnay et al., 1996, Moreno� and Sampson, 1997 and Loftin, 1996).
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In contrast, the estimated temporal lag coe�cient κ and the idiosyncratic standard deviation σe

are essentially unchanged, as expected from the fact that the added covariates are time invariant.

Also the coe�cient of lagged Part II crime is nearly unchanged and remains statistically highly

signi�cant. As apparent from the results and con�rmed further in the next section, the substantial

log-likelihood gain of 76.6 (full versus baseline model) is essentially due to the inclusion of Alp-II

and Bdh whose coe�cients are both highly signi�cant. We already discussed the interpretation of

the Bdh coe�cient.

All in all, the full model provides a sound statistical basis to analyze the spatio-temporal dis-

tribution of Part I crimes and, pending the elimination of unnecessary seasonal dummies and

insigni�cant covariates, a solid basis for Part I crime predictions and policy implementation of the

'broken-windows' hypothesis.

In order to illustrate the �exibility of our model in this respect, we computed short-term and

long-term elasticities of Part I crimes w.r.t. changes in lagged Part II crimes. The analytical forms

of these elasticities are derived in Appendix 3. Short-term elasticities consider only a 1-period

change in lagged Part II crimes while long-term elasticities consider a permanent change in Part II

crimes, thereby covering both lagged and average Part II crimes. We computed these elasticities

for all 138 census tracts w.r.t. Part II crime changes in each census tract. We distinguish between

idiosyncratic elasticities (impact on the tract where the change of Part II takes place) and total

elasticities (impact on the entire city). The individual short-term elasticities are provided in Panels

(a) and (b) of Figure 3 and in Panels (c) and (d) the corresponding long-term elasticities. As

expected from the data, we �nd that downtown Pittsburgh (i = 2 with census tract number 201)

has the largest short-term total elasticity. The largest long-run total elasticities are found for

downtown and the census tracts i = 45, 48, 49, 65, 124 (the corresponding census tract numbers are

1301, 1304, 1306, 1702 and 5632). The �rst three correspond to a relatively high Part I crime area

at the east end of Pittsburgh (East Hills). Tract 1702 corresponds to the south-side (Carson street)

and 5632 to the North Side (adjacent to the stadiums), see Figure 1. In Figure 4 we display a

color map of the short-term and long-term elasticities for all the Pittsburgh census tracts w.r.t. a
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reduction in Part II crime in downtown Pittsburgh. From a crime reduction policy viewpoint these

elasticities could play an important role for e�cient allocation of scarce police resources.

6.4 Predictive Model

For prediction purposes, it is important that we simplify further the model by eliminating unnec-

essary seasonal dummies and insigni�cant covariates, as long as it minimally impacts the goodness

of �t. The slope estimates for the seasonal dummies under the full model (see Table 2) suggests

that we can safely capture seasonality with only three dummies (March, April to August and

September to January). Moreover, we can also eliminate the insigni�cant covariates Lmi, U18, and

Fhh. This leaves us with a fairly parsimonious total of 8 variables in Xt (constant, three seasonal

dummies, three covariates and one missing data dummy). The ML-EIS results for the simpli�ed

model reported in Table 4, indicate that this elimination of 11 variables produces a log-likelihood

ratio test statistics of only 7.6, which is insigni�cant at the 0.25 level. Moreover, the impact of that

elimination on the remaining coe�cients is minimal. Last but not least, the remaining coe�cients

are now all highly signi�cant even at the 0.1 percent signi�cance level except for the missing data

dummy which is essentially irrelevant for policy analysis. Such high signi�cance is important from

a classical perspective since it guarantees that parameter uncertainty will be essentially negligible

relative to model uncertainty for prediction purposes.

One important by-product of our model are one-step-ahead predictions. In order to assess its

predictive performance and validity we conducted an extensive out-of-sample predictive exercise for

the last year of our sample 2013. Speci�cally, for each month t = T ′ + 1 in 2013, we re-estimated

the model using data up to period T ′ and produced for each census tract a one-month-ahead point

prediction for month T ′ + 1 using the MC-EIS estimate of the predictive mean E(yiT ′+1|y(T ′)) in

Equations (18), (19) and (21). This provides us with a total of 138× 12 = 1, 656 point predictions

which we then compare with two sets of benchmark values obtained by univariate exponential

smoothing with values of 0.7 and 0.8 for the smoothing parameter (as recommended by Gourieroux

and Monfort, 1997, Section 4.1.3). For all three methods we then compute Mean Squared Forecast
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Errors (MSFE) and Mean Absolute Forecast Error (MAFE) for each month in 2013 as well as for

the entire year 2013. The results are reported in the right panel of Table 5. We �nd that monthly

as well as yearly our model outperforms exponential smoothing, except for May and June, where

the latter performs slightly better. This is a very positive outcome since univariate exponential

smoothing is considered to be a competitive benchmark (see, Gorr et al., 2003, or Cohen and Gorr,

2005).

Next, we test the predictive validity of our model over the same forecast period by computing

the one-step-ahead predictive PIT residuals according to Equations (22) to (25). A quantile-

quantile (QQ) plot of the normalized predictive PIT residuals ξ∗iT ′+1 in Equation (25) for the full

year is shown in Figure 5 and indicates no signi�cant deviation from standard normality. This is

con�rmed further by the following auxiliary statistics for ξ∗iT ′+1 we report in the left panel of Table

5: mean, standard deviation, Jarque-Bera test statistic for normality (see, e.g., Lütkepohl, 2007)

and corresponding P -values which indicate that the Null hypothesis of normality is never rejected

at the 10 percent level (5 percent for July 2013).

As shown by Equation (22) and illustrated by the computation of the predictive PIT residuals,

we could also trivially produce complete one-step-ahead predictive cdfs for all 138 census tracts, as

well as predictive probabilities for relevant count intervals.

7 Conclusions

Our �ndings are important at three di�erent levels: Computations, criminology and law enforce-

ment. From a computational viewpoint, we con�rm the feasibility of (numerically) accurate like-

lihood evaluation for a high-dimensional spatio-temporal heterogeneous state-space count model.

It also allows for evaluation of a wide range of additional statistics of empirical relevance such as

elasticities w.r.t. to covariates, out-of-sample predictive distributions and model validation test

statistics.

From a criminological perspective, our results relative to the impact of local socio-economic
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covariates on severe and less severe crimes largely support prevailing conjectures in the literature.

Moreover, they strongly con�rm the `broken-windows' hypothesis and enables us to use less severe

crimes as a key leading indicator of more severe crimes. This implies that the coe�cients of the

retained covariates in our predictive model represent di�erential impacts between the intensity of

severe and less severe crimes.

Last but not least, the computation of idiosyncratic as well as total elasticities enables us to

quantify the impact of a reduction of less severe crimes on severe crime, both locally and globally

through spatial di�usion. In combination with the immediate availability of one-month ahead

forecast statistics (means, cumulative distributions, predictive intervals) we believe that our model

could play a useful role in the e�cient allocation of scarce law enforcement resources, in line with

but more detailed than in the pioneering results of Cohen and Gorr (2005) and Cohen et al. (2005).
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Appendix 1. Approximation to the �rst-period density f (λ1|X1, τ )

According to Equations (4) and (5), λt can be written as

λt = K∗λt−1 +m∗t + τ ∗ + e∗t , e∗t ∼ NN(0, H−1). (A-1)
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Repeated in�nite back-substitution starting at t = 1 yields

λ1 = (I −K∗)−1τ ∗ +m∗1 +
∞∑
`=1

(K∗)`m∗1−` +
∞∑
`=0

(K∗)`e∗1−`, (A-2)

so that

λ1|(X1, X0, ..., τ) ∼ NN

[
(I −K∗)−1τ ∗ +m∗1 +

∞∑
`=1

(K∗)`m∗1−` , Ω
]
, (A-3)

where Ω = Var
[∑∞

`=0(K
∗)`e∗1−`

]
. A closed-form expression for the covariance Ω is given by vec(Ω) =

[IN2 −K∗ ⊗K∗]−1vec(H−1), where ⊗ denotes the Kronecker product and vec(·) the operator that

stacks the columns of a matrix into a vector (see, e.g. Hamilton, 1994, p. 265).

The heterogeneity in the mean of the normal distribution (A-3) which is generated by the

unobserved pre-sample values of the covariates via the term

∞∑
`=1

(K∗)`m∗1−` =
∞∑
`=1

(K∗)`(IN − ρW )−1X1−`γ, (A-4)

can be approximated by an N × 1 vector of latent independent Gaussian random variables, say

ξ = (ξi) with ξi ∼ N(µξ, σ
2
ξ ). This produces the following random-e�ect speci�cation for λ1

λ1|(X1, τ, ξ) ∼ NN

[
(IN −K∗)−1τ ∗ +m∗1 + ξ , Ω

]
, with ξ ∼ NN(ιµξ, σ

2
ξIN), (A-5)

where ι = (1, . . . , 1)′. Integrating the resulting joint Gaussian density for (λ1, ξ)|(X1, τ) with respect

to ξ leads to the following operational density for λ1|(τ,X1) which can be used to approximate the

full unconditional likelihood:

λ1|(X1, τ) ∼ NN

[
(IN −K∗)−1τ ∗ +m∗1 + ιµξ , Ω + σ2

ξIN
]
. (A-6)
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Appendix 2. Implementation of spatial EIS

This appendix �rst details the recursive construction of the joint (E)IS kernel k(λ(T ), τ ; a) in Equa-

tion (14) and of the corresponding density m(λ(T ), τ ; a) in Equation (11). Next, we discuss how to

exploit the sparsity of the precision matrix H in Equation (5).

Derivation of the EIS kernel in Equation (14). We use the generic notation fL(z|µ,Σ)

to denote a multivariate Normal density for a random vector z ∈ RL with mean vector µ and

covariance matrix Σ. Our �rst step in the construction of the EIS kernel k(λ(T ), τ ; a) consists in

the recursive derivation of the joint conditional density f(λ(T )|τ, λ1) in Equation (14), where we

omit X(T ) for the ease of notation. Also we use

D = (IN − ρW )−1 (A-7)

as a short-hand notation for the spatial multiplier.

Lemma 1. The joint density for λ(t) given (τ, λ1) implied by Equation (4) is

f(λ(t)|τ, λ1) = fN(t−1)

(
λ(t)

∣∣ c(t) + C(t)τ , H
−1
(t)

)
, t = 2, . . . , T, (A-8)

where, for t = 2

c(2) = K∗λ1 +m∗2, C(2) = D, H(2) = H = D−1
′
D−1/σ2

e , (A-9)

and, for t > 2

c(t) =

(
c(t−1)

m∗t +Gtc(t−1)

)
, C(t) =

(
C(t−1)

D +GtC(t−1)

)
, (A-10)

H−1(t) =

(
H−1(t−1) H−1(t−1)G

′
t

GtH
−1
(t−1) H−1 +GtH

−1
(t−1)G

′
t

)
, (A-11)
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with

Gt = (0 · · · 0 K∗) ∈ RN×N(t−2). (A-12)

Proof: The initial parameter values in Equation (A-9) follow from Equation (4) for t = 2.

The recursions for the subsequent parameter values in Equations (A-10) and (A-11) obtain by

application of standard Gaussian algebra to the product of f(λt|λt−1, τ) ≡ f(λt|λ(t−1), τ, λ1) in

Equation (4) and f(λ(t−1)|τ, λ1) in Equation (A-8). �

Note that the partitioned covariance matrix in Equation (A-11) implies the partitioned precision

matrix:

H(t) =

(
H(t−1) +G′tHGt −G′tH

−HGt H

)
, (A-13)

with determinant |H(t)| = |H(t−1)| · |H|. Hence, |H(t)| = |H|t−1, t = 2, . . . , T .

In order to combine f(λ(T )|τ, λ1) as obtained from Lemma 1 with f(τ) ≡ f(τ |λ1) in Equation

(10) and the Gaussian kernel k∗(λ(T ); a
∗) de�ned in Equation (15), we write the Gaussian density

in Equation (A-8) as

f(λ(T )|τ, λ1) = exp

{
−1

2
(η′P ∗η − 2η′q∗ + s∗)

}
, (A-14)

with η′ = (λ′(T ), τ
′), and

P ∗ =

(
H(T ) B(T )

B′(T ) F(T )

)
, B(T ) = −H(T )C(T ), F(T ) = C ′(T )H(T )C(T ), (A-15)

q∗ =

(
b(T )

a(T )

)
, b(T ) = H(T )c(T ), a(T ) = −C ′(T )H(T )c(T ), (A-16)

s∗ = c′(T )H(T )c(T ) +N(T − 1) ln(2π)− (T − 1) ln |H|. (A-17)

Next, the kernel k∗(λ(T ); a
∗) in Equation (15) is written as a joint Gaussian kernel in λ(T )

k∗(λ(T ); a
∗) = exp

{
−1

2
(λ′(T )Aλ(T ) − 2λ′(T )β + κ)

}
, (A-18)
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where A = diag(αit) for i = 1, . . . , N and t = 2, . . . , T , β′ = (β′2, . . . , β
′
T ) with β′t = (β1t, . . . , βNt)

and κ =
∑T

t=2

∑N
i=1 κit. Also (see Equation 3)

f(τ) = (2πσ2
τ )
−N

2 exp

{
− 1

2σ2
τ

τ ′τ

}
. (A-19)

Finally, the Gaussian kernel k(λ(T ), τ ; a) in Equation (14) obtains as the product of the three

densities/kernel in Equations (A-14), (A-18), and (A-19) and can be written as

k(η; a) = exp

{
−1

2
(η′Pη − 2η′q + s)

}
, (A-20)

with

P =

(
H(T ) + A B(T )

B′(T ) F(T ) + IN/σ
2
τ

)
, q =

(
b(T ) + β

a(T )

)
, s = s∗+κ+N [ln(2π)+ln(σ2

τ )]. (A-21)

Its integrating factor in Equation (11) is given by

χ(a) =

∫
RNT

k(η; a)dη = (2π)
NT
2 |P |−

1
2 exp

{
−1

2
(s− q′P−1q)

}
. (A-22)

Exploiting sparsity of H using sparse matrix algebra. Since H and Gt are sparse, it

follows from recursion (A-13) that H(T ) and subsequently P in Equation (A-21) are themselves

sparse. Hence, we can signi�cantly accelerate the computations required to obtain the EIS density

by running the recursion using sparse matrix functions. Moreover, we can also exploit sparsity to

accelerate sampling from the large NT -dimensional EIS density m(η; a) associated with the kernel

k(η; a) in Equation (A-20). Speci�cally, let η = µ + u, with µ = P−1q and u ∼ NNT (0, P−1),

where µ obtains directly by solving the sparse system Pµ = q, thereby avoiding computationally

costly inversions of P . Next, we reorder the elements in u according to a Symmetric Approximate

Minimum Degree (SAMD) permutation of P (see, Amestoy et al. 1996). The resulting SAMD-

permuted u-vector denoted by ũ with ũ ∼ NNT (0, P̃−1) has a precision matrix P̃ with a sparse
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Cholesky factorization P̃ = L′L, where L is upper triangular. Draws from ũ obtain as follows:

We �rst draw z[s] from a NNT (0, INT )-distribution, then solve the sparse linear system Lũ[s] = z[s]

and, �nally, invert the SAMD permutation to retrieve u[s] from ũ[s]. The corresponding draw from

the EIS density m(η; a) is given by η[s] = µ + u[s]. It is important to note that neither the EIS

parameter a∗ nor the model parameters ψ impact the SAMD permutation which is, therefore, only

computed once. Moreover, we note that |P | = |P̃ | = |L|2, so that ln |P | in the integrating factor

in Equation (A-22) can be computed fast from ln |P | = 2
∑NT

j=1 lnLjj, where Ljj denotes the j-th

diagonal element of L.

All in all, reliance upon sparse matrix operations as outlined above, results in computing time

for EIS likelihood evaluations that are O(N δ
∗ ) with N∗ = N(T − 1) and δ close to one instead of

O(N3
∗ ) under a `brute-force' EIS implementation.

Appendix 3. Elasticities w.r.t. lagged Part II crimes

Short-term elasticities. From Equations (2)-(3) it follows that

λt = κDλt−1 +DXtγ +Dεt, εt ∼ NN(0, σ2
ε IN), σ2

ε = σ2
τ + σ2

e , (A-23)

where D = (dij) denotes the N × N matrix of spatial multipliers as de�ned in Equation (A-7).

Therefore,

µit = E(yit|Xt, λt−1) = exp{nit}, with nit = κd′iλt−1 + d′iXtγ +
1

2
σ2
εd
′
idi, (A-24)

where d′i denotes the ith row of D. Let zjt denote lagged Part II crime for census tract j and, for

convenience let its logs be stacked in the �rst column of Xt with slope coe�cient γ1, so that

xj1t = ln(zjt), j = 1, . . . , N. (A-25)
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It immediately follows that

∂µit
∂zjt

= µit
∂nit
∂zjt

=
µit
zjt
dijγ1. (A-26)

Therefore, the N × N matrix of the (time invariant) short-term elasticities of the µit's w.r.t. the

zjt's (i, j = 1, ..., N) is given by

Φshort =

(
∂µit
∂zjt

zjt
µit

)
= Dγ1. (A-27)

Note that the diagonal elements of Φshort represent the idiosyncratic short-term elasticities of Part

I crime in the N census tracts w.r.t. their respective lagged Part II crime. We can also compute

the corresponding `total' elasticities for Pittsburgh. Let µ̄t =
∑N

i=1 µit. It follows that

∂µ̄t
∂zjt

zjt
µ̄t

=
N∑
i=1

(
∂µit
∂zjt

zjt
µit

)
µit
µ̄t
, (A-28)

where µit as given in Equation (A-24) is evaluated by setting Xt to its time average and λt−1 to its

approximate time average ln[(1/T )
∑T

t=1 yt].

Long-term elasticities. To �nd long-term elasticities, we proceed by (in�nite) forward sub-

stitution in the λt-Equation (A-23) under a �xed scenario Xt = X ∀t which yields

λ∞ = lim
L→∞

λt+L = lim
L→∞

L∑
`=0

κL−`DL−`+1Xγ + υt, υt = lim
L→∞

L∑
`=0

κL−`DL−`+1εt+`. (A-29)

It follows that the limiting distribution of the vector λ∞ = (λ∞i ) is a Normal with (conditional)

mean ∆Xγ, where

∆ = lim
L→∞

L∑
`=0

κL−`DL−`+1 = D(IN − κD)−1 = [(1− κ)IN − ρW ]−1, (A-30)

and its (conditional) stationary covariance matrix Ψ is that of the in�nite sequence υt. Its closed
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form is given by (see, e.g. Hamilton, 1994, p. 265)

vec(Ψ) = σ2
ε [IN2 − κ2(D ⊗D)]−1vec(DD′). (A-31)

Therefore,

λ∞i |X ∼ N1(δ
′
iXγ, ψii), (A-32)

where δ′i denotes the i'th row of ∆ and ψii the i'th diagonal element of Ψ. It follows that

µ∞i = lim
L→∞

E(yit+L|X) = exp{n∞i }, with n∞i = δ′iXγ +
1

2
ψii. (A-33)

When computing the long-term impact of a permanent change in zjt (lagged Part II crime in census

tract j) we need to account for the fact that such a change also a�ects its time average. Assuming

that these two variables are stacked in columns 1 and 2 of X, we have xj1 = xj2 = ln(zj), where

zj denotes the (hypothetical) permanent value assigned to zjt. It immediately follows that the

long-term elasticities are given by Equation (A-27), where D is replaced by ∆ and γ1 by (γ1 + γ2),

i.e.

Φlong = ∆(γ1 + γ2). (A-34)

Long-term elasticities for total Pittsburgh are then given by

∂µ̄∞

∂zj

zj
µ̄∞

=
N∑
i=1

(
∂µ∞i
∂zj

zj
µ∞i

)
µ∞i
µ̄∞

, (A-35)

with µ̄∞ =
∑N

i=1 µ
∞
i . For the computation of those long-term elasticities we evaluate µ∞i as given

in Equation (A-33) by setting zj and the remaining variables in X equal to their corresponding

time averages.
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under 3
3 − 4
4 − 5
5 − 6
6 − 7
7 − 9
9 − 10
10 − 13
over 13

Northside-adjacent
to the stadiums (5632)

Downtown (201)

Southside (1702)

East
Hills (1306)

Figure 1. Time averages of part I crimes ȳi in the N = 138 Pittsburgh census tracts.
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Figure 2. Panel (a): Time plot of Part I crimes ȳt (solid squares) and Part II crimes (triangles) averaged

across census tracts; Panel (b): Temporal autocorrelations averaged across census tracts; Panel (c):

Period-by-period time plot of Moran's I for Part I crimes; Panel (d): Period-by-period time plot of the

standardized Moran's I for Part I crimes (dotted line: critical value at the 5 percent level);

39



F
ig
u
re

3
.
E
la
st
ic
it
y
o
f
P
a
rt

I
cr
im

e
w
.r
.t
.
a
ch
a
n
g
e
in

la
g
g
ed

P
a
rt

II
cr
im

e
in

tr
a
ct
i
(i

=
1,
..
.,

1
3
8
);
P
a
n
el

(a
):

Id
io
sy
n
cr
a
ti
c
sh
o
rt
-t
er
m

el
a
st
ic
it
y
;
P
a
n
el

(b
):

T
o
ta
l
sh
o
rt
-t
er
m

el
a
st
ic
it
y
;
P
a
n
el

(c
):

Id
io
sy
n
cr
a
ti
c
lo
n
g
-t
er
m

el
a
st
ic
it
y
;
P
a
n
el

(d
):

T
o
ta
l
lo
n
g
-t
er
m

el
a
st
ic
it
y.



(a)

under 1e−04
1e−04 − 2e−04
2e−04 − 4e−04
4e−04 − 6e−04
6e−04 − 0.0026
0.0026 − 0.0032
0.0032 − 0.0035
0.0035 − 0.0044
over 0.0044

(b)

under 0.002
0.002 − 0.0059
0.0059 − 0.0128
0.0128 − 0.0182
0.0182 − 0.038
0.038 − 0.0962
0.0962 − 0.1136
0.1136 − 0.1497
over 0.1497

Figure 4. Short-term (panel a) and long-term (panel b) Part I crime elasticities for the Pittsburgh census

tracts w.r.t. a change in lagged Part II crime in Downtown (i = 2, census tract number 201).

41



Figure 5. Quantile plots of the normalized one-step-ahead predictive PIT residuals ξ∗iT ′+1 computed for

i = 1, ..., N and T ′ + 1 = 01/13, ..., 12/13. The solid line plots the quantiles of a standard normal

distribution against the quantiles of standard normal distribution and the dotted line plots the sorted

ξ∗iT ′+1's against the quantiles of standard normal distribution.
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Table 1. List of the Pittsburgh census tracts

Pgh Aver. Std. Pgh Aver. Std.
census Part I Part I census Part I Part I

i tract crime crime i tract crime crime

1 103 10.3 3.3 45 1301 11.1 4.4
2 201 74.6 12.7 46 1302 7.1 3.8
3 203 15.4 5.4 47 1303 11.5 4.4
4 305 10.6 4.7 48 1304 9.3 3.4
5 402 8.9 4.6 49 1306 12.4 4.5
6 404 2.9 2.3 50 1401 3.2 1.9
7 405 14.3 4.7 51 1402 2.5 2.2
8 406 6.2 3.1 52 1403 5.3 2.4
9 409 8.6 3.9 53 1404 3.4 2.5
10 501 9.6 5.1 54 1405 7.1 3.1
11 506 5.7 2.4 55 1406 6.3 3.2
12 509 5.4 2.7 56 1408 9.7 3.9
13 510 4.9 3.1 57 1410 3.1 2.2
14 511 4.4 3.6 58 1411 1.7 1.9
15 603 9.5 3.8 59 1413 6.8 3.4
16 605 3.3 2.2 60 1414 7.5 3.9
17 703 10.0 4.5 61 1516 3.9 2.7
18 705 12.5 5.4 62 1517 8.3 3.2
19 706 5.9 4.1 63 1608 8.0 3.5
20 708 11.3 3.6 64 1609 19.3 7.8
21 709 13.5 5.8 65 1702 41.3 10.7
22 802 4.6 2.8 66 1706 8.6 4.8
23 804 7.6 2.7 67 1803 15.5 5.6
24 806 6.9 3.7 68 1807 8.2 3.8
25 807 6.8 3.2 69 1903 5.4 3.1
26 809 8.5 3.6 70 1911 5.6 2.6
27 901 7.0 3.2 71 1914 12.3 4.3
28 902 6.6 2.9 72 1915 7.0 3.1
29 903 8.1 3.1 73 1916 8.3 3.1
30 1005 2.5 1.7 74 1917 5.0 2.3
31 1011 10.6 4.1 75 1918 9.8 4.1
32 1014 5.4 2.8 76 1919 5.0 3.1
33 1016 2.9 2.2 77 1920 7.4 4.0
34 1017 5.2 2.8 78 2022 8.5 4.3
35 1018 3.1 1.9 79 2023 6.7 3.4
36 1102 8.8 4.4 80 2107 8.7 3.2
37 1106 3.7 2.6 81 2206 11.1 3.6
38 1113 9.7 3.3 82 2406 12.8 4.8
39 1114 6.1 2.9 83 2412 4.6 2.5
40 1115 25.7 8.1 84 2503 5.4 2.7
41 1203 7.0 3.0 85 2507 5.4 2.7
42 1204 5.6 3.2 86 2509 6.1 3.5
43 1207 5.7 2.7 87 2602 6.5 3.0
44 1208 8.9 3.9 88 2607 3.9 2.3

continued overleaf
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Table 1 (continued). List of the Pittsburgh census tracts

Pgh Aver. Std. Pgh Aver. Std.
census Part I Part I census Part I Part I

i tract crime crime i tract crime crime

89 2609 6.5 3.6 114 5620 11.5 5.2
90 2612 1.2 1.4 115 5623 12.5 4.3
91 2614 9.8 3.9 116 5624 10.5 4.3
92 2615 7.2 3.3 117 5625 16.1 6.2
93 2620 9.0 3.3 118 5626 11.0 4.0
94 2701 7.2 3.7 119 5627 10.7 4.5
95 2703 6.5 2.5 120 5628 3.1 2.0
96 2704 3.9 2.4 121 5629 6.2 3.1
97 2708 5.3 3.3 122 5630 5.2 3.1
98 2715 16.4 5.9 123 5631 6.1 3.4
99 2814 7.1 3.4 124 5632 23.7 7.2
100 2815 2.5 1.6 125 9800 9.5 3.7
101 2901 11.5 4.0 126 9801 1.9 1.8
102 2902 13.5 4.4 127 9803 0.6 0.7
103 2904 14.4 5.5 128 9804 0.7 0.9
104 3001 19.0 5.8 129 9805 6.0 5.0
105 3102 4.6 2.5 130 9806 5.1 2.6
106 3103 0.7 1.0 131 9807 8.0 3.5
107 3204 4.7 2.8 132 9808 0.7 0.9
108 3206 4.1 1.9 133 9809 0.8 1.0
109 3207 4.3 2.9 134 9810 0.3 0.6
110 4810 0.8 0.9 135 9811 0.2 0.5
111 5616 5.9 3.4 136 9812 6.0 4.1
112 5617 2.9 2.5 137 9818 0.5 0.8
113 5619 5.8 2.5 138 9822 4.4 2.4
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Table 2. ML-EIS results for the spatio-temporal Poisson panel model

Baseline model Full model

Variable Estimate Asy. s.e. Estimate Asy. s.e.

Temporal lag (κ) .372*** .027 .387*** .029
Spatial lag (ρ) .442*** .030 .374*** .037
στ .486*** .038 .256*** .025
σe .202*** .006 .210*** .006

Constant .082 .053 −.627 1.028
Jan .121*** .020 .135*** .022
Mar .212*** .023 .230*** .025
Apr .169*** .019 .192*** .021
May .164*** .019 .190*** .021
Jun .145*** .019 .171*** .021
Jul .170*** .019 .199*** .022
Aug .167*** .019 .197*** .022
Sep .108*** .018 .132*** .020
Oct .101*** .018 .120*** .020
Nov .115*** .018 .133*** .020
Dec .109*** .018 .124*** .019

Lagged log Part II .058*** .009 .049*** .009
Averg. log Part II .449*** .037
Lmi −.039 .101
U18 .829 .539
Bdh .825*** .164
Fhh −.765 .568
Missing data dummy −.118 .105

Max. eigenvalue of K∗ .666 .618

Log-likelihood −24, 259.96 −24, 183.34
LR-stat. H0 : κ = ρ = 0 429.13
LR-stat. H0 : κ = 0 233.16
LR-stat. H0 : ρ = 0 110.71

NOTE: The ML-EIS estimates are based on a MC sample size of S = 500 and L = 20 EIS �xed-point
iterations; The asymptotic standard errors (Asy. s.e.) are obtained from a numerical approximation of
the Hessian; Values are statistically signi�cant at the 10% (∗), 5% (∗∗), and 1% (∗∗∗) signi�cance level.
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Table 3. Auxiliary regressions for the estimated random e�ects τ̂i obtained from
the baseline model and for average log Part II crimes

Dependent variable:

Averg.
log

Part II
τ̂i τ̂i τ̂i τ̂i crime

Averg. log Part II .332*** .446*** .423***
(.044) (.067) (.034)

Ltp .474*** −.051 1.177***
(.089) (.107) (.104)

Lpd −.070 .014 −.188*
(.081) (.053) (.110)

Lmi −.075 −.128 −.084* .119
(.145) (.096) (.046) (.264)

Dra −.074 −.226 .342
(.302) (.207) (.361)

Cur −.109 −.085 −.053
(.470) (.386) (.831)

Pvr −.244 −.047 −.441
(.321) (.253) (.554)

U18 −.552 1.194** 1.076*** −3.916***
(.966) (.475) (.409) (1.263)

Gqp −.592** .104 −1.560**
(.281) (.279) (.630)

Paa .284* −.001 .640**
(.153) (.115) (.302)

Hdl −.316 −.049 −.599
(.988) (.657) (1.353)

Bdh .129 .927*** .855*** −1.789***
(.336) (.302) (.124) (.475)

Rhu .325 −.151 1.069**
(.275) (.200) (.487)

Sh1 .008 −.077 .191
(.569) (.386) (.777)

Fhh −.073 −1.016** −1.019** 2.116**
(.695) (.404) (.404) (.920)

Hvr 1.164*** −.031 2.679***
(.368) (.313) (.656)

R2 .481 .419 .683 .676 .695
R2-adjusted .477 .339 .636 .662 .652

NOTE: Sample size after excluding the census tracts with missing observations for the socio-economic
variables is Ñ = 124; Heteroscedasticity-robust standard errors are given in parentheses; Values are
statistically signi�cant at the 10% (∗), 5% (∗∗), and 1% (∗∗∗) signi�cance level.
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Table 4. ML-EIS results for the predictive
spatio-temporal Poisson panel model

Variable Estimate Asy. s.e.

Temporal lag (κ) .391*** .028
Spatial lag (ρ) .368*** .035
στ .256*** .024
σe .210*** .006

Constant −.923*** .096
Mar .232*** .024
Apr � Aug .190*** .018
Sep � Jan .129*** .016

Lagged log Part II .049*** .009
Averg. log Part II .437*** .035
Bdh .778*** .118
Missing data dummy .196** .095

Max. eigenvalue of K∗ .618

Log-likelihood −24, 187.14

NOTE: The ML-EIS estimates are based on a MC sample size of S = 500 and L = 20 EIS �xed-point
iterations; The asymptotic standard errors (Asy. s.e.) are obtained from a numerical approximation of
the Hessian; Values are statistically signi�cant at the 10% (∗), 5% (∗∗), and 1% (∗∗∗) signi�cance level.
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