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Abstract

We study a partnership model with non-identical type distributions and interdependent
values. For any convex combination of revenue and social surplus in the objective func-
tion, we derive the optimal dissolution mechanism for arbitrary initial ownership and use
this mechanism to determine the optimal initial ownership structures. These ownership
structures are nontrivial because private information is a transaction cost that makes the
model non-Coasian. Equal ownership is always optimal with identical distributions but not
with non-identical distributions. When distributions are ranked by stochastic dominance,
stronger agents receive higher initial ownership shares when the weight on revenue is small
but not necessarily when it is large.
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1 Introduction

The Coase Theorem provides the important insight that the connection between the efficiency
of the final allocation and the initial ownership structure depends on the ease or difficulty
with which property rights can be reallocated. Accordingly, the final allocation will be efficient
irrespective of the initial ownership structure if transaction costs are negligible and property
rights are well-defined. There is ample evidence by now that initial misallocations are not
always easily and quickly mended through subsequent transactions, indicating in the light of
the Coase Theorem that transaction costs can be substantive.1

The theoretical literature on the impossibility of ex post efficient bilateral trade in the tra-
dition of Myerson and Satterthwaite (1983) has identified private information as an important
and often insurmountable cost of transaction. Relaxing the assumption of extreme ownership
structure that underlies the bilateral trade setup, the partnership literature, initiated by Cram-
ton, Gibbons, and Klemperer (1987), has highlighted that with appropriately chosen ownership
structures ex post efficient dissolution – that is, efficient reallocation of property rights – may
be possible. While obviously important, ex post efficiency is only one of many possible and
plausible objectives. In particular, one may wonder what is the second-best dissolution mecha-
nism when ex post efficiency is not possible, and more generally and more fundamentally, what
ownership structures are optimal when the mechanism has to generate positive revenue, for
example, to cover legal expenses or taxes.

In this paper, we answer these questions. We analyze a general partnership model that
permits an arbitrary number of agents, non-identical type distributions, interdependent values,
and any convex combination of revenue and social surplus in the designer’s objective. For
example, our model lends itself naturally to the problem of optimally allocating shares to cash-
constrained partners in a start-up company.2 For any initial ownership structure, we first
derive the optimal dissolution mechanism, subject to incentive compatibility and individual
rationality constraints. Then we choose the ownership structure to maximize the designer’s
objective function and thereby determine the optimal structure of initial ownership.

Partnerships with shared initial ownership create countervailing incentives (Lewis and Sap-
pington, 1989) at the dissolution stage insofar as an agent may end up buying additional shares
or selling his share. An agent’s expected utility is typically minimized for types for whom the

1For example, Bleakley and Ferrie (2014) show that initial land parcel size after the opening of the frontier
in Georgia predicts farm size essentially one-for-one for 50-80 years after land opening, with the effect of initial
conditions attenuating gradually and disappearing only after 150 years. Milgrom (2004) makes a similar point in
the context of the allocation of radio spectrum licenses, and Che and Cho (2011) describe vividly the inefficiencies
associated with the Oklahoma land rush at the turn to the 20th century. Interestingly, Coase’s own argument
(Coase, 1959) favoring the use of auctions to allocate spectrum licenses is consistent with the notion that
subsequent market transactions will not easily fix initial misallocations, which is the central premise of the
insightful Theorem that bears his name (Coase, 1960) and that continues to be influential in public policy
debates.

2The requirement that the dissolution mechanism generates positive revenue can be justified in a number of
mutually non-exclusive ways as an additional transaction cost in the form of lawyers or government-levied taxes
that need to be paid.
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expected after-dissolution share equals the initial ownership share. These worst-off types do
not get any information rent because they are indifferent between over- and underreporting.
As they depend on the allocation rule, the worst-off types – which are the types for which the
individual rationality constraint binds – are endogenous to the design problem. Overcoming the
problem of simultaneously determining the optimal allocation rule and the endogenous worst-off
types represents the main technical challenge when studying optimal dissolution mechanism.

Given a critical type for each agent, we define the virtual surplus as the value of the allocation
in terms of virtual types. An agent’s virtual type equals his virtual cost for types below the
critical type and his virtual valuation for types above it, reflecting binding upward and downward
incentive constraints. We then show that there is an essentially unique combination of critical
types and an allocation rule such that, firstly, the allocation rule maximizes the virtual surplus
given the critical types, and secondly, the critical types are worst-off types under the allocation
rule. This is the allocation rule of all optimal dissolution mechanisms. Because virtual costs
always exceed virtual valuations, the optimal dissolution mechanisms allocate based on ironed
virtual type functions that are flat for types around the critical type. For some ownership
structures, critical types are such that ties in terms of ironed virtual types happen with strictly
positive probability. In this case, a suitably specified tie-breaking rule is an essential ingredient
to the optimal allocation rule (ensuring that the critical type of each agent is worst off).

Because the initial ownership structure defines the agents’ outside option at the dissolution
stage, it affects the outcome. We show that any weighted sum of surplus and revenue generated
by the optimal dissolution mechanisms is concave in the initial shares, allowing us to characterize
optimal ownership structures by first-order conditions.

If types are identically distributed, we find that the value function is Schur-concave in
property rights, i.e., more equal ownership structures are (weakly) better. Moreover, the set of
optimal initial shares is larger the greater is the weight on revenue in the objective. This implies
that with identical distributions equal shares are optimal for any weight on revenue. Thus, with
ex ante identical agents a symmetric ownership structure is robust in a way that is analogous to
the robustness obtained by Neeman (1999) in the context of a public good problem. However,
Schur-concavity and robustness do not generalize beyond the setup with identical distributions.

If types are drawn from different distributions, we find that under private values the optimal
ownership structures are such that each agent with a nonzero initial share has the same critical
worst-off type, whereas the agents with zero shares have a higher critical worst-off type. As
critical worst-off types vary with the distributions and the weight on revenue, asymmetric
initial shares are typically optimal and, most importantly, these shares vary with the revenue
weight. An agent that is optimally chosen to be the majority owner when revenue is relatively
unimportant, may be optimally assigned a minority share when the weight on revenue is high.
Under interdependent values, a similar characterization as under private values holds: to each
critical worst-off type there is simply a constant added that reflects both the interdependence
and the agent’s type distribution.

To summarize, a symmetric ownership structure is always optimal for a partnership model in
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which agents draw their types from the same distribution. This symmetric ownership structure
is detail-free (Wilson, 1987) insofar as it does not depend on the specifics of the distribution,
provided the distribution is the same for every agent.3 Further, for identical distributions an
extreme ownership structure is never optimal, irrespective of the weight on revenue and of the
severity of interdependencies. When partners draw their types from different distributions, for
example because one is an expert while others are newcomers to the industry, the optimal
ownership structures depend in subtle ways on the finer details of the environment, such as
the distributions, the weight on revenue, and the importance of interdependencies. Symmetric
ownership is typically not optimal, and even extreme ownership structures may be optimal.

With notable exceptions, which we discuss below, the literature on partnership dissolution
has mainly focused on ex post efficient allocation rules and on the question under what condi-
tions on distributions, valuations, and property rights ex post efficient reallocation is possible
subject to incentive compatibility and individual rationality without running a deficit. For
the case in which all agents draw their types from the same distribution, Cramton, Gibbons,
and Klemperer (1987) and Fieseler, Kittsteiner, and Moldovanu (2003) analyzed, respectively,
models with private values and with interdependent values. Cramton, Gibbons, and Klemperer
showed that with equal ownership, ex post efficiency is always possible. In contrast, Fieseler,
Kittsteiner, and Moldovanu established that if interdependence is positive and strong enough,
ex post efficient reallocation may be impossible for any initial ownership structure. Their anal-
ysis gives thus additional salience to the question of what are optimal dissolution mechanisms,
which is part of our study. Subsequent contributions with interdependent values were made
by Kittsteiner (2003), Jehiel and Pauzner (2006), and Chien (2007). Kittsteiner (2003) per-
formed a first attack to the problem of having to avoid deficits by providing a new mechanism
– a double-auction with veto rights – that, albeit not ex post efficient, is individually rational,
incentive compatible and balances the budget.

Focusing on private values, Che (2006) and Figueroa and Skreta (2012), with the latter
building on the results of Schweizer (2006), extended the analysis to settings where each agent’s
type is drawn from a different distribution. When distributions can be ranked by stochastic
dominance, Che and Figueroa and Skreta show that the ownership structure that maximizes
revenue, given an ex post efficient allocation rule, assigns larger shares to stronger agents. Segal
and Whinston (2011) provide, amongst other things, a generalization of the results of Schweizer
(2006) to interdependent values.

To the best of our knowledge, the following are the only papers that analyze objectives other
than ex post efficiency for partnership models with multilateral private information. Segal and
Whinston (2014) study a second-best bargaining problem under a liability rule with two agents
and private values. Our work complements theirs. While Segal and Whinston study a richer

3While the ownership structure is detail-free, the required dissolution mechanism need not be. For ex post
efficiency and symmetric ownership, the k+1-price auction of Cramton, Gibbons, and Klemperer (1987) provides
a detail-free mechanism. Whether this can be extended to revenue extraction and interdependent values is an
open question. For detail-free dissolution mechanisms for asymmetric bilateral partnerships with private values,
see Wasser (2013).
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class of property rights, called liability rules, their analysis in this part of the paper is confined to
two agents, private values, and the second-best mechanism, taking as given the initial allocation
of property rights. In contrast, we first characterize the efficient frontier for an arbitrary number
of agents, allowing for interdependent values and asymmetric distributions, and then derive the
optimal ownership structure for any such partnership. Mylovanov and Tröger (2014) solve
the informed principal problem one obtains when maximizing one agent’s payoff in a bilateral
partnership with private values. Our analysis differs from theirs insofar as our designer is
not a member of the partnership and his objective attaches the same welfare weight to all
agents. Other precursors to our paper are Lu and Robert (2001) and the unpublished paper
by Chien (2007). Lu and Robert study the same objective function as we do in the derivation
of optimal dissolution mechanisms but they confine attention to private values and identical
type distributions, and they do not address which allocation of initial shares is optimal. Chien
solves for the second-best mechanism under given initial ownership, with the main results being
confined to the special case of two agents. Our approach is both simpler and more general than
Chien’s because it characterizes the whole efficient frontier for an arbitrary number of partners.
Moreover, unless types are identically distributed, the second best mechanism differs from what
Chien’s analysis suggests.

The remainder of this paper is organized as follows. Section 2 introduces the setup as well
as basic mechanism design results. Section 3 derives and characterizes the optimal dissolution
mechanisms. Section 4 determines the optimal initial ownership structures. Section 5 illustrates
the main characterization results for the bilateral case. In Section 6, we illustrate the efficient
tradeoff between revenue and social surplus when the ownership structure is fixed and when
it can be chosen optimally. Section 7 concludes. The proof of the main theorem for the
characterization of the optimal dissolution mechanisms is in the Appendix.

2 Model

2.1 Setup

There is a set of n risk-neutral agents N := {1, 2, . . . , n} who jointly own one indivisible object.
Each agent i ∈ N owns share ri ∈ [0, 1] in the object, where

∑
i∈N ri = 1. Accordingly, the

initial property rights are represented by a point r := (r1, . . . , rn) in the (n − 1)-dimensional
standard simplex ∆n−1 :=

{
r ∈ [0, 1]n :

∑n
i=1 ri = 1

}
.

Each agent i privately learns his type xi which is a realization of the continuous random
variable Xi. Each Xi is independently distributed according to a twice continuously differen-
tiable cumulative distribution function Fi with support [0, 1] and density fi. Agent i’s ex post
valuation for the object is

vi(x) := xi +
∑

j 6=i
η(xj)

where x := (x1, . . . , xn) and where η is a differentiable function with η′(xj) < 1 for all xj . Agent
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i’s status-quo utility from owning share ri is rivi(x).
For each i, let

ψSα,i(xi) := xi − η(xi) + α
Fi(xi)

fi(xi)
and ψBα,i(xi) := xi − η(xi)− α

1− Fi(xi)
fi(xi)

denote a family of virtual cost and virtual valuation functions, parametrized by α ∈ [0, 1]. We
make the regularity assumptions

d

dxi
ψS1,i(xi) > 0 and

d

dxi
ψB1,i(xi) > 0 for all i,

implying that ψSα,i, ψ
B
α,i are strictly increasing for all α. Moreover, for all i and K ∈ {S,B} we

define the cumulative distribution function of the random variable Y = ψKα,i(Xi) as

GKα,i(y) :=





0 if y < ψKα,i(0),

Fi
(
(ψKα,i)

−1(y)
)

if y ∈
[
ψKα,i(0), ψKα,i(1)

]
,

1 if y > ψKα,i(1).

Observe that for every i and y, GBα,i(y) ≥ GSα,i(y).
In Section 3, we will take the initial property rights r as given, and assume that the partner-

ship is about to be dissolved, resulting in a reallocation of initial property rights r and monetary
transfers. By the Revelation Principle, it is without loss to focus on incentive compatible direct
dissolution mechanisms. A direct dissolution mechanism (s, t) consists of an allocation rule
s : [0, 1]n → ∆n−1 and a payment rule t : [0, 1]n → Rn, where s(x) =

(
s1(x), . . . , sn(x)

)
and

t(x) =
(
t1(x), . . . , tn(x)

)
. The agents report their types x whereupon agent i receives share

si(x) and pays the amount ti(x).
Define Si(xi) := E[si(xi,X−i)] and Ti(xi) := E[ti(xi,X−i)] to be the interim expected share

and payment of agent i. Moreover, let

Ui(xi) := E[vi(xi,X−i) (si(xi,X−i)− ri)]− Ti(xi)

denote i’s interim expected net payoff from taking part in the dissolution. A direct dissolution
mechanism is Bayesian incentive compatible if

Ui(xi) ≥ E[vi(xi,X−i) (si(x̃i,X−i)− ri)]− Ti(x̃i) ∀xi, x̃i ∈ [0, 1], i ∈ N (IC)

and interim individually rational if

Ui(xi) ≥ 0 ∀xi ∈ [0, 1], i ∈ N . (IR)

The designer’s objective is to maximize a weighted sum of the ex ante expected social surplus
E
[∑

i vi(X)si(X)
]
, which is the value of the final allocation, and the ex ante expected revenue
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E
[∑

i ti(X)
]
subject to the incentive compatibility and individual rationality constraints. Sup-

pose the designer puts weight α ∈ [0, 1] on revenue and let

Wα(s, t) := (1− α)
∑

i∈N
E
[
vi(X)si(X)

]
+ α

∑

i∈N
E
[
ti(X)

]
.

In Section 3, where we take the initial property rights r as given, we will study optimal
dissolution mechanisms that solve

max
s,t

Wα(s, t) s.t. (IC) and (IR). (1)

Note that the initial shares r enter this problem solely through the constraint (IR). Optimal
dissolution mechanisms will be denoted by (sr, tr).

In Section 4, we will then turn to analyzing optimal ownership structures that solve

max
r

Wα(sr, tr) = max
r,s,t

Wα(s, t) s.t. (IC) and (IR). (2)

2.2 Incentive Compatibility and Worst-off Types

The standard characterization of Bayesian incentive compatibility applies to our environment
(see, e.g., Myerson, 1981): (IC) holds if and only if

Si is nondecreasing, (IC1)

Ui(xi) = Ui(x̂i) +

∫ xi

x̂i

(Si(z)− ri)dz ∀xi, x̂i ∈ [0, 1]. (IC2)

For a given monotone allocation rule, payoff equivalence (IC2) pins down interim expected
payoffs Ui and payments Ti up to a constant.

Consider a dissolution mechanism (s, t) that satisfies (IC1) and (IC2). Let the set of worst-
off types of agent i be denoted by Ωi(s) := arg minxi Ui(xi). By (IC2), Ui is differentiable
almost everywhere and U ′i(xi) = Si(xi) − ri wherever Ui is differentiable. The monotonicity
of Si implies the following characterization of the set of worst-off types (see also Cramton,
Gibbons, and Klemperer, 1987, Lemma 2). If there is an xi such that Si(xi) = ri, then Ωi(s) is
a (possibly degenerate) interval and

Ωi(s) = {xi : Si(xi) = ri }.

If Si(xi) 6= ri for all xi ∈ [0, 1], then Ωi(s) is a singleton and

Ωi(s) = {xi : Si(z) < ri ∀z < xi and Si(z) > ri ∀z > xi}.

Let Ω(s) := Ω1(s)× · · · × Ωn(s).
In addition to identifying the set of worst-off types, the characterization of incentive com-
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patibility also allows us to write the designer’s objective in terms of virtual types. For a given
critical type x̂i ∈ [0, 1], define agent i’s virtual type function as

ψα,i(xi, x̂i) :=




ψSα,i(xi) if xi < x̂i,

ψBα,i(xi) if xi > x̂i.

Define the virtual surplus given critical types x̂ = (x̂1, . . . , x̂n) as

W̃α(s, x̂) := E

[∑

i∈N
(si(X)− ri)ψα,i(Xi, x̂i)

]
.

Lemma 1. Suppose the dissolution mechanism (s, t) satisfies (IC1) and (IC2). Then,

Wα(s, t) = W̃α(s, x̂)− α
∑

i∈N
Ui(x̂i) + (1− α)

∑

i∈N
E[vi(X)ri] ∀x̂ ∈ [0, 1]n. (3)

Moreover,
Ω(s) = arg min

x̂
W̃α(s, x̂). (4)

Proof. The definition of Ui implies

Wα(s, t) =
∑

i∈N
E[vi(X)(si(X)− ri)]− α

∑

i∈N
E[Ui(Xi)] + (1− α)

∑

i∈N
E[vi(X)ri]. (5)

Using the fact that
∑

i∈N (si(X)− ri) = 0, we get

∑

i∈N
E[vi(X) (si(X)− ri)] =

∑

i∈N
E




Xi − η(Xi) +

∑

j∈N
η(Xj)


 (si(X)− ri)




=
∑

i∈N
E
[
(Xi − η(Xi)) (Si(Xi)− ri)

]
. (6)

Integrating (IC2) by parts, we obtain for all x̂i ∈ [0, 1]

E[Ui(Xi)] = Ui(x̂i) +

∫ 1

0

∫ xi

x̂i

(Si(z)− ri)dzfi(xi)dxi

= Ui(x̂i)−
∫ x̂i

0
Fi(z)(Si(z)− ri)dz +

∫ 1

x̂i

(1− Fi(z))(Si(z)− ri)dz. (7)

Substituting (6) and (7) into (5) yields

Wα(s, t) =
∑

i∈N

(∫ x̂i

0
ψSα,i(z)(Si(z)− ri)fi(z)dz +

∫ 1

x̂i

ψBα,i(z)(Si(z)− ri)fi(z)dz
)

− α
∑

i∈N
Ui(x̂i) + (1− α)

∑

i∈N
E[vi(X)ri]
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which, by the definitions of ψα,i(xi, x̂i) and W̃α(s, x̂), is equivalent to (3).
Consider x̂,ω ∈ [0, 1]n. By (3), we obtain

W̃α(s, x̂)− W̃α(s,ω) = α
∑

i∈N

(
Ui(x̂i)− Ui(ωi)

)
.

Hence, for all ω ∈ Ω(s) and x̂ /∈ Ω(s), we have Ui(x̂i) ≥ Ui(ωi) for all i, where the inequal-
ity is strict for at least one i, and therefore W̃α(s, x̂) > W̃α(s,ω). Consequently, Ω(s) =

arg minx̂ W̃α(s, x̂).

3 Optimal Dissolution Mechanisms

In the following, we will determine the solution to the designer’s problem stated in (1). The
preceding section implies that we can replace the constraints (IC) and (IR) by (IC1), (IC2),
and Ui(ωi) ≥ 0 for all i and ωi ∈ Ωi(s). Define S :=

{
s : Si is nondecreasing for each i ∈ N

}

such that (IC1) is equivalent to s ∈ S.
Consider an allocation rule s ∈ S and some worst-off types ω = (ω1, . . . , ωn) ∈ Ω(s). Under

(IC2), (3) in Lemma 1 implies that we can write the objective as

W̃α(s,ω)− α
∑

i∈N
Ui(ωi) + (1− α)

∑

i∈N
E[vi(X)ri].

Note that the individual rationality constraint Ui(ωi) ≥ 0 is binding when choosing payments t
that maximize the above expression for a given s. Ui(ωi) = 0 and (IC2) imply that any optimal
t has to be such that interim expected payments satisfy, for all i,

Ti(xi) = E[vi(xi,X−i) (si(xi,X−i)− ri)]−
∫ xi

ωi

(Si(z)− ri)dz.

It remains to determine the optimal allocation rule. Since the second term in the objective
above is zero under optimal payments and the third term is independent of the dissolution
mechanism, we can restrict attention to maximizing W̃α(s,ω) = minx̂ W̃α(s, x̂), where the
equality follows from (4) in Lemma 1. Consequently, an optimal allocation rule sr has to satisfy

sr ∈ arg max
s∈S

min
x̂∈[0,1]n

W̃α(s, x̂). (8)

Instead of directly solving (8), we will look for a saddle point (s∗,ω∗) that satisfies

s∗ ∈ arg max
s∈S

W̃α(s,ω∗), (9)

ω∗ ∈ arg min
x̂∈[0,1]n

W̃α(s∗, x̂). (10)

Note that if a saddle point (s∗,ω∗) exists, then sr solves the problem in (8) if and only if (sr,ω∗)
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is a saddle point.4 For a saddle point, (9) requires that s∗ maximizes W̃α given critical types
ω∗ whereas (10) requires that the critical types ω∗ are worst-off types under allocation rule s∗,
i.e., ω∗ ∈ Ω(s∗). In the following, we will show that a saddle point (s∗,ω∗) exists and that
s∗ is essentially unique.5 We will characterize s∗ and thereby identify the optimal dissolution
mechanisms.

Consider the optimization problem in (9). Pointwise maximization of

W̃α(s,ω∗) = E
[∑

i∈N
(si(X)− ri)ψα,i(Xi, ω

∗
i )
]

would require allocating the object to the agent i with the highest virtual type ψα,i(xi, ω∗i ).
Yet, since ψSα,i(xi) > ψBα,i(xi) for all xi, ψα,i(xi, ω∗i ) is not monotone at ω∗i , resulting in the
monotonicity constraint s ∈ S to be violated. The solution to (9) hence involves ironing
(Myerson, 1981): the object is allocated to an agent i with the highest ironed virtual type

ψα,i(xi, zi) :=





ψSα,i(xi) if ψSα,i(xi) < zi,

zi if ψBα,i(xi) ≤ zi ≤ ψSα,i(xi),
ψBα,i(xi) if zi < ψBα,i(xi)

where the ironing parameter zi ∈
[
ψBα,i(ω

∗
i ), ψ

S
α,i(ω

∗
i )
]
is the unique solution to

E
[
ψα,i(Xi, ω

∗
i )
]

= E
[
ψα,i(Xi, zi)

]
. (11)

It is straightforward to verify that d
dω∗i

E
[
ψα,i(Xi, ω

∗
i )
]

= α and that d
dzi
E
[
ψα,i(Xi, zi)

]
=

GBα,i(zi)−GSα,i(zi) > 0. Moreover, note that for ω∗i = 0 and ω∗i = 1, (11) yields zi = ψBα,i(0) and
zi = ψSα,i(1), respectively. Using implicit differentiation, we can solve (11) for ω∗i , resulting in

ω∗i = ωα,i(zi) :=
1

α

∫ zi

ψBα,i(0)

(
GBα,i(y)−GSα,i(y)

)
dy. (12)

Note that ωα,i(·) is a continuous and strictly increasing function. Agent i’s ironed virtual type
ψα,i(xi, zi) is constant and equal to zi for an interval of types that contains the critical type
ωα,i(zi) whereas it is strictly increasing otherwise. Since several agents may tie for the highest
ψα,i(xi, zi), we have to specify a tie-breaking rule.

Let H denote the set of all n! permutations (h(1), h(2), . . . , h(n)) of (1, 2, . . . , n). We will
call each h ∈ H a hierarchy among the agents in N . A hierarchical tie-breaking rule breaks
ties in favor of the agent who is the highest in the hierarchy: If the set of agents I ⊆ N tie for
the highest ironed virtual type and there is hierarchical tie-breaking according to hierarchy h,
the object is assigned to agent arg maxi∈I h(i). A randomized hierarchical tie-breaking rule ran-

4Suppose (s∗,ω∗) satisfies (9) and (10). Then, minx̂ W̃α(s∗, x̂) = W̃α(s∗,ω∗) ≥ W̃α(s,ω∗) ≥ minx̂ W̃α(s, x̂)
for all s ∈ S and hence s∗ solves the problem in (8). Conversely, for all sr that satisfy (8), the above has to hold
with equality, implying that (sr,ω∗) is a saddle point.

5s∗ is unique up to the exact specification of a tie-breaking rule.
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domly selects a hierarchy h ∈ H according to an exogenously specified probability distribution
a := (a1, . . . , an!) ∈ ∆n!−1 over H = {h1, . . . , hn!} and then breaks ties hierarchically according
to h.6 The outcome in terms of interim expected shares S1, . . . , Sn of any tie-breaking rule can
equivalently be obtained by a randomized hierarchical tie-breaking rule a.

Define the ironed virtual type allocation rule sz,a with ironing parameters z = (z1, . . . , zn)

and randomized hierarchical tie-breaking rule a as, for all i ∈ N ,

sz,ai (x) :=





1 if ψα,i(xi, zi) > maxj 6=i ψα,j(xj , zj),
∑

h∈Ĥi ah if ψα,i(xi, zi) = maxj 6=i ψα,j(xj , zj),

0 if ψα,i(xi, zi) < maxj 6=i ψα,j(xj , zj),

where Ĥi :=
{
h ∈ H : h(i) > h(k) ∀k ∈ arg maxj 6=i ψα,j(xj , zj)

}
. For a given ω∗, s∗ = sz,a

solves the problem in (9) for z =
(
ω−1α,1(ω

∗
1), . . . , ω−1α,n(ω∗n)

)
and any tie-breaking rule a ∈ ∆n!−1.

Now consider (10), which is equivalent to ω∗ ∈ Ω(s∗), i.e., requiring ω∗ to be worst-off types
under allocation rule s∗. A simultaneous solution to (9) and (10) hence corresponds to z,a such
that (

ωα,1(z1), . . . , ωα,n(zn)
)
∈ Ω(sz,a).

Note that the interim expected share Sz,a
i (xi) under an ironed virtual type allocation rule is

constant for an interval of types xi that contains the critical type ωα,i(zi). The characterization
of the set of worst-off types in Section 2 then implies that the above requirement is equivalent
to Sz,a

i (ωα,i(zi)) = ri for all i ∈ N .
Let z := −η(0), z := 1− η(1) and define the correspondence Γn : [z, z]n → [0, 1]n such that

Γn(z) :=
{(
Sz,a
1 (ωα,1(z1)), . . . , S

z,a
n (ωα,n(zn))

)
: a ∈ ∆n!−1

}
.

Γn(z) yields the set of all vectors of expected shares for critical types ωα,1(z1), . . . , ωα,n(zn) that
can be obtained with ironing parameters z and some tie-breaking rule a. If zi = zj for two
agents i, j, there is a strictly positive probability for a tie and the expected shares depend on
tie-breaking. Γn(z) is singleton-valued if and only if zi 6= zj for all i and j 6= i.

The following theorem represents our main technical result. The proof is contained in
Appendix A. There, we uncover a recursive structure to Γn by partitioning its domain in a
suitable way. This then allows us to prove the theorem by induction, using the tractable two-
agent case as the base case.

Theorem 1. For each r ∈ ∆n−1, there exists a unique z ∈ [z, z]n such that r ∈ Γn(z).

According to Theorem 1, there is a unique z ∈ [z, z]n such that s∗ = sz,a and ω∗ =(
ωα,1(z1), . . . , ωα,n(zn)

)
constitute a saddle point satisfying (9) and (10) for some tie-breaking

rule a ∈ ∆n!−1. Any other optimal allocation rule s∗ may differ from sz,a only with respect
6An alternative interpretation is that ownership of the object is split up into shares a and that each share ah

is allocated according to hierarchy h.
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to the tie-breaking rule. Theorem 1 also implies that the inverse correspondence Γ−1n (r) is
singleton valued for all initial shares r.

Note that through restricting the definition of Γn and the statement of Theorem 1 to zi ∈
[z, z] = [ψSα,i(0), ψBα,i(1)] ⊂

[
ψBα,i(0), ψSα,i(1)

]
, we have confined attention to critical types ω∗i ∈

[ωα,i(z), ωα,i(z)] ⊂ [0, 1]. This restriction is without loss when looking for optimal allocation
rules. As is apparent from the proof of Theorem 1, for z = Γ−1n (r) we have zi = z if and only
if ri = 0. Hence for all r, zj > z for at least one j. Accordingly, Sz,a

i (ωα,i(zi)) = 0 for all
zi ≤ z. If there is a saddle point involving critical type ω∗i = ωα,i(z) then there is also a saddle
point for each ω∗i ∈ [0, ωα,i(z)). However, all these saddle points are equivalent in terms of the
implied allocation rule s∗ and i’s worst-off types Ωi(s

∗) = {xi : S∗i (xi) = 0} =
[
0, (ψBα,i)

−1(z)
]
.

A similar line of arguments holds for zi ≥ z, which only occurs if ri = 1.
Summarizing the findings of this section, the following theorem presents our main result on

optimal dissolution mechanisms.

Theorem 2. Let z∗ = Γ−1n (r). All optimal dissolution mechanisms (sr, tr) that solve (1) consist
of an allocation rule sr that allocates ownership of the object to an agent i with the greatest ironed
virtual type ψα,i(xi, z∗i ), where ties are broken such that Sr

i (ωα,i(z
∗
i )) = ri for all i ∈ N , and a

payment rule tr such that interim expected payments satisfy

T r
i (xi) = E[vi(xi,X−i) (sri (xi,X−i)− ri)]−

∫ xi

ωα,i(z∗i )
(Sr
i (y)− ri)dy for all i ∈ N .

There is a randomized hierarchical tie-breaking rule a∗ such that sz∗,a∗ is an optimal allocation
rule.

4 Optimal Ownership Structures

Having identified the optimal dissolution mechanisms (sr, tr) for given initial property rights r
in the preceding section, we are now in a position to study optimal initial ownership structures.
In the following we will consider the problem stated in (2), i.e., maximizing Wα(sr, tr) over
r ∈ ∆n−1.

According to Section 3, we have

Wα(sr, tr) = (1− α)
∑

i∈N
E[vi(X)ri] + max

s∈S
min

x̂∈[0,1]n
W̃α(s, x̂).

Since any solution to the max-min problem corresponds to a saddle point (sr,ω∗) of W̃α,

max
s∈S

min
x̂∈[0,1]n

W̃α(s, x̂) = min
x̂∈[0,1]n

max
s∈S

W̃α(s, x̂)

= min
x̂∈[0,1]n

{
−
∑

i∈N
riE
[
ψα,i(Xi, x̂i)

]
+ max

s∈S
E

[∑

i∈N
si(X)ψα,i(Xi, x̂i)

]}
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After some rearrangements using
∑

iE[vi(X)ri] =
∑

iE
[
ri
(
Xi− η(Xi)

)]
+
∑

iE[η(Xi)] we get

Wα(sr, tr) = min
x̂∈[0,1]n

{
− α

∑

i∈N
riE
[
ψ1,i(Xi, x̂i)

]

+ (1− α)
∑

i∈N
E[η(Xi)] + max

s∈S
E

[∑

i∈N
si(X)ψα,i(Xi, x̂i)

]}
.

In the following, it will be more convenient to represent the standard simplex by ∆̂n−1 :={
r ∈ [0, 1]n−1 :

∑n
i=1 ri ≤ 1

}
. Note that using this definition, (r1, . . . , rn−1) ∈ ∆̂n−1 is equiv-

alent to
(
r1, . . . , rn−1, 1 −

∑n−1
i=1 ri

)
∈ ∆n−1. Define the value function Vα : ∆̂n−1 → R such

that Vα(r̂1, . . . , r̂n−1) = Wα(sr, tr) for each r = (r̂1, . . . , r̂n−1, 1 −
∑n−1

i=1 r̂i). Hence, for each
r ∈ ∆̂n−1,

Vα(r) = min
x̂∈[0,1]n

{
α

n−1∑

i=1

ri

(
E
[
ψ1,n(Xn, x̂n)

]
− E

[
ψ1,i(Xi, x̂i)

])
− αE

[
ψ1,n(Xn, x̂n)

]

+ (1− α)
∑

i∈N
E[η(Xi)] + max

s∈S
E

[∑

i∈N
si(X)ψα,i(Xi, x̂i)

]}
.

Observe that Vα(r) is the minimum of a family of linear functions of r (indexed by x̂). Conse-
quently, Vα(r) is concave and differentiable almost everywhere. By the envelope theorem

∂Vα(r)

∂ri
= α

(
E
[
ψ1,n(Xn, ω

∗
n)
]
− E

[
ψ1,i(Xi, ω

∗
i )
])

where ω∗i = ωα,i(z
∗
i ) for i ∈ N and z∗ = Γ−1n

(
r, 1 −∑n−1

i=1 ri
)
. Because E

[
ψ1,i(Xi, ω

∗
i )
]

=

ω∗i − E[η(Xi)], this is equivalent to

∂Vα(r)

∂ri
= α

(
ωα,n(z∗n)− E[η(Xn)]− ωα,i(z∗i ) + E[η(Xi)]

)
. (13)

Note that since each ωα,i and Γ−1n are continuous functions, these partial derivatives are con-
tinuous. Therefore, Vα is differentiable on ∆̂n−1.

Theorem 3. Wα(sr, tr) is concave in r. The optimal ownership structures are all r∗ ∈ ∆n−1

such that z∗ = Γ−1n (r∗) satisfies, for all i ∈ N and some Y ,

ωα,i(z
∗
i )− E[η(Xi)] = Y if r∗i > 0,

ωα,i(z)− E[η(Xi)] ≥ Y if r∗i = 0.

Proof. ThatWα(sr, tr) is concave on ∆n−1 follows because we have shown that Vα is concave on
∆̂n−1. Consider the problem of maximizing Vα(r1, . . . , rn−1) subject to (r1, . . . , rn−1) ∈ ∆̂n−1.
As we maximize a concave and differentiable function over a convex set, a solution exists and
can be identified using Kuhn-Tucker conditions. We represent the requirement (r1, . . . , rn−1) ∈
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∆̂n−1 by the following n inequality constraints: For all i ∈ {1, . . . , n − 1}, let λi denote the
Lagrange multiplier on the constraint ri ≥ 0 and let λn denote the Lagrange multiplier on
the constraint 1 − rn =

∑n−1
i=1 ri ≤ 1. Any solution corresponds to shares and non-negative

multipliers satisfying

∂Vα(r)

∂ri
+ λi − λn = 0 and λiri = 0 for all i ∈ {1, . . . , n− 1}

as well as
(∑n−1

i=1 ri − 1
)
λn = 0. Using (13) this implies that optimal shares r∗ satisfy

ωα,i(z
∗
i )− E[η(Xi)] = Y for all i ∈ N where ri > 0,

ωα,i(z
∗
j )− E[η(Xj)] ≥ Y for all j ∈ N where rj = 0

where z∗ = Γ−1n (r∗). Finally, note that for all r and z = Γn(r), we have ri > (=) 0 if and only
if zi > (=) z.

For private values (i.e., η′(x) = 0 and therefore E[η(Xi)] = E[η(Xj)] for all i, j), Theorem 3
shows that optimal ownership structures are such that the optimal dissolution mechanism in-
duces the same critical worst-off type for all agents who own a nonzero share whereas each
agent with a zero share has a higher critical worst-off type. For interdependent values a similar
characterization holds after subtracting E[η(Xi)] from the critical worst-off type ωα,i(z∗i ) for
each agent i. We will show next that optimal ownership structures are in the interior of the
simplex if types are identically distributed. With non-identical distributions, however, this need
not hold, as we demonstrate below in Section 5.

Identical Distributions Environments with identically distributed types have received con-
siderable attention in the literature, and so it is of interest to study optimal ownership structures
in this special case. If Fi = F for all i, the only potential source of ex ante asymmetry among
agents are the initial property rights r. In this case, the effect of the initial ownership structure
on the combination of surplus and revenue that can be achieved through optimal dissolution
can be conveniently studied using the theory of majorization.7 Given two vectors r and q with
n components we say r is majorized by q, denoted by r ≺ q, if

k∑

i=1

r[i] ≤
k∑

i=1

q[i] for k ∈ {1, . . . , n− 1} and
n∑

i=1

r[i] =
n∑

i=1

q[i]

where r[1] ≥ · · · ≥ r[n] denotes the components of r = (r1, . . . , rn) in decreasing order. In-
tuitively, r ≺ q is a notion of the components of r being more equal (less diverse) than the
components of q. A real-valued function φ is Schur-concave if r ≺ q implies φ(r) ≥ φ(q).

7For a comprehensive reference, see Marshall, Olkin, and Arnold (2011).
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Corollary 1. Suppose Fi = F for all i ∈ N . Then Wα(sr, tr) is Schur-concave in r. The
optimal initial shares are all

r∗ ∈ Γn(z∗, . . . , z∗) =
{
r ∈ ∆n−1 : r ≺ rα

}

where z∗ is the unique solution to

∑

i∈N

(
GSα(z∗)

)n−i(
GBα (z∗)

)i−1
= 1

and where rα := (rα1 , . . . , r
α
n) with rαi :=

(
GSα(z∗)

)n−i(
GBα (z∗)

)i−1 for all i ∈ N .

Proof. With identically distributed types, Wα(sr, tr) is symmetric in r, i.e., Wα(sr, tr) =

Wα(sr
′
, tr
′
) if r′ is a permutation of r. According to Marshall, Olkin, and Arnold (2011, p.

97) a function is Schur-concave if it is symmetric and concave.
If Fi = F , then ωα,i = ωα and E[η(Xi)] is symmetric across agents. Theorem 3 implies that

all optimal initial shares r∗ are such that z∗ = Γ−1n (r∗) satisfies z∗i = z∗ for all i ∈ N . As we
will show next, there is a unique such z∗.

Consider an ironed virtual type allocation rule sz,h with zi = z for all i and hierar-
chical tie-breaking according to h ∈ H. Under such an allocation rule, agent i’s critical
type obtains the object if all agents j with h(j) < h(i) have virtual valuations below z

and all agents k with h(k) > h(i) have virtual costs below z. Consequently, Sz,h
i (ωα(z)) =(

GSα(z)
)n−h(i)(

GBα (z)
)h(i)−1. Each hierarchy h′ 6= h corresponds to a permutation of the com-

ponents of
(
Sz,h
1 (ωα(z)), . . . , Sz,h

n (ωα(z))
)
. Γn(z, . . . , z) is the convex hull of the set of all per-

mutations of
(
Sz,h
1 (ωα(z)), . . . , Sz,h

n (ωα(z))
)
. Since GSα, GBα are strictly increasing, there is a

unique z∗ such that
∑

i∈N
(
GSα(z∗)

)n−i(
GBα (z∗)

)i−1
= 1. It follows that Γn(z∗, . . . , z∗) ⊂ ∆n−1

whereas Γn(z, . . . , z) ∩∆n−1 = ∅ for all z 6= z∗.
Rado’s Theorem (Marshall, Olkin, and Arnold, 2011, p. 34) implies that r ∈ Γn(z∗, . . . , z∗)

is equivalent to r ≺
(
Sz,h
1 (ωα(z∗)), . . . , Sz,h

n (ωα(z∗))
)
. For h(i) = i, the RHS is equal to rα.

A direct implication of Schur-concavity is thatWα(sr, tr) is minimized when property rights
are concentrated at one agent (ri = 1 for one i) whereas it is maximized for equal initial property
rights (r1 = · · · = rn = 1

n). Moreover, for all r ≺ rα the optimal allocation rule differs from
that for initial shares ( 1

n , . . . ,
1
n) only with respect to the tie-breaking rule. As the tie-breaking

rule does not affect the objective, Wα(sr, tr) is maximized not only by equal initial ownership,
but by all r ≺ rα, i.e., by all initial shares in a convex subset of ∆n−1. Increasing α increases
the difference between GSα and GBα . In turn, the components of rα become more spread out,
which makes the set of optimal initial shares larger.

Ex post efficiency as α→ 0 Another important special case that has received attention in
the literature is ex post efficiency. As α→ 0, every optimal dissolution mechanism approaches a
mechanism with ex post efficient allocation rule and transfers that maximize revenue under this
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allocation rule. The optimal ownership structure for α→ 0 hence yields the initial shares that
allow for the highest revenue under ex post efficient allocation. Note that ωα,i(z∗i ) ∈ Ωi(s

z∗,a
i )

for z∗ = Γ−1n (r) for all r. As α → 0, sz
∗,a
i approaches the ex post efficient allocation rule and

Ωi(s
z∗,a
i ) shrinks to the singleton ω0,i(ri) that solves

∏
j 6=i Fj(ω0,i) = ri, so that ω0,i(ri) is agent

i’s unique worst-off type under the ex post efficient allocation rule. Theorem 3 then yields for
the optimal ownership structure under α = 0 the unique initial shares r∗ such that, for all i ∈ N
and some Y ,

ω0,i(ri) + E[η(Xi)] = Y if r∗i > 0,

ω0,i(ri) + E[η(Xi)] ≥ Y if r∗i = 0.

For private values (where η′(x) = 0 for all x), this corresponds exactly to the revenue maximizing
shares under ex post efficiency obtained by Che (2006) and Figueroa and Skreta (2012). For
η′(x) 6= 0, this generalizes the results of those authors to interdependent values. In contrast
to the private values case where, as observed by Figueroa and Skreta (2012), all agents have
strictly positive shares, the asymmetry in E[η(Xi)] under interdependent values may result in
an extreme ownership structure where some agents get zero shares.

5 Bilateral Partnerships

To illustrate the working of the optimal dissolution mechanisms and the variety of optimal
ownership structures that arise, we now specialize the setup to one with two agents.

5.1 Optimal dissolution mechanisms

According to Theorem 2, an optimal dissolution mechanism allocates the object to the agent
i with the higher ironed virtual type ψα,i(xi, z∗i ), where (z∗1 , z

∗
2) = Γ−12 (r1, r2). For bilateral

partnerships, characterizing (z∗1 , z
∗
2) further is possible at little additional cost.

Suppose z∗1 > z∗2 . Then, the critical type of agent 1 expects to obtain the object with
probability S1(ωα,1(z∗1)) = GBα,2(z

∗
1) whereas the critical type of agent 2 expects to obtain the

object with probability S2(ωα,2(z∗2)) = GSα,1(z
∗
2).8 Moreover, these probabilities are equal to the

initial shares r1 and r2 = 1 − r1, making the critical types worst-off types. Consequently, all
initial shares that are consistent with z∗1 > z∗2 satisfy (GBα,2)

−1(r1) > (GSα,1)
−1(r2). This is true

for all r1 ∈ (r1, 1], where r1 uniquely solves (GBα,2)
−1(r1) = (GSα,1)

−1(1− r1).
Similarly, we find that z∗1 < z∗2 if and only if r1 ∈ [0, r1), where r1 is the unique solution to

(GSα,2)
−1(r1) = (GBα,1)

−1(1 − r1). Observe that 0 < r1 < r1 < 1 for all α > 0 and that r1 is
decreasing and r1 is increasing in α.

It follows that for r1 ∈ [r1, r1] we must have z∗1 = z∗2 . In this case agents tie for the highest
ironed virtual type with positive probability. If agent i wins ties with probability ai, then i’s

8To see this, note that the cumulative distribution function of agent i’s ironed virtual type Yi = ψα,i(Xi, z
∗
i )

corresponds to GSα,i(yi) for yi ≤ z∗i and GBα,i(yi) for yi > z∗i .
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ψSα,2(x2) = ψSα,1(x1)

ψBα,2(x2) = ψBα,1(x1)

s1(x) = a∗1

ψSα,2(x2) = ψSα,1(x1)

ψBα,2(x2) = ψBα,1(x1)

s1(x) = 1

s1(x) = 0s1(x) = 0

s1(x) = 1

0 0

ψBα,2(x2) = ψSα,1(x1)

x2

x1

x2

x1

1

1

1

1

(ψSα,2)
−1(z∗)

(ψBα,2)
−1(z∗)

(ψSα,1)
−1(z∗) (ψBα,1)

−1(z∗)

(ψSα,2)
−1(z∗2)

(ψBα,2)
−1(z∗2)

(ψBα,2)
−1(z∗1)

(ψSα,1)
−1(z∗2) (ψ

S
α,1)

−1(z∗1) (ψ
B
α,1)

−1(z∗1)

(a) r1 ∈
[
r1, r1

]
(b) r1 ∈

(
r1, 1

]

Figure 1: Optimal allocation rule for n = 2.

critical type expects to obtain the object with probability Si(ωα,i(z
∗
i )) = aiG

B
α,j(z

∗
i ) + (1 −

ai)G
S
α,j(z

∗
i ). The optimal allocation rule makes sure that this probability is equal to ri. We

thus obtain the following corollary to Theorem 2.

Corollary 2. Suppose n = 2. The optimal allocation rule sr allocates full ownership to the
agent i who has the higher ironed virtual type ψα,i(xi, z∗i ), where ties are broken in favor of
agent 1 with probability a∗1.

(i) If r1 ∈ [0, r1), then z∗1 = (GSα,2)
−1(r1) < (GBα,1)

−1(r2) = z∗2 and a∗1 ∈ [0, 1].

(ii) If r1 ∈ [r1, r1], then z∗1 = z∗2 = z∗, where z∗ and a∗1 are the unique solution to

a∗1G
B
α,2(z

∗) + (1− a∗1)GSα,2(z∗) = r1, a∗1G
S
α,1(z

∗) + (1− a∗1)GBα,1(z∗) = r2.

(iii) If r1 ∈ (r1, 1], then z∗1 = (GBα,2)
−1(r1) > (GSα,1)

−1(r2) = z∗2 and a∗1 ∈ [0, 1].

In cases (i) and (iii) of Corollary 2, ties occur with probability 0, which explains why ties
can be broken arbitrarily, i.e., why any a∗1 ∈ [0, 1] is optimal. In contrast, for case (ii) the
tie-breaking rule a∗1 of the optimal allocation rule is unique.

The optimal allocation rule described in Corollary 2 is illustrated in Figure 1. Panel (a)
depicts case (ii) of Corollary 2 and Panel (b) case (iii), which after interchanging the agents’
names also applies to case (i). The figures are drawn for a situation where F1 6= F2, i.e., where
agents draw their types from different distributions. From the figures we can infer how the
optimal allocation rule for α > 0 differs from the ex post efficient allocation rule that assigns
the object to agent 1 (2) if (x1, x2) is below (above) the dashed 45-degree line.
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Suppose the ownership structure is sufficiently symmetric such that r1 ∈ (r1, r1), which
corresponds to Panel (a) of Figure 1. Types x1 ∈

[
(ψSα,1)

−1(z∗), (ψBα,1)
−1(z∗)

]
of agent 1 and

types x2 ∈
[
(ψSα,2)

−1(z∗), (ψBα,2)
−1(z∗)

]
of agent 2 all have the same ironed virtual type z∗.

If both type realizations are within these intervals, the object is assigned to agent 1 with
probability a∗1 ∈ (0, 1), as represented by the yellow rectangle. This inefficiency of the allocation
is reminiscent of the traditional under-supply by a monopolist and of auctions with revenue-
maximizing reserve prices. If both agents draw a sufficiently high type, the object is allocated
to the agent with the highest virtual valuation, whereas for sufficiently low types the allocation
is based on comparing virtual costs. Thus the object may end up in the hands of the agent who
values it less, resulting in a second kind of inefficiency, like in the optimal of auction of Myerson
(1981) with asymmetric bidders. Whereas the first kind of inefficiency is always present for
α > 0, the second kind vanishes if the agents’ types are identically distributed.

As we increase r1 within [r1, r1], the probability a∗1 increases and z∗ may change (it stays
constant if F1 = F2), until we reach r1 where a∗1 = 1. At this point, we leave the case underlying
Panel (a) of Figure 1 and switch to the situation depicted in Panel (b). As we increase r1 further,
z∗1 increases and z∗2 decreases, eventually reaching z and z, respectively, when r1 = 1.

Now, consider r1 ∈ (r1, 1] as in Panel (b) of Figure 1. If types (x1, x2) ∈
[
(ψSα,1)

−1(z∗2), 1
]
×[

0, (ψBα,2)
−1(z∗1)

]
realize, the optimal allocation rule assigns the object to agent 1 if his virtual

cost ψSα,1(x1) is higher than the virtual valuation ψBα,2(x2) of agent 2. Otherwise, the object
is assigned to agent 2. For type realizations within this region, the optimal allocation thus
corresponds exactly to the allocation rules derived by Myerson and Satterthwaite (1983), giving
rise to the same inefficiency.9 If x1 < (ψSα,1)

−1(z∗2), the object is allocated on the basis of virtual
costs whereas if x2 > (ψBα,2)

−1(z∗1), the object is assigned to the agent with the higher virtual
valuation. In those cases, we obtain again the second kind of inefficiency that disappears if
types are drawn from the same distribution. Note that for r1 = 1, where (ψSα,1)

−1(z∗2) = 0

and (ψBα,2)
−1(z∗1) = 1, the optimal allocation rule coincides with the solution of Myerson and

Satterthwaite (1983) on the entire type space [0, 1]2. This is, of course, consistent with the
partnership model approaching a bilateral trade setting where agent 1 is the seller and agent 2
the buyer as r1 approaches 1.

As α increases while r1 is kept fixed, the inefficiency of the optimal allocation increases: In
Panel (a) the yellow rectangle with tie-breaking becomes larger and in Panel (b) the demarcation
line where 1’s virtual cost coincides with 2’s virtual valuation moves upward and to the left.
This is because a higher α makes the difference between virtual types and actual net types
xi − η(xi) larger. The comparative static effects of increasing the (positive) interdependence
of valuations on the optimal allocation are similar to the effects of increasing α under private
values. This is easiest to see for the case with linear interdependence η(x) = ex with e < 1. In
this case, i’s virtual type ψKα,i(xi) is larger than j’s virtual type ψLα,j(xj) with K,L ∈ {B,S}

9While their paper is best known for showing that revenue is negative when α = 0 and r1 = 1, Myerson and
Satterthwaite (1983) also derive the optimal direct mechanism for α = 1 and the value of α such that expected
revenue is 0.
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if and only if for private values (i.e., η′(x) = 0) ψKα/(1−e),i(xi) ≥ ψLα/(1−e),j(xj). The effect of
increasing e in the model with linear interdependence will thus be qualitatively the same as
increasing α in the private values model.

5.2 Optimal ownership structure

We now turn to studying the optimal ownership structures for bilateral partnerships. The
tractability of the bilateral case allows for a more detailed characterization of the optimal initial
shares identified in Theorem 3. In particular, we show as part of the following proposition that
all optimal ownership structures in a given environment correspond to a unique vector of ironing
parameters z for the associated dissolution mechanisms.

Proposition 1. For n = 2, exactly one of the following statements is true:

(i) The extreme ownership structure (r∗1, r
∗
2) = (0, 1) is optimal and

ωα,1(z)− E[η(X1)] ≥ ωα,2(z)− E[η(X2)].

(ii) There is a unique z∗ ∈ (z, z)2 such that

ωα,1(z
∗
1)− E[η(X1)] = ωα,2(z

∗
2)− E[η(X2)] and Γ2(z

∗) ∩∆1 6= ∅.

All ownership structures (r∗1, r
∗
2) ∈ Γ2(z

∗) ∩∆1 are optimal and non-extreme.

(iii) The extreme ownership structure (r∗1, r
∗
2) = (1, 0) is optimal and

ωα,1(z)− E[η(X1)] ≤ ωα,2(z)− E[η(X2)].

Proof. Define the function L(r1) := ωα,1(z
∗
1) − ωα,2(z∗2) − E[η(X1) − η(X2)] where (z∗1 , z

∗
2) =

Γ−12 (r1, 1−r1). From (13), we have αL(r1) = −∂Vα(r1)
∂r1

, so that the concavity of Vα implies that
L(r1) is nondecreasing. According to Theorem 3, an optimal ownership structure r∗1 = 1 − r∗2
satisfies either r∗1 ∈ (0, 1) and L(r∗1) = 0, or r∗1 = 0 and L(0) ≥ 0, or r∗1 = 1 and L(1) ≤ 0.

Recall that ωα,i is strictly increasing for i = 1, 2. Moreover, observe that the characterization
of the optimal bilateral dissolution mechanism in Corollary 2 implies that z∗1 is strictly increasing
and z∗2 is strictly decreasing in r1 for all r1 ∈ [0, r1) and r1 ∈ (r1, 1]. Consequently L(r1) is
strictly increasing on [0, r1) and (r1, 1]. If the optimal ownership structure r∗1 is such that
L′(r∗1) > 0, then r∗1 is unique and so is the corresponding z∗.

We will now show that L′(r1) = 0 for r1 ∈ [r1, r1] if and only if also z∗1 = z∗2 = z does not
change with r1 in that range, implying uniqueness of z∗. From Corollary 2 follows that z solves

a
(
GB2 (z) +GS1 (z)

)
+ (1− a)

(
GS2 (z) +GB1 (z)

)
= 1

for some a that is continuous and strictly increasing in r1, with a = 0 for r1 = r1 and a = 1 for
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r1 = r1. Let the solution to the above equation for a given a be denoted by za. If z0 = z1, then
za is the same for all a and therefore z does not change with r1 and L′(r1) = 0 for r1 ∈ [r1, r1].
If z0 < z1 (z0 > z1), then za is strictly increasing (decreasing) in a (and r1) as well as

GB2 (za) +GS1 (za) < (>) 1 and GS2 (za) +GB1 (za) > (<) 1 for all a ∈ (0, 1).

for all a ∈ (0, 1). Using (12), it follows that

L′(r1) =
(
ω′α,1(z)− ω′α,2(z)

) dz
dr1

=
1

α

(
GB1 (z)−GS1 (z)−GB2 (z) +GS2 (z)

) dz
dr1

> 0.

The first and the third case in Proposition 1 describe corner solutions in which agent 1
and agent 2, respectively, has an optimal share of 0. Accordingly, the second case captures
the situations in which the optimal ownership structure has strictly interior shares. In what
situations can we expect an extreme ownership structure to be optimal? We will next derive
a result that excludes some types of corner solutions in environments where we can rank the
agents’ type distributions. To prove the result, we will make use of the following lemma.

Lemma 2. For all α ∈ [0, 1] and i ∈ N , ωα,i(z) < E[Xi] < ωα,i(z).

Proof. First observe that

αωα,i(z) =

∫ z

ψBα,i(0)

(
GBα,i(y)−GSα,i(y)

)
dy

=
(
GBα,i(z)−GSα,i(z)

)
z−GBα,i(z)E

[
ψBα,i(Xi)

∣∣ψBα,i(Xi) ≤ z
]
+GSα,i(z)E

[
ψSα,i(Xi)

∣∣ψSα,i(Xi) ≤ z
]
.

Using the fact that GBα,i(z)E
[
ψBα,i(Xi)

∣∣ψBα,i(Xi) ≤ z
]
+
(
1−GBα,i(z)

)
E
[
ψBα,i(Xi)

∣∣ψBα,i(Xi) ≥ z
]

=

E
[
ψBα,i(Xi)

]
= (1− α)E[Xi]− E[η(Xi)], we obtain

αωα,i(z) =
(
GBα,i(z)−GSα,i(z)

)
z +

(
1−GBα,i(z)

)
E
[
ψBα,i(Xi)

∣∣ψBα,i(Xi) ≥ z
]

+GSα,i(z)E
[
ψSα,i(Xi)

∣∣ψSα,i(Xi) ≤ z
]
− (1− α)E[Xi] + E[η(Xi)].

Consequently, after some rearranging, we find

α
(
ωα,i(z)− E[Xi]

)
= E

[
max{z, ψBα,i(Xi)}

]
− E

[
Xi − η(Xi)

]
< 0

and α
(
ωα,i(z)− E[Xi]

)
= E

[
min{ψSα,i(Xi), z}

]
− E

[
Xi − η(Xi)

]
> 0

where the inequalities follow from max{z, ψBα,i(x)} < x−η(x) < min{ψSα,i(x), z} ∀x ∈ (0, 1).

We obtain the following result for environments where agent 1 is stronger than agent 2.

Proposition 2. Suppose n = 2 and E[X1 − η(X1)] ≥ E[X2 − η(X2)]. Then r∗1 < 1 for all
α ∈ [0, 1]. Moreover, if F1(x) ≤ F2(x) and η′(x) ∈ (−1, 1) for all x ∈ [0, 1], then there is an
α̃ > 0 such that r∗1 > 0 for all α ∈ [0, α̃).
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Figure 2: Optimal bilateral ownership structure under private values for F1(x) = x2 and F2(x) =
1− (1− x)2 in black as well as F1(x) = x4 and F2(x) = 1− (1− x)4 in red.

Proof. For a corner solution with r∗1 = 1, we would need −ωα,1(z) + E[η(X1)] ≥ −ωα,2(z) +

E[η(X2)]. However, this is impossible, because Lemma 2 implies

−ωα,1(z) + E[η(X1)] < −E[X1 − η(X1)] ≤ −E[X2 − η(X2)] < −ωα,2(z) + E[η(X2)].

Now, consider a corner solution with r∗1 = 0 and suppose F1(x) ≤ F2(x) and η′(x) ∈ (−1, 1) for
all x ∈ [0, 1]. In this case, we need −ωα,1(z) + E[η(X1)] ≤ −ωα,2(z) + E[η(X2)], i.e.,

ωα,2(z)− ωα,1(z) ≤ E[η(X2)− η(X1)] =

∫ 1

0
η′(x)

(
F1(x)− F2(x)

)
dx < 1.

Recall that for α = 0, ω0,i(ri) is the unique worst-off type under the ex post efficient allocation
rule. Because limα→0 ωα,2(z) = ω0,2(1) = 1 and limα→0 ωα,1(z) = ω0,1(0) = 0, the above
condition is violated for α small enough.

According to Proposition 2, if agent 1’s expected net type is higher than agent 2’s, then
giving full ownership to agent 1 will never be optimal, independent of the weight on revenue.
Moreover, if agent 1’s type first-order stochastically dominates agent 2’s and the interdependence
of valuations is not strongly negative, then also giving full ownership to agent 2 is not optimal
for revenue weights close enough to zero.

In the remainder of this section we will study specific examples where agent 1’s type distri-
bution first-order stochastically dominates that of agent 2, i.e., F1(x) ≤ F2(x) for all x ∈ [0, 1].
Among other things, these examples illustrate that extreme ownership can be obtained in the
cases that are not excluded by Proposition 2.

Figure 2 shows the optimal share r∗1 of agent 1 as a function of α with private values (i.e.,
η(x) = 0 for all x) for the case with F1(x) = x2 and F2(x) = 1− (1− x)2 depicted in black and
for the case with F1(x) = x4 and F2(x) = 1 − (1 − x)4 depicted in red. In both cases, agent
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Figure 3: Optimal bilateral ownership structure with negative interdependence and F1(x) = x2,
F2(x) = 1− (1− x)2 for η(x) = −0.5x in black, η(x) = −1.5x in blue, and η(x) = −3x in red.

1 is the strong agent in the sense that F1 stochastically dominates F2, but in latter case the
dominance is much more pronounced. For both cases, Figure 2 also depicts how r1 changes with
α. Note that r∗1 is decreasing, unique, and always below r1, which means that under optimal
ownership, the optimal dissolution mechanism features ironing parameters z∗1 < z∗2 .

When α is small, the optimal ownership structure favors the strong agent. However, as the
weight on revenue increases, the strong agent is eventually discriminated against and ultimately
obtains a smaller share than the weak agent for large α. In the second case, this goes so far that
the optimal ownership structure gives the strong agent an ownership share of 0 for α in excess
of three quarters. Hence, extreme ownership structures, which are at the heart of the bilateral
trade model of Myerson and Satterthwaite (1983), can be optimal even with private values,
provided the weight on revenue is large enough and agents are ex ante sufficiently different.
Intuitively, giving more or even full initial ownership to the agent who is expected to have
the lower valuation, increases the potential gains from trade at the dissolution stage. Initially
favoring the weak agent is optimal if generating revenue, which is extracted from the gains from
trade, is important.

Interestingly, negative interdependence in valuation may make an agent who draws his type
from the stronger distribution effectively weak. Figure 3 illustrates this possibility for the
distributions F1(x) = x2 and F2(x) = 1− (1−x)2 and three levels of negative interdependence:
η(x) = −0.5x in black, η(x) = −1.5x in blue, and η(x) = −3x in red. For a given α, the stronger
is the negative interdependence, the smaller is the strong agent’s (i.e., agent 1’s) optimal share.
If the negative interdependence is strong enough, the difference between the agents in terms of
E[η(Xi)] fully outweighs any difference in critical worst-off types ωα,i, resulting in r∗1 = 0 for all
values of α, including α = 0, as shown for the case η(x) = −3x. As in the private values case,
r∗1 is decreasing in α and always below r1.

As our last example, we will consider positively interdependent values. In Figure 4 the
optimal ownership structures r∗1 are displayed, together with r1 and r1, for η(x) = 0.3x and
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Figure 4: Optimal bilateral ownership structure under positive interdependence, assuming
η(x) = 0.3x, F1(x) = x2 and F2(x) = 1− (1− x)2

again for the distributions F1(x) = x2 and F2(x) = 1 − (1 − x)2. In contrast to the examples
above, r∗1 is now increasing in α, unique, and above r1 (implying z∗1 > z∗2) for small α. Moreover,
there is a unique α for which all r∗1 ∈ [r1, r1] are optimal ownership structures.10 For higher α,
r∗1 has similar properties as in the other figures: it is decreasing, unique, and below r1. Again,
it turns out to be optimal to let the strong agent be the majority owner for small α and the
minority owner for large α.

6 Efficient Frontiers

We now briefly use the results obtained above to illustrate the tradeoff between social surplus
and revenue. We define the efficient frontier to be the collection of all maximally achievable
combinations of revenue and social surplus. Depending on whether the mechanism designer
has to take the initial property rights as given, or whether he can also choose the ownership
structure optimally, we distinguish between the efficient fixed-ownership frontier for a given r

and the efficient optimal-ownership frontier.
Any point along the fixed-ownership frontier given r corresponds to an optimal dissolution

mechanism that maximizes a weighted average of the expected revenue and expected surplus.11

10The examples studied here all belong to the class of bilateral environments where F2(x) = 1 − F1(1 − x)
for all x and where η(x) = ex for some e < 1. For such environments, the virtual type distributions satisfy
GBα,2(z) = 1−GSα,1(1− e− z) and GSα,2(z) = 1−GBα,1(1− e− z) for all z. For the optimal dissolution mechanism
of Corollary 2, this symmetry property implies that we have the same ironing parameters z∗1 = z∗2 = 1−e

2
for all

r1 ∈ [r1, r1]. Hence, if the optimal ownership structures are such that z∗1 = z∗2 , then the entire interval [r1, r1] is
optimal. In contrast, for bilateral environments where the value of z∗1 = z∗2 varies with r1, r∗1 is unique.

11Let λ∗(R) ≥ 0 be the value of the Lagrange-multiplier associated with the constraint of achieving an expected
revenue of at least R. Then the optimal mechanism that is derived by solving this constrained optimization
problem corresponds to the mechanism we have derived with α = λ∗(R)/(1 + λ∗(R)). Much of the analysis
in Myerson and Satterthwaite (1983) and Gresik and Satterthwaite (1989) rests on this insight, as does part
of Tatur (2005)’s. In the context of public goods, it has been used by, among others, Mailath and Postlewaite
(1990), Neeman (1999), Hellwig (2003) and Norman (2004). The literature has mainly focused on “second-best
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Figure 5: Efficient frontiers for n = 2, private values, and uniformly distributed types. Fixed-
ownership frontiers are represented by solid colored lines, the optimal-ownership frontier by the
dashed black line.

This frontier is constructed as follows. Let (srα, t
r
α) denote the optimal dissolution mechanism

that maximizes Wα under ownership structure r, thereby generating expected social surplus
W0(s

r
α, t

r
α) and expected revenue W1(s

r
α, t

r
α). The fixed-ownership frontier then corresponds to

the set
{(
W1(s

r
α, t

r
α),W0(s

r
α, t

r
α)
)

: α ∈ [0, 1]
}
.

Figure 5 depicts fixed-ownership frontiers for bilateral partnerships with identically and
uniformly distributed private values. Revenue is on the horizontal and social surplus on the
vertical axis. The red curve represents the fixed-ownership frontier for the classical bilateral
trade setting of Myerson and Satterthwaite (1983) with ri = 1 for one agent i. The green
curve corresponds to the fixed-ownership frontier for ri = 0.9 for one i, whereas the blue curve
is the fixed-ownership frontier for symmetric ownership r1 = r2 = 1/2. As is apparent from
Figure 5, the frontier moves outward as initial ownership becomes less asymmetric. According
to Corollary 1, this holds for arbitrary n and F as long as types are identically distributed.
Moreover, Corollary 1 also implies that in this case the optimal-ownership frontier coincides
with the fixed-ownership frontier for ri = 1

n . In Figure 5, the optimal-ownership frontier is
represented by the dashed black curve.

The second-best mechanism that maximizes social surplus subject to budget balance cor-
responds to the point on the efficient frontier that intersects with the vertical axis. The slope
at every point of an efficient frontier is −α/(1− α) for the α that generates this point. This is
because the efficient frontier is tangent to the indifference curve associated with the designer’s
utility function (1 − α)Surplus + αRevenue.12 Whereas the lower endpoint (α = 1) of a fixed-
ownership frontier is always to the right of the vertical axis (revenue zero is always feasible by

mechanisms” with a revenue constraint of R = 0. However, there is no need to confine attention to this particular
revenue constraint.

12The red curve in Figure 5 is consistent with the analysis of bilateral trade under uniform valuations by
Myerson and Satterthwaite (1983): the second best mechanism generates a surplus of 23/36 (instead of 2/3
under ex post efficiency) and is associated with α = 1/3, yielding a slope of the frontier at this point of −1/2.
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Figure 6: Efficient frontiers for n = 2, private values, and F1(x) = x2, F2(x) = 1 − (1 − x)2.
Fixed-ownership frontiers are represented by solid colored lines, the optimal-ownership frontier
by the dashed black line.

sticking to the initial allocation), the relative position of the upper endpoint (α = 0) depends on
the ownership structure. In Figure 5, as is consistent with Cramton, Gibbons, and Klemperer
(1987), ownership structures with ri = 1 or ri = 0.9 for one i are too asymmetric for ex post
efficient dissolution under budget balance, while the upper endpoint of the symmetric ownership
frontier (the blue curve) is to the right of the vertical axis. In the last case, the frontier does
not intersect with the vertical axis and the second-best mechanism coincides with the first-best.

With identically distributed types and nonpositive interdependence (η′(x) ≤ 0), the second-
best mechanism never induces z∗i = z∗ for all i. In particular, for n = 2 second-best allocations
look like the one displayed in Panel (b) of Figure 1. The reason for this is as follows. Fieseler,
Kittsteiner, and Moldovanu (2003) have shown that with ri = 1

n for all i and nonpositive
interdependence there is an ex post efficient mechanism that generates nonnegative revenue.
Consequently, our optimal mechanism for equal shares generates strictly positive revenue for all
α > 0. By Corollary 1, the optimal mechanism for a given α hence generates strictly positive
revenue for all r ≺ rα. Because the second-best mechanism generates zero revenue by definition,
the corresponding α must be such that r ⊀ rα, implying an allocation rule where not all z∗i
coincide. In contrast, if under positive interdependence ex post efficiency is impossible without
running a deficit under symmetric ownership, then the second-best mechanism corresponds to
z∗i = z∗ for all i (as for symmetric agents the optimal allocation rule is symmetric).

Now, suppose agents draw their types from different distributions. In Figure 6, efficient
frontiers are drawn for bilateral partnerships with private values under the distributional as-
sumptions F1(x) = x2 and F2(x) = 1 − (1 − x)2. The fixed-ownership frontiers are plotted
for the extreme ownership r1 = 0 and r1 = 1 in orange and red, respectively, for r1 = 0.267

(the optimal ownership structure if α = 1) in purple, for r1 = 0.436 (the optimal ownership
structure if α = 0.5) in blue, and r1 = 0.75 (the revenue-maximizing ownership under ex post
efficiency) in green. Observe that with non-identical type distributions, fixed-ownership fron-
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tiers may intersect. The optimal-ownership frontier is plotted in dashed black. It corresponds
to the upper envelope of the fixed-ownership frontiers for all possible r.

As Figure 6 is drawn for private values, the optimal-ownership frontier illustrates the results
of Schweizer (2006), Che (2006), and Figueroa and Skreta (2012) that ex post efficiency can
always be achieved without a deficit if property rights are chosen optimally. With interde-
pendent values, this need not hold and the optimal-ownership frontier may intersect with the
vertical axis. Moreover, Figure 6 shows that the resulting shortfalls in revenue and surplus can
be substantive if property rights are chosen sub-optimally, as is for example illustrated by the
ownership structure r1 = 0. Put differently, initial ownership structures matter.

7 Conclusions

We analyze a general partnership model that permits an arbitrary number of agents, non-
identical type distributions, interdependent values, and any convex combination of revenue
and social surplus in the designer’s objective. Agents’ private information about their types
is the source of a transaction cost that, to paraphrase Che (2006), places our model in a
world that is “beyond the Coasian irrelevance”. For any initial ownership structure, we first
solve for the optimal dissolution mechanism, subject to incentive compatibility and individual
rationality constraints. Then we choose the ownership structure to maximize the designer’s
objective function and thereby determine the optimal initial ownership structures. We show
that symmetric ownership is always optimal when all agents draw their types from the same
distribution but typically not otherwise.

Embedding the static problem studied here in a dynamic setup seems a particularly valuable
avenue for future research because agents who use a common resource interact repeatedly in
many settings. Another important issue that relates to the allocation of property rights concerns
their effects on the incentives to invest (Schmitz, 2002; Segal and Whinston, 2011, 2013), which
we have abstracted away from in the present paper. Incorporating investment aspects into
a model that permits constrained efficient partnership dissolution seems another natural and
important avenue for future research. Finally, given the prominent role transaction costs and
information play in the theory of the firm, a natural step for further research is to use our
methods and results to develop models that permit a unified approach of bargaining within and
across firms.

Appendix A: Proof of Theorem 1

For any A ⊆ [z, z]n, let Γn(A) =
{
y ∈ [0, 1]n : y ∈ Γn(z) for some z ∈ A

}
denote the image of

A under Γn. We will prove Theorem 1 by showing that Γn has the following two properties:

Property 1: For every y ∈ Γn
(
[z, z]n

)
, there is a unique z such that y ∈ Γn(z).

Property 2: ∆n−1 ⊂ Γn
(
[z, z]n

)
.
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Property 1 implies the uniqueness part of Theorem 1. It says that every point in the image
of Γn corresponds to exactly one z. Put differently, the inverse correspondence Γ−1n (y) :=

{
z ∈

[z, z]n : y ∈ Γn(z)
}
is singleton valued for all y ∈ Γn([z, z]n). Property 2 implies the existence

part of Theorem 1. It says that the image of Γn contains the standard simplex ∆n−1.
The proof proceeds as follows. After some definitions and preliminary results in Subsection

A.1, we show in Subsection A.2 that Property 1 and Property 2 hold for n = 2. In Subsection
A.3, we first uncover the recursive structure of Γn. This then allows us to prove by induction
that the two properties hold for all n, using n = 2 as the base case.

A.1 Preliminaries

Recall the virtual cost distributions GSα,i and virtual valuation distributions GBα,i defined in
Section 2. In the following, we will drop the subscript α and write GSi , G

B
i instead. Sup-

pose zi > zj . Then agent i’s critical type ωα,i(zi) interim expects that his ironed virtual type
ψα,i(ωα,i(zi), zi) = zi is greater than the ironed virtual type ψα,j(xj , zj) of agent j with prob-
ability GBj (zi). Similarly, the critical type ωα,j(zj) of agent j interim expects to have a higher
ironed virtual type than agent i with probability GSi (zj). Note that GSi and GBi are strictly
increasing, GSi (zi) < GBi (zi) for all zi ∈ [z, z], GSi (z) = 0, and GBi (z) = 1.

Consider agent i and a vector of ironing parameters z. Let the set of agents other than i
that have an ironing parameter less than zi be denoted by Li(z) := {j : j 6= i and zj < zi}.
Similarly, let the sets of agents with ironing parameter equal to and greater than zi be denoted
by Ei(z) := {j : j 6= i and zj = zi} and Gi(z) := {j : j 6= i and zj > zi}, respectively. If
Ei(z) 6= ∅ for some i, ties in terms of ironed virtual type have strictly positive probability.

Suppose ties are broken hierarchically according to h. For each agent i, let E i(z, h) := {j ∈
Ei(z) : h(j) < h(i)} and E i(z, h) := {j ∈ Ei(z) : h(j) > h(i)} denote the set of other agents
with the same ironing parameter against whom agent i wins and loses ties, respectively. Hence,
under hierarchy h, the expected share of critical type ωα,i(zi) of agent i is

Si(ωα,i(zi)) = pi(z, h) :=
∏

j∈Li(z)∪Ei(z,h)

GBj (zi)
∏

k∈Gi(z)∪Ei(z,h)

GSk (zi).

Let p(z, h) :=
(
p1(z, h), . . . , pn(z, h)

)
. The outcome

(
Sz,a
1 (ωα,1(z1)), . . . , S

z,a
n (ωα,n(zn))

)
of ev-

ery randomized hierarchical tie-breaking rule a is equal to a convex combination of p(z, h) for
different hierarchies h ∈ H. Consequently, the set of all possible expected shares given z is
equal to the convex hull of the expected shares under fixed hierarchies, i.e.,

Γn(z) = Conv({p(z, h) : h ∈ H}).

Note that depending on z, we may have p(z, h1) = p(z, h2) for some h1 6= h2. In particular,
if all n elements of z are distinct, i.e., Ei(z) = ∅ for all i, then tie-breaking has no bite and all
p(z, h) coincide. In this case, Γn(z) is a singleton. On the other hand, if z is such that zi = z



APPENDIX A: PROOF OF THEOREM 1 28

for all i, i.e., Li(z) = Gi(z) = ∅, then all n! points p(z, h) are distinct extreme points of the
convex hull Γn(z). In general, if z is such that its elements take k ≤ n distinct values z1, . . . , zk,
then Γn(z) is equal to the convex hull of

∏k
l=1ml! distinct extreme points, where ml denotes

the number of agents i with zi = zl.

Lemma 3. The correspondence Γn has the following properties:

(i) For all z ∈ [z, z]n, Γn(z) is nonempty and convex.

(ii) Γn is upper hemicontinuous.

Proof. (i) immediately follows from the discussion above. For (ii), we have to show that for
any two sequences zq → z and yq → y such that yq ∈ Γn(zq), we have y ∈ Γn(z). Note that
if z is such that all its components are distinct, Γn(z) is a singleton that is continuous at z.
Moreover, if the sequence zq → z is such that the sets of agents for which ironing parameters
coincide stay the same over the whole sequence, Γn(zq) and Γn(z) are all equal to the convex
hull of the same number of extreme points. Since these extreme points are continuous in zq,
yq ∈ Γn(zq) and yq → y imply y ∈ Γn(z) in this case. Finally, suppose there are some i, j for
which zqi > zqj but zi = zj . Then, if yq → y such that yq ∈ Γn(zq), there exists a hierarchical
tie-breaking rule for z where h(i) > h(j) for all i, j with zqi > zqj and zi = zj that induces y.
Hence, y ∈ Γn(z).

Partitioning the domain of Γn In order to study properties of the image of Γn, it will prove
useful to consider the following partition of the domain [z, z]n. Define

ξn(z) :=
{
z ∈ [z, z]n : zi = z for at least one i ∈ N

}
.

Note that ξn(z)∩ ξn(z′) = ∅ for all z 6= z′. Moreover,
⋃
z∈[z,z] ξn(z) = [z, z]n. Consequently, ξn

represents a partition of the domain of Γn. In addition, define

On(z) := Γn(ξn(z)).

Hence, the image of Γn can be written as Γn([z, z]n) =
⋃
z∈[z,z]On(z). Below, we will determine

properties of On(z) and their implications for Γn([z, z]n).

A.2 Proof of Theorem 1 for n = 2

Suppose n = 2. There are only two possible hierarchies between two agents, i.e., H = {h1, h2}.
Let h1 (h2) be the hierarchy where agent 1 (2) wins ties. Define ζ1(z) :=

(
GB2 (z), GS1 (z)

)
and

ζ2(z) :=
(
GS2 (z), GB1 (z)

)
. Hence, p(z, z, hk) = ζk(z) for k = 1, 2. The general description of Γn
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Figure 7: The image of Γ2 and and its components for z < z < z′ < z, with O2(z) in blue,
O2(z) in light red, O2(z

′) in dark red, and O2(z) in green.

in the preceding subsection implies

Γ2(z1, z2) =





(
GB2 (z1), G

S
1 (z2)

)
if z1 > z2,

Conv
({
ζ1(z), ζ2(z)

})
if z1 = z2 = z,

(
GS2 (z1), G

B
1 (z2)

)
if z1 < z2.

Suppose z1 = z2 = z. Geometrically, Γ2(z, z) is equal to all the points on the line segment
from ζ1(z) to ζ2(z), i.e., all points in

{
aζ1(z) + (1 − a)ζ2(z) : a ∈ [0, 1]

}
, where a is the

probability with which agent 1 wins ties.
Now consider O2(z) = Γ2(ξ2(z)) for some z ∈ [z, z]. In Figure 7, O2(z) is represented by the

polygonal chain in light red. Geometrically, O2(z) consists of the line segment Γ2(z, z) with two
line segments attached to its endpoints: a vertical line segment from ζ1(z) to (1, GS1 (z)) that
represents Γ2(z1, z) for all z1 ∈ (z, z] and a horizontal line segment from ζ2(z) to (GS2 (z), 1)

that represents Γ2(z, z2) for all z2 ∈ (z, z].
Observe that both coordinates of the vertices ζ1(z) and ζ2(z) are continuous and strictly

increasing in z. Hence, for z′ > z, O2(z
′)∩O2(z) = ∅ and O2(z

′) is further away from the origin
than O2(z) (cf. the dark red line in Figure 7). Put differently, O2 has the following monotonicity
property: If z > z′, then for all y ∈ O2(z) and y′ ∈ O2(z

′) we have yi > y′i for at least one i.
Hence, for every y ∈ Γ2([z, z]

2), there is a unique z such that y ∈ O2(z). Moreover, note
that for each y ∈ O2(z) there is a unique point (z1, z2) ∈ ξ2(z) such that y ∈ Γ2(z1, z2).
Consequently, for every y ∈ Γ2([z, z]

2) there is a unique z ∈ [z, z]2 such that y ∈ Γ2(z), i.e.,
Property 1 holds for n = 2.
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Consider O2(z) and note that ζ1(z) =
(
GB2 (z), 0

)
and ζ2(z) =

(
0, GB1 (z)

)
. Hence, the points

y ∈ Γ2(z, z) all lie below the simplex ∆1, which is represented by the black line segment from
(1, 0) to (0, 1) in Figure 7. Moreover, the vertical and horizontal parts of O2(z) intersect with the
simplex exactly at its boundary since

(
1, GS1 (z)

)
= (1, 0) and

(
GS2 (z), 1

)
= (0, 1), respectively.

Let us increase z. For z small enough, the line segment Γ2(z, z) still lies below the simplex
such that the vertical and horizontal part of O2(z) intersect with the simplex since the endpoints
(1, GS1 (z)) and (GS2 (z), 1) of O2(z) are above and to the left of the simplex for all z > z. As z
increases, the two intersection points move inwards on the simplex. As z becomes large enough,
one of the two vertices ζ1 and ζ2 crosses the simplex, such that one intersection point lies in
Γ2(z, z). The two intersection points approach each other until they coincide when the second
vertex also crosses the simplex. Finally, for z sufficiently close to z, both ζ1(z) and ζ2(z)
and therefore the entire polygonal chain O2(z) lie above the simplex. To see this, note that
ζ1(z) =

(
1, GS1 (z)

)
and ζ2(z) =

(
GS2 (z), 1

)
.

We have just shown that for every y ∈ ∆1, there is a z such that y ∈ O2(z). Consequently,
∆1 ⊂ Γ2([z, z]

2) =
⋃
z∈[z,z]O2(z), i.e., Property 2 holds for n = 2. In Figure 7, Γ2([z, z]

2) is the
yellow area between O2(z) and O2(z), representing a hexagon.

A.3 Proof of Theorem 1 for n > 2

In the following, we will extend the approach of the previous subsection to n > 2. Characterizing
On and Γn turns out to be significantly more complex in this case. To handle this complexity,
we will first uncover the underlying recursive structure of Γn: one can construct Γn using
modified versions of Γm for m < n. Exploiting this recursive structure will then allow us to
prove Theorem 1 by induction, using n = 2 as the base case. We will show that Property 1 and
Property 2 hold for n if they hold for all m < n.

Suppose z1 = z2 = · · · = zn = z and consider Γn(z, . . . , z) = Conv({p(z, . . . , z, h) : h ∈ H}).
For each of the n! different hierarchies h ∈ H,

p(z, . . . , z, h) =

( =p1(z,...,z,h)︷ ︸︸ ︷∏

j∈E1(h)

GBj (z)
∏

k∈E1(h)

GSk (z), . . . ,

=pn(z,...,z,h)︷ ︸︸ ︷∏

j∈En(h)

GBj (z)
∏

k∈En(h)

GSk (z)

)

where we have simplified the notation by writing E i(h) instead of E i(z, . . . , z, h). Note that if
z > z, each h ∈ H yields a distinct p(z, . . . , z, h). It can be shown that all points p(z, . . . , z, h)

lie in the same (n− 1)-dimensional hyperplane: For all h ∈ H,

p(z, . . . , z, h) ∈
{
y ∈ Rn :

∑

i∈N

(
GBi (z)−GSi (z)

)
yi =

∏

j∈N
GBj (z)−

∏

j∈N
GSj (z).

}

Consequently, Γn(z, . . . , z) is a (n− 1)-dimensional convex polytope (in the hyperplane defined
above) with vertices {p(z, . . . , z, h) : h ∈ H}. Each vertex is connected to n− 1 other vertices
through an edge.
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Figure 8: O3(z) and its components.

Now consider a nonempty subset of agentsK ⊂ N and denote its complement byK′ := N\K.
Define the set of hierarchies HK ⊂ H such that for all h ∈ HK, we have h(i) > h(j) for all i ∈ K
and j ∈ K′. If ties are broken by randomly choosing a hierarchy in HK, agents in K always win
ties against agents in K′. The (n− 2)-dimensional polytope Conv({p(z, . . . , z, h) : h ∈ HK}) is
a facet (i.e. an (n− 2)-face) of the (n− 1)-dimensional polytope Γn(z, . . . , z). The boundary of
Γn(z, . . . , z) consists of 2n − 2 such facets, one for each possible nonempty K ⊂ N .13

Example with three agents In the preceding subsection we have seen that Γ2(z, z) is a
line segment. Assuming n = 3, there are 6 possible hierarchies, i.e., H = {h1, . . . , h6}. Hence,
Γ3(z, z, z) is a hexagon (with opposite sides parallel). Let ζl := p(z, z, z, hl) and suppose the
hierarchies are enumerated in such a way that

ζ1 =
(
GB2 (z)GB3 (z), GS1 (z)GB3 (z), GS1 (z)GS2 (z)

)
, ζ2 =

(
GB2 (z)GB3 (z), GS1 (z)GS3 (z), GS1 (z)GB2 (z)

)
,

ζ3 =
(
GS2 (z)GB3 (z), GB1 (z)GB3 (z), GS1 (z)GS2 (z)

)
, ζ4 =

(
GS2 (z)GS3 (z), GB1 (z)GB3 (z), GB1 (z)GS2 (z)

)
,

ζ5 =
(
GB2 (z)GS3 (z), GS1 (z)GS3 (z), GB1 (z)GB2 (z)

)
, ζ6 =

(
GS2 (z)GS3 (z), GB1 (z)GS3 (z), GB1 (z)GB2 (z)

)
.

For example, h1(1) > h1(2) > h1(3) and h2(1) > h2(3) > h2(2). As shown in Figure 8, ζ1, . . . , ζ6
are the vertices of the hexagon Γ3(z, z, z). The six edges ζ1ζ3, ζ3ζ4, ζ4ζ6, ζ6ζ5, ζ5ζ2, and ζ2ζ1
correspond to tie-breaking using H{1,2}, H{2}, H{2,3}, H{3}, H{1,3}, and H{1}, respectively.14

13There are
(
n
k

)
facets where |K| = k, each having k!(n− k)! vertices.

14For n = 4, Γ4(z, z, z, z) is a truncated octahedron. In general, Γn(z, . . . , z) is reminiscent of a permutahedron
(see, e.g., Ziegler, 1995), but its facets exhibit less symmetry (unless Fi = F for all i).
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Modified Γn correspondences and auxiliary definitions Below, we will use the following
two modified versions of Γn. LetM = {j1, j2, . . . , jm} ⊆ N be a subset of m ≥ 2 agents. First,
we denote by Γ̂M:N

m the correspondence Γm for a partnership among the m agents inM with
modified virtual type distributions

ĜJi (z) := GJi (z)


 ∏

k∈N\M

GBk (z)




1
m−1

for i ∈M and J = S,B.

Note that all the properties of virtual type distributions GJi carry over to modified virtual type
distributions ĜJi . In particular, ĜBi (z) > ĜSi (z) for all z ∈ [z, z], ĜBi (z) = 1, and ĜSi (z) = 0.
Hence all results for Γm extend to Γ̂M:N

m .
Second, we denote by Γ̌M:N

m the correspondence Γm for a partnership among the m agents
inM with modified virtual type distributions

ǦJi (z) := GJi (z)


 ∏

k∈N\M

GSk (z)




1
m−1

for i ∈M and J = S,B.

Most properties of GJi carry over to their modified versions ǦJi , including Ǧ
B
i (z) > ǦSi (z) for all

z ∈ (z, z] and ǦSi (z) = 0. The only differences are ǦBi (z) < 1, and ǦBi (z) = 0. Again, all results
for Γm extend to Γ̌M:N

m , except for those relying on ǦBi (z) = 1 or ǦBi (z) > 0. In particular,
note that Γ̌M:N

m (z, . . . , z) is equivalent to Γm(z, . . . , z) multiplied by the scalar
∏
k∈N\MGSk (z)

(except for the m agents potentially being labeled differently).
We will also make use of the following auxiliary definitions for one-agent partnerships where

M is a singleton: Γ̂
{j}:N
1 (z) :=

∏
i∈N\j G

B
i (z) and Γ̌

{j}:N
1 (z) :=

∏
i∈N\j G

S
i (z) for all z ∈ [z, z].

Recursive structure of On Let us now study On(z) = Γn(ξn(z)). Define

ξKn (z) :=
{
z ∈ [z, z]n : zi > z for i ∈ K and zj = z for j ∈ K′

}

for all K ⊂ N , yielding a partition of ξn(z) into 2n − 1 sets. Hence, On(z) =
⋃
K⊂N Γn

(
ξKn (z)

)
.

Consider a specific K ⊂ N and suppose zi > z for i ∈ K and zj = z for j ∈ K′. Then, we
can treat agents in K separately from agents in K′. For the former, their critical type’s expected
share is as in a partnership among k := |K| agents with modified virtual type distributions ĜJi
as defined above. For the latter, expected shares are as in Γn−k(z, . . . , z) but multiplied by
the scalar

∏
i∈KG

S
i (z), i.e., as in a partnership with n − k agents and modified virtual type

distributions ǦJi . Given y ∈ [0, 1]n, define yK := (yi1 , yi2 , . . . , yik) for K = {i1, i2, . . . , ik} and
yK′ := (yj1 , yj2 , . . . , yjn−k) for K′ = {j1, j2, . . . , jn−k}. Hence, the closure of Γn

(
ξKn (z)

)
is

oKn (z) :=
{
y ∈ [0, 1]n : yK ∈ Γ̂K:Nk

(
[z, z]k

)
and yK′ ∈ Γ̌K

′:N
n−k (z, . . . , z)

}
.
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Note that Γn−k(z, . . . , z) is an (n − k − 1)-dimensional convex polytope. If, in addition,
Γm([z, z]m) is an m-dimensional convex polytope for all m < n (as we have already shown
for m = 2 above), then oKn (z) is an (n− 1)-dimensional convex polytope for all K.

With the definition above, On(z) =
⋃
K⊂N o

K
n (z). Note that o∅n (z) = Γn(z, . . . , z). Conse-

quently, On(z) is a polytopal complex that consists of 2n − 1 polytopes of dimension (n − 1):
Γn(z, . . . , z) with a polytope oKn (z) with nonempty K attached to each of its 2n − 2 facets.

Example with three agents (continued) O3(z) consists of the hexagon Γ3(z, z, z) with
one polygon attached to each of its six edges, as shown in Figure 8. Those polygons can be
divided into two groups: o

{1}
3 (z), o{2}3 (z), and o

{3}
3 (z) each represent a convex quadrilateral

whereas o{1,2}3 (z), o{1,3}3 (z), and o{2,3}3 (z) are hexagons. For example,

o
{1}
3 (z) =

{
y ∈ [0, 1]3 : y1 ∈ Γ̂

{1}:N
1

(
[z, z]

)
and (y2, y3) ∈ Γ̌

{2,3}:N
2 (z, z)

}
.

Since both Γ̂
{1}:N
1

(
[z, z]

)
and Γ̌

{2,3}:N
2 (z, z) are line segments, o{1}3 (z) is a convex quadrilateral,

sharing the edge ζ2ζ1 with the hexagon Γ3(z, z, z). Moreover,

o
{1,2}
3 (z) =

{
y ∈ [0, 1]3 : (y1, y2) ∈ Γ̂

{1,2}:N
2

(
[z, z]2

)
and y3 = Γ̌

{3}:N
1 (z)

}
.

Note that y3 is constant whereas Γ̂
{1,2}:N
2

(
[z, z]2

)
is a hexagon, which follows from the preceding

subsection (cf. Figure 7). Hence, o{1,2}3 (z) is also a hexagon, sharing the edge ζ1ζ3 with the
hexagon Γ3(z, z, z).

Monotonicity of On Observe that all coordinates of each p(z, . . . , z, h) are continuous and
strictly increasing in z. Hence, if ẑ > z, then for all ŷ ∈ Γn(ẑ, . . . , ẑ) and y ∈ Γn(z, . . . , z) we
have ŷi > yi for at least one i. The following lemma shows that the monotonicity property of
Γn(z, . . . , z) extends to On(z).

Lemma 4. If ẑ > z, then for all ŷ ∈ On(ẑ) and y ∈ On(z), ŷi > yi for at least one i.

Proof. We will show that ŷi > yi for at least one i for all K,M⊂ N and ŷ ∈ oMn (ẑ),y ∈ oKn (z).
Note that each ŷ ∈ oMn (ẑ) corresponds to a ẑ ∈ [ẑ, z]n and a tie-breaking rule. Now, consider

the ỹK′ ∈ Γ̌K
′:N

n−k (ẑ, . . . , ẑ) that is obtained when breaking ties among agents in K′ in such a way
that the same rule as for ŷ is applied for all j, l ∈ K′ where ẑj = ẑl, whereas j wins against
l for all j, l ∈ K′ where ẑj > ẑl. This tie-breaking implies ŷj > ỹj for all j ∈ K′ ∩M since
pj(ẑ, h) > pj(ẑ, . . . , ẑ, h) for all relevant hierarchies h. Moreover ŷl ≥ ỹl for all l ∈ K′ ∩M′.
Hence, we conclude that for all ŷ ∈ oMn (ẑ) there is a ỹK′ ∈ Γ̌K

′:N
n−k (ẑ, . . . , ẑ) such that ŷi ≥ ỹi for

all i ∈ K′.
Since ẑ > z, there is for all ỹK′ ∈ Γ̌K

′:N
n−k (ẑ, . . . , ẑ) and yK′ ∈ Γ̌K

′:N
n−k (z, . . . , z) at least one

i ∈ K′ such that ỹi > yi. Combining this with the conclusion of the preceding paragraph implies
that for all ŷ ∈ oMn (ẑ) and y ∈ oKn (z) there is at least one i ∈ K′ such that ŷi ≥ ỹi > yi.
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For the three-agent example displayed in Figure 8, Lemma 4 implies that O3(z) moves
towards the observer as we increase z. See also Figure 9 below that depicts O3(z) for four
different values for z.

Induction step for Property 1 Monotonicity of On implies that for each y ∈ Γn([z, z]n) =⋃
z∈[z,z]On(z) there is a unique z such that y ∈ On(z).

Lemma 5. If Property 1 holds for all Γm with m < n, then Property 1 holds for Γn.

Proof. Lemma 4 implies that for every y ∈ Γn([z, z]n) there is a unique z such that y ∈ On(z).
We will next show that for every y ∈ On(z), there is a unique K ⊂ N such that y ∈

Γn(ξKn (z)). Consider K,M ⊂ N such that K 6= M. Without loss of generality, suppose
K ∩ M′ 6= ∅. Then, for all y ∈ Γn(ξKn (z)) and ỹ ∈ Γn(ξMn (z)), yi > ỹi for at least one
i ∈ K ∩M′. To see this, consider the corresponding z ∈ ξKn (z) and z̃ ∈ ξMn (z). For i ∈ K ∩M′
and j ∈ K′, we have zi > zj = z but z̃i = z ≤ z̃j . Hence, in the first case the critical type
of agent i has a strictly higher winning probability against agents in K′ than in the second
case. The same is true for j ∈ K ∩M, since zi > z whereas z̃i = z < z̃j . Finally, the winning
probability of agent i’s critical type against other agents in K ∩M′ cannot be lower for all
i ∈ K ∩ M′ when considering z ∈ ξKn (z) than when considering z̃ ∈ ξMn (z). Consequently,
yi > ỹi for at least one i.

So far we have shown that for every y ∈ Γn([z, z]n), there are unique z,K such that y ∈
Γn(ξKn (z)). This already partially pins down z: for all i ∈ K′, we have zi = z. Moreover,
y ∈ Γn(ξKn (z)) implies y ∈ oKn (z) and therefore yK ∈ Γ̂K:Nk

(
[z, z]k

)
. If Property 1 holds for

k < n, there is a unique zK such that yK ∈ Γ̂K:Nk
(
zK
)
. This pins down zi also for i ∈ K.

Convexity of Γn
(
[z, z]n

)
Suppose Γm

(
[z, z]m

)
is a convex polytope for all m < n. As ob-

served above, this implies that On(z) is a polytopal complex consisting of 2n−1 convex polytopes
oKn of dimension n− 1, one for each K ⊂ N . If K∩M 6= ∅, then the two polytopes oKn and oMn
are adjacent, i.e., they share a facet (of dimension n − 2). Let the boundary of the polytopal
complex On(z) be defined as all the facets of each polytope oKn that are not shared with some
other polytope oMn , where K 6=M. Each point y ∈ Γn(z) on the boundary of On(z) corresponds
to a z where, for some K ⊂ N , zi = z for i ∈ K whereas zj = z for j ∈ K′.

In a similar manner as we constructed On above, define

Qn(z) := Γn
({

z ∈ [z, z]n : zi = z for at least one i ∈ N
})

=
⋃

K⊂N
qKn (z)

where
qKn (z) :=

{
y ∈ [0, 1]n : yK ∈ Γ̂K:Nk (z, . . . , z) and yK′ ∈ Γ̌K

′:N
n−k

(
[z, z]n−k

)}
.

Qn(z) represents the image under Γn of the set of all z where zi ≥ z for all i and zi = z for at
least one i. Observe that Qn(z) contains all the boundary points of On(z̃) for each z̃ ∈ [z, z].
Moreover, Qn(z) = On(z).
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Lemma 6. Γn
(
[z, z]n

)
is an n-dimensional convex polytope for all z < z. The boundary of this

polytope is On(z) ∪Qn(z).

Proof. From the preceding subsection we know that Γ2

(
[z, z]2

)
is a hexagon. We will now show

that if Γm
(
[z, z]m

)
is a convex polytope for all m < n, then Γn

(
[z, z]n

)
is a convex polytope.

Consequently, the first statement in the lemma follows by induction.
Suppose Γm

(
[z, z]m

)
is a convex polytope for all m < n and recall that Γn

(
[z, z]n

)
=⋃

z̃∈[z,z]On(z̃). As derived above, On(z) is a polytopal complex. As all coordinates of the
extreme points of Γn(z, . . . , z) are continuous and strictly increasing in z, Lemma 4 implies
that On(z) continuously moves further away from the origin as z increases. Hence, On(z) is
part of the boundary of Γn

(
[z, z]n

)
.

In addition to On(z), all boundary points of On(z̃) for each z̃ ∈ (z, z) are also part of the
boundary of Γn

(
[z, z]n

)
whereas all interior points of On(z̃) are in the interior of Γn

(
[z, z]n

)
.

Lastly, note that On(z) consists of only one convex polytope (namely Γn(z, . . . , z)) and that all
its points are part of the boundary of Γn

(
[z, z]n

)
.

Qn(z) represents all points on the boundary of Γn
(
[z, z]n

)
described in the preceding para-

graph, i.e., boundary points that are not in On(z). Consequently, On(z)∪Qn(z) represents the
entire boundary of Γn

(
[z, z]n

)
. Like On(z), Qn(z) is also a polytopal complex that consists of

2n − 1 convex polytopes of dimension n− 1. The boundary of Γn
(
[z, z]n

)
therefore consists of

2n+1−2 convex polytopes (oKn (z) and qKn (z) for all K ⊂ N ), making Γn
(
[z, z]n

)
an n-dimensional

polytope with 2n+1 − 2 facets.
Recall that for all z < z, On(z) consists of Γn(z, . . . , z) with a oKn (z) attached to each facet.

The points in each oKn (z) are further away from the origin than the points on the corresponding
facet of Γn(z, . . . , z). Because of the monotonicity and continuity properties of On(z), for all
y ∈ Conv

(
On(z)

)
such that y /∈ On(z), there is a z̃ ∈ (z, z] such that y ∈ On(z̃). Hence, the

polytope Γn
(
[z, z]n

)
=
⋃
z̃∈[z,z]On(z̃) is convex.

Induction step for Property 2 Consider On(z). This represents a special case since
Γn(z, . . . , z) is a general (n − 1)-simplex with only n vertices rather than a polytope with
n! vertices. In particular, note that for each vertex p(z, . . . , z, h) = (p1, . . . , pn), pi ∈ (0, 1) for
one i whereas pj = 0 for all j 6= i, resulting in only n distinct vertices. Since

∑n
i=1 pi < 1,

the general simplex Γn(z, . . . , z) does not intersect with standard simplex ∆n−1: the former lies
closer to the origin than the latter.15

It follows that On(z) consists of only n + 1 polytopes of dimension (n − 1): The general
simplex Γn(z, . . . , z) with a polytope oin attached to each of its n facets (each corresponding to
a general n− 2-simplex), where, for each i ∈ N ,

oin :=
{
y ∈ [0, 1]n : yN\i ∈ Γ̂

N\i:N
n−1

(
[z, z]n−1

)
and yi = 0

}
.

15In the three-agent example above, we obtain, for z = z, ζ1 = ζ2 =
(
GB2 (z)GB3 (z), 0, 0

)
, ζ3 = ζ4 =(

0, GB1 (z)GB3 (z), 0
)
, ζ5 = ζ6 =

(
0, 0, GB1 (z)GB2 (z)

)
.
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(a) O3(z) (b) O3(z) (c) O3(z′) (d) O3(z′′)

Figure 9: Increasing z in the three-player example. O3 for some z < z < z′ < z′′ < z and the
simplex ∆2 (semitransparent black triangle).

Lemma 7. If Property 2 holds for all Γm with m < n, then On(z) contains the entire boundary
(all n facets) of ∆n−1.

Proof. On(z) is the union of Γn(z, . . . , z) and n polytopes oin as defined above. Property 2 for
m < n implies in particular ∆n−2 ⊂ Γn−1

(
[z, z]n−1

)
and therefore ∆n−2 ⊂ Γ̂

N\i:N
n−1

(
[z, z]n−1

)
.

Moreover, the n facets of ∆n−1 all correspond to one coordinate being set to zero, i.e., yN\i ∈
∆n−2 and yi = 0.

Panel (a) of Figure 9 illustrates Lemma 7 in the three-agent example. It shows how O3(z)

intersects with the boundary of the semitransparent black triangle that represents the simplex
∆2. Figure 9 also conveys that as we increase z, the intersection of O2(z) with ∆2 moves inward
(Panels (b) and (c)) until the entire simplex has been covered and for all higher z, O2(z) does
not intersect with ∆2 (Panel (d)).16 Hence, Property 2 holds for Γ3.

Using the convexity of Γn
(
[z, z]n

)
, it is now straightforward to obtain the following lemma.

Lemma 8. If Property 2 holds for all Γm with m < n, then Property 2 holds for Γn.

Proof. If Property 2 holds for all Γm with m < n, then, according to Lemma 7, On(z) contains
the entire boundary of ∆n−1. By Lemma 6, Γn

(
[z, z]n

)
is convex and On(z) is part of the

boundary of Γn
(
[z, z]n

)
. Consequently, the boundary of ∆n−1 being contained in the boundary

of Γn
(
[z, z]n

)
implies Property 2 for Γn.

Final step As shown in the preceding subsection, Property 1 and Property 2 hold for n = 2.
By induction, using Lemmata 5 and 8, Property 1 and Property 2 hold for all n.

16Let ẑ be the smallest z such that
∑
i∈N pi(z, . . . , z, h) ≥ 1 for all h ∈ H. Similarly, let ž be the greatest

z such that
∑
i∈N pi(z, . . . , z, h) ≤ 1 for all h ∈ H. Observe that z < ž ≤ ẑ < z (with ž = ẑ if Fi = F for

all i). On(z) intersects with ∆n−1 if and only if z ≤ ẑ whereas Γn(z, . . . , z) intersects with ∆n−1 if and only if
z ∈ [ž, ẑ]. Panels (b), (c), and (d) of Figure 9 correspond to z < ž < z′ < ẑ < z′′.
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