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TESTS OF NON-CAUSALITY IN A FREQUENCY BAND

<ANONYMIZED>

ABSTRACT. We extend the frequency-specific Granger-causality test of

Breitung and Candelon (2006) to a more general null hypothesis that al-

lows non-causality at unknown frequencies within an interval, instead

of having to prespecify a single frequency. This setup corresponds better

to most hypotheses that are typically analyzed in applied research and

is easy to implement. We also discuss a test approach that departs from

strict non-causality, given the impossibility of (non-trivial) non-causality

over a continuum of frequencies. In an empirical application dealing

with the dynamics of US temperatures and CO2 emissions we find that

emissions cause temperature changes only at very low frequencies with

more than 30 years of oscillation.

Keywords: Granger causality, frequency domain, filter gain

JEL codes: C32 (multivariate times series), Q54 (global warming)

1. INTRODUCTION

The notion of empirical causality as predictive ability has a long history

in science and was formalized by Granger (1969). It became very popular

among practitioners due to the simplicity of its implementation in linear

dynamic models, where a test for non-Granger-causality is equivalent to

a joint exclusion test of lagged terms of the candidate variable. A gen-

eralization of this concept was later introduced by Geweke (1982), who

noted that causal effects can vary between the different cycles of time se-

ries, where each cyclical component corresponds to a certain frequency of

oscillation. However, the practical application of the test that Geweke’s

causality measure is zero at a certain frequency appeared to be quite dif-

ficult until Breitung and Candelon (2006, henceforth BC) pointed out that

Date: preliminary version March 2015 .
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in the framework of a linear VAR the null hypothesis is equivalent to two

linear restrictions that can be tested for example with a standard Wald test.

A drawback of the BC test is that the test is formulated in terms of a sin-

gle frequency point that has to be specified a priori. In practice, however,

many test statistics are calculated for a range of frequencies to gain insights

into the relationship between the variables, although it is well-known that

the classical test approach does not allow a rigorous joint interpretation

of these set of statistics. Furthermore, the underlying (economic) theory

usually does not provide a hypothesis for only a single frequency. For ex-

ample, consider the following implication of the expectations hypothesis of

the term structure as noted by Shiller (1979, p.1190), pointing out theoreti-

cal Granger non-causality of short-term interest rates for a range of higher

frequencies:1 “... excess [short-term] volatility implies a kind of forecasta-

bility for long rates.”

In order to better reflect the hypotheses that come naturally from under-

lying theory we extend the frequency-specific test for Granger non-causality

by formulating a generalized null hypothesis for a frequency interval. As

a side effect of this work we also present a different representation of the

original restrictions by BC, which turns out to be helpful for our present

purpose.

Related literature. The BC test was used to analyze Granger-causal effects

of money on inflation in a series of papers by Assenmacher-Wesche and

Gerlach (Assenmacher-Wesche and Gerlach, 2008a, 2007, 2008b). They noted

some moderate size distortions and applied the bootstrap as a small-sample

correction, but given the lack of other tools at the time, they were forced

to use the point-wise tests even though they analyzed frequency bands.

Another use for output forecasting was shown by Lemmens, Croux, and

1His precise definition of volatility is “variance of short-term holding yields on long-term
bonds”, which is related to the short-term “percentage change in the long-term interest
rate” (p. 1191) and thus to high-frequency fluctuations of long-term rates, but in a nonlinear
way.
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Dekimpe (2008), who concluded that the BC approach was the most effi-

cient test among the ones considered. A concept which is closely related

to frequency-specific Granger causality is “partial directed coherence”, see

Baccalá and Sameshima (2001), where inference is also carried out point-

wise.

2. SETUP AND NOTATION

Consider a standard vector autoregression (VAR) of order p in the two

variables xt and yt:

(2.1) A(L)

 xt

yt

 = c +

 ux,t

uy,t

 , t = p + 1, ..., T

where ut = (ux,t, uy,t)′ are normally distributed white noise innovations

with contemporaneous covariance matrix Ψ. We initially assume the poly-

nomial A(L) to be stable with roots outside the unit circle such that both xt

and yt will be stationary. The extended case of unit roots will also be dis-

cussed below. Further deterministic terms such as linear trends or seasonal

dummies could be easily added.

Let yt be the potential target variable that is Granger-caused by xt un-

der the alternative. Using some obvious notation we can write the second

equation of the system as follows:

(2.2) yt = cy +
p

∑
j=1

αjyt−j +
p

∑
k=1

βkxt−k + uy,t

BC (2006) showed that the hypothesis of no Granger causality at fre-

quency ω, or My→x(ω) = 0, can be imposed as two linear restrictions

R(ω)β = 0, where β = (β1, ..., βp)′ and

R(ω) =

 cos(ω) cos(2ω) · · · cos(pω)

sin(ω) sin(2ω) · · · sin(pω)
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For a lag order of p = 1 or p = 2 there is only a trivial solution to this restric-

tion, namely that β1 = β2 = 0. In these two cases therefore the hypothesis

of Granger non-causality at a certain frequency ω ∈ (0, π) automatically

implies the standard case of no Granger causality at any frequency. We

therefore require a higher lag order, p > 2, in order to make a frequency-

specific analysis interesting.

In practice the system (2.1) would often be augmented with further vari-

ables zt to avoid spurious findings due to omitted variables, see BC for a

discussion. Such an addition would lead to obvious augmentations of (2.2)

with lagged (or in the case of exogenous variables, possibly contempora-

neous and lagged) values zt, but would not affect our results in any other

way. Therefore we focus on the bivariate case for ease of exposition.

3. AN ALTERNATIVE REPRESENTATION

For our purposes it is useful to represent the null hypothesis of no Granger

causality at frequency ω in a more convenient manner. Our representation

is based on a decomposition that is similar to the well-known BN decompo-

sition proposed by Beveridge and Nelson (1981) for the frequency ω = 0.

Let us first consider the test at frequency ω = 0 (long-run causality). In this

case the null hypothesis boils down to ∑
p
j=1 β j = 0. Following Dickey and

Fuller (1979) we decompose the polynomial β(L) as

β(L) = b0
1 + (1− L)γ0(L)

where b0
1 = ∑

p
j=1 β j, γ0(L) = γ0

0 +γ0
1L+ · · ·+γ0

p−2Lp−2 and γ0
j = −∑

p
i=j+2 βi.

Note that this decomposition is also used to obtain the Beveridge-Nelson

decomposition. Accordingly, a test for causality at frequency ω = 0 is

equivalent to testing b0
1 = 0 in the regression

yt = cy +
p

∑
j=1

αjyt−j + b0
1xt−1 +

p−1

∑
k=1

γ0
k−1∆xt−k + uy,t.(3.1)
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In the following a similar approach is suggested for testing causality at fre-

quencies 0 < ω < π. To this end we first present a suitable decomposition

of the lag polynomial.

Lemma 1. Let β(L) = 1 + β1L + · · ·+ βp−1Lp−1 with p ≥ 3. Then for 0 <

ω < π there exists a representation of the form

β(L) = bω
1 + bω

2 L + γω(L)∇ω(L)(3.2)

where∇ω(L) = 1− 2 cos(ω)L+ L2 and γω(L) = γω
0 +γω

1 L+ · · ·+γω
p−3Lp−3.

The gain function |β
(
eiω) |2 is zero at frequency ω if and only if bω

1 = 0 and

bω
2 = 0.

Proof. Comparing the coefficients at different lags yields the system of equa-

tions

1

β1

β2
...

βp−1


=



1 0 1 0 0 · · · 0 0 0

0 1 −2 cos(ω) 1 0 · · · 0 0 0

0 0 1 −2 cos(ω) 1 · · · 0 0 0
...

. . .
...

0 0 0 0 0 · · · 1 −2 cos(ω) 1





bω
1

bω
2

γω
0
...

γω
p−3


For 0 < ω < π this linear system can be solved to obtain bω

1 , bω
2 and

γω
0 , . . . , γω

p−3. Since ∇ω

(
eiω) = ∇ω

(
e−iω) = 0, the gain function results

as

|β
(

eiω
)
|2 = β

(
eiω
)

β
(

e−iω
)

= (bω
1 )

2 + 2bω
1 bω

2 cos(ω) + (bω
2 )

2.

It follows that |β
(
eiω) |2 = 0 if and only if bω

1 = bω
2 = 0. �

Accordingly, (2.2) can be re-written as

(3.3) yt = cy +
p

∑
j=1

αjyt−j + bω
1 xt−1 + bω

2 xt−2 +
p−2

∑
k=1

γω
k−1∇ω(L)xt−k + uy,t,
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for 0 < ω < π. Note that this representation requires a lag order of p ≥

3. From Lemma 1 it follows that the transfer function possesses a zero at

frequency ω if and only if bω
1 = 0 and bω

2 = 0. Accordingly, the hypothesis

that xt is a Granger cause of yt is equivalent to the joint null hypothesis H0 :

bω
1 = 0 and bω

2 = 0 in the representation (3.3).

The corresponding representation for frequency ω = π is given by∇π =

1 + L and causality at this frequency can be tested by replacing the differ-

ence operator ∆ in (3.1) with ∇π.

4. TESTING WHEN THE FREQUENCY IS UNKNOWN

4.1. Theory. In many applications it is reasonable to assume that the fre-

quency for which xt is not a Granger cause for yt is unknown but it is as-

sumed that the frequency lies within some prespecified interval ω ∈ Ω0 =

[ω`, ωu]. Thus the relevant null hypothesis is

Hu
0 : There exists a frequency ω ∈ [ω`, ωu] such that |β(eiω)|2 = 0.

For testing such a null hypothesis it is natural employ the minimum of the

sequence of (Wald/LR/LM) test statistics for all test statistics associated

with the grid of frequencies

ω ∈ Ωδ
0 = {ω`, ω` + δ, ω` + 2δ, . . . , ωu}

where δ denotes the frequency increment, say π/T. Let λω
T denote the

causality test statistic at frequency ω. The next theorem shows that asymp-

totically the significance level of the test can be controlled by using the

usual critical value of the χ2
2-distribution of the test for a known frequency.

Theorem 1. Let λω
T denote the Wald/LM/LR test statistic for Granger causality

at frequency ω and λ∗T = inf{λω
T |ω ∈ Ωδ

0} with δ = π/T. The (1− α) quantile

of the χ2 distribution with 2 degrees of freedom is denoted by χ2
2,α. (i) Under the

null hypothesis that there exists at least one frequency ω∗ ∈ Ω0, with ωl > 0,
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ωu < π, such that |β(eiω∗)|2 = 0, then

lim
T→∞

P(λ∗T > χ2
2,α) ≤ α.

(ii) If under the null hypothesis there exists a single frequency with |β(eiω∗)|2 = 0

but |β(eiω)|2 > 0 for ω 6= ω∗ in the interval ω ∈ Ω0, then as T → ∞

lim
T→∞

P(λ∗T > χ2
2,α) = α.

Proof. (i) As shown by BC the statistic λω∗
T for the simple test at the fre-

quency ω∗ has a χ2 limiting distribution with 2 degrees of freedom. Ac-

cordingly we have limT→∞ P(λω∗
T > χ2

2,α) = α. Since lim
δ→0

ω∗ ∈ Ωδ
0, as

T → ∞ we have

λ∗T = inf{λω`
T , λω`+δ

T , λω`+2δ
T , . . . , λωu

T } ≤ λω∗
T

and, therefore, limT→∞ P(λ∗T > χ2
2,α) ≤ α.

(ii) If |β(eiω)|2 > 0 for ω 6= ω∗ in the interval ω ∈ Ω0 then for all frequen-

cies in this interval except ω∗ we have (cf. BC) λω
T = |Op(T)| and, therefore,

λ∗T = λω∗
T . It follows that the statistic λ∗T is asymptotically equivalent to a

test statistic computed from the (correct) frequency ω∗. �

It follows that the size of the test is controlled by using the minimal test

statistic in the interval [ω`, ωu] and applying the test at the associated fre-

quency as if this frequency were known. If there exists a single non-causal

frequency in the interval [ω`, ωu], then the test controls the size asymptoti-

cally, whereas the test becomes conservative whenever the interval contains

more than one non-causal frequency.

The following corollary clarifies the extension to the special frequencies

0 and π where only a single restriction is tested and hence the limiting

distribution has only one degree of freedom.
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Corollary 1. If 0 ∈ Ω0 or π ∈ Ω0, let λ0
T and λπ

T be the corresponding test statis-

tics of the restriction b0
1 = 0 or bπ

1 = 0 in (3.3), and χ2
1,α denotes the (1− α) quan-

tile for 1 degree of freedom. Consider the three null hypotheses that |β(eiω∗)|2 = 0

for some ω∗ in (i) [0, ωu], ωu < π, (ii) [ωl , π], ωl > 0, and (iii) [0, π], with

relevant test statistics given by:

(i) λ0∗
T = inf

{
χ2

2,α
χ2

1,α
λ0

T, λω
T |ω ∈ (Ωδ

0\0)
}

,

(ii) λπ∗
T = inf

{
χ2

2,α
χ2

1,α
λπ

T , λω
T |ω ∈ (Ωδ

0\π)

}
and

(iii) λ0π∗
T = inf

{
χ2

2,α
χ2

1,α
λ0

T,
χ2

2,α
χ2

1,α
λπ

T , λω
T |ω ∈ (Ωδ

0\{0, π})
}

.

Under their respective null hypotheses these test statistics have the properties

that were given for λ∗T in theorem 1.

Proof. If xt is not Granger causal at frequencies 0 (or π), λ0
T (or λπ

T ) has a lim-

iting χ2 distribution with 1 degree of freedom. Therefore limT→∞ P(
χ2

2,α
χ2

1,α
λ0

T >

χ2
1,α)|ω∗=0 = limT→∞ P(

χ2
2,α

χ2
1,α

λπ
T > χ2

1,α)|ω∗=π = limT→∞ P(λω∗
T > χ2

2,α)|ω∗∈(0,π).

Minimizing over the extended grid with the suitably scaled test statistics

for frequencies 0 and π therefore also controls the size of the test. �

Remark 1. Note that the third hypothesis in corollary 1 involves all pos-

sible frequencies but is much less restrictive than the traditional test of

Granger non-causality. The traditional test requires non-causality at all fre-

quencies, while the third hypothesis above merely leaves the frequency of

non-causality unspecified.

4.2. Simulation study. We assess the empirical characteristics of the test

with a standard simulation study, where we use the following true models

for t = 0...T. For x we specify a univariate exogenous AR(1) process,

xt = a1,xxt−1 + ux,

with two degrees of persistence, a1,x ∈ {0, 0.8}. The pre-sample starting

value is set to zero, x−1 = 0. The target variable y is not caused by x at a
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TABLE 1. Specified frequency bands for the simulation of
size and power

True non-causal frequency w Bands for Hu
0 (size) Bands for Hu

0 (power)

0 [0, 0.5], [0, 1] [0.5, 1.5], [1.5, 2.5]
0.2 [0.1, 0.5], [0, 1] [0.5, 1.5], [1.5, 2.5]
1.5 [1, 2], [1.5, π] [0, 1], [2, 3]

frequency w for which we consider the values w ∈ {0, 0.2, 1.5}. We also

allow persistence in the y-process and thus we have:

yt = a1,yyt−1 + γ0xt−1 − γ02 cos(w)xt−2 + γ0xt−3 + uy,

where again a1,y ∈ {0, 0.8} and zero starting values, y−1 = 0 = x−1 =

x−2 = x−3. We let the overall impact coefficient γ0 vary as γ0 ∈ {−1, 0.5, 1}.

Finally, the innovations are uncorrelated Gaussian white noise with nor-

malized variance, u ∼ NID(0, I2).

In table 1 we report the frequency bands that are considered as null hy-

potheses for the simulation of the size of the test. For the grid of tested

frequencies we use a distance of δ ≈ 0.1, plus the special cases 0 and π,

such that the grid contains the true non-causal frequencies. For the analy-

sis of the power of the test we confine ourselves to situations where x is still

non-causal at some frequency, but this frequency now lies outside the null

band. In addition one could specify a true DGP without any non-causality.

In the third column of table 1 we report the analyzed frequency bands for

the simulated power of the test.

In table 2 we have collected the simulation results. It is apparent that

the test is quite conservative and the rejection frequencies under the null

never reach its nominal significance level for the considered sample sizes of

T = 200 and T = 500. This seems to happen especially when the frequency

zero is included in the null band while the true frequency is at 0.2. In this

scenario the null hypothesis is rejected in less than 1% of the simulations

for a nominal level of 5%. Nevertheless, the power of the test is still quite
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satisfactory. The only notable problems occur when the true impact of x

is quite low (γ0 = 0.5) and the data are noisy (a1,x = a1,y = 0); there the

power may drop below 20%, but given the conservatism that we found the

test is still far from being biased even in these extreme circumstances.

5. UNIT ROOTS AND COINTEGRATION

So far we have assumed a stable VAR system with all roots outside the

unit circle. Considering the possibility of unit roots at frequency zero (real

and positive unit roots), the analysis extends naturally to the case with I(1)

variables that are not cointegrated, by differencing the corresponding vari-

ables and proceeding as before.

If the variables are cointegrated the analysis can be slightly adapted as

already described in BC. The tests at non-zero frequencies are not (asymp-

totically) affected by the unit roots in a cointegrated system and can be

performed in a standard fashion.

However, it may be worth noting that by definition of cointegration, at

least one of the variables must be long-run causal at frequency zero.2 Let

the normalized cointegration coefficient be κ 6= 0 such that yt + κxt = et ∼

I(0). Then the null hypothesis of non-causality of x for y at frequency zero

does not contradict the cointegration assumption only under the implicit

hypothesis that y is long-run causal for x, i.e. that a2 6= 0 in

∆xt = cx + a1xt−1 + a2yt−1 +
p−1

∑
j=1

dx,j∆xt−j +
p−1

∑
k=1

dy,k∆yt−k + ux,t,

because under cointegration it holds that either κ = a1/a2 if x is caused by

y at frequency zero, or else a1 = a2 = 0. In the latter case the error cor-

rection term would have to enter the equation for y, such that in (3.3) with

2As we saw before, the converse is not true in general. It makes sense to talk about causality
at frequency zero even for I(0) variables.
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TABLE 2. Simulation results

T = 200
a1,x = a1,y = 0 a1,x = a1,y = 0.8

Frequency
band under

H0

γ0 =
−1

γ0 =
0.5

γ0 =
1

γ0 =
−1

γ0 =
0.5

γ0 =
1

True frequency w = 0
[0, 0.5] .018 .012 .015 .018 .018 .017
[0, 1] .015 .014 .015 .021 .017 .019

[0.5, 1.5] .428 .134 .429 .992 .642 .990
[1.5, 2.5] 1 1 1 1 1 1

True frequency w = 0.2
[0.1, 0.5] .023 .032 .027 .022 .028 .022
[0, 1] .009 .011 .007 .006 .006 .005

[0.5, 1.5] .318 .115 .317 .953 .483 .957
[1.5, 2.5] 1 1 1 1 1 1

True frequency w = 1.5
[1, 2] .021 .020 .020 .022 .014 .019
[1.5, π] .042 .035 .039 .036 .036 .043

[0, 1] 1 .994 1 1 1 1
[2, 3] 1 .999 1 1 .912 1

T = 500
a1,x = a1,y = 0 a1,x = a1,y = 0.8

Frequency
band under

H0

γ0 =
−1

γ0 =
0.5

γ0 =
1

γ0 =
−1

γ0 =
0.5

γ0 =
1

True frequency w = 0
[0, 0.5] .012 .015 .014 .015 .016 .015
[0, 1] .017 .013 .015 .017 .017 .017

[0.5, 1.5] .837 .296 .846 1 .976 1
[1.5, 2.5] 1 1 1 1 1 1

True frequency w = 0.2
[0.1, 0.5] .022 .027 .019 .016 .027 .016
[0, 1] .007 .009 .005 .004 .006 .003

[0.5, 1.5] .684 .217 .685 1 .895 1
[1.5, 2.5] 1 1 1 1 1 1

True frequency w = 1.5
[1, 2] .017 .017 .014 .018 .017 .015
[1.5, π] .031 .029 .034 .037 .032 .036

[0, 1] 1 1 1 1 1 1
[2, 3] 1 1 1 1 1 1

Notes: Empirical rejection frequencies, nominal significance level 0.05,
5000 replications. The value “1” means unity up to a precision of six
decimal digits. Power is raw (not size-adjusted).
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∇0(L) = 1− L we would have α1 6= 0 and b0
1 = κα1, which contradicts non-

causality of x. This shows that a test of b0
1 = 0 is asymptotically equivalent

to a test of α1 = 0 (given a rate-T-consistent estimate κ̂), but only under the

maintained hypothesis of cointegration (a1 6= 0). Under this maintained

hypothesis the coefficient is effectively attached to the I(0) error term et

and inference is standard. In contrast, a joint test of no long-run causal-

ity between two I(1) variables in both directions would be equivalent to a

test of the null of no cointegration, with non-standard but also well-known

inference procedures.

6. AVERAGE CAUSALITY OVER A BAND RANGE

It is impossible to impose Hall
0 in terms of the linear VAR model (3.3)

because a (lag) polynomial can only have a finite number of roots, hence

bω
1 = bω

2 = 0 cannot hold for infinitely many ω. In fact, in order to factor out

a second ∇ω∗∗6=ω∗ polynomial from the γω∗(L) polynomial with another

non-causal frequency ω∗∗, p ≥ 5 would be required, and in general the

number of non-causal frequencies is bounded by (p− 1)/2.

This impossibility of strict non-causality in a frequency band is a fun-

damental property that is related to the well-known result that the ideal

(band pass, low pass, or high pass) filter in the frequency domain implies a

two-sided filter in the time domain. Such a two-sided filter is often and ad-

equately called non-causal, because it destroys the temporal ordering and

thus invalidates analyses of predictive properties.

To illustrate this problem, consider the one-sided version of the flexible

band-pass filter suggested by Christiano and Fitzgerald (2003), where we
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FIGURE 6.1. Christiano-Fitzgerald one-sided and truncated
filter gain

focus on the incarnation based on the random-walk assumption.3 The fre-

quency response (gain) function of the filter for various filter length trun-

cation values of n and for a pass band of frequencies corresponding to 4 to

10 periods of oscillation (frequencies [0.63, 1.57]) is shown in figure 6.1. We

can see that the filter deviates considerably from an ideal filter with zero

gain up to 0.63 and beyond 1.57, and raising the number of lagged terms

only seems to make the gain flatter in the pass band, but not in the stop

bands.

Acknowledging this impossibility of implementing strict Granger non-

causality over a frequency range, we are still interested in the hypothe-

sis that the degree of causality in some frequency band is different from

3That filter is given by (their equation (4)):

yF
t = 0.5B0yt + B1yt−1 + ... + Bt−2y2 + B̃t−1y1,

where B0 = (b − a)/π, a = 2π/lu = ωl , b = 2π/ll = ωu, Bj≥1 = (sin(jb) −
sin(ja))/(π j),B̃t−1 = −0.5B0 − ∑t−2

i=1 Bi. Here lu and ll denote the bounds of the wave-
lengths (periods of oscillation). This one-sided filter uses all available past data, but for
practical purposes one can choose a certain number of coefficients n and apply the follow-
ing truncated filter (to observations satisfying t > n− 1), where for asymptotic arguments
n can grow up to a rate T:

yF
t = 0.5B0yt + B1yt−1 + ... + Bn−2yt−(n−2) + B̃n−1yt−(n−1)
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that in another frequency range. For example one could analyze whether

short-term interest rates are really less causal for long-term rates at high

frequencies than at low frequencies as predicted by theory, or whether a

certain business-cycle indicator has higher causality for output growth at

business-cycle frequencies compared to lower frequencies. It is natural to

choose the case of equality as the null hypothesis and treat the inequality

case as the alternative.

• He
0 : The degree of Granger causality of x for y in the frequency

band Ω0 = [ωl , ωu] is equal to that in another band Ω1 (with non-

overlapping bands Ω0 ∩Ω1 = ∅).

• Hmore
1 : The Granger causality of x for y is higher in Ω0 than in Ω1.

He
0 includes the traditional case of non-causality at all frequencies. The

additional alternative hypothesis that causality is lower in Ω0 than in Ω1is

obviously equivalent to Hmore
1 with the bands Ω0 and Ω1 reversed, hence

we do not address it explicitly. We believe that the combined inequality

hypothesis that Granger causality is different between Ω0 and Ω1 (lower or

higher) without specifying the direction is not interesting for meaningful

applications. Note that there may or may not be frequencies with strict non-

causality present in Ω0 or Ω1, the presence of which is neither necessary nor

sufficient for He
0 to be rejected.

As the relevant measure of Granger causality we use the frequency re-

sponse or gain function of the causal filter that the VAR system represents

and by which it transforms innovations in x to reactions of y. If we denote

with gxy
ω (A(L)) this gain at frequency ω, the degree of Granger causality in

the band Ω0 is given by gxy
Ω0
(A(L)) =

´ ωu
ωl

gxy
ω (A(L)) dω. The central ele-

ment of the hypothesis He
0 (and Heu

0 ) is whether gxy
Ω0
(A(L)) = gxy

Ω1
(A(L)).

We will consider an isolated unit impulse in xt or equivalently in ux,t

which is the reduced-form (non-structural) innovation, without changing

uy,t or yt contemporaneously, even though Cov(ut) may be non-diagonal.
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This approach is natural for a Granger causality analysis.4 Viewing the VAR

model as a linear filter, the implied gain function is the Fourier transform

of its impulse response function (IRF) which can be derived from the mov-

ing average representation of the model, (xt, yt)′ = A(L)−1(ux,t, uy,t)′ with

A(L)−1 ≡ Φ(L) = I +∑∞
i=1 Φi. Standard textbook results show (e.g. Lütke-

pohl, 2007) that the coefficient matrices of the MA form are computable

recursively by

Φi≥1 =
i

∑
j=1

Φi−j Aj

(where Φ0 = I). The interesting responses of y to an impulse in x are given

by the south-west corners of Φi≥1, let the corresponding scalar infinite lag

polynomial be φ(L) = φ1 + φ2L + .... The aggregate gain in the band Ω0 is

then given by gxy
Ω0
(A(L)) =

´ ωu
ωl
|φ(eiω)|2 dω, and analogously for the band

Ω1. Given estimated VAR coefficients Â(L) we can derive estimates ĝxy
F

for F = Ω0, Ω1 by approximating the infinite-order φ̂(L) with a truncated

version φ̃n(L) up to order n and apply the Fourier transform to φ̃n(L).

Deriving the sampling distribution of ĝxy
F is related to the problem of

estimating the distribution of the IRF which is typically addressed in the

literature with bootstrapping methods (cf. Kilian, 1998) because it is ana-

lytically intractable. Here the analytic problem is aggravated by the ad-

ditional Fourier transform step, but conceptually the bootstrap approach

covers this problem as well.

Lemma 2. Given consistent and asymptotically normally distributed estimates of

the VAR coefficients â = vec(Â(L)) with corresponding variance-covariance ma-

trix Ψ̂a, a consistent test of He
0 against Hmore

1 is given by considering the simulated

distribution of ĝxy
Ω0
− ĝxy

Ω1
= ĝ and rejecting if its 1− α quantile is positive.

4The result is identical to the effect of a structural innovation ε1,t that only affects xt, i.e. ap-
plying a Choleski identification strategy with an upper-triangular impact matrix. How-
ever, the concept of Granger causality focuses on variables and not on shocks. Considering
shocks that move xt and yt simultaneously would mean to introduce instantaneous causal-
ity, which is another concept that does not fit well with the notion of Granger causality,
which is based on predictive ability.
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The distribution can be generated with a parametric bootstrap, by drawing re-

peatedly from the k-variate normal distribution N(â, Ψ̂a), where k = 4p, and

calculating φ̃n(L) and ĝ for each simulation draw, with n→ ∞ as T → ∞.

Proof. The consistency of the bootstrap for the distribution of φ̂(L) follows

from the existing literature. Some small-sample bias corrections may also

be applied. We have limT→∞ φ̃n(L) = φ̂(L). The gain function is a differen-

tiable function of the impulse response for stable VAR systems and hence

integrable over frequencies. The theoretical gain difference g is freely vary-

ing and in particular not bounded by 0. Hence the bootstrap carries over to

an evaluation of ĝ. �

Sometimes it may also be of interest to analyze He
0 after Hu

0 has been

already established, i.e. conditional on the assumption that a frequency w

exists at which x is not causal for y. In this case the south-west corner

of I − A(L) would be given by β(L) = γw(L)∇w(L) which implies for

example φ1 = γw
0 . In this restricted VAR the number of parameters to be

estimated drops from 4p to 4p− 2. If He
0&Hu

0 are to be jointly tested with

this two-stage method, a Bonferroni-type approach can be used to control

the overall size of the procedure and to avoid pre-testing distortions.

7. ILLUSTRATION

Many economic relationships where the Granger causality should the-

oretically vary with the frequency are related to expectation formation.

Apart from the previously mentioned example of the term structure of in-

terest rates another classical example would be the smoothing of consump-

tion according to the persistent movement of permanent income which is

essentially the expected net present value of all resources over the life cy-

cle. In applications where expectations matter, special care must be taken

to distinguish between the concepts of Granger causality and structural

causality. In the consumption-smoothing theory, the persistent component
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FIGURE 7.1. Time series of US continental (48 states) tem-
peratures (log degrees Fahrenheit) and total CO2 emissions
(log millions of metric tons).

of expected income is the underlying cause of parallel movements of con-

sumption. In empirical studies realized income must be used instead, given

that expected future income is not contemporaneously observable. This

choice effectively reverses the temporal ordering of cause and effect, with

the result that consumption would turn out as Granger-causal for income

at low frequencies.

If properly interpreted, these difficulties do not invalidate the use of

Granger causality analyses, but to avoid confusion we instead present an

example where expectations are unlikely to matter. We analyze US tem-

perature measurements and greenhouse gas emissions for Granger non-

causality. We use the annualized data 1895 to 2013, because emissions are

not available quarterly or monthly.

The temperature data are from the US National Climatic Data Center

(Climate at a Glance), while the CO2 emissions data are the “Total” series

from Boden, Marland, and Andres (2014) ranging from 1751 to 2010. The

jointly available sample is thus 1895-2010 (T = 116) and we use log trans-

forms.
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First we determine the lag order of the bivariate VAR in log-levels. The

Akaike information criterion suggests just two lags, but the third lag is also

significant at the 10% level, and as explained above at least three lags are

needed in order to distinguish causality at different frequencies. Hence we

choose p = 3. In principle it would be possible to consider a more compli-

cated lag structure, restricting some of the intermediate lag coefficients in

certain equations to zero, but we do not pursue this strategy in this illus-

tration.

For these data it is natural to suspect cointegration so we run the Jo-

hansen test, with an unrestricted constant to deal with the trending data.

The highest eigenvalue is 0.16 and the p-value of the trace test of no coin-

tegration yields 0.0098, such that there is evidence for cointegration at the

nominal 1% significance level. Notice that the error correction term is in-

significant in the emissions equation (p-value of 0.12), hence emissions do

not seem to be caused by temperatures at frequency zero. This is plau-

sible, but it also means that we cannot test the restriction of no long-run

causality running in the other direction –from emissions on temperatures–

without affecting the cointegration property of the system, as discussed

above. Therefore the causality at frequency zero is already established, and

our interpretation focuses on non-zero frequencies. Figure 7.2 shows the

frequency-wise test results.

For any frequency band up to roughly 0.2, corresponding to wavelengths

down to roughly 31 periods (years) the minimal test statistics would exceed

the critical value, and hence for those frequency bands we would reject the

null hypothesis that there exists a frequency without Granger causality. Of

course the frequency band below 0.2 is very close to zero, and with this

effective sample of T = 113 it is very difficult to distinguish cycles of 30

periods from even lower frequencies. Hence some leakage from the zero

frequency is expected. For any frequency bands containing higher frequen-

cies (shorter wavelengths) we would not be able to reject the corresponding
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FIGURE 7.2. Frequency-wise causality test from log total
emissions on log US continental temperatures. System with
3 lags. The horizontal line is the critical value of the χ2 dis-
tribution with two degrees of freedom at the 5% level. The
lowest tested frequency here is 0.01, see the text for the zero
frequency.

null hypothesis. The overall conclusion is thus that Granger causality from

emissions to temperatures varies across frequencies.

8. SUMMARY

In this paper we have shown that tests of Granger non-causality can

also be specified in terms of frequency bands or intervals instead of sin-

gle frequency points. The result is a rigorous testing framework enabling

standard inference that circumvents the ad-hoc procedures of joint testing

with unknown statistical properties. The implementation is easy because

in practice the relevant test statistic is just the minimum over the specified

frequency band, apart from a special but equally easy treatment of the fre-

quencies 0 and π. In a preliminary simulation study the test performed

satisfactorily albeit conservatively.

However, given that strict non-causality over a range of frequencies is

impossible in this (linear) framework except if there is no causality at all,

accepting the null hypothesis still means that some causality exists in the

band of the null hypothesis. For practical purposes it may therefore be

advisable to keep the specified frequency band reasonably short. Other
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types of hypothesis are also conceivable, dealing with a minimum amount

of causality under the null instead of strict non-causality. We plan to ad-

dress these additional hypotheses in the next revision of this manuscript.

Our empirical application with long time series of CO2 emissions and

earth surface temperatures demonstrated that varying degrees of Granger

causality in the frequency domain are of practical relevance. In the intro-

duction we already mentioned the case of the term structure of interest

rates where such varying connections are also expected. In addition, ac-

cording to the economic hypothesis of consumption smoothing a similar

result about differing impacts of short- versus long-term fluctuations might

hold between income and consumption. We believe that many more po-

tential applications in economics and perhaps other disciplines are likely

to exist.
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