
Herwartz, Helmut

Conference Paper

Are GARCH innovations independent - a long term
assessment for the S&P 500

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2015: Ökonomische Entwicklung -
Theorie und Politik - Session: Financial Econometrics, No. B22-V3

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: Herwartz, Helmut (2015) : Are GARCH innovations independent - a long
term assessment for the S&P 500, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2015:
Ökonomische Entwicklung - Theorie und Politik - Session: Financial Econometrics, No. B22-V3, ZBW -
Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft

This Version is available at:
https://hdl.handle.net/10419/113109

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/113109
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Are GARCH innovations independent - a long term assessment

for the S&P 500

Helmut Herwartz∗

February 28, 2015

Abstract

GARCH specifications have been widely applied in financial literature and practice. For

purposes of (Quasi) ML (QML) estimation innovations to GARCH processes are assumed

identically and independently distributed (iid) with mean zero and unit variance. In this

note GARCH innovations entering daily S&P 500 quotes are diagnosed to lack independence

and to signal ex-ante the directions of stock price changes.
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1 Introduction

Numerous variants of (G)ARCH models benefit volatility estimation and risk management.1

Incorporating the prominent leverage effect the threshold GARCH model (TGARCH(1,1,1))

introduced by Glosten et al. (1993) will be considered throughout in this study. To implement

QML estimation it is common to assume strong (T)GARCH forms, implying that innovations

are iid with zero mean and unit variance. Assuming less restrictive frameworks of semi-strong

or weak TGARCH, higher order dependence in innovation processes might carry informational

content for out-of-sample stock returns. In empirical practice such higher order dependence is

typically not subjected to specification testing, and yet its eventual content for ex-ante return

prediction lacks consideration.

The purpose of this note is to unravel if, for a longitudinal sample drawn from the S&P

500, TGARCH innovations conform to the iid assumption. Consecutive innovation estimates

are subjected to independence testing, and show strong indications of higher order dependence.

In addition, nonparametric innovation forecasts ex-ante indicate price developments. Finally,

inferential results (p-values) are combined with sign predictions to arrive at refined prediction

schemes. The next Section sketches the data and outlines the empirical model and the design

of the ex-ante analysis. Empirical results are provided in Section 3. Section 4 concludes.

2 The model and the forecasting design

2.1 Data and modelling framework

The data consists of 16348 daily observations of S&P 500 closing prices and covers the period

from January 3, 1950 to December 19, 2014.2 The following representation of returns rt is used

for an empirical assessment of innovation independence in TGARCH(1,1,1) models:

rt = ν + φrt−1 + et, (1)

= ν + φrt−1 + σtξt,

σ2t = γ0 + γ1e
2
t−1 + γ−1 e

2
t−1I(et−1 < 0) + β1σ

2
t−1, (2)

ξt = et/σt
iid∼ N(0, 1), ξt = (ξt−1, ξt)

′, t = τ −G, . . . , τ. (3)

Conditional first and second order return characteristics are given in (1) and (2), respectively,

where I() is an indicator function. In (3) τ indicates a rolling forecast origin and G is the size

1For a textbook treatment of the family of GARCH models along with lead references see Mills and Markellos
(2008).

2The sample was lastly updated from the Yahoo Finance historical prices database on December 22, 2014 at
7 pm. The prices were transformed to log returns and evaluated in R (R Core Team, 2014) by means of the R
Package ”rugarch” (Ghalanos, 2014) for univariate GARCH models, and the function ”indepTest” from the R
package ”copula” (Hofert et al., 2014).
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of (rolling) time windows of sample information (including presample values). Ex-ante forecasts

are determined for forecast origins τ = G+ 1, G+ 2, . . . , T − 1 where G = 1000, T = 16347. To

immunize against the eventual detection of innovation dependence as a reflection of first order

autoregressive dynamics the model in (1) includes an autoregressive component.3

2.2 Testing for independence of innovations

In an iid framework the vector ξt defined in (3) comprises independent elements. Samples

Ωm = {ξt}τt=τ−Gm are subjected to independence testing by means of the Cramér-von-Mises

statistic which was proposed in Genest et al. (2007). Independence tests will be applied to

nonoverlapping and overlapping/rolling samples of distinct sizes Gm. Specifically are the sample

sizes G = G1 = 1000, G2 = 500, G3 = 250 and G4 = 100. Hence, sample information shrinks

from an approximate 4 year period (m = 1) to some ’local’ time support of 5 months (m = 4)

of stock trading. Throughout, the notation is informative with respect to local time and the

magnitude of sample information, i.e. independence diagnostics are denoted Bτ,m.

2.3 Prediction under dependence

In the case that the elements of ξt lack independence one has for the conditional expecta-

tion E[ξt|ξt−1] 6= 0. Hence, most recent innovations or their estimates ξτ might carry predic-

tive content for future speculative returns. In this study nonparametric estimates µ̂τ+1,m =

E[ξτ+1|ξτ ,Ωm] are evaluated for their potential to ex-ante signal the sign of ’centered’ out-of-

sample returns ẽτ+1 = rτ+1 − ν̂τ − φ̂τrτ .4 Cumulated statistics of directional accuracy (DA)

measure predictive performance, i.e.

DAm =
1

T −G

T−1∑
τ=G

I(µ̂τ+1,mẽτ+1 > 0)− I(µ̂τ+1,mẽτ+1 < 0). (4)

In (4) time specific indicators of directional accuracy are +1 (-1) if the nonparametric predictor

matches (does not match) in sign with the centered ex-ante return. Hence, a particular prediction

scheme is considered ’successful’ if DAm > 0. To improve the scale of DAm counts are divided

by (rolling) numbers of overall predictions.5

3Positive autocorrelation of stock returns might be attributed to time varying risk premia (Engle et al., 1987).
In empirical practice, however, the fit of autoregressive models often outperforms the one of risk premium models
(Hafner and Herwartz, 2000). In Section 3 the case of imposing φ = 0 will be shortly addressed.

4Conditional expectations µ̂τ+1,m are determined by means of the Nadaraya-Watson estimator with Gaussian
Kernel and an ad-hoc bandwidth 1.06G−0.2

m . OLS estimates ν̂τ and φ̂τ process sample information {rt}τt=τ−G.
5Given the return specification in (1) it appears natural to diagnose DA for AR(1) centered out-of-sample

returns. Alternatively one may diagnose DA by means of combining µ̂τ+1,m with either ẽτ+1 = rτ+1 − ν̂τ
(centering with mean return) or ẽτ+1 = rτ+1 (no centering). Respective DA statistics strongly confirm the
discussion in Section 3. Explicit results are available from upon request.
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No pretest With pretest (p(Bτ,m) < 0.1)

m 1 2 3 4 1 2 3 4

DA, cDA (·100) 3.343 2.417 2.639 2.587 3.906 5.453 5.279 7.937

T̃ /15347 1 1 1 1 .586 .384 .262 .144

’hits’ .517 .512 .513 .513 .520 .527 .526 .540
sd (· 10E03) 4.04 4.04 4.04 4.04 5.27 6.51 7.89 10.6

Table 1: Cumulated Directional Accuracy

The table documents the excess of cases of sign match over sign mismatch of ex-ante innova-
tion predictions and centered future returns relative to evaluated predictions (DA, cDA). The
row labeled ’T̃ /15347’ provides counts of evaluated predictions as a fraction of all iterations.
Unconditional forecasts are compared with the outcome of a pretest scheme. Relative success
measures are significantly positive with 1% significance. The standard errors of sample means
from respective Bernoulli distributions with success probability 0.5 are shown in the bottom row
of the Table. Frequencies of sign matching (e.g. 0.5 + DA/2) are given in the row labelled ’hits’.

2.4 A pretest approach

Under innovation independence the performance of ex-ante predictors µ̂τ+1,m is random. A

particular underpinning of dependence in TGARCH innovations obtains if, specifically, low

p−values attached to Bτ,m, p(Bτ,m) < 0.1 say, are informative for the local ex-ante performance

of µ̂τ+1,m. Respective conditional DA (cDA) statistics read as

cDAm =
1

T̃m

T−1∑
τ=G

(I(µ̂τ+1,mẽτ+1 > 0)− I(µ̂τ+1,mẽτ+1 < 0)) I(p(Bτ,m) < 0.1), (5)

where T̃m =
∑T−1

τ=G I(p(Bτ,m) < 0.1).

3 Empirical results

3.1 Inference in disjoint subsamples

Offering a first impression of eventual dependence in TGARCH innovations, S&P 500 returns

are divided into 16 subsamples each comprising 1001 observations.6 Returns are subjected

either to centering by their empirical mean (ẽt = rt − ν̂τ ) or transformed into residuals from an

AR(1) regression ẽt = rt − ν̂τ − φ̂τrt−1. Then, in total, 16 samples of innovation tuples ξt with

G = G1 = 1000 observations are obtained and subjected to independence testing. Moreover,

each sample Ω1 = {ξt}τt=τ−G1
is divided into 2, 4, and 10 nonoverlapping subsamples, comprising

500, 250 and 100 observations, respectively. Hence, 16, 32, 64 and 160 independence tests for

6For the analysis of nonoverlapping subsamples the most recent 331 observations are left out from the analysis.
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(pl, pu) [0,0.1) [0.1,0.25) [0.25,0.5) [0.5,0.75) [0.75,0.9) [0.9,1)

H0 .10 .15 .25 .25 .15 .10 U(0, 1)

Gm # ẽt = rt − ν̂
1000 16 .750 .188 .000 .062 .000 .000 .000
500 32 .656 .156 .188 .000 .000 .000 .000
250 64 .531 .156 .172 .094 .031 .016 .000
100 160 .331 .206 .169 .150 .069 .075 .000

ẽt = rt − ν̂ − φ̂rt−1
1000 16 .625 .125 .188 .062 .000 .000 .000
500 32 .438 .219 .125 .156 .031 .031 .000
250 64 .312 .094 .281 .188 .078 .047 .000
100 160 .125 .144 .238 .231 .162 .100 .911

Table 2: Independence diagnosis in disjoint samples

The table documents empirical frequencies of p−values p(Bm) between a lower bound pl and
an upper bound pu. The row labeled ’H0’ provides the nominal frequency counterparts that
are expected under the null hypothesis of innovation independence, and ’#’ is the number of
samples subjected to independence testing. The column labelled ’U(0, 1)’ shows p−values for a
χ2(5) test of a uniform distribution of the empirical distribution of p(Bm). Almost throughout,
the null hypothesis of uniform p−values is rejected.

nonoverlapping samples are done. Under independence p-values p(Bτ ) should exhibit a uniform

distribution. Table 2 documents the frequency estimates for particular ranges of the obtained

p-values. Diagnostic results for samples Ω1 are at odds with the independence assumption.

Neglecting (accounting for) the first order dynamics in returns, 12 (10) out of 16 samples of ξt are

diagnosed dependent with 10% significance, respectively. For smaller samples comprising either

500 (Ω2) or 250 obervations (Ω3) the empirical pattern of p−values is also noticeably different

from a uniform distribution. After adjusting for the first order autoregressive dynamics, 43.8%

and 31.2% of all samples Ω2 and Ω3 are diagnosed dependent with 10% significance, respectively.

Conditionally on small samples of 100 observations (Ω4) the independence test appears to suffer

from low power. In this case, the empirical distribution of the 160 p-values is in line with a

uniform distribution if the TGARCH model is applied to residuals from linear autoregressions.

Interestingly, the null hypothesis of independence is rejected with 10% significance for one third

of the 160 samples when the raw returns are not subjected to AR(1) prewhithening.

3.2 Inference and prediction in rolling samples

Rolling independence diagnosis Figure 1 displays the empirical pattern of consecutive p-

values, p(Bτ,m), τ = G,G + 1, . . . , T − 1, m = 1, 2, 3, 4.7 Conditioning on Ω1 the time profile

of p(Bτ,1) reveals that small p-values cluster in the beginning and at the end of the rolling

modelling design. While empirical p−values are somewhat larger for subsamples ending during

7Subsamples of Ω1 are determined at the end of rolling samples.
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Figure 1: Rolling p-values p(Bτ,m) from independence testing in samples Ωm,m = 1, 2, 3, 4. To
facilitate the interpretation of the graphs horizontal lines indicate p−values of 0.5 and 0.1.

the late 1970s and 1980s, the overall pattern of rolling p-values is at odds with independence.

Using smaller samples the occurrence of larger p-values turns out to be more frequent, although

rolling p-values obtained from samples Ω2 are far from supporting the independence assumption.

Conditional on further reduced sample information (Ω3 and Ω4), the respective test statistics

(Bτ,m, m = 3, 4) reveal some power loss of the testing approach. However, rolling p-values

indicate that the strength of innovation dependence is likely time varying.

Innovation forecasts Table 1 shows full sample statistics describing the forecasting perfor-

mance. Nonparametric innovation forecasts µ̂τ+1,m carry predictive content for the sign of out
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Figure 2: Rolling frequencies for ex-ante directional accuracy, unconditional (DA) vs. pretest
(p(Bτ,m) < 0.1, cDA).

of sample (centered) returns ẽτ+1 = rτ+1− ν̂τ−φ̂τrτ . Overall, out of the 15347 single predictions

the excess of sign matches over sign mismatch amounts to some percentage between 2.41% (Ω2)

and 3.34% (Ω1). Noting the huge number of determined predictors the documented success

frequencies are significant.8

Pretesting Evaluating directional accuracy only at time instances when p(Bτ,m) < 0.1 improves

the documented success ratios markedly. With rolling samples Ω2 the relative excess of accurate

8Interestingly, predicting naively a positive sign for ẽτ+1 also obtains a relative excess of matches over mis-
matches of 2.41%. Hence, with regard to this particular prediction outcome the naive strategy appears, uncondi-
tionally, as valuable as evaluating µ̂τ+1,2.
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predictors raises from 2.41% to 5.45%. Conditioning, e.g., on p(Bτ,2) < 0.1 reduces the number

of experiments to 38.4% of all rolling estimates. Still, however, T̃2 = 0.384 ·15347 = 5905 experi-

ments enter the performance assessment for µ̂τ,2 such that the documented relative performance

improvement is significant. Figure 2 shows rolling frequencies for DA statistics.9 As it turns

out, the average success frequencies are time stable and conditioning on pretests dominates the

performance of unconditional prediction schemes robustly.

4 Conclusions

In their strongest form GARCH models formalize that returns of speculative assets can be

decomposed into a measurable conditional standard deviation and an independent identically

distributed innovation process with mean zero and unit variance. For a longitudinal sample of

S&P 500 returns this work shows that estimated innovations are mostly at odds with the indepen-

dence assumption. The level of actual dependencies is likely to be time varying. Independence

diagnostics can be fruitfully combined with conditional innovation forecasts to improve the per-

formance of stock return prediction schemes. Although the analysis does not address profitable

trading, it provides, to some extent, an empirical support for (time varying) market inefficiency.
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