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Abstract

The fractional probit (or fractional logit) model is used when the outcome variable is a fractional

response variable, i.e. a variable taking a value between zero and one. In case of excess zeros,

the fractional probit model might not be the optimal modeling device since this model does not

predict zeros. As a solution, the two-part model has been proposed, which assumes different

processes for having a (non-)zero outcome and, conditionally on having a non-zero outcome, the

actual outcome. However, the two-part model assumes independence of these processes. This

paper proposes a generalization of the two-part model which allows for dependence of these pro-

cesses and which also nests the two-part model as a special case. A simulation study indicates

that the proposed estimator performs well in finite samples. Two empirical examples illustrate

that the model proposed in this paper improves upon the fractional probit and two-part model

in terms of model fit and also leads to different marginal effects.
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1 Introduction

There are many examples in applied econometrics where the outcome variable of interest

is a fractional response variable, i.e. a variable which only takes values between zero and

one. A specific example for a fractional response variable is the share of exports in total

sales (Wagner, 2001).

Econometric analysis of fractional response variables by ordinary least squares has

the drawback that the model predictions may fall outside of the [0,1]-interval, so that

the predictions are not consistent with the nature of the fractional outcome variable. To

overcome this drawback, Papke and Wooldridge (1996) introduced the fractional probit

model (or fractional logit model), which ensures that the predictions lie in the [0,1]-

interval.

The fractional probit model assumes that the conditional mean of the fractional re-

sponse variable y given a set of explanatory variables x is specified as

E[y|x] = Φ(x′β), (1)

where Φ(·) is the standard normal cumulative distribution function and β is a vector of

unknown parameters. This specification of the conditional mean ensures that the model’s

predicted values lie between zero and one, which is in line with the fractional nature of

the outcome variable y.

However, in many empirical applications there is a large portion of observations having

an outcome of zero. The fractional probit model may not be suitable in this case because

it does not predict zeros. More importantly, the occurrence of excess zeros might indicate

that the zero outcomes and the non-zero outcomes have been generated by two distinct

processes. As a solution, the two-part model has been proposed (Ramalho et al., 2011),

which assumes different processes for having a (non-)zero outcome and, conditionally on

having a non-zero outcome, the actual outcome. As will be demonstrated below, however,

the two-part model assumes independence of these processes.

This paper proposes a generalization of the (ordinary) two-part model which allows for
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dependence of these processes and which also nests the two-part model as a special case.

The model cannot only be applied when there are excess zeros, but also when outcomes are

non-randomly missing in the spirit of the sample selection bias problem (Heckman, 1979).

Estimation of this generalized two-part model can be carried out via quasi maximum

likelihood. This paper also contains a small-scale simulation study illustrating that the

proposed estimator performs well in finite samples and that the simpler two-part and

fractional probit models yield biased estimates when there are dependencies between the

two processes mentioned above. Furthermore, this paper includes two empirical examples

which demonstrate that accounting for the dependence between the processes may be

important in empirical work – both in terms of model fit and in terms of marginal effects.

It might be argued that a Tobit model could also be used when dealing with fractional

response variables, especially in case of excess zeros. This approach has drawbacks, how-

ever. A Tobit model with a lower bound at zero would ensure that predictions are greater

than zero; but it might also generate predictions being greater than one, which would

be inconsistent with the nature of the fractional outcome variable. On the other hand, a

Tobit model with a lower bound at zero and an upper bound at one would indeed yield

predictions between zero and one; but this model would only be applicable if there was

also an excess portion of ones. Moreover, it is not clear whether assuming censoring for

a variable defined on the [0,1]-interval actually makes sense (see Ramalho et al., 2011, p.

22). Thus, the Tobit model is not considered further in this paper due to these conceptual

reasons.

The remainder of this paper is organized as follows. Section 2 introduces the econo-

metric model and discusses issues of identification, estimation and inference. Section 3

contains the simulation study. In Section 4 the proposed estimator and existing estimators

are applied to two empirical examples. Finally, Section 5 concludes the paper.

2 Econometric Approach

This paper proposes a model which assumes distinct processes for having a (non-)zero

outcome and, conditionally on having a non-zero outcome, the actual outcome. The first
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process determines whether an observation i, i = 1, . . . , n, has a zero outcome or not:

zi = 1(w′

iγ + ui > 0), (2)

where z is an indicator variable equal to one if the observation has a non-zero outcome and

zero otherwise; w is a vector of explanatory variables, γ is a vector of unknown parameters

and u is the error term. Hence, an observation i has a non-zero outcome if and only if

w′

iγ+ui > 0. For convenience, it is assumed that the error term u has a standard normal

distribution, implying that

Pr(zi = 1|wi) = Φ(w′

iγ). (3)

The second process determines the actual outcome, conditionally on having a non-zero

outcome. In the two-part model the second part is described by the following conditional

mean assumptions:

E[yi|xi, wi, zi = 0] = 0 (4)

E[yi|xi, wi, zi = 1] = Φ(x′iβ), (5)

where the first equality directly follows from the definition of the variable z. The second

equation implies that the conditional mean of the non-zero outcomes is specified as in the

fractional probit model.

A drawback of the two-part model is that it assumes that E[yi|xi, wi, zi = 1] does not

depend on the first process, i.e. on z and its determinants. However, if the second process

does depend on the first process, estimates from the two-part model will generally be

biased. We thus propose the following generalization of the (ordinary) two-part model:

E[yi|xi, wi, zi = 1] =
Φ2(x

′

iβ, w
′

iγ; ρ)

Φ(w′

iγ)
, (6)

where Φ2(·; ρ) denotes the bivariate standard normal distribution function with correlation

coefficient ρ. Note that the first process is accounted for through the presence of w′

iγ.

4



Our formulation of the conditional mean has two advantages. The first advantage is that

the conditional mean is always between zero and one, implying that also the predictions

are between zero and one. The second advantage is that the two-part model is nested

as a special case. If the correlation parameter ρ is equal to zero, the generalized model

reduces to the simpler two-part model.

It is important to note that the vectors of explanatory variables x and w both affect

the outcome of the second process, but in a slightly different way. The impact of x is

direct, while the impact of w is only indirect via z.

The generalized two-part model can be estimated by quasi maximum likelihood (QML).

The log-likelihood function is given by

logL(θ) =
n
∑

i=1

li(θ) ≡
n
∑

i=1

{(1− zi) log(1− Φ(w′

iγ)) + zi log Φ(w
′

iγ)

+zi

[

(1− yi) log

(

1−
Φ2(x

′

iβ, w
′

iγ; ρ)

Φ(w′

iγ)

)

+ yi log
Φ2(x

′

iβ, w
′

iγ; ρ)

Φ(w′

iγ)

]}

, (7)

where θ = (β ′, γ′, ρ)′ denotes the parameter vector to be estimated.

As described in Papke and Wooldridge (1996) or, in more detail, in Gourieroux et

al. (1984), the QML approach ensures that the model parameters will be consistently

estimated provided that the conditional means have been correctly specified. The QML

approach thus imposes fewer assumptions than would be imposed if the whole (condi-

tional) distribution of the outcome variable y was specified.

The QML estimator is given by

θ̂ = argmax
θ

logL(θ). (8)

The QML estimator has an asymptotic normal distribution and its estimated asymptotic

variance matrix is of the sandwich-type (White, 1982), i.e.

Est.Asy.V ar.(θ̂) =

(

−
n
∑

i=1

∂2li(θ̂)

∂θ∂θ′

)

−1( n
∑

i=1

∂li(θ̂)

∂θ

∂li(θ̂)

∂θ′

)(

−
n
∑

i=1

∂2li(θ̂)

∂θ∂θ′

)

−1

. (9)

As usual, the standard errors of θ̂ can be obtained as the square root of the main diagonal
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elements of this matrix.

Our generalized two-part model is conceptually similar to the Heckman sample se-

lection model (Heckman, 1979). It can also be applied to situations where the outcome

variable y has non-randomly missing observations. In that case, the first process does not

generate zeros or non-zeros, but missing values and non-missing values. Hence, our model

can also be interpreted as a sample selection model for fractional response variables.

Due to the similarity of our model with the Heckman sample selection model, it shares

a common property which is often considered a drawback in applied empirical work. As in

the Heckman sample selection model, an exclusion restriction is required for identification,

i.e. the existence of a variable directly affecting the first process but not the second

process. That means, there must exist at least one variable in w which does not appear in

x. Actually, our model is identified by our functional form assumptions on the conditional

means; but applied researchers typically do not wish to identify model parameters by

functional form assumptions alone. Applied researchers thus often favor ordinary two-

part models, as these do not require the existence of exclusion restrictions. However, if

the second process and the first process are interrelated in the manner described above,

the ordinary two-part model will yield biased estimates, so that researchers should use

a generalized model which accounts for the dependencies between the first and second

process.

Since the ordinary two-part model is nested within the generalized two-part model,

it is straightforward to test if the ordinary two-part model is a valid description of the

data generation process. Given the log-likelihood function specified above, a test of the

null hypothesis H0 : ρ = 0 has to be carried out. The null hypothesis implies that the

generalized model reduces to the ordinary two-part model. In a QML setting, the Wald

testing procedure probably provides the easiest way to test the null hypothesis. The test

is a simple test of significance of the parameter ρ. If the null hypothesis is being rejected,

this might indicate that the dependencies between first and second process are important

and, thus, the generalized model should be preferred over the ordinary two-part model.

As in the fractional probit model and ordinary two-part model, a direct interpretation
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of the model parameters is difficult. Researchers thus usually prefer interpretation of

marginal effects rather than interpretation of parameters. In the generalized model, the

marginal effect of a variable xk is the change in

E[yi|xi, wi] = Pr(zi = 0|wi)E[yi|xi, wi, zi = 0] + Pr(zi = 1|wi)E[yi|xi, wi, zi = 1] (10)

= 0 + Φ2(x
′

iβ, w
′

iγ; ρ) (11)

due to a small change in xk. Thus, the marginal effect is given by

∂E[yi|xi, wi]

∂xk
=
∂Φ2(x

′

iβ, w
′

iγ; ρ)

∂xk
(12)

for a given individual i, where xk may be included in both x and w. The average marginal

effect is computed as

1

n

n
∑

i=1

∂Φ2(x
′

iβ, w
′

iγ; ρ)

∂xk
, (13)

which is simply the marginal effect averaged over all individuals.

3 Simulation Evidence

This section contains a small-scale simulation study in which data are generated according

to the generalized two-part model developed in the last section. The purpose is to examine

the performance of the QML estimator of the generalized two-part model, as well as to

examine the bias which occurs if an ordinary two-part model, a fractional probit model

or a linear model are used.

The data are generated as follows. The first process is characterized by

zi = 1(γ0 + γ1wi1 + γ2wi2 + ui > 0), (14)

i = 1, . . . , n, where the ui’s are i.i.d. draws from a standard normal distribution. The
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covariates wi1 and wi2 are generated as

wi1 = vi + η1i (15)

wi2 = vi + η2i, (16)

where the vi’s, η1i’s and η2i’s are also i.i.d. draws from a standard normal distribution.

Hence, the covariates are assumed to exhibit some correlation, which is quite realistic in

applications.

The second process is characterized by the conditional mean assumptions

E[yi|xi, wi, zi = 0] = 0 (17)

E[yi|xi, wi, zi = 1] =
Φ2(β0 + β1xi, γ0 + γ1wi1 + γ2wi2; ρ)

Φ(γ0 + γ1wi1 + γ2wi2)
, (18)

where xi = wi1 for all i = 1, . . . , n. Note that the variable w2 is not assumed to directly

affect the second process; this is our exclusion restriction required for the identification

of the model.

In order to generate data for the fractional response variable y which satisfy these

conditional mean assumptions and which also satisfy the restriction that the response

variable must lie in the [0,1]-interval, the beta distribution is used. The beta distribution

is particularly convenient because it is defined for variables whose range is the [0,1]-interval

and because it can be parameterized in terms of its mean. The probability density function

of the beta distribution parameterized in this way is given by

f(y;µ, ψ) =
Γ(ψ)

Γ(µψ)Γ((1− µ)ψ)
yµψ−1(1− y)(1−µ)ψ−1, (19)

where µ denotes the mean, ψ is a shape parameter and Γ(·) is the gamma function

(see Ramalho et al., 2011, p. 25). The fractional response variable y is thus generated
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according to the rule

yi















= 0 if zi = 0

∼ f(yi;
Φ2(β0+β1xi,γ0+γ1wi1+γ2wi2;ρ)

Φ(γ0+γ1wi1+γ2wi2)
, ψ) if zi = 1

. (20)

The true values of the parameters are assumed to be: β0 = −1, β1 = 0.5, γ0 = 0,

γ1 = γ2 = 1, ψ = 10. The dependence parameter ρ is set to the values 0, 0.5 and 0.9 in

order to analyze the estimator performance for different degrees of dependence.

The sample size n is set to 500, 1,000 and 2,000. Each simulation encompasses 1,000

repetitions. Over these repetitions, the mean of the parameter estimates as well as the

root mean squared error are calculated. Also, the mean and standard deviation of the

(average) marginal effect of variable x are calculated. Finally, the mean and standard

deviation of model evaluation criteria are calculated. These model evaluation criteria are

the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the

R2. These are defined by the following formulas (see, e.g., Greene, 2012):

AIC = log(RSS/n) + 2K/n (21)

BIC = log(RSS/n) + (K log(n))/n (22)

R2 = 1− RSS/TSS, (23)

where RSS denotes the residual sum of squares, TSS the total sum of squares and K

is the number of estimated parameters. The residuals are defined as the deviation of y

from the conditional expectation E[y|x, w]; TSS is defined in the usual way. Among a set

of competing models, the model with the lowest values of AIC and BIC and the highest

value of R2 performs best. It would also have been possible to use the adjusted R2 instead

of the ordinary R2. However, given the quite large sample sizes used in the simulation

design the differences between R2 and the adjusted R2 can be reasonably expected to be

small.

Simulation results based on four models are presented. The first model is the gen-

eralized two-part model developed in this paper. Since this model is the “true” data
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generation model, the estimates should be unbiased. The second model is the ordinary

two-part model. This model is expected to yield unbiased estimates only in the case

ρ = 0, since in that case the generalized two-part model reduces to the ordinary two-part

model. The third model is the fractional probit model. This model assumes that

E[yi|xi] = Φ(β0 + β1xi), (24)

and thus no distinction between zero outcomes and non-zero outcomes is made. The

fourth and last model is a linear model which can be estimated by OLS. It assumes that

E[yi|xi] = β0 + β1xi, (25)

hence no distinction between zero and non-zero outcomes is made and the fractional

nature of the dependent variable y is ignored. Estimates based on the fractional probit

model and linear model are expected to be biased regardless of the value of ρ.

The simulation results are presented in Tables 1-3. Table 1 considers the case ρ = 0,

Table 2 the case ρ = 0.5 and Table 3 the case ρ = 0.9. As expected, the parameter

estimates from the generalized two-part model are virtually unbiased for all values of ρ

and all sample sizes. Also as expected, the parameter estimates from the ordinary two-part

model are unbiased only when ρ = 0; in the other cases, the bias increases with the degree

of correlation ρ. The parameter estimates from the fractional probit and linear models

are clearly biased, irrespective of the value of ρ and/or the sample size. It is interesting

to note, however, that the fractional probit model leads to less biased estimates than the

ordinary two-part model when ρ = 0.9.

Since the parameter estimates are not comparable across models due to the different

assumptions identifying their pseudo-true values, it may be more reasonable to compare

marginal effects. As expected, the estimated marginal effects for variable x are virtually

identical for the generalized two-part model and ordinary two-part model in case of ρ = 0.

As ρ increases, the marginal effects begin to differ. Interestingly, the marginal effects of

the fractional probit model and linear model are virtually identical for all sample sizes
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and seem not to strongly depend on the value of ρ. Nevertheless, compared with the

generalized two-part model which is the “true” model, the results indicate an upward

bias of the estimated marginal effects from the fractional probit and linear models.

The model evaluation criteria in Tables 1-3 suggest for all sample sizes and values of ρ

that the generalized two-part model performs best, which would have been expected since

this model represents the “true” model. Only in the case ρ = 0 generalized and ordinary

two-part model perform virtually identically (as expected). Again, the fit of the ordinary

two-part model relative to the generalized model deteriorates as ρ increases. Interestingly,

the fractional probit model outperforms the ordinary two-part model when ρ = 0.9. In

the other cases the ordinary two-part model performs better than the fractional probit

model. Finally, as expected, the linear model is generally the worst model in terms of

model fit.

In summary, the simulation results show that parameter estimates and estimated

marginal effects from the ordinary two-part model are biased when there is dependence

between the first and second process, i.e. when ρ 6= 0. Moreover, the estimates from the

fractional and linear models are biased as well. The results also indicate that AIC, BIC

and R2 are useful measures to find the best model in terms of model fit, at least when

the underlying true model is the generalized two-part model.

4 Empirical Examples

4.1 Empirical application 1: Export behavior of firms

The first application deals with the export behavior of German enterprises from manu-

facturing industries. Germany is one of the “big players” on the world market for goods,

ranking number three after the USA and China in 2013 (Word Trade Organization, 2014,

p. 34). Exports play a decisive role in shaping the dynamics of the German economy as

a whole, its regions and industries, and its firms. Therefore, reliable empirical evidence

on the determinants of export participation of firms and of the share of exports in total

sales of the firms is important.
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The data set used in this empirical application is described in the appendix. Descrip-

tive statistics are also provided there.

The fractional outcome variable considered here is the share of exports in total sales.

In our data set, a large share of firms (about 20%) does not export at all, i.e., there

is a large portion of firms having an outcome of zero. Thus, a two-part model seems

to be an appropriate modeling device. Since the two-part model involves two distinct

processes generating the data, explanatory variables characterizing these processes have

to be specified.

The first process determines whether a firm is an exporter or not. Explanatory vari-

ables affecting the first process are assumed to be firm size (fsize), human capital inten-

sity (hc), R&D intensity (rd), capital intensity (kl), firm age (old), a dummy indicating

whether the firm was foreign-owned (fof), a set of industry dummies and a dummy indi-

cating whether a firm was located in West Germany (west). In the appendix it is briefly

discussed why these variables are assumed to affect export behavior.

The second process determines the size of a firm’s share of exports in total sales, given

that a firm is an exporter. As discussed in Section 2, an exclusion restriction is required

for identification, i.e. the existence of a variable directly affecting the first process but

not the second process. In our specification of the exclusion restriction we follow Arndt

et al. (2012), who used a Heckman selection model to explain export behavior of German

firms. Their outcome variable of interest was not the share of exports in total sales but

the volume of exports. In order to identify their selection model, Arndt et al. (2012)

excluded a dummy variable indicating whether a firm was located in East Germany from

the variables directly affecting the volume of exports. Since such a variable is also available

in our data set (west), we proceed in the same way. Thus, the location of a firm in West

Germany (yes/no) is assumed to directly affect the first process whether a firm is an

exporter or not, but not the second process about the size of the share of exports in

total sales, given that a firm is an exporter. Since the remaining variables characterizing

the first process are also assumed to be determinants of the second process, our set of

variables characterizing the second process includes the same variables as the first process
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apart from west.

We estimated five different models. The first model is the generalized two-part model

proposed in this paper. The second model is an ordinary two-part model with the same

exclusion restriction as in our generalized two-part model. However, since the ordinary

two-part model does not require an exclusion restriction, we also estimated this model

without exclusion restriction, i.e., the variable west is also included into the set of variables

directly affecting the second process. Since we believe that our exclusion restriction is

valid, the inclusion of this third model should be interpreted in terms of a robustness

check. The empirical results given below indicate that there are no large differences

between the two-part models with and without exclusion restriction. The fourth and fifth

models under consideration are the fractional probit model and the linear model (OLS),

respectively. Both models do not explicitly account for the excess zeros, and the linear

model does not even account for the fractional nature of the outcome variable. These

latter two models are used to analyze whether results based on these simple models differ

from those obtained from the seemingly more appropriate two-part models.

Since estimates of the model parameters are not comparable across models, as dis-

cussed in the last section, we computed (average) marginal effects which are comparable

across models. Also as in the last section, we computed the values of AIC, BIC and

R2 in order to assess the performance of the models. The results of these computations

are given in Table 4. The parameter estimates are not reported due to brevity, but are

available from the authors upon request. All estimations and computations have been

done in Stata.

Table 4 shows that the marginal effects of firm size (fsize) and R&D intensity (rd)

are larger in the generalized two-part model than in the remaining models. Especially the

fractional probit model and OLS seem to understate these effects. The marginal effects

of the remaining variables are relatively similar. The dependence parameter ρ of the

generalized two-part model is estimated as -0.484 with a standard error of 0.053. A Wald

test indicates that this parameter is significantly different from zero at the 1% significance

level, hence the ordinary two-part model (with exclusion restriction) is rejected. Since
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the marginal effects of the two-part models with and without exclusion restriction are

rather similar in Table 4, the Wald test may also indicate that the ordinary two-part

model without exclusion restriction is rejected. The model evaluation criteria are quite

close. AIC and R2 favor the generalized two-part model, while BIC favors OLS. Since

BIC imposes a larger penalty on the number of parameters than the other criteria, this

result indicates that BIC favors OLS due to the parsimony of the linear model.

The generalized and ordinary two-part models also allow to compute marginal effects

at the intensive and extensive margins of export. The marginal effect at the intensive

margin is the marginal effect for those firms who do export. Formally, the marginal effect

of a variable xk at the intensive margin is given by

∂E[yi|xi, wi, zi = 1]

∂xk
(26)

for a given firm i, where xk may be included in both x and w. The marginal effect at

the extensive margin is the marginal effect on the export decision (yes/no). Formally, the

marginal effect of a variable wk at the extensive margin is given by

∂Pr(zi = 1|wi)

∂wk
. (27)

Since both generalized and ordinary two-part models rely on identical first processes,

the marginal effects at the extensive margin should be very close across the models.

However, since the specification of E[yi|xi, wi, zi = 1] is different across the two-part

models, differences in the marginal effects at the intensive margin are expected.

The (average) marginal effects at the intensive and extensive margins are given in Table

5. As expected, the marginal effects at the extensive margins are very close. However, at

the intensive margins differences occur, most notably in the variables fsize and rd. The

ordinary two-part models with and without exclusion restriction seem to understate the

respective effects.

In summary, the empirical results indicate that the generalized two-part model leads

to different marginal effects than the ordinary two-part models with/without exclusion
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restriction and the fractional probit and linear models, at least in the two variables fsize

and rd. Moreover, a Wald test indicates that the generalized two-part model should be

preferred over the ordinary two-part models with/without exclusion restrictions. This

result is partly confirmed by the model evaluation criteria, as both AIC and R2 suggest

that the generalized two-part model performs best.

4.2 Empirical application 2: Product diversification of firms

The second empirical application deals with product diversification of firms. In Germany,

nearly 40 percent of all manufacturing enterprises with at least 20 employees are single-

product firms according to a detailed classification of products, and they do not diversify

in product-space. Multi-product enterprises producing a large number of goods are a rare

species (Wagner, 2009). Given that the links between product diversification of a firm

and various dimensions of its performance like stability of employment and profitability

(see Braakmann and Wagner, 2011a, 2011b) are important for an understanding of the

dynamics of firms and markets, reliable empirical evidence on the determinants of the

degree of product diversification of firms is important.

The data set used in this empirical application is described in the appendix. Descrip-

tive statistics are also provided there.

The fractional outcome variable considered here is the share of the most important

product of a firm in its total sales, which measures the degree of product diversification.

Since there is a large portion of firms producing a single good only (about 35% in our

data set), the outcome variable is equal to one for a large share of firms. Thus, a two-part

model seems to be an appropriate modeling device. In order to fit into our framework, we

transform the outcome variable by considering (1– share of the most important product of

a firm in its total sales). This transformation ensures that the excess ones are transformed

into excess zeros, which fit well in the framework developed in this paper. As in the first

empirical example, explanatory variables characterizing the first and second process of

the two-part model have to be specified.

The first process determines whether a firm is a multi-product firm or not. Explana-
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tory variables affecting the first process are assumed to be firm size (fsize), human capital

intensity (hc), R&D intensity (rd), capital intensity (kl), firm age (old), a dummy indi-

cating whether the firm was foreign-owned (fof) and a set of industry dummies. In the

appendix it is briefly discussed why these variables are assumed to affect the product

diversification of firms.

The second process determines the size of (1– a firm’s share of the most important

product in total sales), i.e. the magnitude of product diversification, given that a firm

is a multi-product firm. Again, an exclusion restriction is required for identification, i.e.

the existence of a variable directly affecting the first process but not the second process.

In our case this variable is firm age. Usually a firm is founded to pursue an idea for a

new or much improved product. This means that a newly founded firm will often produce

a single product only. If this firm survives, usually it will add other products to its

portfolio. Therefore, firm age is expected to affect whether a firm produces exactly one

good or more than one good. On the other hand, given that a firm produces more than one

good, the degree of product diversification of a firm is expected to depend on the amount

and quality of resources available to the firm (and not further on its age). Thus, the firm

age is assumed to directly affect the first process whether a firm is a multi-product firm

or not, but not the second process about the magnitude of product diversification, given

that a firm is a multi-product firm. Since the remaining variables characterizing the first

process are also assumed to be determinants of the second process, our set of variables

characterizing the second process includes the same variables as the first process apart

from old.

We estimated the same models as in the first application. The results are given

in Tables 6 and 7. Table 6 contains the (average) marginal effects and model evaluation

criteria, while Table 7 includes the (average) marginal effects at the intensive and extensive

margins. Table 6 reveals differences in marginal effects across models, most notably for

the variables fsize and hc. While the effect of fsize is larger in the generalized two-

part model than in the remaining models, it is smaller in case of hc. The remaining

variables also exhibit differences in marginal effects across models, albeit to a smaller
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amount. In contrast to the first application, all three model evaluation criteria indicate

that the generalized two-part model performs best. This result is complemented by the

significance of the dependence parameter ρ at the 1% significance level; the parameter

ρ is estimated as -0.339 with a standard error of 0.045. Hence, the ordinary two-part

model with exclusion restriction is rejected. Since the ordinary two-part model without

exclusion restriction again performs similarly to the model with exclusion restriction, one

may conclude that the two-part model without exclusion restriction is rejected as well.

Furthermore, the marginal effects at the intensive margin also differ across models,

most notably for the variables fsize, hc and rd; see Table 7. The marginal effects at the

extensive margin are again very close, as expected.

Compared with the first application, the second example reveals stronger differences

in marginal effects across models. Moreover, the model evaluation criteria suggest more

clearly that the generalized two-part model should be preferred, as all criteria came to

the same result.

Taken together, both examples suggest that the generalized two-part model outper-

forms the ordinary two-part model and the simpler fractional probit and linear models.

Since the marginal effects also differ, the results clearly indicate that it is important in

applications to use the generalized two-part model when there exist dependencies between

the two processes generating the data.

5 Conclusions

This paper proposed a generalization of the two-part model for fractional response vari-

ables. The ordinary two-part model ignores the dependence between the two processes

generating the data, which generally leads to biased estimates when dependence exists.

A simulation study illustrated these biases.

The most challenging problem for the application of the proposed model in practice

seems to be to find a compelling exclusion restriction. Two empirical examples were

presented where such an exclusion restriction could be identified. However, the lack of an

available exclusion restriction should not lead practitioners to use the ordinary two-part
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model which does not require such an exclusion restriction. As we showed in this paper,

using the “wrong” model leads to biased estimates when the two processes generating the

data are indeed dependent.
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Lüneburg Working Paper Series in Economic No. 313.

White, H.L. (1982). Maximum likelihood estimation of misspecified models. Economet-

rica 50, 1-25.

World Trade Organization (2014). World Trade Report 2014. Trade and development:

recent trends and the role of the WTO. Geneva: WTO Publishing.

Appendix

Empirical application 1: data and definition of variables

The empirical investigation of the participation in exports and the share of exports in

total sales of firms from German manufacturing industries uses a tailor-made data set

that combines high quality firm-level data from three official sources. The first source of

firm level information is the regular survey of establishments from manufacturing indus-

tries by the Statistical Offices of the German federal states. The survey (known as the

Monatsbericht, or monthly report) covers all establishments from manufacturing indus-

tries that employ at least twenty persons in the local production unit or in the company

that owns the unit. Participation of firms in the survey is mandated in official statistics

(see Malchin and Voshage, 2009, for details). For this study the monthly establishment

data were aggregated to annual data and at the enterprise level to match the unit of

observation in the other data sources (described below).

The second source of data is the cost structure survey for enterprises in the manu-

facturing sector. This survey is carried out annually as a representative random sample

survey in about 15,000 firms. The sample is stratified according to the number of em-

ployees and the industries; all firms with 500 and more employees are covered by the cost

structure survey (see Fritsch et al., 2004).

These data were matched with the enterprise register system (Unternehmensregister-

20



System) which is the third source of data.

With these linked data sets it is possible to investigate the margins of exports in firms

from manufacturing industries in Germany. The definition of the variables used in the

empirical models is discussed in detail below.

Exporter status (exp): The extensive margin measures the participation of a firm in

exports (or not).

Share of exports in total sales (expshare): The intensive margin of export is the per-

centage share of all sales due to exports.

Information on the exporter status of a firm and on the share of exports in total

sales of a firm is based on information on export sales and total turnover taken from the

first data source (the monthly report). This information is available for all firms from

manufacturing industries with at least twenty employees.

Firm size (fsize): A positive link between firm size and margins of exports qualifies as a

stylized fact. This positive link is due to fixed costs of exporting and efficiency advantages

of larger firms due to scale economies, advantages of specialization in management and

better conditions on the markets for inputs. Large firms can be expected to have cost

advantages on credit markets while small firms often face higher restrictions on the capital

market leading to a higher risk of insolvency and illiquidity. Furthermore, there might be

disadvantages of small firms in the competition for highly qualified employees. There are

limits to the advantage of size, because coordination costs mount as the scale of operations

increases, and at some point any further expansion might cease to be profitable. Therefore,

a positive relationship between firm size and exports, at least up to a point, is expected.

For Germany empirical evidence in line with this is reported in a number of studies (see

Wagner, 2011a, for a survey). Firm size is measured here by the number of employees in

a firm (also included in squares to take care of non-linearity). The source is the first data

set (the monthly report).

Human capital intensity (hc): Given that Germany is relatively rich in human capital,

firms that use human capital intensively can be expected to have a comparative advantage

on international markets. Empirical studies find that the qualification of the workforce
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is an important factor for the international competitiveness of German firms (Wagner,

2011b). Human capital intensity is measured here by the average wage per employee.

Direct information on the qualification of the employees in a firm is not available in the

data used in this study, but Wagner (2012) demonstrates that the average wage is indeed

a good proxy variable for the qualification of the workforce in German manufacturing

firms. The source is for information on the amount of wages paid and the number of

employees is the first data set (the monthly report).

R&D intensity (rd): Activities in research and development that are closely related to

product and process innovations are known to be positively linked to success in exports in

German firms (see Wagner, 2011a, 2011b). R&D intensity is measured here by the share

of employees that are active in R&D in all employees in a firm. This intensity measure

is based on information on R&D employees and total employees taken from the second

data source (the cost structure survey).

Capital intensity (kl): The amount of capital used per employee is traditionally ex-

pected to be positively linked to exports in a relatively capital-abundant country like

Germany. In the data used in this study, however, there is no direct information on the

capital stock of the firms. Therefore, the amount of depreciation per employee is used as

a proxy variable that can be expected to be (more or less) proportional to the amount of

capital per head. Information on the amount of depreciation and the number of employees

is taken from the second data source (the cost structure survey).

Firm age (old): Although some newly founded firms are “born globals” that export

from the start, typically it takes years before firms eventually export to one foreign market,

and then enter further markets progressively. Firms gain expertise in entering new foreign

markets from experience, and this lowers the fixed costs of entry to any further new

market. A similar argument can be made with regard to the number of products exported.

At any point in time, therefore, firm age and the margins of exports can be expected to

be closely linked. Germany is a case in point. Wagner (2014a) reports that older firms are

more often exporters, export more and more different goods to more different destination

countries. Information on firm age is not available from the data used in this study.
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However, we know whether a firm was already active in 1995 (the first year data from the

monthly report are available for). Firms that were active in 1995, and that were founded

before 1996 accordingly, are classified as old firms (based on this information from the

first data source, the monthly report).

Foreign owned firm (fof): Firms that are subsidies of a multinational enterprise that

has its headquarter in a foreign country are termed foreign owned firms. Foreign ownership

is known to have a positive impact on the margins of exports, because these firms can use

the international networks and trade contacts of their parent companies and are involved in

international supply chains (see Raff and Wagner, 2014, for a discussion of the literature, a

theoretical model, and empirical evidence for Germany). A firm is considered to be foreign

owned if more than 50 percent of the voting rights of the owners or more than 50 percent of

the shares are controlled (directly or indirectly) by a firm or a person/institution located

outside Germany. Information on foreign ownership status of an enterprise is taken from

the fourth source of data, the enterprise register system.

Industry : Dummy variables for 2digit-industries are included in the empirical models

to control for industry specific effects like competitive pressure, policy measures, demand

shocks etc. The source is the first data set (the monthly report).

West (west): A dummy variable indicating whether (the headquarter of) a firm is

located in West Germany or not (i.e., in the former communist East Germany). It is well

known that the propensity to export and the share of exports in total sales is considerably

higher in West German firms compared to East German firms even more than 20 years

after the re-unification of both parts of Germany back in 1990 (see Wagner, 2014b).

Descriptive statistics of these variables (apart from the industry dummies) are sum-

marized in Table 8.

Empirical application 2: data and definition of variables

Why do some firms diversify, i.e. why do they produce more than one good and spread

activities across markets, while others focus their economic activity on one product only?

According to the resource view (Montgomery, 1994, p. 167f.) firms that have an excess
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capacity in productive factors – for example, special knowledge the firm has accumulated

through time, and that can be used in other markets without reducing the use in the

market the firm is already active in - can reap economies of scope by expanding into

different product markets. Alternatively, the firm may sell this specific asset to another

firm active in this market. However, it is reasonable to expect that market failure does

exist when it comes to trade in intangible assets like knowledge, and this is an incentive

to internalize the use of the assets. Furthermore, productive factors of this type are often

closely linked to persons who cannot simultaneously work for several firms producing

different products.

These theoretical considerations can guide the specification of an empirical model for

the determinants of product diversification. The definition of the variables included in

this model, its source, and its links to theory are discussed in detail below.

Information on the number of products of a firm and on the amount of sales due to

each product come from the regular survey of products produced (Produktionsstatistik)

performed by the German statistical offices. This information is used to construct the

two dependent variables of the empirical models:

Multi-product firm (multi): A dummy variable taking on the value of one if a firm

produces more than one product.

Degree of diversification (degree): Computed as (1–share of sales due to most impor-

tant product in total sales) of a firm.

Information on the independent variables included in the empirical models come from

three different sources that are discussed in some detail in the first part of this appendix,

namely the monthly report (firm size, wage per employee, firm age, and industry affil-

iation), the cost structure survey (R&D intensity, capital intensity) and the enterprise

register system (foreign ownership).

Firm size (fsize): Firm size is measured by the number of employees in a firm (also

included in squares to take care of non-linearity).

Human capital intensity (hc): Human capital intensity is measured by the average

wage per employee.
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R&D intensity (rd): Research and development intensity is measured by the share of

employees active in R&D in all employees in a firm.

A positive relationship between product diversification and firm size, human capital

intensity, and R&D intensity can be expected because an increase in each of these firm

characteristics tends to go hand in hand with an increase in the resources that are available

for diversification.

Capital intensity (kl): The amount of depreciation per employee is used as a proxy

variable due to the lack of more direct information on the capital stock of the firm. This

variable is included as a control variable only.

Firm age (old): Due to missing information with regard to the founding year of the

firm in the data, firms that were active in 1995 already are classified as old firms in a

dummy variable defined accordingly. Given that manufacturing firms are often founded

to realize the idea for one new product it is expected that the link between firm age and

product diversification is positive, because older firms will more often have accumulated

the resources needed to diversify in product space.

Foreign owned firm (fof): A firm is considered to be foreign owned if it is controlled

to more than 50 percent by a firm or a person located outside Germany. This variable is

included as a control variable in the empirical model.

Industry : Dummy variables for 2digit-industries are included to control for differences

in the level of diversification between industries.

Descriptive statistics of these variables (apart from the industry dummies) are sum-

marized in Table 9.
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Tables

Table 1: Simulation results for ρ = 0

Generalized Two-part Two-part Fractional Probit OLS
Mean RMSE/SD Mean RMSE/SD Mean RMSE/SD Mean RMSE/SD

n=500
Parameters
β0 -1.000 0.056 -1.001 0.040 -1.417 0.419 0.156 1.156
β1 0.500 0.033 0.500 0.027 0.693 0.195 0.118 0.382
γ0 -0.007 0.089 -0.007 0.089
γ1 1.014 0.111 1.014 0.111
γ2 1.010 0.109 1.010 0.109
ρ 0.000 0.085
Marginal effect of x 0.105 0.005 0.105 0.005 0.118 0.005 0.118 0.006
Model evaluation criteria
AIC -4.409 0.102 -4.412 0.102 -4.250 0.094 -3.885 0.064
BIC -4.358 0.102 -4.369 0.102 -4.233 0.094 -3.868 0.064

R2 0.751 0.027 0.751 0.027 0.704 0.031 0.575 0.028

n=1,000
Parameters
β0 -0.999 0.041 -0.999 0.028 -1.414 0.415 0.157 1.157
β1 0.500 0.024 0.500 0.019 0.692 0.193 0.118 0.382
γ0 0.000 0.064 0.000 0.064
γ1 1.007 0.078 1.007 0.078
γ2 1.011 0.077 1.011 0.077
ρ 0.000 0.063
Marginal effect of x 0.105 0.004 0.105 0.004 0.118 0.004 0.118 0.004
Model evaluation criteria
AIC -4.417 0.070 -4.419 0.070 -4.250 0.065 -3.885 0.047
BIC -4.388 0.070 -4.394 0.070 -4.240 0.065 -3.875 0.047

R2 0.753 0.018 0.753 0.018 0.705 0.021 0.576 0.019

n=2,000
Parameters
β0 -1.000 0.029 -1.000 0.020 -1.414 0.414 0.157 1.157
β1 0.500 0.017 0.500 0.014 0.692 0.192 0.118 0.382
γ0 0.000 0.045 0.000 0.045
γ1 1.006 0.053 1.006 0.053
γ2 1.006 0.052 1.006 0.052
ρ 0.001 0.044
Marginal effect of x 0.104 0.003 0.104 0.003 0.118 0.003 0.118 0.003
Model evaluation criteria
AIC -4.418 0.050 -4.418 0.050 -4.249 0.047 -3.885 0.033
BIC -4.401 0.050 -4.404 0.050 -4.244 0.047 -3.879 0.033

R2 0.751 0.013 0.751 0.013 0.705 0.016 0.575 0.014

Note: The root mean squared errors (RMSE) refer to the parameters, while the standard deviations (SD) refer to the marginal
effect of x and the model evaluation criteria. The true values of the parameters are β0 = −1, β1 = 0.5, γ0 = 0, γ1 = 1 and
γ2 = 1. The simulation results are based on 1,000 repetitions.
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Table 2: Simulation results for ρ = 0.5

Generalized Two-part Two-part Fractional Probit OLS
Mean RMSE/SD Mean RMSE/SD Mean RMSE/SD Mean RMSE/SD

n=500
Parameters
β0 -0.997 0.049 -0.780 0.224 -1.253 0.256 0.175 1.175
β1 0.500 0.029 0.403 0.101 0.629 0.131 0.121 0.380
γ0 -0.001 0.090 -0.001 0.090
γ1 1.024 0.109 1.025 0.111
γ2 1.022 0.111 1.022 0.112
ρ 0.493 0.089
Marginal effect of x 0.109 0.006 0.103 0.005 0.121 0.005 0.121 0.006
Model evaluation criteria
AIC -4.039 0.099 -4.009 0.103 -3.963 0.085 -3.729 0.062
BIC -3.989 0.099 -3.966 0.103 -3.946 0.085 -3.712 0.062

R2 0.673 0.034 0.661 0.036 0.642 0.034 0.548 0.030

n=1,000
Parameters
β0 -0.998 0.035 -0.777 0.225 -1.251 0.253 0.175 1.175
β1 0.500 0.021 0.401 0.101 0.627 0.129 0.120 0.380
γ0 -0.003 0.061 -0.003 0.062
γ1 1.007 0.078 1.008 0.080
γ2 1.009 0.075 1.009 0.075
ρ 0.497 0.061
Marginal effect of x 0.109 0.004 0.103 0.004 0.121 0.004 0.120 0.004
Model evaluation criteria
AIC -4.042 0.069 -4.010 0.073 -3.960 0.060 -3.730 0.046
BIC -4.012 0.069 -3.985 0.073 -3.950 0.060 -3.720 0.046

R2 0.670 0.023 0.658 0.024 0.639 0.023 0.546 0.020

n=2,000
Parameters
β0 -1.000 0.025 -0.778 0.223 -1.251 0.252 0.175 1.175
β1 0.500 0.015 0.400 0.101 0.626 0.127 0.120 0.380
γ0 0.000 0.044 0.000 0.044
γ1 1.002 0.053 1.002 0.054
γ2 1.003 0.052 1.003 0.052
ρ 0.499 0.046
Marginal effect of x 0.109 0.003 0.102 0.003 0.120 0.002 0.120 0.003
Model evaluation criteria
AIC -4.046 0.051 -4.013 0.053 -3.963 0.044 -3.730 0.032
BIC -4.030 0.051 -3.999 0.053 -3.957 0.044 -3.724 0.032

R2 0.670 0.017 0.659 0.018 0.640 0.017 0.546 0.015

Note: The root mean squared errors (RMSE) refer to the parameters, while the standard deviations (SD) refer to the marginal
effect of x and the model evaluation criteria. The true values of the parameters are β0 = −1, β1 = 0.5, γ0 = 0, γ1 = 1 and
γ2 = 1. The simulation results are based on 1,000 repetitions.
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Table 3: Simulation results for ρ = 0.9

Generalized Two-part Two-part Fractional Probit OLS
Mean RMSE/SD Mean RMSE/SD Mean RMSE/SD Mean RMSE/SD

n=500
Parameters
β0 -0.995 0.043 -0.620 0.383 -1.143 0.152 0.189 1.189
β1 0.499 0.029 0.327 0.177 0.582 0.088 0.121 0.379
γ0 -0.006 0.092 -0.005 0.094
γ1 1.024 0.107 1.025 0.116
γ2 1.027 0.112 1.026 0.113
ρ 0.882 0.064
Marginal effect of x 0.112 0.006 0.100 0.006 0.121 0.005 0.121 0.006
Model evaluation criteria
AIC -3.642 0.120 -3.556 0.131 -3.607 0.108 -3.466 0.084
BIC -3.591 0.120 -3.514 0.131 -3.590 0.108 -3.449 0.084

R2 0.573 0.043 0.533 0.051 0.551 0.042 0.485 0.035

n=1,000
Parameters
β0 -0.996 0.030 -0.619 0.383 -1.142 0.146 0.189 1.189
β1 0.498 0.021 0.325 0.177 0.580 0.083 0.121 0.380
γ0 -0.003 0.060 -0.002 0.062
γ1 1.013 0.072 1.013 0.079
γ2 1.024 0.079 1.024 0.080
ρ 0.887 0.043
Marginal effect of x 0.112 0.004 0.099 0.004 0.121 0.004 0.121 0.004
Model evaluation criteria
AIC -3.644 0.085 -3.556 0.092 -3.604 0.076 -3.465 0.062
BIC -3.615 0.085 -3.532 0.092 -3.594 0.076 -3.455 0.062

R2 0.570 0.030 0.530 0.035 0.549 0.028 0.482 0.024

n=2,000
Parameters
β0 -0.998 0.021 -0.619 0.382 -1.142 0.144 0.189 1.189
β1 0.499 0.014 0.325 0.176 0.580 0.081 0.121 0.380
γ0 -0.004 0.042 -0.004 0.043
γ1 1.008 0.048 1.008 0.052
γ2 1.017 0.053 1.017 0.054
ρ 0.891 0.030
Marginal effect of x 0.112 0.003 0.099 0.003 0.121 0.003 0.121 0.003
Model evaluation criteria
AIC -3.648 0.060 -3.559 0.065 -3.605 0.053 -3.466 0.042
BIC -3.631 0.060 -3.545 0.065 -3.599 0.053 -3.460 0.042

R2 0.570 0.021 0.529 0.025 0.549 0.021 0.482 0.017

Note: The root mean squared errors (RMSE) refer to the parameters, while the standard deviations (SD) refer to the marginal
effect of x and the model evaluation criteria. The true values of the parameters are β0 = −1, β1 = 0.5, γ0 = 0, γ1 = 1 and
γ2 = 1. The simulation results are based on 1,000 repetitions.

Table 4: Empirical application 1: estimated average marginal effects

Generalized two-part Two-part with exclusion Two-part without exclusion Fractional probit OLS
Variable Marg. eff. (SE) Marg. eff. (SE) Marg. eff. (SE) Marg. eff. (SE) Marg. eff. (SE)

fsize 0.564 (0.156) 0.363 (0.085) 0.362 (0.085) 0.171 (0.033) 0.211 (0.038)
hc 0.570 (0.024) 0.585 (0.023) 0.570 (0.025) 0.577 (0.026) 0.605 (0.026)
rd 0.713 (0.079) 0.564 (0.054) 0.571 (0.054) 0.433 (0.040) 0.550 (0.048)
kl 0.866 (0.287) 0.894 (0.287) 0.978 (0.295) 0.805 (0.308) 0.637 (0.339)
old 0.019 (0.004) 0.022 (0.004) 0.021 (0.004) 0.022 (0.004) 0.018 (0.004)
fof 0.109 (0.007) 0.105 (0.006) 0.106 (0.006) 0.107 (0.006) 0.119 (0.007)
west 0.013 (0.004) 0.007 (0.002) 0.018 (0.006) 0.021 (0.006) 0.019 (0.006)

Model evaluation criteria

AIC -3.024 -3.017 -3.017 -3.011 -3.013
BIC -2.992 -2.986 -2.985 -2.995 -2.997

R2 0.325 0.320 0.320 0.313 0.314

Note: The sample size is n = 14, 382. Standard errors have been calculated using the delta method. The model evaluation criteria have been
calculated as described in Section 4.
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Table 5: Empirical application 1: estimated average marginal effects at intensive and
extensive margins

Generalized two-part Two-part with exclusion Two-part without exclusion
Variable Marg. eff. (SE) Marg. eff. (SE) Marg. eff. (SE)

Intensive margin

fsize 0.418 (0.105) 0.168 (0.032) 0.168 (0.032)
hc 0.537 (0.024) 0.535 (0.025) 0.517 (0.028)
rd 0.551 (0.062) 0.346 (0.042) 0.355 (0.042)
kl 1.149 (0.321) 1.203 (0.324) 1.304 (0.335)
old 0.008 (0.004) 0.009 (0.004) 0.008 (0.004)
fof 0.107 (0.007) 0.102 (0.006) 0.103 (0.006)
west 0.008 (0.002) 0 (-) 0.014 (0.007)

Extensive margin

fsize 0.985 (0.343) 0.908 (0.328) 0.908 (0.328)
hc 0.565 (0.041) 0.574 (0.041) 0.574 (0.041)
rd 1.167 (0.176) 1.127 (0.170) 1.127 (0.170)
kl -0.398 (0.451) -0.421 (0.441) -0.421 (0.441)
old 0.059 (0.006) 0.060 (0.006) 0.060 (0.006)
fof 0.069 (0.010) 0.068 (0.010) 0.068 (0.010)
west 0.029 (0.008) 0.029 (0.009) 0.029 (0.009)

Note: The sample size is n = 14, 382. Standard errors have been calculated using the
delta method.

Table 6: Empirical application 2: estimated average marginal effects

Generalized two-part Two-part with exclusion Two-part without exclusion Fractional probit OLS
Variable Marg. eff. (SE) Marg. eff. (SE) Marg. eff. (SE) Marg. eff. (SE) Marg. eff. (SE)

fsize 1.734 (0.124) 1.356 (0.097) 1.357 (0.097) 0.388 (0.056) 0.427 (0.059)
hc -0.052 (0.020) -0.019 (0.020) -0.017 (0.020) 0.036 (0.020) 0.033 (0.020)
rd 0.033 (0.037) 0.051 (0.037) 0.049 (0.037) 0.094 (0.036) 0.089 (0.037)
kl -0.832 (0.284) -0.798 (0.277) -0.807 (0.277) -0.652 (0.257) -0.617 (0.225)
fof -0.015 (0.006) -0.011 (0.006) -0.012 (0.006) -0.004 (0.006) -0.004 (0.006)
old 0.015 (0.003) 0.011 (0.002) 0.008 (0.004) 0.009 (0.004) 0.009 (0.004)

Model evaluation criteria

AIC -3.034 -3.030 -3.030 -3.011 -3.009
BIC -3.004 -3.001 -3.000 -2.996 -2.994

R2 0.123 0.119 0.119 0.099 0.098

Note: The sample size is n = 14, 294. Standard errors have been calculated using the delta method. The model evaluation criteria have been
calculated as described in Section 4.

Table 7: Empirical application 2: estimated average marginal effects at intensive and
extensive margins

Generalized two-part Two-part with exclusion Two-part without exclusion
Variable Marg. eff. (SE) Marg. eff. (SE) Marg. eff. (SE)

Intensive margin

fsize 0.883 (0.100) 0.248 (0.035) 0.249 (0.035)
hc -0.082 (0.023) -0.033 (0.022) -0.029 (0.023)
rd 0.018 (0.043) 0.045 (0.043) 0.043 (0.043)
kl -0.849 (0.321) -0.782 (0.307) -0.796 (0.307)
fof -0.009 (0.007) -0.004 (0.007) -0.004 (0.007)
old 0.007 (0.002) 0 (-) -0.006 (0.004)

Extensive margin

fsize 3.764 (0.293) 3.756 (0.295) 3.756 (0.295)
hc 0.006 (0.042) 0.008 (0.042) 0.008 (0.042)
rd 0.068 (0.080) 0.067 (0.080) 0.067 (0.080)
kl -0.899 (0.473) -0.898 (0.475) -0.898 (0.475)
fof -0.029 (0.012) -0.029 (0.012) -0.029 (0.012)
old 0.034 (0.008) 0.036 (0.008) 0.036 (0.008)

Note: The sample size is n = 14, 294. Standard errors have been calculated using the
delta method.

29



Table 8: Empirical application 1: descriptive statistics

Mean SD

exp 0.802 0.399
expshare 0.265 0.267
fsize 0.026 0.171
hc 0.332 0.118
rd 0.025 0.058
kl 0.006 0.009
old 0.530 0.499
fof 0.139 0.346
west 0.824 0.381

Note: The number of observations is
n = 14, 382. fsize is measured in
10,000’s, hc in 100,000’s and kl in mil-
lions.

Table 9: Empirical application 2: descriptive statistics

Mean SD

multi 0.650 0.477
degree 0.215 0.233
fsize 0.026 0.172
hc 0.332 0.117
rd 0.025 0.058
kl 0.006 0.009
old 0.531 0.499
fof 0.139 0.346

Note: The number of observations is
n = 14, 294. fsize is measured in
10,000’s, hc in 100,000’s and kl in mil-
lions.
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