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Abstract

I construct risk-sensitive approximations of policy functions of DSGE models around the stochastic

steady state and ergodic mean that are linear in the state variables. The method requires only the

solution of linear equations using standard perturbation output to construct the approximation and

is uniformly more accurate than standard linear approximations. In an application to real business

cycles with recursive utility and growth risk, the approximation successfully estimates risk aversion

using the Kalman filter, where a standard linear approximation provides no information and alterna-

tive methods require computationally intensive procedures such as particle filters. At the posterior

mode, the model’s market price of risk is brought in line with the postwar US Sharpe ratio without

compromising the fit of the macroeconomy.
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1 Introduction

What are the effects of risk? There is a consensus that standard linear approximations around the de-

terministic steady state are insufficient to address this question satisfactorily in a variety of settings,

such as for conditional asset pricing, under recursive utility, for welfare comparisons, etc., where

precautionary motives play a significant role in economic decision making.1 At fault is the certainty

equivalence of standard linear approximations around the deterministic steady state that makes them

invariant to the higher moments of the distribution of exogenous shocks (i.e., to risk).

I reconcile the linear framework with risk by constructing approximations of the policy functions

of DSGE models that are linear in states but that account for risk in the points and slopes used to

construct the linear approximation; I call these risk-sensitive linear approximations.2 I construct

two different such approximate solutions, one around the stochastic steady state and one around the

ergodic mean. The method can be used profitably in estimation. Due to the linearity in states and

under the assumption of normally distributed shocks, the Kalman filter is operational for the risk-

sensitive linear approximation. I find the risk-sensitive linear approximation using the Kalman filter

is equally successful as standard perturbation particle filter3 estimation—both with the state space

and nonlinear moving average policy function representations4—in identifying parameters outside

the reach of standard linear approximations. The advantage, then, is that the risk-sensitive linear

approximation, by employing the Kalman filter, is several orders of magnitude faster and is not

subject to the sampling variation that the particle filter faces when identification is weak.

This method is only valuable if it can be fruitfully applied when conventional (log-linear) meth-

1Kim and Kim (2003) provide an insightful example, where blind application of linear approximations leads to the
spurious results that autarky is preferred by risk averse agents over risk sharing.

2I construct only risk-sensitive linear approximations and not second, third, or higher order risk-sensitive approxi-
mations. The method uses some derivatives calculated at the deterministic steady state from a given order and sacrifices
others to maintain linearity in states while rigorously accounting for the nonlinearities associated with risk. It is less
clear what the gain over a standard perturbation would be for higher order risk-sensitive approximations.

3See Fernández-Villaverde and Rubio-Ramı́rez (2007) and Fernández-Villaverde, Guerrón-Quintana, Rubio-
Ramı́rez, and Uribe (2011) for details on particle filtering in DSGE models as well as applications to risk.

4See Jin and Judd (2002), Schmitt-Grohé and Uribe (2004), Kim, Kim, Schaumburg, and Sims (2008), Lombardo
(2010) and Lan and Meyer-Gohde (2013c)
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ods are inadequate. Thus, I apply the method to a real business cycle model with risk sensitivity,

using recursive preferences (Epstein and Zin 1989, Weil 1990), when long run risk (Bansal and

Yaron 2004) is present. The risk-sensitive linear approximations match the stochastic steady state,

ergodic mean, and impulse responses reported in previous nonlinear studies.5 On the basis of Euler

equation errors, I find the risk-sensitive linear approximation uniformly improves the accuracy of

the standard linear approximation. As risk aversion is increased, allowing risk to play a greater role

in the utility maximization problem, the risk-sensitive linear approximation demonstrates accuracy

in the vicinity of the stochastic steady state and ergodic mean that is comparable to second and third

order perturbations. I find that US post war data on consumption, output, and excess retruns leads

the likelihood function to favor higher levels of risk aversion with the posterior mode at about 30.

The market price of risk of the risk-sensitive posterior mode is about 0.2, in line with the sample

spread of the NYSE weighted portfolio over 3 month T-Bills. The likelihood function, however, is

rather flat in the dimension of risk aversion and fully nonlinear approximations which employ the

particle filter suffer from sampling variation that impedes reliable inference and are four orders of

magnitude slower; for standard linear approximations, the likelihood function is entirely flat in the

dimension of risk aversion and the posterior is identical to the prior.

The method I propose is not the first to explicitly incorporate a risk adjustment,6 but it is differ-

ent in two important respects. First, it works solely with the derivatives obtained from a standard

perturbation and known moments of the exogenous process—no reevaluation of derivatives or re-

calculation of policy rules are required to construct the approximation. The resulting equations are

5The stochastic steady state derived here is identical to that of Lan and Meyer-Gohde (2013b), the ergodic mean
identical to that of Lan and Meyer-Gohde (2013a) and Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2013),
and the impulse responses to those that would result from the method of Lan and Meyer-Gohde (2013c)

6Kim and Kim (2003) as well as Collard and Juillard (2001b) and Collard and Juillard (2001a) are early DSGE bias
reduction or risk correction techniques. Coeurdacier, Rey, and Winant (2011) uses a second order approximation to the
equilibrium conditions to solve for the stochastic steady state in a portfolio problem, de Groot (2013) extends this to
general settings as a matrix quadratic problem. Juillard (2011) and Kliem and Uhlig (2013) use iterative techniques,
solving for implied stochastic steady states given an approximated solution and then recalculating the approximation at
the new implied stochastic steady state. Evers (2012) solves for the stochastic steady state implied by a risk perturbation
of the equilibrium conditions and then solves for a perturbation in the states of these perturbed equilibrium conditions.
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linear in the unknown coefficients of my approximation, entirely avoiding fixed point or other recur-

sive algorithms with unknown convergence properties. Second, I can construct the approximation

around the ergodic mean as well as around the stochastic steady state—competing methods can pro-

vide only the latter. Both of these two features are accomplished by working implicitly with the

unknown policy function instead of the model equilibrium conditions.

The remainder of the paper is organized as follows. In section 2, I lay out the model class and as-

sumptions underlying the local, risk corrected procedure behind risk-sensitive linear approximations

before I derive the approximations in section 3. A real business cycle model with recursive prefer-

ences and long run risk serves as the laboratory for studying and illustrating my solution method in

section 4. I analyze two calibrated versions of the real business cycle model in terms of accuracy in

section 5. In section 6, I assess the likelihood properties of the risk-sensitive linear approximation

relative to particle filters and standard linearizations and estimate risk aversion and long run risk

using post war US data. Section 7 concludes.

2 DSGE Model: Assumptions and Local Approximation

2.1 Generic Model Description with Parameterized Risk

I will analyze a family of discrete-time rational expectations models given by

0 = Et[ f (yt+1, yt, yt−1, σεt)](1)

f : Rny ×Rny ×Rny ×Rne → Rny is a ny-dimensional vector-valued function collecting the equilibrium

conditions that describe the model; yt ∈ Rny is the vector of ny endogenous and exogenous variables;7

and εt ∈ Rne the vector of ne exogenous shocks, where ny and ne are positive integers (ny, ne ∈ N).

The auxiliary parameterσ ∈ R scales the risk in the model. The stochastic model (1) corresponds

to σ = 1 and the deterministic version to σ = 0. Indexing solutions by σ yields

yt = g(yt−1, σεt, σ), y : Rny × Rne × R→ Rny(2)

7Nonlinearity or serial correlation in exogenous processes can be captured by including the processes themselves in
the vector yt and including functions in f that specify the nonlinearity or correlation pattern.
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That σ scales risk can be seen by expressing the expectations operator explicitly

0 =
∫
Ω

f (yt+1, yt, yt−1, σεt) φ (εt+1) dεt+1 =

∫
Ω

f (yt+1, yt, yt−1, ε̃t) φ
(
ε̃t+1

σ

)
dε̃t+1(3)

where Ω is the support and φ the probability density function of ε t+1, and ε̃t � σεt. Letting σ go to

zero collapses the entire distribution φ (·), and this can be rewritten as

0 = lim
σ→0

∫
Ω

f (yt+1, yt, yt−1, ε̃t)φ
(
ε̃t+1

σ

)
dε̃t+1 = f (yt+1, yt, yt−1, 0)(4)

the deterministic counterpart of (1).

2.2 Local Approximations and Points of Expansion

The deterministic steady state y, defined subsequently in (5), is recovered by solving the for a fixed

point of (4), the deterministic version of (1) in the absence of risk and shocks, 0 = f (y, y, y, 0).

Definition 2.1. Deterministic Steady State

Let ydet ∈ Rny define a fixed point of (2) given by

ydet
= g(ydet, 0, 0)(5)

i.e., a fixed point of (2) in the absence of both risk (σ = 0) and shocks (εt = 0).

I make the following assumptions on the functions f and g and the moments of ε t

Assumption 2.2. 1. Local Analyticity: the functions f in (1) and g in (2) are locally analytic

around the deterministic steady state (yt−1 = y, εt = 0, σ = 0) with a domain of convergence

that contains the stochastic steady state and ergodic mean.

2. Local Stability: the eigenvalues of gy evaluated at the deterministic steady state (yt−1 = y,

εt = 0, σ = 0) are all inside the unit circle.

3. Exogenous Moments: the elements of εt are i.i.d. with E [εt] = 0 and E
[
εt
⊗[m]

]
finite ∀m ≤ M.8

The first assumption ensures that the functions involved are smooth at least in the region of

interest and that the true policy function has an infinite order Taylor series representation that remains

8 εt
⊗[m] is the m-fold Kronecker product of ε t with itself: εt ⊗ εt · · · ⊗ εt, m times.
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valid around the stochastic steady state and ergodic mean (both to be defined shortly) as well as the

deterministic steady state. The second that the solution is locally stable at the deterministic steady

state. The third that that the exogenous process is defined at least out to the order of approximation.9

Standard DSGE perturbation constructs a Taylor series expansion of the locally analytic policy

function, (2), up to some, say M-th, order around the deterministic steady state, given by10

yt ≈
M∑
j=0

1
j!

⎡⎢⎢⎢⎢⎢⎢⎣
M− j∑
i=0

1
i!

gzjσiσi

⎤⎥⎥⎥⎥⎥⎥⎦ (zt − z)⊗[ j](6)

where

gzjσi � D j+i

z j
t−1σ

i
{y(σ, zt)} ∈ Rny×nj

z , with nz = ny + nε(7)

is the partial derivative of the vector function y with respect to the state vector zt �
[
y′t−1 σε′t

]′
j

times and the perturbation parameter σ i times evaluated at the deterministic steady state.11

The deterministic steady state is the fixed point for the deterministic, σ = 0, model but not

the stochastic, σ = 1, model. This manifests itself in the Taylor series (6) as the constant terms

∑M
i=1

1
i!gσiσi that move the Taylor series away from the deterministic steady state. The deterministic

steady state is neither a fixed point of the stochastic model nor of the Taylor series approximation of

the stochastic, σ = 1, model for M ≥ 2, when σ corrects for the second moment of risk.

The stochastic steady state incorporates risk and is the steady state of the stochastic model,

Definition 2.3. Stochastic Steady State

Let ystoch ∈ Rny define a fixed point of (2) given by

ystoch
= g(ystoch, 0, 1)(8)

i.e., a fixed point of (2) in the presence of risk (σ = 1) but in the absence of shocks (εt = 0).

That is, the fixed point in the state space in the absence of shocks, but while expecting future

9Jin and Judd (2002) would additionally require bounded support for the exogenous process. Kim, Kim, Schaum-
burg, and Sims (2008) offer skepticism regarding the necessity of a boundedness assumption.

10See Lan and Meyer-Gohde (2014) for a derivation of this multivariate Taylor series approximation.
11The notation is outlined in detail in appendix A.1. As the perturbation parameter also scales ε t, I should say this is

the partial derivative with respect to the third argument but I choose not to do so as not to overload the notation. The
complete, direct and indirect, derivative of y t with respect to σ, Dσ{yt}, in my notation is given by Dσ{yt} = yεεt + yσ
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shocks with a known probability distribution.12 Solving for an approximation of the stochastic

steady state is not trivial using the state space formulation of the policy function, see Coeurdacier,

Rey, and Winant (2011), Juillard (2011), and de Groot (2013). The difficulty arises as ystoch is defined

only implicitly in (8) and the method of solving 0 = f (y, y, y, 0) to recover the deterministic steady

state is not available as the presence of risk requires the integral over the probability distribution of

future shocks embodied by the expectations operator be maintained in (1).

Alternatively, assumption 2.2 validates the nonlinear moving average representation of the policy

function that results upon inverting or recursively substitution the state space policy function (2).13

Approximated out to some, say M-th, order around the deterministic steady state as14

yt ≈
M∑

m=0

1
m!

∞∑
i1=0

∞∑
i2=0

· · ·
∞∑

im=0

⎡⎢⎢⎢⎢⎢⎣
M−m∑
n=0

1
n!

yσni1i2 ···im

⎤⎥⎥⎥⎥⎥⎦ (εt−i1 ⊗ εt−i2 ⊗ · · · ⊗ εt−im )(9)

where yσni1···imσ
n is the derivative of yt with respect to the m’th fold Kronecker products of exogenous

innovations i1, i2, ... and im periods ago and with respect to the perturbation parameter, σ, n times.

The stochastic steady state now follows by letting the history of shocks be equal to zero at all dates

(i.e., letting yt converge to its fixed point), but letting σ = 1 to correct for risk to M’th order, yielding

ystoch ≈
M∑

n=0

1
n!

yσn(10)

as an approximation of the stochastic steady state.

The ergodic mean of yt, a potentially useful point of expansion for likelihood estimation, is

Definition 2.4. Ergodic Mean

Let ymean ∈ Rny be a vector such that

ymean � E
[
yt
]
= E

[
g(yt−1, εt, 1)

]
(11)

being the unconditional expectation of (2) in the presence of uncertainty (σ = 1) and shocks (εt).

Again, the definition in (11) is not directly useful, as calculating the mean requires integration

12I.e., the rest point obtained by simulating the model with all realizations of the shock vector, ε t, set to zero despite
the model having been solved under the assumption of a non-degenerate distribution.

13Details can be found in appendix A.2.
14See Lan and Meyer-Gohde (2013b) for the mapping between the partial derivatives g zjσi and yσni1i2···im .
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over the endogenous variables through the unknown policy function. The nonlinear moving average

validated by assumption 2.2, however, approximates the ergodic mean as

ymean � E
[
yt
] ≈

M∑
m=0

1
m!

∞∑
i1=0

∞∑
i2=0

· · ·
∞∑

im=0

⎡⎢⎢⎢⎢⎢⎣
M−m∑
n=0

1
n!

yσni1i2···im

⎤⎥⎥⎥⎥⎥⎦ E
[
εt−i1 ⊗ εt−i2 ⊗ · · · ⊗ εt−im

]
(12)

Due to the analyticity assumed in a domain containing both the ergodic mean and the stochastic

steady state, the policy function is analytic at these points as well. If the function is analytic at a

point, it is infinitely differentiable at the point as well. Hence, it is certainly once differentiable there

as well. Thus, the stochastic steady state and the ergodic mean and the first derivative of the policy

function at these points can be recovered using derivative information at the deterministic steady

state and the moments of the exogenous shocks of the model. Now I shall proceed to do exactly that

and assemble the points and slopes into linear approximations.

3 Risk-Sensitive Linear Approximations

Define a risk-sensitive linear approximation as an approximation that is linear in the states, yt−1

and εt, but adjusted to arbitrary order for risk, i.e., for the desired moments of the distribution of

the exogenous shocks εt in (1). The adjustment for risk is accomplished by expanding the policy

function nonlinearly in σ, the scaling index. Expanding to first order in σ corrects for the first

moment of εt,15 to second order in σ corrects for the second moment of εt, and so forth.

I will write such a σ dependent or risk-sensitive linear approximation as

yt ≈ y(σ) + yy(σ) (yt−1 − y(σ)) + yε(σ)εt(13)

where y(σ) is a σ dependent or risk-sensitive point for yt and yy(σ) and yε(σ) are the σ dependent

or risk-sensitive first derivatives of yt at this risk-sensitive point. I shall consider two risk-sensitive

points, the stochastic steady state and the ergodic mean.

From standard DSGE perturbation, I have derivatives at the deterministic steady state.16 I will

15As the shock is assumed mean zero, this correction does not alter the policy functions compared with their deter-
ministic counterparts. See Schmitt-Grohé and Uribe (2004) and Lan and Meyer-Gohde (2014).

16As will become evident in the construction of the approximation, I will need derivatives from a M + 1-th order
perturbation to construct the risk-sensitive linear approximation corrected out to M-th order for risk.
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now show that the first derivatives, yy(σ) and yε(σ), will depend on the risk-sensitive point, y(σ),

and that my two choices for the risk-sensitive point, the stochastic steady state and the ergodic

mean, along with these first derivatives at these points can be obtained from the derivatives at the

deterministic steady state along with the moments of ε t.

I summarize the procedure for constructing a risk-sensitive linear approximation in the following

Risk-Sensitive Linear Approximation

1. Express the model as a set of equilibrium conditions in the form of (1)

2. Perform a standard perturbation around the deterministic steady state to the order m+1, where
m is desired order of approximation in risk

3. Use the resulting derivatives at the deterministic steady state (7) to construct approximations
in risk of

(a) a point—ystoch from (8) or ymean from (11). Define this as y(σ).

(b) derivatives at this point. Define these as yy(σ) and yε(σ).

4. Assemble the risk-sensitive linear approximation of (13) using these point and slopes.

and turn now to the derivation of approximations in risk of the point and slopes used in the risk-

sensitive linear approximation of (13).

3.1 Risk-Sensitive Points of Approximation

3.1.1 Stochastic Steady State

The stochastic and deterministic steady states can be embedded in a σ-dependent steady state

ystoch (σ) = g(ystoch (σ) , 0, σ)(14)

Here, σ = 1 gives the stochastic and σ = 0 the deterministic steady state. A Taylor expansion of

ystoch (σ) around the σ = 0 deterministic steady state can be written as

ystoch (σ) =
∞∑

i=0

1
i!

ystoch
σi (0)σi(15)

Using the Taylor expansion in σ, the stochastic steady state can be approximated by solving sets

of linear equations with inhomogeneous constants collecting lower order terms and standard DSGE

perturbation output, as I summarize in the following

8



Proposition 3.1. σ Approximation of the Stochastic Steady State

Let assumption 2.2 hold, the stochastic steady state in (8) can be approximated in σ using only

derivatives from standard perturbations—gzjσi in (6).

Proof. See appendix A.4. �

To capture the effect of the first two moments of the exogenous processes (i.e., that of the vari-

ance of the mean zero growth shocks in the model of section 4) on the stochastic steady state, a

second order approximation in σ evaluated at σ = 1 is needed.

ystoch (σ) = y + ystoch
σ (0) +

1
2

ystoch
σ2 (0) + O(σ3)(16)

This second order in σ approximation of the stochastic steady state17 is in terms of the derivatives

of the standard perturbation output by

Corollary 3.2. Second Order σ Approximation of the Stochastic Steady State

The stochastic steady state in (8) can be approximated to second order in σ as

ystoch ≈ y +
1
2

(
Iny − gy

)−1
gσ2(17)

Proof. See appendix A.5. �

3.1.2 Ergodic Mean

The ergodic mean and the deterministic steady state can be embedded in a σ-dependent point

ymean (σ) � E
[
g(yt−1, σεt, σ)

]
(18)

Here, σ = 1 gives the ergodic mean and σ = 0 the deterministic steady state. Due to the singularity

induced by σ = 0, which turns off the stochastics in the model, the steady state coincides with the

mean in this deterministic setting, which I exploit to extrapolate from the deterministic steady state

to the ergodic mean. A Taylor expansion of y (σ) around the σ = 0 deterministic steady state is

ymean (σ) =
∞∑

i=0

1
i!

ymean
σi (0)σi(19)

17Lan and Meyer-Gohde (2013b) report the same value using a second order nonlinear moving average.
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Using the Taylor expansion in σ, the ergodic mean can be approximated by solving sets of linear

equations with inhomogeneous constants collecting lower order terms, standard DSGE perturbation

output, and the given moments of the exogenous driving force, as I summarize in the following

Proposition 3.3. σ Approximation of the Ergodic Mean

Let assumption 2.2 hold, the ergodic mean in (11) can be approximated in σ using derivatives from

standard perturbations—gzjσi in (6)—and the given moments of εt.

Proof. See appendix A.6. �

Discarding terms of order higher than two in (19) and evaluating atσ = 1 gives an approximation

of the ergodic mean that captures the effects of the first two moments of the exogenous processes

(i.e., that of the variance of the mean zero growth shocks in the model of section 4)

ymean (σ) = y + ymean
σ (0) +

1
2

ymean
σ2 (0) + O(σ3)(20)

In terms of the derivatives of the standard perturbation output and moments of ε t, the ergodic mean

is give out to second order18 by

Corollary 3.4. Second Order σ Approximation of the Ergodic Mean

The ergodic mean in (11) can be approximated to second order in σ as

ymean ≈ y +
1
2

(
Iny − gy

)−1
(
gσ2 +

(
gε2 +

(
In2

y
− g⊗[2]

y

)−1
g⊗[2]
ε

)
E

[
ε⊗[2]

t

])
(21)

Proof. See appendix A.7. �

3.2 Risk-Sensitive First Derivatives

Given a risk-sensitive point from above, I only need the first derivatives with respect to states and

shocks in order to complete the construction of the risk-sensitive linear approximation in (13).19

18This value is identical to those reported in Lan and Meyer-Gohde (2013a) and in Andreasen, Fernández-Villaverde,
and Rubio-Ramı́rez (2013) using second order nonlinear moving average and pruned state space approximations.

19The risk-sensitive derivatives will, as is to be expected, depend on where in the state space they are being evaluated;
that is on which of the risk-sensitive points, ymean (σ) or ymean (σ), from above is chosen. The derivation, however, is
completely symmetric in both cases and thus I refer to the risk-sensitive point simply as y (σ) leaving the modeler to fill
in the desired superscript.
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The first derivatives with respect to states and shocks around a risk-sensitive point are given by

Definition 3.5. First Derivatives at a σ Adjusted Point

The derivatives of yt with respect to yt−1 and εt at a risk-sensitive point, y(σ) are

yy(σ) � gy(y(σ), 0, σ), yε(σ) � gε(y(σ), 0, σ)(22)

The first derivatives are σ dependent functions, both directly—with σ being the third argument

of the function—and indirectly—as the first argument of the function is risk-sensitive point of ap-

proximation, y(σ). Here, σ = 1 gives the first derivatives at the risk-sensitive point of approximation

and σ = 0 at the deterministic steady state. Taylor expansions of yy(σ) and yε(σ) around the σ = 0

deterministic steady state can be written as

yy(σ) =
∞∑
i=0

1
i!

yyσi (0)σi, yε(σ) =
∞∑
i=0

1
i!

yεσi (0)σi(23)

As was the case with the two risk-sensitive points considered above, the first derivatives at these

points depend only on standard output from perturbation algorithms: derivatives of the policy func-

tion at the deterministic steady state and the moments (through the derivatives of the risk-sensitive

ergodic mean) of the exogenous shocks, εt, as I summarize in the following

Proposition 3.6. σ Approximation of the First Derivatives

The first derivatives in (22) can be approximated inσ using derivatives from standard perturbations—

gzjσi in (6)—and the derivatives in σ from the chosen risk-sensitive point of approximation.

Proof. See appendix A.8. �

Approximating out to second order in σ and evaluating at σ = 1 gives the following

yy (σ) = yy + yyσ (0) +
1
2

yyσ2 (0) + O(σ3), yε (σ) = yε + yεσ (0) +
1
2

yεσ2 (0) + O(σ3)(24)

In terms of the derivatives of the standard perturbation and of the chosen risk-sensitive point of

approximation, the first derivatives can be written to second order in σ as
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Corollary 3.7. Second Order σ Approximation of the First Derivatives

The first derivatives in (22) can be approximated to second order in σ as

yy(1) ≈ gy +
1
2

(
gy2

(
yσ2(0) ⊗ Iny

)
+ gσ2y

)
, yε(1) ≈ gε +

1
2

(
gyε

(
yσ2(0) ⊗ Ine

)
+ gσ2ε

)
(25)

Proof. See appendix A.9. �

These risk-sensitive first derivatives are identical to the first derivatives of the Taylor series evalu-

ated at the risk-sensitive points to a given order in σ, see appendix A.3. They differ from those used

in Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2013), whose pruning procedure gives

risk-sensitive derivatives evaluated at the deterministic steady state. Thus, my procedure provides

the correct risk-sensitive point of interest and derivatives at this point up to the chosen order in σ.

With the risk-sensitive first derivatives in hand, the risk-sensitive linear approximation in (13)

can be constructed by choosing either the approximation of the stochastic steady state or of the

ergodic mean and calculating the associated first derivatives.

4 Long Run Risk and the Real Business Cycle

Two features of an otherwise canonical real business cycle model in the spirit of Kydland and

Prescott (1982) will serve to emphasize the role of risk: recursive—or risk-sensitive—preferences

and long run risk. I follow Epstein and Zin (1989), Weil (1990), and others by replacing the continu-

ation value of household utility with a power certainty equivalent to introduce risk sensitivity and to

separate risk aversion and the inverse elasticity of intertemporal substitution. I confront agents with

long run real risk in the form of stochastic trends in productivity,20 which adds risk to the growth

of consumption, making the stochastic driving force of the model welfare-relevant in the sense of

Lucas (1987). My choice of model is very similar to the model used in the numerical study of Cal-

dara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012), where I have replaced their stochastic

20See, e.g., Bansal and Yaron (2004) in an endowment and Rudebusch and Swanson (2012) in a production model.
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volatility with long run risk.21

The social planner maximizes the following expected discounted lifetime utility sum22

Ut = max
Ct ,Lt

[
(1 − β)

(
Cν

t (1 − Lt)
1−ν) 1−γ

θ
+ β

(
Et

[
U1−γ

t+1

]) 1
θ

] θ
1−γ

(26)

where Ct is consumption, Lt labor, β ∈ (0, 1) the discount factor, ν a labor supply parameter, γ

risk aversion,23 and θ = (1 − γ) / (1 − 1/ψ)—where ψ is the elasticity of intertemporal substitution

(IES)—separates the (inverse) IES and risk aversion. The resource constraint is

Ct + Kt = Kξ
t−1

(
eZt Lt

)1−ξ
+ (1 − δ) Kt−1(27)

with Kt being capital, ξ its output elasticity and δ its depreciation rate, and Zt productivity given by

at � Zt − Zt−1 = a + σεt, εt ∼ N (0, 1)(28)

with σ the standard deviation of at and a the drift of the random walk.

The first order conditions are the intratemporal condition

1 − ν
ν

Ct

1 − Lt
= (1 − ξ) e(1−ξ)Zt Kξ

t−1L−ξt(29)

and the intertemporal condition

1 = Et

[
Mt+1

(
ξKξ−1

t

(
eZt+1Lt+1

)1−ξ
+ 1 − δ

)]
(30)

where the pricing kernel is given by

Mt+1 �
∂Ut/∂Ct+1

∂Ut/∂Ct
= β

Ct

Ct+1

(
Cν

t+1 (1 − Lt+1)
1−ν) 1−γ

θ

(
Cν

t (1 − Lt)
1−ν) 1−γ

θ

⎛⎜⎜⎜⎜⎜⎝ U1−γ
t+1

Et [Ut+1]
1−γ

⎞⎟⎟⎟⎟⎟⎠
1− 1

θ

(31)

The presence of Ut+1 here necessitates the inclusion of the value function evaluated at the optimum

Ut =

[
(1 − β)

(
Cν

t (1 − Lt)
1−ν) 1−γ

θ
+ β

(
Et

[
U1−γ

t+1

]) 1
γ

] θ
1−γ

(32)

along with the first order conditions, the resource constraint (27), and the exogenous driving force

21As I will be examining linear approximations, I would only be able to capture the precautionary effects or average
effects of stochastic volatility and would miss the time varying effects of changes in conditional heteroskedasticity.
One could conceivably move the approximation towards the conditionally normal one used in Justiniano and Primiceri
(2008) or linear in endogenous states one of Benigno, Benigno, and Nisticò (2013), to retain some of the advantages of
linearity, but this is beyond the scope of this paper.

22See Epstein and Zin (1989) and Weil (1990), as well as Backus, Routledge, and Zin (2005) for a review.
23In the presence of an adjustable labor margin, the standard measure of risk aversion does not directly apply, see

Swanson (2012a). Swanson (2012b) presents measures of risk aversion under recursive preferences in the presence of a
labor margin. I maintain the misnomer of referring to γ as risk aversion for expositional ease.
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(28) to characterize an equilibrium. With the stochastic trend in the model, I detrend all variables

(apart from Lt and Mt) with xt � Xt/eZt .24 I reexpress all macroeconomic variables through a log

transformation x̂t = ln(xt) so that deviations in these variables from any given value can be inter-

preted as percentage deviations and a linear approximation of x̂t gives a log linear approximation.25

I will include two conditional asset pricing variables: the expected risk premium

erpt = Et

[
rk

t+1 − r f
t

]
(33)

where the risk-free rate, r f
t , is given by r f

t �
1

Et[Mt+1] and the return on capital, rk
t , is given by r f

t �

ξKξ−1
t−1

(
eZt Lt

)1−ξ
+ 1 − δ; and the (squared)26 conditional market price of risk

cmprt =
Et

[
(Mt+1 − Et [Mt+1])

2
]

Et [Mt+1]
2

(34)

Finally, I will include excess returns

rpt = rk
t − r f

t−1(35)

as an observable counterpart to the expected risk premium version above.

5 Accuracy of the Risk-Sensitive Linear Approximation

5.1 Calibration

In table 1, I report the parameter values common to both calibrations I consider. The calibration for

these parameters largely follows Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012)

and reflects standard observations on the post war US economy: ξ is set to match the labor share of

national income; β to reflect an annual interest rate of about 3.5 %; the value of ν induces work to

occupy roughly one third of the time endowment; and δ aligns the model in the deterministic steady

state to the investment output ratio. The value of a is set to match the average growth rate of output.

[Table 1 about here.]

24The value function is detrended slightly differently, u t � Ut/eνZt . See appendix A.10 for the detrended model.
25See, e.g., Uhlig (1999).
26This is necessary as the usual conditional market price of risk—conditional standard deviation over conditional

mean—is not differentiable at the deterministic steady state, violating the analyticity assumption on f in 2.2.
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In table 2, I report the baseline calibration in the first three columns. Here, I set risk aversion, γ,

to 5, following the baseline parameterization of Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and

Yao (2012). The elasticity of intertemporal substitution (IES) and the standard deviation of technol-

ogy growth shocks are set to match the standard deviations of log consumption and output growth

for the third order nonlinear moving average perturbation solution of the model.27 This value for the

IES lies in the range of 0.5 to 1.5 examined in Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and

Yao (2012), reflecting conservative bounds on the parameter advocated in the literature.

[Table 2 about here.]

The extreme calibration can be found in the last three columns of table 2. Risk aversion, γ, is

equal to 40, following Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012). The IES and

the standard deviation of technology growth shocks are again set to match the standard deviations

of log consumption and output growth for the third order in perturbation solution of the model.

When calibrating to the two macro data sets, the values for the IES and the standard deviation of

technology growth shocks remain virtually unchanged, reflecting the well known result—see, e.g.,

Tallarini (2000)—that macro series are driven primarily by the IES and not risk aversion.

5.2 Euler Equation Errors

I follow Judd and Guu (1997) and Judd (1998) and use unit-free Euler equation residuals to measure

the accuracy of the the risk-sensitive linear approximation at the stochastic steady state.28

The Euler equation error expressed as a fraction of time t consumption is given by

Et

[
β (ct+1eat+1)ν

1−γ
θ −1

(
1−Lt+1
1−Lt

) (1−ν)(1−γ)
θ

(
(vt+1eνat+1 )1−γ

Et[(vt+1eνat+1 )1−γ]

)1− 1
θ (
αkα−1

t (eat+1Lt+1)
1−α + 1 − δ

)] 1

ν
1−γ
θ −1

ct
− 1(36)

27Lan and Meyer-Gohde (2013a) provide closed forms for the theoretical moments of the nonlinear moving average.
28The results are virtually unchanged at the ergodic mean. See also Aruoba, Fernández-Villaverde, and Rubio-

Ramı́rez (2006) and Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao (2012) for comparative studies of solution
methods that use Euler equation residuals.
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Here, the value of, say, 1E − 2 implies a $1 mistake for each $100 spent and the value of 1E − 3

implies a $1 mistake for each $1000 and so forth. In figure 1, I plot the Euler equation errors with

the current shock set to zero and examine how this error depends on the endogenous state, kt−1.

[Figure 1 about here.]

In figure 1a, the Euler equation errors for the baseline calibration can be found. In general,

higher order perturbations improve the accuracy of the standard perturbation approximation. The

risk-sensitive linear approximation uniformly improves on the linear approximation, while lagging

behind the second and third order perturbation.29 In the vicinity of the steady states,30 this improve-

ment is more than one order of magnitude. In sum, the risk-sensitive linear approximation, while

still linear in states and shocks, is uniformly more accurate than the standard linear approximation.

The Euler equation errors for the extreme calibration are depicted in figure 1b. As risk becomes

more important through the increase in risk aversion in the extreme calibration, so does the relative

performance of the risk-sensitive linear approximation. Now the risk-sensitive linear approximation

is two orders of magnitude more accurate than the standard linear approximation over a broad vicin-

ity encompassing the steady states.31 Furthermore, the risk-sensitive linear approximation is roughly

comparable to higher order approximations despite its linearity in states and shocks.

Thus, for small shock realizations and values of the state close to the stochastic steady state, I

conclude that the risk-sensitive linear approximation outperforms the standard linear approximation

and performs favorably compared with higher order perturbations.

29Again as mentioned in the introduction, although one could adjust higher order perturbations for a yet higher
order of risk, it is not clear what the gain over a standard perturbation would be for such a higher order risk-sensitive
approximation.

30Under the baseline calibration, the stochastic and deterministic steady states are nearly the same.
31The stochastic and deterministic steady states can be distinguished visually: the minimum of the risk-sensitive linear

approximation is the stochastic and that of the standard linear approximation the deterministic steady state.
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5.3 Impulse Response Analysis

A consequence of the linearity in states and shocks of the approximation is that impulse responses

are standard. Whereas nonlinear methods must take a stance regarding the specific assumptions

regarding a generalized impulse response,32 the risk-sensitive linear approximation and its standard

linear approximation require no such discussion. Of course, the risk-sensitive linear approximation

as any linear approximation will accordingly miss the nonlinear effects of asymmetry or large shocks

that a nonlinear approximation can pick up. The model under study here, however, is nearly log-

linear in the state dimension with nonlinearities primarily in the risk dimension that the risk-sensitive

method is designed to capture.

[Figure 2 about here.]

In figure 2, the impulses of selected macroeconomic and financial variables with respect to a

one standard deviation shock to the growth rate of technology are plotted. Figure 2a contains the

impulses of consumption and capital to a growth rate shock. Impulse responses from the risk-

sensitive linear (here the stochastic steady state version), standard linear, and third order nonlinear

moving average approximations are indistinguishable up to numerical rounding. Consumption and

capital, both detrended, fall in response to the shock as the capital stock and consumption catch up to

the accelerated growth path. Figure 2b contains the impulses of the expected risk premium and the

conditional market price of risk. The standard linear approximation fails to capture the movement

in these conditional asset pricing variables, while the risk-sensitive linear approximation matches

the impulses generated by the full nonlinear third order moving average approximation of Lan and

Meyer-Gohde (2013c).

32See Lan and Meyer-Gohde (2013c), Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2013), and Borovička
and Hansen (2014).
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6 Estimation using Risk-Sensitive Linear Approximations

I begin by exploring the properties of the likelihood function for the risk-sensitive linear approxima-

tion in a Monte Carlo experiment and then turn to the Bayesian estimation of risk aversion and the

standard deviation of technology growth rate shocks using US post war data.

6.1 Monte Carlo Study of Estimation Properties

Here, I study the ability of the risk-sensitive linear approximation to estimate deep parameters and

compare the efficiency with which it is able to do such with perturbation-based particle filters that

enjoy relative solution efficiency advantages over alternative nonlinear methods—see, e.g., Aruoba,

Fernández-Villaverde, and Rubio-Ramı́rez (2006).33

For the estimation exercise, I begin by generating two 10, 000 period series of the logarithm

of detrended output, one for each calibration in section 5.1, using a third order nonlinear moving

average. I then estimate the parameters for risk aversion, γ, and the standard deviation of growth

shocks, σ one at a time, holding all other parameters constant, using different solution methods. The

methods I will compare are the risk-sensitive linear method, conventional linearization, third order

state space perturbation, and the third order nonlinear moving average. To address the robustness of

the results I repeat the exercise with data on output growth and then on excess returns.

The risk-sensitive linear method maintains linearity in states and shocks, which, given the as-

sumed normality of growth rate shocks, enables the use of the Kalman filter. Here, I choose the

ergodic mean of section 3.1.2 as the risk-sensitive point so that the mean of the risk-sensitive linear

approximation coincides with the approximation, in σ, of the ergodic mean of the true nonlinear

model. The standard linearization is also estimated with the Kalman filter. The standard approach

for the two nonlinear perturbations, nonlinear moving average and standard state space, is to esti-

mate using a sequential importance sampler with resampling, i.e., the particle filter, see Fernández-

33Fernández-Villaverde and Rubio-Ramı́rez (2007) point out that perturbation is neither required for nor necessarily
the preferred method for taking every model to the particle filter.
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Villaverde and Rubio-Ramı́rez (2007), which simulates the distributions of the unobservable states.

Unfortunately, the particle filter can be very demanding computationally, precluding its use cur-

rently in many policy relevant models, especially at orders of approximation higher than two.34 I set

the number of particles in the filter to be 40, 000 and add measurement noise accounting for 1% of

the variance of yt to operationalize a version of the particle filter following, e.g., Bidder and Smith

(2012).

[Figure 3 about here.]

In figure 3 the likelihood function—normalized relative to the maximum likelihood value for

each method—of risk aversion, γ, and the standard deviation of technology growth shocks, σ, are

plotted for the baseline calibration. The standard linear approximation is a certainty equivalent

approximation and changes in risk aversion, figure 3a, have no effect on the approximation: the like-

lihood function is entirely flat in this dimension. The risk-sensitive linear approximation, however,

is not certainty equivalent and correctly estimates the level of risk aversion in figure 3a. Both of the

particle filter based policy functions correctly estimate the degree of risk aversion, but as can be seen

in figure 3a, there is clearly sampling variation and the number of particles would clearly need to

be increased past 40, 000 to operationalize a numerical maximization routine. As the scale of the y

axis in figure 3a indicates, risk aversion of this small degree is only weakly identified, placing high

demands on the particle filters; the risk-sensitive linear approximation, however, has no difficul-

ties with this weak identification. All four of the methods correctly estimate the standard deviation

of growth shocks, as can be seen in figure 3b. The likelihood cuts for both of the particle filter

estimated perturbations coincide and the risk-sensitive and standard linear approximations display

slightly more dispersion than the perturbation methods.

34Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramı́rez (2011) is the exception, successfully apply-
ing the particle filter to a third-order model of time-varying policy risk. van Binsbergen, Fernández-Villaverde, Koijen,
and Rubio-Ramı́rez (2012) and Born and Pfeifer (2014) highlight the challenges of the procedure with the demands of
the particle filter leading the former to model inflation exogenously and to focus on the estimation exercise itself and the
latter to abandon the likelihood perspective altogether when estimating their structural model.
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[Figure 4 about here.]

The likelihood cuts—expressed relative to the maximum log likelihood value for each method—of

risk aversion, γ, and the standard deviation of technology growth shocks, σ, are plotted in figure

4 for the extreme calibration. Again, the standard linear approximation is a certainty equivalent

approximation and changes in risk aversion have no effect on the approximation as can be garnered

from the entirely flat likelihood function figure 4a. Once again, the risk-sensitive linear approxima-

tion advocated in previous sections, however, is not certainty equivalent and correctly estimates the

level of risk aversion, albeit with slightly more dispersion relative to the particle based filters. Both

of the particle filter based policy functions correctly estimate the level of risk aversion and nearly

coincide in figure 4a. Note that sampling variation in the particle filters is not noticeable in figure 4a,

as risk aversion is clearly more strongly identified as can be garnered from the scale of the y-axis.

Turning to the standard deviation of growth shocks in figure 4b, the standard linear approximation

clearly fails to correctly estimate this parameter. As the standard linearization does not capture risk

aversion, it attributes the increase in risk sensitivity to an increase in risk itself. The risk-sensitive

linear approximation and the two particle filter based perturbations correctly estimate the standard

deviation and posit the same likelihood contours.

Figures 5 and 6 display likelihood cuts under the baseline calibration using output growth—

log(Yt) − log(Yt−1)—as the observable. As figure 5a indicates, this series is unable to reveal the

degree of risk aversion. Risk enters this model primarily as a constant and first differencing removes

the constant correction for risk in the policy functions, eliminating the role for risk in the observable,

as all approximations reflect with their flat likelihood surfaces.

[Figure 5 about here.]

The story is different with data generated by excess returns (35). This measure reveals significant

information on the level of risk aversion, as indicated by the curvature of the likelihood function in
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6a. With the effect of increased risk sensitivity incorporated, all measures but the standard linear

approximation agree upon a relative reduction of the source of constant risk, the standard deviation

of growth shocks—see figure 6b.

[Figure 6 about here.]

In table 3 the different computation costs, measured in terms of computation time per likelihood

evaluation.35 As can be seen, the risk-sensitive linear was negligibly slower than the standard linear

with the additional costs coming from the need to calculate the third order perturbation that delivers

the higher order derivatives used to correct the linear terms for risk. Compared to the perturbation

solutions that use the particle filter, the difference is striking. The risk-sensitive linear method of

the previous sections is four orders of magnitude faster than the particle filter based methods. This

despite their similar performance in estimating the parameters and, as the presence of sampling

variation implies, the choice of the number of particles appears to have been conservative.

[Table 3 about here.]

The Monte Carlo exercise provides strong evidence in favor of the risk-sensitive linear approx-

imation for use in estimation. It is meets or exceeds—if the potential sampling variability with

particle filters is taken into account—higher order perturbation methods in identifying nonlinear

parameters, like risk aversion, that standard linear approximations cannot identify while simultane-

ously maintaining the computational efficiency provided by the linear in state and shock framework.

6.2 US Post-War Estimation of Risk and Risk Sensitivity

I now turn to the estimation of risk and risk sensitivity using post war US data. While estimating, I

take a Bayesian perspective following standard practice in the DSGE literature.36 Taking the results

35Comparisons computed on an Intel Xeon E5-2690 with 16 cores at 2.90 GHz on Matlab R2013b. Approximately
61% of the processor resources were used by the particle filter at any given point in time during the calculations.

36See Smets and Wouters (2003) and Smets and Wouters (2007) for prominent and Del Negro, Schorfheide, Smets,
and Wouters (2007) and An and Schorfheide (2007) for instructive examples of Bayesian estimation of DSGE models.
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of the previous section into account, I shall include excess returns along with consumption and

output growth in the data set.37 I find that the risk-sensitive linear approximation introduced here

calls for more risk and risk aversion, as is to be expected with the inclusion of excess returns in

the data set. The particle filter based methods suffer from sampling variation close to the posterior

mode, which makes estimating the mode infeasible.

[Table 4 about here.]

Table 4 contains the priors of the standard deviation of growth shocks and risk aversion. Both

priors are relatively loose, with the prior on risk aversion centered roughly in between the two values

of the calibrated model. The standard deviation of the growth shock has its prior mean and mode

below the calibrated values but assigns substantial probability mass to the region around that value.

Table 4 contains point estimates from the posterior from the risk-sensitive and conventional linear

approximations. The risk-sensitive linear approximation favors more risk aversion and more risk

than the standard linear approximation, whose estimate of risk aversion is entirely prior driven with

prior and posterior modes coinciding and the likelihood function entirely flat along this dimension.

[Figure 7 about here.]

Figure 7 depicts the posterior as well as the likelihood using the risk-sensitive linear approxima-

tion. The likelihood function, figure 7b, indicates that the data is informative in both dimensions.

While the likelihood and posterior, figure 7a, both favor a similar value for the standard deviation

of growth rate shocks, σ, they differ substantially over the parameter controlling risk aversion, γ.

As discussed also by, e.g., Tallarini (2000), production models with recursive utility can match the

slope of the market line (or market price of risk) but require exorbitant levels of risk aversion to

come close to the average risk premium, see table 5. The posterior tempers this tendency, yielding a

modest increase in risk aversion relative over the prior.

37See appendix A.11 for details on the data series.
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[Figure 8 about here.]

In figure 7, the posterior and likelihood using the standard linear approximation can be found.

As was to be expected from the results of the preceding sections, the likelihood is flat along the

dimension of the parameter controlling risk aversion. In other words, the precautionary component

of the risk premium in the data is entirely ignored and risk aversion is completely prior driven.

The posteriors and likelihoods for the nonlinear moving average perturbation can be found in

figure 9.38 As was the case for two of the four sets of synthetic data from the calibrated models,

sampling variation in the particle filter is visible here with the post war US data set with the dimen-

sion in the risk aversion parameter, γ, being most obviously impacted.39 This is not surprising, as

the likelihood surface for the risk-sensitive linear approximation indicates that this dimension of the

likelihood function is nearly flat, especially for values of the standard deviation of growth shocks,

σ, close to the mode. Nonetheless, for larger values of σ, a clear upward slope for larger values of

γ emerges, consistent with the model requiring more risk aversion to increase the risk premium.

[Figure 9 about here.]

Table 5 gives the asset pricing variable moments.40 As discussed above, the model does not

match the magnitude of empirical excess returns. The risk-sensitive linear approximation is, how-

ever, able to bring the market price of risk from the pricing kernel (std(mt)/E[mt]) and the Sharpe

ratio from the excess return on risky capital (E[rk
t − r f ]/std(rk

t − r f )) close to the empirical market

price of risk as measured by the NYSE value weighted portfolio over the secondary market rate for

three month Treasury bill.41 As the standard linear approximation does not generate a risk premium

38The results for the standard perturbation were essentially the same and have been omitted for brevity.
39Here I increased the number of particles to 100,000, which reduced but did not eliminate sampling variation.
40The macroeconomic variables remain essentially unchanged as on the risk aversion has been changed substantially

and it is known, see Tallarini (2000) for example, that macroeconomic variables are virtually invariant to the level of
risk aversion, holding the intertemporal elasticity of substitution constant. Tables with empirical as well as the posterior
model based business cycle measures have thusly been relegated to appendix A.12.

41A description of the post war US data used for the empirical values can be found in appendix A.11.
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at all, its Sharpe ratio is zero, and the standard linear approximation produces a market price of risk

that is half the size as generated by the risk-sensitive linear approximation.

[Table 5 about here.]

Informing the estimation with excess returns along with consumption and output growth leads

the posterior with the risk-sensitive linear approximation to favor a higher level of risk aversion than

under the prior. The conventional linear approximation is invariant to the level of risk aversion and

so the likelihood function is unable to inform the posterior. As the likelihood function is rather flat

in the dimension of risk aversion, full nonlinear estimation is infeasible as the particle filter suffers

from a sampling variation large enough to mask the curvature in the likelihood function. Under the

posterior mode estimates, the model’s predictions of the market price of risk and the Sharpe ratio

are brought closer to the observe sample market price of risk.

7 Conclusion

I have derived and analyzed a risk-sensitive linear approximation of the policy function for DSGE

models. The method solves linear equations in standard perturbation output, requiring neither fixed

point nor other recursive methods, by operating implicitly with the unknown policy function instead

of the equilibrium conditions of the model. This direct approach along with the minimal costs

associated with standard perturbation methods allow me provide a certainty non equivalent method

suitable for the estimation and analysis of policy relevant DSGE policy under risk without needed to

turn to the particle filter or alternate algorithms with unknown convergence properties that correct for

risk. Finally, the method presented is able to provide a risk corrected linear approximation around

the ergodic mean as well as the stochastic steady state.

In the real business cycle model with long run risk and recursive preferences, I find that the risk-

sensitive linear approximation is a uniform improvement over the standard linear approximation
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and, as risk becomes more important in the the model, the accuracy of the algorithm becomes com-

parable to second and third perturbations. The method is able to model the responses of conditional

asset pricing variables to shocks, which are beyond the reach of standard linear approximations. Fi-

nally, in a estimation exercise, I show that the risk-sensitive linear approximation estimated using the

Kalman filter correctly identifies risk and risk aversion along with the particle filter estimations of

standard perturbation and nonlinear moving average approximation. Thus, the risk-sensitive linear

approximation combines the efficiency in estimation (with the Kalman filter here being four orders

of magnitude faster than the particle filter) of linear formulations with the information from nonlin-

ear approximations needed to identify parameters such as the degree of risk aversion that are beyond

the reach of standard linear approximations. Indeed, in the application to post war US data, the like-

lihood function is entirely flat in the dimension of risk aversion for a standard linear approximation

and sufficiently flat for third order perturbations using the particle filter that sampling variation pre-

cludes reliable inference. The risk-sensitive linear approximation, however, yields a posterior with

higher risk aversion than in the prior and a market price of risk and Sharpe ratio in line with the data.

The method here could be extended using an accuracy improving change of variables follow-

ing Fernández-Villaverde and Rubio-Ramı́rez (2006) or to conditional linear approximations from

Justiniano and Primiceri (2008) and Benigno, Benigno, and Nisticò (2013). Finally, the method

developed here could be applied to policy relevant models that require capturing risk, e.g., to match

financial market date, but whose size precludes the application of alternative nonlinear methods,

e.g., the computational costs of the particle filter are too burdensome.
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A Appendix

A.1 Matrix Derivatives

The partial derivative of the vector function y with respect to the state vector zt using the method of

Lan and Meyer-Gohde (2013c) that differentiates conformably with the Kronecker product is42

gzjσi � D j+i

z j
t−1σ

i
{y(σ, zt)} �

⎛⎜⎜⎜⎜⎝[ ∂
∂z1,t−1

. . . ∂
∂znz,t−1

]⊗[ j] ⊗
(
∂

∂σ

)⊗[i]⎞⎟⎟⎟⎟⎠ ⊗ yt(A-1)

=

⎛⎜⎜⎜⎜⎝[ ∂
∂z1,t−1

. . . ∂
∂znz,t−1

]⊗[ j]
(
∂

∂σ

)i⎞⎟⎟⎟⎟⎠ ⊗ yt(A-2)

where the second line follows as σ is a scalar. The terms
[∑M− j

i=0
1
i!yzjσiσi

]
in (6) collect all the

coefficients associated with the j’th fold Kronecker product of the state vector, (zt − z). Higher

orders of σ in gzjσi correct the Taylor series coefficients for uncertainty by successively opening the

coefficients to higher moments in the distribution of future shocks.43

A.2 Assumptions, Stochastic Steady State, and Ergodic Mean

From the assumption of local analyticity for g, yt has the Taylor series representation

yt =

∞∑
j=0

1
j!

⎡⎢⎢⎢⎢⎢⎣
∞∑

i=0

1
i!

gzjσiσi

⎤⎥⎥⎥⎥⎥⎦ [y′t−1 − y σε′t
]′⊗[ j]

(A-3)

Thus, increasing the approximation order in the standard perturbation brings the approximation

closer to the true policy function in the sense that an infinite order perturbation will recover the

true policy function. Local analyticity of f and g and the existence of finite moments validates the

standard DSGE perturbation practice of successively differentiating f to produce equations that the

coefficients, gzjσi , in (A-3) solve.44

The assumption of local stability in addition to that of local analyticity for g ensures that the

42Details of the associated calculus that generalizes familiar chain and product rules as well as Taylor approximations
to multidimensional settings can be found in Lan and Meyer-Gohde (2013c) and Lan and Meyer-Gohde (2014).

43A similar interpretation can be found in Judd and Mertens (2012) for univariate expansions and in Lan and Meyer-
Gohde (2013c) for expansions in infinite sequences of innovations.

44Additionally, Lan and Meyer-Gohde (2014) prove that assumptions 2.2 are sufficient to guarantee the solvability of
DSGE perturbations; that is, that successively differentiating f delivers equations that can be uniquely solved to deliver
the coefficients, gzjσi , in (A-3).
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policy function can be inverted, at least locally, as

yt =

∞∑
m=0

1
m!

∞∑
i1=0

· · ·
∞∑

im=0

⎡⎢⎢⎢⎢⎢⎣
∞∑

n=0

1
n!

yσni1···imσ
n

⎤⎥⎥⎥⎥⎥⎦ (σεt−i1 ⊗ · · · ⊗ σεt−im)(A-4)

delivering a infinite nonlinear moving average or Volterra series representation.45

The assumption that analyticity holds over a domain larger than the deterministic steady state

ensures that the Taylor series representation in (A-3) remains valid beyond the immediate vicinity

of the deterministic steady state. This assumption is crucial. Analyticity in σ from zero to one

connects the deterministic and stochastic models, enabling our use of the derivatives of g at σ = 0

to approximate the stochastic, σ = 1, model. In this stochastic model, both the fixed point—the

stochastic steady state, (8)—and average value—the ergodic mean, (11)—of the policy function are

generically different from the deterministic steady state. As such, virtually any policy experiment or

simulation will leave the vicinity of the deterministic steady state. Hence, for standard perturbations

to be applicable in settings useful for analysis, they must maintain their validity in a region of the

state space that contains the deterministic steady state, stochastic steady state, and ergodic mean, as

well as in the perturbation parameter, σ, over the deterministic and stochastic models.

In this case, both the stochastic steady state

ystoch
=

∞∑
j=0

1
j!

⎡⎢⎢⎢⎢⎢⎣
∞∑

i=0

1
i!

gzjσi

⎤⎥⎥⎥⎥⎥⎦ [ystoch′−y 0′
]
′⊗[ j](A-5)

and the ergodic mean

E
[
yt
]
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∞∑
m=0

1
m!

∞∑
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· · ·
∞∑

im=0
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n=0

1
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yσni1 ···im

⎤⎥⎥⎥⎥⎥⎦ E
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εt−i1 ⊗ · · · ⊗ εt−im

]
(A-6)

are recoverable from the implicit function theorem, requiring only derivatives of g evaluated at the

deterministic steady state as enter the Taylor series (A-3) and the moments of εt.

A.3 Relation to Perturbation First Derivatives

The first derivative of the Taylor series in (6) with respect to the state vector zt is

Dztyt ≈
M∑
j=1

1
( j − 1)!

⎡⎢⎢⎢⎢⎢⎢⎣
M− j∑
i=0

1
i!

gzjσiσi

⎤⎥⎥⎥⎥⎥⎥⎦
[
(zt − z)⊗[ j−1] ⊗ Inz

]

45See Lan and Meyer-Gohde (2013c) and Sandberg (1983).
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≈
M−1∑
j=0

1
j!
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M− j−1∑

i=0

1
i!

gzj+1σiσi
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]
(A-7)

Evaluated at the deterministic steady state, zt = z, the foregoing collapses to

Dztyt ≈
M−1∑
i=0

1
i!

gzσiσi(A-8)

For M = 3, the first derivative from a third order perturbation approximation, setting σ to one and

recalling that terms first order in σ are zero,46 is

Dztyt ≈ gz +
1
2

gzσ2(A-9)

gzσi is the third order time varying risk correction in the pruning algorithm of Andreasen, Fernández-

Villaverde, and Rubio-Ramı́rez (2013) and matched perturbation of Lombardo (2010).47

Of interest here are the derivatives at the risk-sensitive points from section 2. Recall, (15) and

(19), that the risk-sensitive points can be expressed as Taylor series in σ; i.e.,

y (σ) =
∞∑
i=0

1
i!

yσi (0)σi(A-10)

setting yt = y (σ) and εt = 0 in (A-7) yields

Dztyt ≈
M−1∑
j=0

1
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1
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0
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⊗ Inz
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For a second order in σ approximation of a point from section 2, this expression becomes

Dztyt ≈
M−1∑
j=0

1
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1
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Discarding terms in σ of order higher than two in order to obtain a second order in σ approximation

of the matrix of first derivatives at the risk-sensitive point of interest gives

Dztyt ≈ gz +
1
2

[
gzσ2 + gz2

([
yσ2

0

]
⊗ Inz

)]
(A-13)

or in terms of derivatives with respect to yt−1 and εt separately

Dyt−1yt ≈ gy +
1
2

[
gyσ2 + gy2

(
yσ2 ⊗ Iny

)]
, Dεt yt ≈ gε +

1
2

[
gεσ2 + gyε

(
yσ2 ⊗ Ine

)]
(A-14)

which are identical to the results presented in section 3.2 for my risk-sensitive linear approximation.

46See Jin and Judd (2002), Schmitt-Grohé and Uribe (2004), and Lan and Meyer-Gohde (2014).
47See Lan and Meyer-Gohde (2013b) for a detailed comparison of these and other pruning algorithms.
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A.4 Proof of Proposition 3.1

Successive differentiation of (14) yields equations recursively linear in yσi taking as given lower

order terms of the form yσi and derivatives of g with respect to yt−1 and σ. For solvability, following

the implicit function theorem, the matrix gy, the first derivative of the policy function at the deter-

ministic steady state with respect to endogenous variables, must have all eigenvalues inside the unit

circle; this holds under local saddle stability of (1).

A.5 Proof of Corollary 3.2

For a second-order (inσ) approximation of the stochastic steady state, differentiate y (σ) = g(y (σ) , 0, σ)

at σ = 0 once for

y′(0) = gyy
′(0) + gσ =

(
I − gy

)−1
gσ = 0(A-15)

and twice for

y′′(0) = gy2y′(0)⊗[2] + 2gyσyσ + gyy
′′(0) + gσ2 =

(
I − gy

)−1
gσ2(A-16)

Thus, up to second order in σ, the stochastic steady state is

ystoch ≈ y +
1
2

(
I − gy

)−1
gσ2(A-17)

as claimed in corollary 3.2.

A.6 Proof of Proposition 3.3

Successive differentiation of (2) with respect to σ evaluated at the deterministic steady state gives

recursive equations Dσi yt that depend on lower order derivatives of Dσi yt,48 derivatives of the g

function evaluated at the deterministic steady state, and the exogenous vector ε t. Successive differ-

entiation of (18) yields equations recursively linear in yσi taking as given lower order terms of the

form yσi , derivatives of the g function evaluated at the deterministic steady state, and expectations

48Dσi yt denotes the i’th order derivative of yt with respect to σ. The alternative notation, yσi , refers to the i’th
derivative of yt with respect to its third argument, i.e., the “direct” derivative with respect to σ, neglecting derivatives
involving σ that enter through the term σε t that are included in the notation Dσi yt.
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of terms involving Dσi yt and εt. For solvability both of the expectations of Dσi yt and of derivatives

of (18), following the implicit function theorem, the matrix gy, the first derivative of the policy func-

tion at the deterministic steady state with respect to endogenous variables, must have all eigenvalues

inside the unit circle; this holds under local saddle stability of (1). Under this condition and if the

moments of εt exists and are finite, the terms involving expectations and the derivatives of (18), yσi ,

can be solved uniquely from the given moments of εt and derivative information of the g function

evaluated at the deterministic steady state.

A.7 Proof of Corollary 3.4

For a second-order (in σ) approximation of the ergodic mean, differentiate y (σ) = E
[
g(yt−1, σεt, σ)

]
at yt−1 = y (0) and σ = 0 once for

y′(0) = E
[
gyDσ{yt−1} + gεεt + gσ

]
=

(
I − gy

)−1
gσ = 0(A-18)

and twice for

y′′(0) = E
[
gyDσ2{yt−1} + gy2Dσ{yt−1}⊗[2] + 2gyεεt ⊗Dσ{yt−1}(A-19)

+2gyσDσ{yt−1} + 2gεσεt + gε2ε⊗[2]
t + gσ2

]
(A-20)

=
(
I − gy

)−1 (
gy2E

[
Dσ{yt−1}⊗[2]

]
+ gε2E

[
ε⊗[2]

t

]
+ gσ2

)
(A-21)

=
(
Iny − gy

)−1
(
gσ2 +

(
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(
In2

y
− g⊗[2]

y

)−1
g⊗[2]
ε
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E

[
ε⊗[2]

t
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(A-22)

where the last line follows from E
[
Dσ{yt}⊗[2]

]
= E

[(
gyDσ{yt−1} + gεεt + gσ

)⊗[2]
]
= g⊗[2]

y E
[
Dσ{yt−1}⊗[2]

]
+

g⊗[2]
ε E

[
ε⊗[2]

t

]
Thus, up to second order in σ, the (σ = 1) ergodic mean is

ymean ≈ y +
1
2

(
Iny − gy

)−1
(
gσ2 +

(
gε2 +

(
In2

y
− g⊗[2]

y

)−1
g⊗[2]
ε

)
E

[
ε⊗[2]

t

])
(A-23)

as claimed in corollary 3.4.

A.8 Proof of Proposition 3.6

Successive differentiation of (22) yields yyσi and yεσi as functions of derivatives of g with respect to

yt−1 and σ as well as derivatives of the chosen risk-sensitive point of approximation y(σ).
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A.9 Proof of Corollary 3.7

For a second-order (in σ) approximation of yy(σ), differentiate yy(σ) = gy(y(σ), 0, σ) once for

yy
′(0) = gy2y′(0) ⊗ Iny + gσy = 0(A-24)

and twice for

yy
′′(0) = gy2

(
y′′(0) ⊗ Iny

)
+ gσ2y(A-25)

Thus, up to second order in σ, the (σ = 1) derivative in y is

yy(1) ≈ gy +
1
2

(
gy2

(
y′′(0) ⊗ Iny

)
+ gσ2y

)
(A-26)

as was claimed in corollary 3.7. Analogous derivations follow for yε(σ) ≈ yε(0)+yε
′(0)σ+1

2yε
′′(0)σ2.

A.10 Detrended Model

Detrending with xt � Xt/eZt (ut � Ut/eνZt) gives

ut =

[
(1 − β)

(
cνt (1 − Lt)

1−ν) 1−γ
θ
+ β

(
Et

[
(ut+1e

νat )1−γ]) 1
γ

] θ
1−γ

(A-27)

ct + kt = e−ξatkξt−1L1−ξ
t + (1 − δ) e−atkt−1(A-28)

1 = Et

[
Mt+1

(
ξe(1−ξ)at+1kξ−1

t L1−ξ
t+1 + 1 − δ

)]
(A-29)

Mt+1 = β

(
ct+1

ct
eat+1

)ν 1−γ
θ −1 (

1 − Lt+1

1 − Lt

) (1−ν)(1−γ)
θ

⎛⎜⎜⎜⎜⎜⎜⎝ (ut+1eνat+1)1−γ

Et

[
(ut+1eνat+1)1−γ]

⎞⎟⎟⎟⎟⎟⎟⎠
1− 1

θ

(A-30)

1 − ν
ν

ct

1 − Lt
= (1 − ξ) e−ξatkξt−1L−ξt(A-31)

A.11 Data

All series are quarterly and were retrieved from the Federal Reserve Economic Data (FRED) database

of the Federal Reserve Bank of St. Louis except for the risky return.

Investment is the sum of the National Income and Product Accounts (NIPA) measures of Per-

sonal Consumption Expenditures on Durable Goods, Private Nonresidential Fixed Investment, and

Private Residential Fixed Investment; Consumption the sum of the NIPA measures of Personal

Consumption Expenditures on Nondurable Goods and Services; Output is Gross Domestic Prod-
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uct (GDP) expressed at an annual rate; Hours are measured by Hours Worked by Full-Time and

Part-Time Employees, interpolated to a quarterly series by the growth rate of Civilian Noninsti-

tutional Population series. Investment, Consumption, and Output are expressed in real per capita

terms by deflating by the Civilian Noninstitutional Population series and the chain-type GDP defla-

tor. The risky return is the return on the NYSE value weighted portfolio from the CRSP dataset and

the risk-free return is secondary market rate for the three month Treasury bill. Both returns have

been deflated by the implicit deflator of the Personal Consumption Expenditures Nondurables and

Services series.

A.12 Business Cycle Tables

Table 6 summarizes the first two moments of output, consumption, investment, and hours.

[Table 6 about here.]

Table 7 summarizes the first two moments of output, consumption, investment, and hours from

the model of section 4 evaluated at the posterior mode with the risk-sensitive linear approximation.

[Table 7 about here.]
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Table 1: Common Calibration

Parameter a δ ν β ξ

Value 0.46% 0.0196 0.357 0.991 0.3

Table 2: Baseline and Extreme Calibration

Baseline Extreme
Parameter γ ψ σ γ ψ σ

Value 5 1.008 1.12625% 40 1.0085 1.1269%

Table 3: Computational Costs: Monte Carlo Estimation

Method Linear Risk-Sensitive Linear 3rd Order Pert. 3rd Order Pert. (pruned)
Evaluation Time 0.44 0.47 430 690

in seconds, per likelihood evaluation

Table 4: Priors and Posteriors

γ σ

Priors
Type Shifted Gamma Inverse Gamma
Mean 20 0.22%
Mode 14.737 0.11%
Standard Deviation 10 0.6%
Domain (1,∞) (0,∞)

Posteriors
Risk-Sensitive Linear Mode 29.296 1.0032%
Standard Linear Mode 14.737 0.9911%

36



Table 5: Asset Return Properties

Empirical Risk-Sensitive Linear Standard Linear

Return Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
rk 2.14 8.25 0.5003 0.0801 0.5502 0.0758
r f 0.26 0.62 0.4980 0.0767 0.5502 0.0726
rk − r f 1.88 8.25 0.0023 0.0212 0.000 0.0217
Market Price of Risk

0.2283
0.2004 0.1049

Sharpe Ratio 0.1072 0.0000

All returns are measured as real quarterly percentage returns.
See appendix A.11 for details on the series.
The model based numbers were derived using the posterior mode from the risk-sensitive linear
model, see table 4.

Table 6: U.S. Business Cycle Data, 1948:2-2013:2

Variable Mean Std. Dev.
Relative Autocorrelations Cross Corr.
Std. Dev. 1 2 3 wΔ ln Yt

Δ ln Yt 0.458 0.988 1.000 0.381 0.266 0.046 1.000
Δ ln Ct 0.497 0.565 0.572 0.257 0.205 0.074 0.531
Δ ln It 0.420 2.527 2.558 0.335 0.249 0.043 0.662
Δ ln Nt 0.328 1.188 1.202 -0.020 -0.010 -0.008 0.388
ln Nt 119.993 2.786 2.820 0.999 0.998 0.997 -0.141
ln Ct − ln Yt — 5.956 6.029 0.990 0.979 0.965 -0.173
ln It − ln Yt — 7.328 7.418 0.962 0.911 0.843 0.129

See appendix A.11 for details on the series.

Table 7: Risk-Sensitive Linear Approximation Business Cycle Properties, Posterior Mode

Variable Mean Std. Dev.
Relative Autocorrelations Cross Corr.
Std. Dev. 1 2 3 wΔ ln Yt

Δ ln Yt 0.46 0.863 1.000 0.0083 0.0080 0.0078 1.000
Δ ln Ct 0.46 0.515 0.596 0.0665 0.0641 0.0619 0.992
Δ ln It 0.46 1.712 1.983 -0.0156 -0.0150 -0.0145 0.996
Δ ln Nt 0 0.231 0.268 -0.0237 -0.0229 -0.0221 0.984
ln Nt -1.035 0.864 1.001 0.9643 0.9303 0.8980 0.308
ln Ct − ln Yt — 1.341 1.553 0.9643 0.9303 0.8980 -0.308
ln It − ln Yt — 3.203 3.710 0.9643 0.9303 0.8980 0.308

Compare with the empirical moments in table 6.
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(b) Extreme Calibration

Figure 1: Euler Equation Errors
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(a) Macroeconomic Variables
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(b) Asset Pricing Variables

Figure 2: Impulse Response Functions
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(a) Risk Aversion (γ)
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(b) Growth Shock Std. Dev. (σ)

Figure 3: Likelihood Cuts: Baseline Calibration
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(b) Growth Shock Std. Dev. (σ)

Figure 4: Likelihood Cuts: Extreme Calibration
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(b) Growth Shock Std. Dev. (σ)

Figure 5: Likelihood Cuts: Baseline Calibration, Data on ΔYt
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Figure 6: Likelihood Cuts: Baseline Calibration, Data on rpt
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Figure 7: Risk-Sensitive Linear Estimation Results; x-axis: σ; y-axis: γ
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Figure 8: Standard Linear Estimation Results; x-axis: σ; y-axis: γ
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Figure 9: Third Order Nonlinear Moving Average Estimation Results; x-axis: σ; y-axis: γ
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