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Distributional Changes in the Wealth of
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XXX XXX∗
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This Version is of December 2014.†

Abstract

The convergence debate of whether poorer countries are catching up with richer
ones has recently focused on the concept of club convergence, hence convergence within
groups of countries. Formally detecting club convergence in the distribution of coun-
tries’ income per capita over time has, however, proved difficult. I suggest a nonpara-
metric measure that captures intradistributional changes in one number: When two
clusters are involved, changes in Silverman’s (1981) critical bandwidth for unimodality
reflect modes becoming more or less pronounced, which, respectively, is evidence for
club convergence or de-clubbing. Significance of the change can be determined in a
bootstrap procedure, while working with standardized densities removes the influence
of time-varying variance. This paper seems to be the first one not only to take the
critical bandwidth to a dynamic context but also to relate it to the club convergence
literature. Furthermore, a conceptual comparison shows parallels and differences to po-
larization measures. In the empirical section with the distribution of income per capita
of 123 countries, my method provides evidence of club convergence in the 1980s and
1990s, peaking at the turn of the millennium and followed by a de-clubbing movement
in the 2000s.

JEL Classification: C14, D3, O1, O4
Keywords: Club Convergence, Kernel Density Estimation, Multimodality, Bootstrap,
Polarization

1 Introduction

Are poorer countries gradually catching up with their richer peers? This key question in
international macroeconomics has spawned the huge growth literature on convergence.

∗Correspondence address: University XXX; E-mail address: XXX.
†I am grateful for comments and suggestions to ... as well as to seminar participants at University XXX.
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One can distinguish three main notions of convergence: β-convergence, σ-convergence and
club convergence. β-convergence refers to a negative relation between countries’ initial
GDP per capita level and their subsequent growth rates, either with additional regression
variables on the right hand side ("conditional convergence") or without ("unconditional
convergence"), see Barro (1991) and Mankiw et al. (1992). By contrast, σ-convergence de-
notes a reduction in cross-sectional variance over time, and, as pointed out by Barro and
Sala-i-Martin (1995), is not a direct implication of the Solow model. Friedman (1992) and
Quah (1993b) show that β-convergence is only a necessary but not a sufficient condition
for σ-convergence: A negative β in a cross-sectional regression might result from a general
reversion to the mean and rather than implying less distributional variance ("Galton’s Fal-
lacy").

The empirical evidence on β-convergence and σ-convergence is plentiful and mixed; see for
instance Islam (2003) for an overview. Most studies, however, conclude that there has not
been unconditional β-convergence of GDP per capita levels across the worldwide sample and
that evidence of conditional convergence crucially depends on the regressors included, for
instance investment, schooling, fertility and the quality of institutions. With the variance
of GDP per capita showing a continuous increase, σ-divergence rather than σ-convergence
is another consensus in the literature. As the main question is about convergence of income
between countries, these studies typically abstract from income dispersions within countries.
If one were to investigate the possible convergence of living conditions of the world popu-
lation, one might look at individuals rather than countries and potentially obtain different
results.1 But because growth determinants and policies are decided at the country level,
the convergence literature typically works with country data.

β- and σ-convergence are typically measured with cross-sectional or panel data techniques.
By contrast, the distributional approach takes into account changes in the whole income
per capita distribution of countries in order to draw conclusions on convergence. This is es-
pecially useful to detect club convergence, which will be the focus of this paper: In contrast
to absence of evidence on β- and σ-convergence, several studies report convergence within
certain clusters of countries, in particular a cluster of rich countries on the one hand and
a group of poorer ones on the other hand. Convergence over the whole distribution would
lead to a unimodal shape, with ever-higher concentration around this mode, by contrast,
club convergence can manifest itself in a multimodal distribution. The term club conver-
gence was first coined by Baumol (1986) and elaborated upon by Quah (1993a, 1997), who
developed a theoretical framework with countries interacting among themselves that yields
a distribution with a bimodal shape.

1Sala-i-Martin (2006) forms a world distribution of income by integrating over the country-specific income
distributions and finds overall β-convergence at the individual level in recent decades. This is due to
big, populous countries in Asia growing remarkably, while the very poor, mostly African countries, which
diverged, tended to be less populous.
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Given the empirical relevance of club convergence, it is all the more unsatisfactory that
this concept remains rather elusive from an econometric point of view. In the literature one
cannot find an unambiguous formal definition for club convergence, nor a distribution-based
test for it.2 This is where this paper makes a contribution.
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Figure 1: Kernel Density Estimation of the Absolute Income Per Capita Distribution Across the 123-Country
Data Set in the Years 1995 and 2010
The graphs are kernel density estimations with a Gaussian kernel and Silverman’s rule of thumb bandwidth (7).

Consider the two plots of the income per capita distribution in 1995 and 2010 of a worldwide
dataset comprising 123 countries (Figure 1). In both years the distribution clearly shows a
high mode of poorer countries and a smaller one of rich countries. But this bimodal shape
per se does not yet mean that club convergence has taken place between 1995 and 2010. In
fact, if poorer and richer countries have converged towards separate points, these two modes
must have become more pronounced over time. Now has this been the case? Visual inspec-
tion of intradistributional changes can be tricky and potentially misleading. The overall
increase in mean income and in the distributional variance - in line with σ-divergence - also
complicates the direct comparison. And what conclusion on club convergence should the
researcher draw if, say, one mode becomes more and the other one less pronounced?

This paper proposes a measure that captures the intradistributional changes underlying club
convergence in one number: An increase in the critical bandwidth for unimodality, a non-
parametric measure introduced by Silverman (1981), can be interpreted as club convergence,
while a decrease corresponds to the opposite development of de-clubbing. The bandwidth
serves as a smoothing factor in kernel density estimation, hence, an increase in the critical
bandwidth for unimodality means that more smoothing than before is necessary to merge

2There are panel data tests that can accommodate the club convergence hypothesis as cointegration
between countries’ income per capita time paths, such as the test by Hobijn and Franses (2000). However,
these tests can be troubled by ex-ante assumptions for determining cluster size and membership, an issue
that Canova (2004) addresses by working with Bayesian techniques. It would, nevertheless, be desirable
to have a frequentist, nonparametric method for identifying club convergence to let the data speak for
themselves when analyzing changes in the income per capita distribution.
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the two modes into one, reflecting that they have become more pronounced. My contri-
bution is to take the critical bandwidth, which is typically used for (static) multimodality
tests of a distribution, to a dynamic setting and to relate it to the convergence literature.
Working with standardized densities allows me to filter out increases in mean and variance
to ensure that changes in the critical bandwidth only reflect intradistributional changes.
With this indicator of club convergence I obtain new insights into the evolution of the in-
come per capita distribution of 123 countries in the last decades: In the 1980s and 1990s,
groups of poor and rich countries converged to two separate points, but this club conver-
gence movement peaked at the turn of the millennium. Since then, there has been evidence
of de-clubbing, with modes becoming less pronounced and some formerly poor countries
growing fast to catch up with the rich.

The rest of the paper is organized as follows: In order to introduce the critical bandwidth,
Section 2 summarizes the main points of the literature on kernel density estimation. Section
3 contains my main contribution, namely extending the notion of the critical bandwidth to a
dynamic context and interpreting it as club convergence. I propose to determine the signifi-
cance of the changes with the help of a bootstrap procedure. Section 4 lays out a comparison
of the properties of the critical bandwidth to two polarization measures, which are often
used in empirical analyses and show interesting parallels to the club convergence concept.
This leads to Section 5, where I conduct the empirical application showing the Millennium
Peak in club convergence. Proofs and supplementary statistics have been relegated to the
Appendix.

2 The Critical Bandwidth in a Static Setting

2.1 An Overview of Kernel Density Estimation

When researchers want to estimate the distribution of income per capita across countries
without making any potentially limiting assumptions on its shape, they typically recur to
the nonparametric technique of kernel density estimation. Being purely data-driven, this
method allows to represent distributions that may be skewed, multimodal or have other
characteristics that a parametric model cannot capture.3 Assuming we observe n data
points xi (i = 1, 2, ..., n), the kernel density estimate of density f(x) is given by

f̂(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
(1)

with kernel function K and bandwidth h. Heuristically, a density function of the form
specified in the kernel is put around each of the observations and combined additively to the
overall density function, using h as the smoothing factor. The kernel K and the bandwidth

3Introductions and overviews of the kernel density literature are provided for instance by Silverman
(1986) and Bowman and Azzalini (1997).
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h have to be chosen. The widely-used Gaussian kernel4

K
(x− xi

h

)
=

1√
2π
e−

1
2 (
x−xi
h )2 (2)

allows to write (1) as

f̂(x) =
1

nh

n∑
i=1

1√
2π
e−

1
2

(
x−xi
h

)2
. (3)

The crucial choice in a kernel density estimation is the bandwidth h because, by regulating
the amount of smoothing applied to the kernels around the data points, it vitally determines
the shape of the density and its modality.
Before going into more detail, let us impose the following standard regularity assumptions
on the density, in line with Silverman (1983) and Mammen et al. (1992):5

Assumptions 1. (a) f is a bounded density with bounded support on [xL;xU ].

(b) f is twice continuously differentiable on (xL;xU ).

(c) On the boundaries of the density it holds: f ′(xL+) > 0 and f ′(xU−) < 0.

(d) The modality of f is the number of local maxima x̃ where
f ′(x̃) = 0,

f ′(x) > 0 ∀x ∈ X̃N ∧ x < x̃,

f ′(x) < 0 ∀x ∈ X̃N ∧ x > x̃,

with X̃N denoting the neighborhood of the point x̃. A j-modal density hence has j local
maxima and j − 1 local minima.

(e) For all points with f ′(x) = 0, it holds that f ′′(x) 6= 0 and f(x) > 0.

(f) The first two moments of f exist and are finite.

Hence, the modality of a density is defined in terms of sign changes in its first derivative.6

To see the dependence of the density modality on the bandwidth used, let us consider an
example. 300 observations are drawn from a Gaussian mixture with three components:

f(x) =
2

3
· φ(x,−2, 0.52) + 1

6
· φ(x, 0, 0.52) + 1

6
· φ(x, 2, 0.12), (4)

4Other possible kernel functions include the Epanechnikov and the Triangular kernel. In general, the
shape of the density is not crucially influenced by the kernel function. I will stick to the Gaussian kernel as
it ensures the important analytical result by Silverman (1981) about the relation between the modality and
the bandwidth, see Theorem 1 below.

5Assumption (f) is an additional requirement which I have to impose so that f can be standardized.
6Assumption (e) rules out certain turning points or "shoulders" in the density, which, even though they

are typically estimated well in practice, can change the asymptotic properties, see Silverman (1983).

5



where φ(x, µ, σ2) denotes the Gaussian distribution of x with mean µ and variance σ2.
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Figure 2: Kernel Density Estimation of (4) with Different Bandwidths

While the true underlying distribution has three modes, one can plot an estimated kernel
density with any numberm of modes (1 ≤ m ≤ 300) depending on the bandwidth used. Fig-
ure 2 shows three examples: A high bandwidth such as h = 1.20 induces so much smoothing
that only the most pronounced mode remains. Decreasing the bandwidth gradually makes
more modes appear, so that at h = 0.40 a trimodal distribution emerges. Further reducing
the bandwidth reveals additional smaller features and spikes that can be considered as spu-
rious modes, as in the seximodal distribution at h = 0.10.
Silverman (1981) showed that the Asymptotic Mean Integrated Squared Error (AMISE) of
f(x) associated with a bandwidth h

AMISE(h) =
1

4
h4
∫
f ′′(x)2dx

(∫
x2K(x)dx

)2

+
1

nh

∫
K(x)2dx (5)

is the sum of the asymptotic integrated square bias (first term) and the asymptotic inte-
grated variance (second term). While a high value of h induces a lot of smoothing, reducing
the variance and increasing the bias, a smaller value of h implies less smoothing, entailing
a smaller bias but a larger variance.

Which bandwidth should one choose in practice when plotting a density? One obvious
approach from the vast literature on optimal bandwidth selection is to minimize (5) with
respect to h, yielding

hAMISE =

(
1

2n
√
π
∫
f ′′(x)2dx

) 1
5

. (6)

The problem with this expression is that it still contains the second derivative f ′′(x) of the
unknown density f(x) which one intends to estimate. The simplifying assumption that the
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data follows a normal distribution with standard deviation σ, so that
∫
f ′′(x)2dx = 3

8
√
πσ5 ,

leads to Silverman’s well-known rule of thumb for the optimal bandwidth

hAMISE =

(
4

3n

) 1
5

· σ. (7)

Thanks to its simplicity, (7) is often used and implemented by default in most software
packages: The optimal bandwidth hAMISE depends only on the number of data points n
and the standard deviation σ of the data. In the illustration based on (4), the rule of thumb
yields a bandwidth of 0.36, (correctly) leading to a trimodal density. However, Silverman
(1986) already points out its main drawback: The assumption of the data following a normal
distribution when calculating f ′′(x) can be self-defeating because nonparametric estimation
is used primarily when the data distribution is far from normal and exhibits multimodality.
To counteract this oversmoothing, sometimes a modified rule of thumb formula with a
multiplicative adjustment factor 0.9 is used. On the other hand, a number of more advanced
methods for optimal bandwidth selection, such as cross-validation and solve-the-equation
plug-in, have been proposed, see for example Jones et al. (1996). The discussion of whether
the increased complexity in estimation is worth the improvement over the rule of thumb is
ongoing and depends on the application. Let us now turn away from the optimal bandwidth
for appropriate representation of the density and come to a different bandwidth concept,
which will provide a useful link to club convergence.

2.2 The Critical Bandwidth for m-Modality

The casual observation from Figure 2 that a lower bandwidth leads to the emergence of
additional modes has been proved formally by Silverman (1981):

Theorem 1. In a kernel density estimation of f(x) with a Gaussian kernel, the number of
modes is a right-continuous decreasing function of the bandwidth h.

Proof. See Silverman (1981).

He consequently defined the critical bandwidth for m-modality, CBm, as the smallest band-
width still producing an m-modal rather than (m+ 1)−modal density. For all bandwidths
h < CBm the estimated density will have at least m + 1 modes. CBm can easily be com-
puted by a binary search procedure: Start with an initial bandwidth hminit and count the
modes of the estimated kernel density. If there are m modes, decrease the bandwidth in the
next iteration to see if the density stays m-modal; if there are m+1 modes, the bandwidth
is already too low and needs to be increased. Successive halving of the intervals of possible
bandwidths will lead to convergence to the critical bandwidth CBm in at most log2(2hminit)
iterations. As an illustration I use the data from (4) and calculate the critical bandwidth
for m-modality, with m from 1 to 10 (see Table 1). One can see that the rule of thumb
bandwidth of 0.36 leads to a trimodal density: Only if the bandwidth is decreased below
CB3 = 0.1568, a fourth mode would appear.
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m 1 2 3 4 5 6 7 8 9 10
CBm 0.9423 0.4829 0.1568 0.1329 0.1237 0.0961 0.0903 0.0849 0.0783 0.0760

Table 1: Critical Bandwidth for m-Modality in the Illustration from Figure 2

Under the regularity conditions from Assumptions 1, one can derive the asymptotic proper-
ties of CBm as the number of data points goes to infinity: Silverman (1983) and Mammen
et al. (1992) show that for m-modal densities, CBm converges to zero at the rate n−

1
5 , while

for densities with a higher modality, CBm stays larger than a constant c0:

Theorem 2. Assume that the true density has j modes and that the regularity conditions
from Assumptions 1 hold. For the critical bandwidth for m-modality, CBm, it then holds:

(a) If m ≥ j, CBm p→ 0 at rate n−
1
5 as n→∞.

(b) If m < j, P (CBm > c0)→ 1 as n→∞.

Proof. See Silverman (1983) and Mammen et al. (1992)

2.3 Silverman’s (1981) (Static) Multimodality Test

The main methodological contribution of this paper is to link the concept of the critical
bandwidth to the club convergence literature by extending it to the dynamic context. To
do so, let us have a look at the key use of the critical bandwidth in a static setting, which
involves multimodality tests: How many modes does the income per capita distribution in
a particular year have?
Silverman (1981) tests the null of m-modality against the alternative hypothesis of more
than m modes by calculating CBm. A bootstrap resampling procedure helps to decide
whether CBm should be considered as too high for m-modal densities, which would lead to
the conclusion that the density instead has at least m+ 1 modes. In more detail:

1. Given the data set Y, calculate its critical bandwidth for m−modality, CBm.

2. Draw a bootstrap sample Y? of size n with replacement.

3. The bootstrap sample is smoothed by adding a random component ε multiplied by
a bandwidth. This allows to resample from a density with a specified modality, in
particular, with CBm, a density that is marginally m-modal. Efron and Tibshirani
(1993) suggest a sample variance adjustment to ensure that the smoothed bootstrap
sample has the same variance as the original one. The smoothed and rescaled sample
vector X? = (x?1, ...,x

?
n)
′ is given by

x?i = ȳ? +
( σ2

σ2 + (CBm)2

) 1
2

(y?i − ȳ? + CBmεi) (8)

for i = 1, ..., n, with bootstrap sample mean ȳ?, data variance σ2 and εi ∼ N (0, 1).
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4. For the adjusted bootstrap sample X? compute the critical bandwidth form−modality,
CBm?.

5. Repeat Steps 2 to 4 a large number of times B, each time storing CBm?.

6. Count how often the bootstrap’s critical bandwidth CBm? exceeds the original CBm

p =
#{CBm? > CBm}

B

and reject the null hypothesis of m-modality in favor of (at least) (m+ 1)-modality if
p is smaller than the test size α (e.g. 5%).

The test can be used successively with increasingm until one cannot reject the null anymore.
For an illustration, let us apply it to the trimodal mixture (4). The results are summarized
in Table 2. First we test the null hypothesis of unimodality against bimodality; CB1 is
0.9423. If the density were unimodal, many resamples from (marginally) unimodal densities
of the data should give a critical bandwidth CB1? of this magnitude. But out of 5000
resamples, not a single CB1? exceeds 0.9423, leading to the conclusion that CB1 is too high
to be associated with a true unimodal density. In the next round the null of bimodality
against trimodality is tested based on CB2 = 0.4829. Just 1.5% of the resamples from
(marginally) bimodal resamples exceed this value, leading to the rejection of bimodality at
the 95% confidence level. Only the null of trimodality cannot be rejected anymore in favor
of quadrimodality, in line with our expectations.

H0 : m = 1 2 3
H1 : m = 2 3 4

CBm 0.9423 0.4829 0.1568
p value 0.0000 0.0015 0.7388
B (Reps.) 5000 5000 5000

Table 2: Bootstrap Multimodality Test Applied to the Data from (4)

The bootstrap multimodality test is not without critics: Mammen et al. (1992) were among
the first to point out its conservatism. This is partially due to resampling from a marginally
m-modal density, which can lead to a failure to reject m-modality when the true density is
"only just" (m + 1)-modal. There have since been some suggestions for ameliorations, for
instance Hall and York’s (2001) calibration adjustment.

The general concept has however remained unaffected and Silverman’s (1981) bootstrap
procedure based on CBm remains one key method for testing for multimodality of a distri-
bution at a given point in time. For instance, Bianchi (1997) applies it to income per capita
data from 119 countries in 1970, 1980 and 1989 and finds that he cannot reject the null of
unimodality in 1970, in contrast to the later years, where he finds evidence of bimodality.
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His findings are qualitatively supported by alternative procedures to test for multimodality,
in particular those involving mixture models. Paap and van Dijk (1998) model the income
distribution of their 120-country sample from 1960 to 1989 with a mixture of a Weibull
and a truncated Normal density. They identify these components with the help of the EM-
algorithm by Dempster et al. (1977) and analyze the changes in the component variances.
This is also the procedure employed by Pittau et al. (2010), who in an application with 102
workforce-weighted countries from 1960 to 2000 find three component densities.

Whether using the bootstrap test by Silverman (1981) or a mixture approach, these tests
for multimodality are notably static. They only allow to draw conclusions on the shape of
the distribution of income per capita at a given point in time. My key argument in this
paper is that in order to make inference about club convergence, one has to monitor the
evolution of the distribution over time and in particular observe whether the modes become
more pronounced. Visual comparisons of distributional features can however be tricky and
potentially misleading, especially against the backdrop of an overall increase in variance.
This is where the critical bandwidth can be very useful, because, as I will now argue, its
changes can capture distributional changes representing club convergence or de-clubbing.

3 Changes in the Critical Bandwidth as a Measure of
Club Convergence

3.1 The Use of Standardized Densities

My key idea is to use changes in the critical bandwidth to measure how the shape of
the distribution has changed: If the two modes of a bimodal distribution become more
pronounced, the critical bandwidth for unimodality goes up as more smoothing must be
applied to obtain a unimodal density.
In such a dynamic setting one faces a problem: The critical bandwidth is also sensitive to
changes affecting the whole distribution uniformly, like a change in the variance. Given the
empirical evidence on the increasing variance of the income per capita distribution over the
last decades, this is an important issue. The critical bandwidth for unimodality based on
the data from 1995 and 2010 (plotted in Figure 1 in the introduction) would show a clear
increase, but this would simply reflect the fact that the data is more spread out. Hence,
any measure of intradistributional change has to be invariant to changes in the overall
distributional variance. I argue that this can be achieved by working with standardized
densities that have the same shape as the original ones:

Theorem 3. Let f(x) be a kernel density estimate with a Gaussian kernel, domain [xL;xU ]

and bandwidth hx. Standardize all n data points by subtracting the mean µ and dividing by
the standard deviation σ, so that yi = xi−µ

σ for all i = 1, ..., n. The transformed density

f(y) then has the domain
[
xL−µ
σ ; xU−µσ

]
and it holds:

10



(a) f(y) = σf(x); hence the density values are scaled by σ.

(b) When employing the scaled bandwidth hy = σ−1hx, the transformed density f(y) has
the same shape as the original f(x).

Proof. See Appendix A1.

While standardization removes the influence of both mean and variance, only the latter is
crucial. A ceteris paribus increase in µ shifts the whole distribution, keeping the distance
between the data points and hence CBm unaffected. By contrast, an increase in σ would
clearly translate one-to-one into an increase in CBm. A side benefit of centering around
zero is that it facilitates the interpretation of the standardized data.
Given that the original and standardized data have the same shape, if follows directly from
Theorem 3:

Corollary 1. Standardization of the data does not affect the result of Silverman’s (1981)
multimodality test.

3.2 Club Convergence and Changes in the Critical Bandwidth

In the following let us consider the setting of two country clusters that most empirical studies
find for the worldwide income per capita distribution in the past decades. A cluster is a
group of data points that can form a component in a mixture distribution. It is well-known
that not every cluster will show itself in its own mode because for this it has to be sufficiently
well-separated from the other cluster.7 But no matter how well-pronounced the two modes
are in the beginning, this paper argues that changes over time are what is crucial for the
convergence debate. Only intradistributional changes can show the dynamics at work and
potentially allow to make forecasts of the developments to come. In order to do that, let us
now relate changes in the critical bandwidth for unimodality to club convergence:

Definition 1. Let f(x) be a standardized income per capita density with at most two clusters
that might or might not show themselves in two modes. The density is observed at two points
in time, t=1,2 and the critical bandwidths for unimodality at t = 1 and t = 2 are calculated
as CB1 and CB2. In this setting we say that we have

• club convergence if and only if CB2 > CB1.

• de-clubbing if and only if CB2 < CB1.

Heuristically, when the two modes become more (less) pronounced, the critical bandwidth
for unimodality,8 CB, increases (decreases) because more (less) smoothing needs to be ap-
plied to make the bimodal shape turn into a unimodal one.

7Eisenberger (1964) derives necessary and sufficient conditions that the mean and variance of the two
component densities of a Normal mixture have to satisfy in order to show themselves in two separate modes.

8For notational convenience, I will henceforth write CB rather than CB1 when it is clear that the critical
bandwidth for unimodality is referred to.

11



One caveat of this definition of club convergence is that it neglects the potential mobility
of countries between clubs. But while it is advisable to check that the composition of the
clubs is sufficiently stable over time, this seems to be a minor drawback in practice. In fact,
there is strong empirical evidence for very limited mobility of countries between the clubs
identified, see for instance Bianchi (1997) and Paap and van Dijk (1998).

On the other hand, a big advantage of Definition 1 is that by recurring to CB, it provides a
nonparametric measure for club convergence that captures the consequences of potentially
complex intradistributional changes in just one number. To better understand how it works,
let us consider an example.

3.3 Example for Between-Cluster Separation, Within-Cluster Con-
centration and the Change in the Critical Bandwidth

Let us assume our data set contains 500 observations from the bimodal Gaussian mixture

f(x) =
1

2
· φ(x, 4, 12) + 1

2
· φ(x, 8, 0.52). (9)

This exemplary distribution of income per capita consists of a cluster of poorer countries
with higher within-cluster variance (a more heterogeneous group) and a cluster of richer
countries with a lower within-cluster variance. The critical bandwidth for unimodality of
the standardized density is 0.7183. The second column of Table 3 shows some indicative
values of this initial distribution, like the difference between the modes and the within-
cluster variances in relation to the overall variance. It will be instructive to compare these
indicators, together with CB, for the transformed densities. In these transformations various
intradistributional changes, in particular changes in the between-cluster separation as
well as in the within-cluster concentration will be conducted.

Definition 2. Starting with a density f(x) consisting of two clusters, apply the following
transformation to all observations i = 1, ..., nc in one cluster:

yi = xi + a (10)

• If the transformation is applied to the poorer (richer) cluster and a is negative or

• if the transformation is applied to the richer (poorer) cluster and a is positive,

density f(y) is said to have an increased (decreased) between-cluster separation with
respect to f(x).

There are a number of possibilities to alter the within-cluster concentration. I will use a
λ-squeeze or λ-dispersion as it is common in the polarization literature (see Duclos et al.,
2004):
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Definition 3. Starting with a density f(x) consisting of two clusters, apply the following
transformation to all observations i = 1, ..., nc in one or both clusters:

y = λx+ (1− λ)µc, (11)

where µc with c = 1, 2 denotes the mean of the respective cluster.

• If 0 < λ < 1, it is called a λ-squeeze, resulting in a higher within-cluster concen-
tration in the respective cluster.

• If λ > 1, it is called a λ-dispersion, resulting in a lower within-cluster concentra-
tion in the respective cluster.

A λ-squeeze (λ-dispersion) leaves the mean of the cluster unchanged and decreases (in-
creases) the within-cluster standard deviation by the factor λ.

In this example, let us now analyze six intradistributional changes affecting the between-
cluster separation and/or within-cluster concentration of the density in (9). While these
transformations concern the original data points, the changes in CB are calculated based
on the standardized densities, filtering out the variance changes.
Table 3 as well as Figures 3, 4 and 5 show some characteristics of the raw and standardized
densities before and after the transformations:

Value Initial (a) (b) (c) (d) (e) (f)

Mode-distance (raw) 4 6 3 4 2.5 4 4
Mode-distance (stand.) 1.8669 1.9426 1.7716 1.9494 1.8684 1.8740 1.8288
σ2
C1 (stand.) 0.2572 0.1238 0.4118 0.0701 0.1649 0.0648 0.3555
σ2
C2 (stand.) 0.0498 0.0340 0.0797 0.0543 0.1277 0.2008 0.0306
CB 0.7183 0.8428 0.5844 0.9072 0.7901 0.7566 0.6578
p-value CB change - 0.0024 0.0000 0.0098 0.0778 0.2680 0.0000

Table 3: Descriptive Values of the Density (9) Before and After the Ceteris Paribus Changes in Cases (a) to (f)

The distance between the modes is calculated both for the raw and standardized density. σ2
C1 and σ2

C2 refer to
the within-cluster variance of cluster 1 and 2 relative to the overall variance. It holds: V aroverall = 1

1−n [(nC1 −
1)σ2

1 + (nC2 − 1)σ2
2 + nC1(µ1 − µ)2 + nC2(µ2 − µ)2], where the two latter two terms refer to the between-cluster

variance. CB denotes the critical bandwidth for unimodality. The p-value for insignificance of the change in CB
is calculated based on the bootstrap procedure explained in Section 3.5 with 5000 replications.

(a) In the first case, the between-cluster separation is increased by adding a = 2 in (10)
to the points in the rich cluster of (9). The rich group of countries can be interpreted
as moving away from the poorer ones. This is one typical case of club convergence,
reflected by a substantial increase in CB of the standardized densities from 0.7183 to
0.8428, as Table 3, column (a), shows. The distance between the modes increases by
construction, and, because the between-cluster variance has gone up, the relative within-
cluster variance in both clusters decreases. This makes the modes more pronounced in
the standardized densities in the upper right panel of Figure 3.
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(b) In the converse case to part (b), a = 1 in (10) is added to the points in the poor cluster,
decreasing the between-cluster separation. As the group of poor countries moves
closer to the rich cluster, the poor mode becomes less pronounced. We speak of de-
clubbing, in line with a decrease of CB from 0.7183 to 0.5844. Less smoothing is
necessary to obtain a unimodal rather than bimodal density. Even though the within-
cluster concentration has not been altered directly, column (b) of Table 3 shows a sizable
increase of the relative within-cluster variance of both clusters, following the decrease
of the between-cluster variance as de-clubbing takes place.
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Figure 3: Raw and Standardized Densities Before (Solid Line) and After (Dashed Line) the Intradistributional
Changes from Parts (a) and (b)
The graphs are kernel density estimations with a Gaussian kernel and Silverman’s rule of thumb bandwidth (7).

(c) A λ-squeeze with λ = 0.5 in (11) is applied to poor mode, increasing its within-
cluster concentration. This is another typical club convergence example and CB

clearly increases. Interestingly, the upper panel of Figure 4 shows that while the poorer
mode becomes more pronounced, the richer one decreases in magnitude. This can be
explained by the relative importance of the clusters: In kernel density estimation, the
more concentrated a group of points, the higher their density values, at the expense
of other parts of the density. Seeing one mode become more and the other one less
pronounced clearly complicates visual inspection of club convergence, which shows the
benefit of CB as an indicator.

(d) What happens if a decrease in between-cluster separation (a = 1.5 for the poor
cluster) is combined with an increase in within-cluster concentration (λ-squeeze
with λ=0.5 in the poor cluster)? The visual inspection of the lower panel of Figure 4 is
not very helpful in determining which of these two opposite effects dominates: In the raw
density the clusters move together but with the poorer one becoming more concentrated.
Filtering out the decrease of overall variance, the graph of the standardized densities
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displays the poorer mode as slightly more pronounced and the richer one as less so. This
is also reflected in the within-cluster variances in column (d) of Table 3. Capturing the
composite effect of these changes in one number, CB increases to 0.7901 and hence points
to a club convergence movement, in which the increase in within-cluster concentration
is larger than the decrease in between-cluster separation. Obviously, this hinges on
the magnitude of the effects. Additional simulations suggest that when combining the
same within-cluster concentration with a stronger decrease of between-cluster separation
(a = 2 rather than a = 1.5), the latter effect dominates and CB decreases.
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Figure 4: Raw and Standardized Densities Before (Solid Line) and After (Dashed Line) the Intradistributional
Changes from Parts (c) and (d)
The graphs are kernel density estimations with a Gaussian kernel and Silverman’s rule of thumb bandwidth (7).

(e) Again we consider effects going into different directions, namely a λ-squeeze with λ = 0.5

in the poorer cluster and a λ-dispersion with λ = 2 in the richer cluster. CB increases,
indicating that the higher within-cluster concentration in the poor cluster domi-
nates the opposite effect in the rich cluster, which leads to club convergence overall.

(f) When applying a λ-dispersion with λ = 1.2 to the poor cluster and a λ-squeeze with
λ = 0.8 to the rich cluster, one might naively assume the two effects to be of equal
magnitude and to cancel each other out. The decrease of CB shows that this is not the
case: The poorer cluster had already been more dispersed before, so decreasing its
within-cluster concentration further makes its mode even smaller compared to the
more concentrated rich country mode, as the lower panel of Figure 5 shows. Overall,
we get closer to a situation with only one mode, which is reflected in the decrease of
CB. This suggests that the bimodal situation which requires the highest CB includes
two modes that are of exactly equal size.
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Figure 5: Raw and Standardized Densities Before (Solid Line) and After (Dashed Line) the Intradistributional
Changes from Parts (e) and (f)
The graphs are kernel density estimations with a Gaussian kernel and Silverman’s rule of thumb bandwidth (7).

This example has illustrated how changes in the CB can capture in one number various
intradistributional alterations. CB has the added advantage that it is readily available if
the researcher anyways analyzes the multimodality of the density at a given point in time
with Silverman’s (1981) test: He or she merely has to work with the standardized densities
and to track the test statistic over time. Incidentally, applying the static multimodality
test with 5000 replications to the cases (a) to (f) would always lead to the conclusion that
the null of unimodality can be rejected (p-value of 0) before and after the transformation.
But although the density stays bimodal in all instances, the changes in CB reflect vital
intradistributional movements that can be interpreted as club convergence or de-clubbing.

3.4 Asymptotic Properties of Changes in the Critical Bandwidth

In order to prove that the change in CB can be consistently estimated, one can extend the
static results by Silverman (1983) and Mammen et al. (1992) presented in Section 3.2.2.
When the number of data points goes to infinity, the change in CB based on the kernel
density estimation is consistent and converges to a constant:

Theorem 4. Assume that the density has up to two modes at times t = 1, 2 and that the
regularity conditions from Assumptions 1 hold. Then,

(a) the change in the critical bandwidth for unimodality, CB2 − CB1, based on the kernel
density estimates is a consistent estimator of the respective change in the true densities.

(b) P (|CB2 − CB1| ≥ c) → 1 as n → ∞. The constant c depends on the underlying
distributional changes.
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Proof. See Appendix A2.

3.5 Bootstrap Test for Significance of Changes in the Critical Band-
width

As with any measure that exhibits changes over time, in practical applications it is important
to check the significance of an increase or decrease in CB. For the conclusion about club
convergence and possible policy implications, it is vital that structural changes rather than
random noise should be the cause of the change in CB. For this I suggest using a bootstrap
procedure that incorporates longitudinal correlation. Biewen (2002) argues that for inference
in the field of inequality, mobility and poverty, it is important to take into account the
typically strong persistence of the data. The magnitude of intradistributional changes has to
be examined against the backdrop of many countries keeping their place in the distribution.
A bootstrap can easily accomplish this by resampling from the same countries over time
rather than taking random samples of the two distributions. This can be seen as a particular
form of a block or cluster bootstrap. More precisely:

1. Start with two data sets Y1 and Y2 of the same countries i = 1, ..., n observed at
times t = 1, 2. Calculate the critical bandwidths for unimodality, CB1 and CB2, for
both data sets.

2. Draw a bootstrap sample of size n of the numbers 1, ..., n with replacement, using
them as indicators for the countries to be included in both Y?

1 and Y?
2.

3. For the samples Y?
1 and Y?

2, calculate the critical bandwidths for unimodality, CB?1
and CB?2 .9

4. Repeat Steps 2 and 3 a large number of times B, each time storing the difference
CB?2 − CB?1 .

5. If more than 1 − α (e.g. 95%) of all resampled differences CB?2 − CB?1 are positive
(negative), conclude that CB has increased (decreased) significantly.

This procedure allows to compare CB2 to CB1 in a purely data-driven way without addi-
tional assumptions on the behavior of CB over time.10 As an illustration, I carry out the

9Note that the setting in this bootstrap comparison of CB1 to CB2 is fundamentally different from
Silverman’s (1981) static bootstrap multimodality test. The latter draws smoothed bootstrap resamples
from a density with a prespecified modality (marginally m-modal) in order to come to a conclusion about
the m- vs. (m + 1)-modality of the density. Here, we are concerned with the significance of the change in
CB over time rather than the modality in a static sense. The reference value is a resampling from the two
data sets, taking into account longitudinal correlation between countries.

10If, for instance, non-ergodicity of the distribution at t = 1, 2 is an issue and lies at the heart of a potential
increase in CB2, this would be detected in the bootstrap procedure with longitudinal correlation. Against
the backdrop of many data points being subject to permanent shocks, an increase in CB2 should, correctly,
not come out as significant.
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bootstrap procedure with 5000 replications for the distributional changes (a) to (f) consid-
ered above. The last row of Table 3 shows that four out of the six changes in CB are highly
significant even at the 99% confidence level. In cases (d) and (e), where effects worked in
opposite directions, leading overall to smaller changes in CB, significance is by construction
more ambiguous. The CB increase in (d) is still significant at the 90% confidence level,
unlike part (e), whose increase one would conclude to be insignificant.
The bootstrap-based determination of significance in changes in CB will be important for
the interpretation of the results in the empirical section. But in order to put this measure
of club convergence and its properties into perspective, let us now compare CB to indices
from the polarization literature.

4 Comparison of the Critical Bandwidth to Polarization
Measures

Conceptually different from the convergence literature, which analyzes changes in the income
differences between countries over time, the polarization literature was developed to repre-
sent particular changes in the income distribution within a country. However, polarization
measures are now also applied to the worldwide distribution of income between countries
(see for example Pittau et al., 2010). Moreover, some analytical aspects in the construction
of these measures make a direct comparison with respect to CB very appealing.

4.1 Wolfson’s (1994) Bipolarization Measure

Wolfson (1994) developed the notion of a country’s bipolarization as the degree to which
income is concentrated at both ends of the distribution rather than in the middle. His
measure was constructed to capture the widely-discussed idea of "the disappearing middle
class" and uses the formula

PW = 2
µ

m

(
1− 2L(0.5)−Gini

)
, (12)

where µ and m denote the mean and median of the distribution, L(0.5) is the value of the
Lorenz curve at the 50% income point (indicating the share of total income accruing to the
poorer 50% of individuals) and Gini is the Gini coefficient of inequality calculated as the
expected mean difference between two incomes xi and xj ,

Gini =
E|xi − xj |

2µ
. (13)

Wolfson (1994) provides an insightful example of the conceptual separation between in-
equality and polarization, which is reproduced in Figure 6. Starting with a uniform income
distribution on [0.25; 1.75], conduct a mean-preserving transfer on either side of the mean,
so that everyone in the [0.75, 1) bracket gives 0.25 to individuals in the [0.25, 0.5) bracket
and everyone in (1.5, 1.75] gives 0.25 to individuals in (1, 1.25]. Mean, median and L(0.5)
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are unaffected but the post-transfer distribution is more egalitarian: Its Gini coefficient has
decreased from 0.25 to 0.21. Despite this decrease in inequality, the new distribution is more
polarized. This is captured by PW increasing from 0.25 to 0.33.

0.25 0.50 1.250.75 1.00 1.50 1.75

Post-Transfer Density

Uniform Density

Income 

Density 

Figure 6: A Mean-Preserving Transfer Decreasing Inequality and Increasing Polarization based on Wolfson (1994)

Obviously, according to this formula, any symmetric, mean-preserving transfer on either
side of the mean that leads to fewer inequality will increase bipolarization. Illustrating
the mechanisms at work for bipolarization, this example intuitively relates to the critical
bandwidth for unimodality: From the uniform distribution to the bimodal post-transfer one,
CB based on standardized densities would increase considerably (from 0.41 to 0.96). If the
situation described a relative distribution of income across countries (rather than within)
and the transfer is interpreted as some countries growing faster than others, then we would
be in a typical club convergence setting.

4.2 The Polarization Measure by Esteban and Ray (1994) and
Duclos et al. (2004)

Parallel to Wolfson (1994), Esteban and Ray (1994) as well as Duclos et al. (2004) developed
and refined another polarization measure. They build on a political economy framework,
with individuals identifying themselves with those of the same income and feeling alienation
towards others. For continuous income distributions, the polarization formula is

PαER(f) =

∫ ∫
f(x)1+αf(y)|x− y|dxdy, (14)

where f(x) and f(y) refer to the density values of income levels x and y, while the parameter
α ∈ [0.25, 1] captures the degree of identification with people of the same income.11 The
dependence on α can be seen as a drawback of this measure: Duclos et al. (2004) find that a
ranking of countries according to their income polarization is sensitive to the value of α used.

11The lower bound of 0.25 for α is necessary to distinguish the polarization concept from inequality:
Incidentally, setting α = 0 and dividing (14) by twice the mean would give the Gini coefficient from (13).
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Also, the authors point to an ambiguous association of polarization with multimodality in
a general setting: The appearance of a third or fourth mode does not necessarily increase
PER because it might decrease average income differences. This, however, does not apply to
the unimodal and bimodal setting in which we will compare the polarization measures to CB.

4.3 Properties of the Critical Bandwidth in Comparison to the
Polarization Measures

In the following, one should keep in mind that, in contrast to the polarization measures,
CB is defined based on standardized data. However, PW includes the Gini coefficient and
Lorenz curve in its formula, which do not allow negative income values. One can calculate
PW either for raw data or mean-standardized data (i.e. data divided by the mean), which
give the same result. PER is also often calculated on mean-standardized data to facilitate
comparisons of different distributions. Duclos et al. (2004) derive the relation between
their polarization measure for raw or mean-standardized data as PER

(
x
µ

)
= µα−1PER(x).

Furthermore, Esteban and Ray (2012) provide an axiomatic comparison of PW and PER.
As several of these axioms involve settings with more than two modes, it is not possible to
use all of them here for a comparison with CB.
With these caveats, let us now derive several properties that CB fulfills and see to what
extent they are shared by the polarization measures:

Theorem 5. Let x be income per capita data whose density f(x) has at most two clusters
that might or might not show themselves in two modes. Calculate CB as the critical band-
width for unimodality on standardized data x−µ

σ , while PW and PER are calculated based on
raw data x as well as mean-standardized data x

µ . Then it holds:

(a) General Structure: A ceteris paribus increase (decrease) in between-cluster separation
or within-cluster concentration leads to an increase (decrease) in CB, PW and PER.

(b) Scale Invariance: If all incomes are scaled by a constant factor c as in z = cx,

• CB remains unchanged.

• PW remains unchanged.

• PER
(
x
µ

)
remains unchanged. PER(x) is scaled: PER(z) = c1−αPER(x).

(c) Invariance to Absolute Income Changes: When adding a constant amount a to
all incomes as in z = x+ a,

• CB remains unchanged.

• PW changes to PW (z) = mx
mx+a

· PW (x), where mx is the median before the trans-
formation.

• PER(x) remains unchanged. PER
(
x
µ

)
is scaled: PER

(
z
µz

)
=
(

µx
µx+a

)1−α
PER

(
x
µx

)
.
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(d) Dispersion Invariance: When applying a λ-squeeze (0 < λ < 1) or λ-dispersion
(λ > 1) to all incomes so that z = λx+ (1− λ)µx,

• CB remains unchanged.

• PW changes to PW (z) = λmxmz · PW (x).

• PER(x) and PER
(
x
µ

)
are scaled by the same factor to PER(z) = λ1−αPER(x) and

PER(
z
µz

) = λ1−αPER(
x
µx

).

(e) Symmetry of the Polarization Measure ("Swapping Rich and Poor"): When
applying the transformation z = xL + xU − x (with xL and xU denoting the infimum
and the supremum of the income data),

• CB remains unchanged.

• PW changes to PW (z) = mx
mz
· PW (x), where mx and mz denote the median before

and after the transformation.

• PER(x) remains unchanged. PER
(
x
µ

)
is scaled: PER( zµz ) =

(
µx

xL+xU−µx

)1−α
PER(

x
µx

).

Proof. See Appendix A3.

The conclusion from this comparison is that for CB only the shape of the distribution
in terms of its modality matters, hence it is invariant to scalings, dispersions or uniform
absolute increases. By contrast, "the size of the pie" to be distributed matters for both
polarization measures. For instance, when all incomes increase by a positive additive com-
ponent as in (c), PW decreases because, heuristically, the poor now own a larger share of
the total pie, even though the shape of the distribution has not changed.12 In a similar
way, PW is sensitive to a transformation swapping the rich and the poor in an asymmetric
distribution such as the one pictured in Figure 7, based on an asymmetric bimodal Gaussian
mixture f(x) = 0.7 · φ(x, 4, 12) + 0.3 · φ(x, 8, 12).
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Figure 7: The Transformation z = xL + xU − x Implying a Swap of the Poor and the Rich

12Chakravarty et al. (2007) have proposed a class of rather complex bipolarization measures that do fulfill
the property of invariance to absolute income changes.
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Concerning PER, in Theorem 5 one again notes the dependence on the α-parameter, which
shows up in the adjustment factors that many of the transformations entail. By contrast,
CB is free of such parameters.

Perhaps the polarization concept that is closest in spirit to my use of the critical bandwidth
is Anderson’s (2004) stochastic dominance approach: In a bimodal setting he classifies
intradistributional changes with the help of stochastic dominance conditions. His test for
an increase in polarization then involves the comparison of parts of the distributions in a
stochastic-dominance way. While this approach is conceptually appealing, the inclusion of
the distributional covariances into the computation can make it challenging to implement in
practice, in particular when many time periods are involved. In contrast, CB summarizes
the relevant distributional features in one number and can easily be traced over many years.

5 Empirical Application: Club Convergence and
De-Clubbing in the Wealth of Nations

In the empirical application I make use of the critical bandwidth for unimodality in order
to gain new insights into the changing distribution of income per capita of countries around
the world in the last decades. Have there been club convergence movements and which are
the countries driving these developments?

5.1 The Data Set and Descriptive Statistics

From the Penn World Tables 8.0 (Feenstra et al., 2013) I take the rgde variable (real GDP
at chained purchasing power parity 2005 US Dollars) and divide it by the country’s popu-
lation, pop, at the given point in time. This way the values of income per capita, x, for all
countries and years are obtained.
For most countries the data is available from 1970 onwards and up to 2011, so these years
mark the beginning and end of my sample period. For the analysis of distributional changes
over time, it is vital that the data set is balanced so that the distribution consists of ex-
actly the same countries over the years. Hence, I drop all countries for which the data is not
available during this whole period; this eliminates in particular the ex-soviet republics which
gained independence in 1990/1991. Also, it has become standard in the growth literature
(see for instance Mankiw et al., 1992) to drop countries which are primarily oil producers
or tiny states with a population below 300,000 because special economic conditions can be
thought to apply there. In the end, my data set contains 123 countries from every region of
the world. A list of all countries and their income values in 1970 and 2011 is contained in
Appendix A4 (Tables 6 and 7).

Figure 8 plots the evolution of some descriptive statistics of the data set over time. It is
not surprising to see that both the mean and median of income per capita increase steadily
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Figure 8: Descriptive Statistics for Income per Capita in the 123-Country Data Set

throughout the last four decades, with the only short blip occurring in the aftermath of the
global financial crisis in 2009. Mean income per capita was USD 4784 in 1970 and USD

13024 in 2011, which would equal an average yearly growth of
(
µ2011

µ1970

) 1
41 − 1 ≈ 2.47%. The

fact that the median is below the mean reflects the positive skewness of the distribution.
The second panel of Figure 8 displays measures of dispersion. In line with the evidence on
σ-divergence in the literature, the standard deviation has increased steadily over time, from
USD 5,189 in 1970 to USD 15,008 in 2011. Looking at the individual countries in Tables 6
and 7, one can see that in 1970, income per capita ranges from USD 353 (Equatorial Guinea)
to USD 23,659 (Switzerland), while 2011 it goes from USD 291 (Congo, Dem. Rep.) to
USD 78,131 (Luxembourg). Against this backdrop, one might wonder whether the increase
in standard deviation is driven by some outliers at the upper and lower tails of the distribu-
tion. This is however disproved by the other graph in this figure: The interquartile range,
which measures the difference between the 25th and 75th percentile of the distribution and
is robust to changes affecting only the tails, grows almost in sync with the standard devi-
ation.13 Hence, the increase in dispersion is driven by countries all over the distribution,
which underpins my standardization procedure of subtracting the mean and dividing by the
standard deviation.

Columns 5 and 6 of Tables 6 and 7 in Appendix A4 show the standardized income per
capita values in 1970 and 2011 and can give an impression of countries’ relative standing
in the wealth of nations. The skewness of the distribution is reflected in the range of the
values: The poorest countries are located at less than one standard deviation below the
mean (Equatorial Guinea at -0.8539 in 1970, Congo, Dem. Rep. at -0.8485 in 2011) while
the richest ones are more than three standard deviations above the mean (Switzerland at
3.6376 in 1970, Luxembourg at 4.3381 in 2011). Countries that grew at about the average
rate of 2.47% over the sample period, like Peru or Greece, kept their standardized income
values constant. But others improved their relative standing or fell behind, depending

13For comparison purposes with the standard deviation, the interquartile range is divided by a scaling
factor of 2 · 0.6745, resulting from the normal distribution’s interquartile range.
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on their growth rates, which ranged from -2.92% (Liberia) to 8.27% (Equatorial Guinea).
A regression of the growth rates on countries’ initial income per capita levels, gives an
insignificant β-coefficient which is zero up to the seventh decimal, in line with other results
on the absence of unconditional β-convergence in the literature. But have the varying
growth rates fostered the formation of convergence clubs? Let us now look at the shape
of the distribution and its changes over time with the help of the critical bandwidth for
unimodality.

5.2 Results: Changes in the Distribution and the Critical Band-
width

Kernel density estimations of the absolute income per capita values at four points in time
are depicted in Figure 9. Obviously, the overall increase in variance can hide underlying
intradistributional changes, making a look at the standardized densities in Figure 10 a bit
more revealing.

0 1 2 3 4

x 10
4

0

1

2
x 10

−4

Income per capita x

f(
x)

Year 1970

0 1 2 3 4

x 10
4

0

1

2
x 10

−4

Income per capita x

f(
x)

Year 1985

0 1 2 3 4

x 10
4

0

1

2
x 10

−4

Income per capita x

f(
x)

Year 2000

0 1 2 3 4

x 10
4

0

1

2
x 10

−4

Income per capita x

f(
x)

Year 2011

Figure 9: Kernel Density Estimation of the Absolute Income Per Capita Distribution Across the 123-Country
Data Set in the Years 1970, 1985, 2000 and 2011
The graphs are kernel density estimations with a Gaussian kernel and Silverman’s rule of thumb bandwidth (7).

The big mode of relatively poor countries contains most of the mass throughout the sample
period, but the smaller mode of richer countries close to two standard deviations above the
mean evolves throughout the years, appearing for instance more pronounced in 1985 than
in 1970 and slightly less so at the end of the sample. But as was argued above, conclusions
on club convergence based on visual inspection of changes in the distribution might be mis-
leading, so let us now look at CB and its changes over time.
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Figure 10: Kernel Density Estimation of the Standardized Income Per Capita Distribution Across the 123-Country
Data Set in the Years 1970, 1985, 2000 and 2011
The graphs are kernel density estimations with a Gaussian kernel and Silverman’s rule of thumb bandwidth (7).

When examining the modality of the distribution and its changes over time, we have seen
that CB has many benefits. However, one drawback of such a purely data-driven method
in practice is its sensitivity to outliers. If a multimodality test were only based on changes
in the first derivative of the density, a country such as Luxembourg, which in 2011 is four
rather than two standard deviations above the mean would constitute an individual mode.
In the empirical multimodality literature, there are two simple approaches to deal with such
isolated modes: Either eliminating outlier countries from the sample right away or including
a threshold in the modality test that a density value has to exceed in order to classify as a
mode. Here, I opt for the second possibility and find that for the standardized densities any
threshold f(x) = τ with τ ∈ [0.02; 0.10] can be used to eliminate individual country modes
while appropriately classifying larger clusters as modes.14

Silverman’s (1981) bootstrap multimodality test clearly confirms that we are dealing with a
density with up to two modes, once individual outlier modes are neglected: Conducting the
(static) multimodality test for each year with 5000 bootstrap replications, one cannot reject
the null of unimodality in the early years up to 1983. Figure 11 shows the p-values of the
unimodality test (dashed line) together with the 5% horizontal line for significance at the
95% level. After 1984, unimodality is always rejected - and bimodality never - which is in

14Eliminating right-away the countries like Luxembourg, Macao and Switzerland that are outliers at some
point in time would not affect the general results. Interestingly, the position of these countries varies as
well: Switzerland forms an outlier mode in the 1970s but then falls slightly behind in relative terms and
becomes absorbed into the rich mode, while Luxembourg, and most recently Macao, move away from the
rich cluster to form individual modes.
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Figure 11: The Evolution of the Critical Bandwidth for Unimodality Over Time and p-Values of Silverman’s
(1981) Bootstrap Test for Unimodality with 5000 Replications

line with the findings from other applications of multimodality tests in the literature, such
as Bianchi (1997). But while such static tests can only conclude that there was unimodality
until the 1980s and bimodality afterwards, we need a dynamic perspective to analyze the
intradistributional changes over time.
Does the bimodal shape already imply that club convergence has taken place? The key
insight from this paper is that this is not the case. The evolution of CB, the critical band-
width for unimodality and hence the test statistic in Silverman’s (1981) test, plotted as a
solid line in Figure 11, shows a rather nuanced picture: While the critical bandwidth varies
around a constant level from 1970 to the middle of the 1980s, it exhibits a notable increase
afterwards, but only until the turn of the millennium, when it peaks. The highest value of
0.6251 is reached in 2002. After that CB falls again until reaching levels of the 1970s and
early 1980s. Hence, we observe temporary club convergence into two modes of rich and poor
countries in the 1980s and 1990s, however, after the Millennium Peak, there is a tendency
of de-clubbing with modes becoming again less clearly separated. These remarkable devel-
opments deserve a closer look.

Let us first assess the significance of changes in CB over time as proposed in Section 3.3.5.
Figure 12 shows the results from bootstrap procedures with longitudinal correlation and
5000 replications: The p-values of a test of equality between CB in 1970 and later years
(left panel) form a U-shape around the Millennium Peak. Hence, CB’s increase in the
1980s/1990s makes it significantly higher in the late 1990s and early 2000s than at the
beginning of the sample in 1970. The subsequent decrease means that in the late 2000s, CB
is not significantly different from the 1970s anymore. The significance of this de-clubbing
movement is confirmed in the right panel: From 2005 onwards, CB is already significantly
lower than its 2002 peak value (equality test p-value of 0.01). Additional calculations with
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other reference years similarly elucidate the significance of the developments.
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Figure 12: p-Values of Bootstrap Tests for Significance in the Change of CB since 1970 and 2002 (based on 5000
Replications)

5.3 Polarization Measures

Before analyzing in more detail the intradistributional changes leading to club convergence in
the 1980s/1990s and de-clubbing in the 2000s, let us see to what extent these developments
are also captured in the polarization and inequality measures. In particular, I calculate
Wolfson’s bipolarization index PW from (12), the ER-polarization measure PER(α) from
(14) (with α = 0.25 and α = 1, taking the two limits of admissible values to mark the range
of the measure) as well as the Gini index (13) for (between-country) inequality. As was
discussed in Section 4, these measures are calculated on mean-standardized data.

CB PolaW PER(0.25) PER(1) Gini

CB 1.0000 0.8109 0.8637 0.8558 0.7904
PolaW 0.8109 1.0000 0.9772 0.8579 0.9580
PER(0.25) 0.8637 0.9772 1.0000 0.9035 0.9699
PER(1) 0.8558 0.8579 0.9035 1.0000 0.7865
Gini 0.7904 0.9580 0.9699 0.7865 1.0000

Table 4: Correlation Coefficients between CB and Polarization and Inequality Measures

Table 4 shows that over the sample period, CB has a high correlation with the polarization
and inequality measures, even though these tend to have an even higher correlation among
themselves. And when looking at the evolution of the measures over time in Figure 13
some interesting differences stand out - despite the Millennium Peak shared by all of them:
In contrast to CB, Wolfson’s bipolarization (left panel) starts to increase earlier (from the
1970s on) and more drastically so that even after the decline in the 2000s it stays well
above its initial level. Hence, the income per capita distribution of countries was clearly
more bipolarized in 2011 than in 1970. This evolution is similar to ER-Polarization with
identification parameter α = 0.25 (right panel), even if overall it exhibits less variation. On
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the other hand, ER-Polarization with α = 1 behaves more similar to CB over the sample
period, decreasing sizably after the Millennium Peak. The typically persistent Gini coeffi-
cient also shows a steady increase from 0.53 up to a Millennium Peak of 0.59, but afterwards
remains at a rather high level of around 0.57.
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Figure 13: Measures of Polarization and Inequality Calculated for the 123-Country Data Set Over the Sample
Period 1970-2011

.

Even small changes can be significant in measures with little variation. Therefore, I apply the
bootstrap significance test of changes to the polarization and inequality indices, checking
for each year if the change with respect to the sample start is significant. The p-values
from Figure 14 shows that for Wolfson’s bipolarization, ER-Polarization with α = 0.25 as
well as the Gini coefficient, one can reject equality with initial levels from the 1980s on,
confirming our insight that the overall increase trumped the decrease after the Millennium
Peak. Only ER-Polarization with α = 1 shows a similar U-shape for the p-values as CB.
One can conclude that, while the Millennium Peak appears in all polarization and inequality
measures, only one shows a sufficiently strong decrease in the 2000s that mirrors the de-
clubbing implied by CB.
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Figure 14: p-Values of a Test of Equality with 1970 Levels for the Polarization and Inequality Measures from
Figure 13 with 5000 Replications
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5.4 Countries Driving the Club Convergence and De-Clubbing
Movements

What has been going on beneath the surface to result in the club convergence and de-
clubbing movements that the changes in CB indicate? Let us now turn to the country
level and analyze which countries have been driving these developments. In order to reveal
countries’ club membership, we use the trough or antimode between the two modes in the
kernel density plots from Figure 10 as the cut-off. In line with intradistributional movements,
the trough fluctuates slightly between 0.5 and 1 standard deviation above the mean over
the years. One has to keep in mind that with standardized data this whole analysis focuses
on the relative rather than absolute wealth of nations. If a country grows at a moderate
but below-average rate, it will fall behind its peers. The standardized data abstracts from
the overall huge increase in income per capita: In 1970, the cut-off between the two modes
lies at 1.00 standard deviation above the mean, which would correspond to an income per
capita level of USD 9,950, while the cut-off in 2011 at 0.58 would correspond to an income
per capita of USD 21,365.

POOR CLUB IN 2011:

Albania, Argentina, Burundi, Benin, Burkina Faso, Bangladesh, Bulgaria, Bahamas, Belize, Bolivia,
Brazil, Bhutan, Botswana, Central African Republic, Chile, China, Cote d‘Ivoire, Cameroon, Congo (Rep.),
Congo (Dem. Rep.), Colombia, Comoros, Cape Verde, Costa Rica, Djibouti, Dominican Republic, Ecuador,
Egypt, Ethiopia, Fiji, Gabon, Ghana, Guinea, Gambia, Guinea-Bissau, Equatorial Guinea, Guatemala,
Honduras, Hungary, Indonesia, India, Iran, Jamaica, Jordan, Kenya, Cambodia, Laos, Lebanon, Liberia,
Sri Lanka, Lesotho, Morocco, Madagascar, Maldives, Mexico, Mali, Mongolia, Mozambique, Mauritania,
Mauritius, Malawi, Malaysia, Namibia, Niger, Nepal, Pakistan, Panama, Peru, Philippines, Poland,
Paraguay, Romania, Rwanda, Sudan, Senegal, Sierra Leone, El Salvador, Suriname, Swaziland, Syria, Chad,
Togo, Thailand, Trinidad & Tobago, Tunisia, Turkey, Tanzania, Uganda, Uruguay, Vietnam,
South Africa, Zambia, Zimbabwe

RICH CLUB IN 2011:

Australia, Austria, Belgium, Canada, Switzerland, Cyprus, Germany, Denmark, Spain, Finland, France,
United Kingdom, Greece, Hong Kong, Ireland, Iceland, Israel, Italy, Japan, Korea, Malta,
Netherlands, New Zealand, Portugal, Singapore, Sweden, Taiwan, United States

EXTREMELY RICH OUTLIER COUNTRIES IN 2011:

Luxembourg, Macao

Table 5: Club Membership in 2011, Highlighting in Bold Countries Changing Clubs in 1970-2011

The ensuing division of countries into the poor and rich club proves to be remarkably sta-
ble over time, confirming a key finding in the growth literature that comes with the club
convergence interpretation. In fact, 109 out of the 123 countries in my data set stay in the
same club for each of the 42 years from 1970 to 2011. Table 5 lists the countries in the
poor and rich club at the end of the sample period, printing in bold the ones that changed
clubs in between. The 28 countries in the rich club are mainly highly-developed members
of the OECD, with all other countries contained in the poor mode. But a closer look at

29



the within-club heterogeneity as well as some insightful country trajectories over time shed
more light on the club convergence and de-clubbing phenomena.

Among the 14 "mobile" countries that changed clubs at least once during the 1970-2011
period, we find the Asian tigers (such as Korea and Taiwan) as well as countries from the
European periphery (for instance Ireland, Spain, Cyprus) that typically managed the tran-
sition from the poor to the rich mode in the 1980s or early 1990s and have since become
firmly established there. But the club-changing countries also include Israel, which briefly
dipped below the cut-off point into the poor group before returning to rich, or countries from
the poor cluster, like Bahamas, which after some good years in the 1970s did not manage
to stay in the rich group.
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Figure 15: Trajectories of Selected Countries’ Standardized Income per Capita Over Time

Figure 15 shows the trajectories of some selected countries in terms of standardized in-
come per capita over the sample period and helps to illuminate the club convergence and
de-clubbing movements. While these intradistributional developments can be complex in
reality, my country-by-country examination reveals that they seem to be driven by a certain
number of countries. In fact, most countries’ relative income per capita positions are conspic-
uously stable, like for instance Germany or Kenya in the left panel of Figure 15. In contrast
to that, countries near the threshold can vitally influence club convergence or de-clubbing
movements: During the club convergence periods of the 1990s, there were relatively few
countries near the cut-off threshold and both clusters became comparatively concentrated.
One factor behind this may have been the fall of communism: Countries like Hungary or
Poland, which had advanced towards the threshold from below, were temporarily thrown
back into the poor mode. On the other hand, recent crossers into the rich mode, like Korea
or Ireland, continued to grow and move away from the threshold. This development went on
until the Millennium Peak in club convergence. After that, other driving forces led to clus-
ters becoming less concentrated again and more countries approaching the threshold from
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both sides. For instance, there are a number of middle-income countries like Poland, Turkey
and Chile whose sustained growth has pushed them closer to the threshold in recent years.
At the same time, we can see some countries from the rich cluster, such as Greece, pictured
in the right panel of Figure 15, perform badly and move closer to the threshold from above.
Overall, this leads to the two modes becoming less pronounced, which is captured by the
decrease in CB after the Millennium Peak.

Which lessons can we draw from this analysis and which developments can we expect for
the future? The idea of club convergence can be disheartening for poorer countries, as it
would imply convergence to their own poor mode instead of aspiring to catch up with their
richer peers. In this sense, it is positive to see that the de-clubbing movement has taken
over from club convergence after the Millennium Peak. If middle-income countries keep up
their above-average growth rates, they can be expected to pass the threshold into the rich
cluster in the coming years.

Overall, if developments continue as they did in recent years, we should see more hetero-
geneity and less of a clear separation into a poor and rich mode, further decreasing the
critical bandwidth for unimodality. Nevertheless, this does not mean that there will be
(unconditional) β-convergence: Some poor countries like China in the left panel of Figure
15 have grown a lot in recent decades (even if it still has a long way to go to come close
to the threshold), but there are others, particularly African countries, at the bottom of the
distribution, which have stayed stuck there or fell behind even more. Further extrapolating
into the future, there might be another club convergence movement into a very poor mode of
countries left behind and a mode comprising the rich and growing middle-income countries.
These are important insights, for instance for policymakers deciding on which countries to
focus in their poverty reduction and development aid programs.
While the de-clubbing movement of recent years gives a message of potential mobility in
the worldwide income per capita distribution, only the countries which have established an
environment conducive to growth can reap the benefits.

6 Conclusion

This paper has brought together three strands of the literature: Club convergence, nonpara-
metric multimodality tests and polarization. To the best of my knowledge, it is the first
paper not only to analyze changes in the critical bandwidth over time, which is facilitated
by data standardization, but also to conceptually link them to club convergence. Changes in
the critical bandwidth can capture intradistributional developments in one number, which
is easy to compute and interpret. When researchers analyze the modality of a static distri-
bution with the help of Silverman’s (1983) bootstrap multimodality test, it simply involves
tracing the test statistic over time.
Comparing the critical bandwidth to the main polarization measures from the literature,
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this paper has pointed out some parallels (like the reaction to changes in within-cluster
concentration and between-cluster separation) as well as notable differences, like invariance
to absolute increases in income and freedom of parameter constraints. In fact, only the crit-
ical bandwidth focuses exclusively on changes in the shape of the distribution. This might
play a role in the different results in the empirical application. All measures of polarization
and inequality show an increase and a Millennium Peak but differ in the magnitudes of the
effects, in particular the developments in the 2000s years.
The use of the critical bandwidth as a diagnostic tool for club convergence has given new
insights into intradistributional developments of income per capita across countries. It is up
to further research - and the political debate - how individual countries can grow in order
to achieve a prosperous position in the distribution.
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7 Appendix

7.1 Appendix A1: Proof of Theorem 3 on the Shape of a Stan-
dardized Density

Proof. In order to prove this theorem, one can make use of the following result for the
density of a transformed variable:

y = u(x) =⇒ fy(y) =
∣∣∣∂(u−1(y))

∂y

∣∣∣ · fx(u−1(y)) (15)

In our case the original density is the Gaussian kernel density estimate

fx(x) =
1

nhx

n∑
i=1

1√
2π
e−

1
2

(
x−xi
hx

)2
. (16)

The standardization is applied to the n data points xi so that yi = xi−µ
σ , for all i = 1, ..., n.

In order to obtain a kernel density estimate of the standardized data points, the domain
points x also have to be standardized: y = x−µ

σ . This gives the transformation

y = u(x) =
x− xi
σ

+ yi. (17)

The two statements of the proposition can now be proved:

(a) Plugging (17) into (15) gives

fy(y) =
∂(σ(y − yi) + xi)

∂y
· 1

nhx

n∑
i=1

1√
2π
e−

1
2

(
x−xi
hx

)2
(18)

= σ
1

nhx

n∑
i=1

1√
2π
e−

1
2

(
x−xi
hx

)2
= σfx(x) (19)
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(b) (15) can be rewritten involving the bandwidth hy, when it is defined as hy = σ−1hx, as
well as by substituting x− xi from (17):

fy(y) =
1

nhxσ

n∑
i=1

1√
2π
e−

1
2

(
σ(y−yi)+xi−xi

hx

)2
=

1

nhy

n∑
i=1

1√
2π
e
− 1

2

(
y−yi
hy

)2
(20)

Hence, when estimating fy(y) using hy = σ−1hx as the bandwidth, the direct corre-
spondence of density values from (19) holds and ensures that the shape of the density
is unchanged.

7.2 Appendix A2: Proof of Theorem 4 on the Consistency of the
Change in the Critical Bandwidth

Proof. Statement (a) of Theorem 4 concerns the consistency of the estimated difference in
CB2 − CB1 as n → ∞. From Theorem 2, proved in Silverman (1983) and Mammen et al.
(1992), it follows that at times t = 1, 2, CB1 and CB2 based on the kernel density are
consistent estimates for n → ∞. As a linear combination, their difference CB2 − CB1 is
hence a consistent estimate as well.
Concerning the lower bound of the difference in statement (b) of Theorem 4, let us distin-
guish the different cases of unimodality (j = 1) and bimodality (j = 2) at times t = 1, 2:

• In the trivial but special case of j = 1 both at times t = 1, 2, by Theorem 2, part (a),
it holds that both CB1 and CB2 converge to zero at the same rate of n−

1
5 . Hence,

CB2 − CB1
p→ 0 and c = 0 in P (|CB2 − CB1| ≥ c)→ 1. (21)

An intradistributional change that keeps the density unimodal will not affect CB when
n→∞.

• Assume now that j = 1 at t = 1 and j = 2 at t = 2. While CB1 asymptotically
converges to zero, CB2 is bounded from below by a constant c0 > 0 in Theorem 2.
Hence, the difference CB2 −CB1 also converges to a positive constant and one could
pick c = c0 > 0 as a lower bound in P (|CB2 − CB1| ≥ c)→ 1. So the change from a
unimodal to a bimodal shape is reflected in the fact that the difference in CB is strictly
positive, also asymptotically. By the same token, in the converse case of j = 2 at t = 1

and j = 1 at t = 2, CB2−CB1 converges to a negative constant but by working with
the absolute value, c = c0 > 0 as a lower bound in P (|CB2 − CB1| ≥ c) → 1 still
holds.

• Finally, consider j = 2 both at times t = 1, 2 but an intradistributional change that,
without loss of generality, leads to CB2 > CB1. From Theorem 2, part (b), both CB1

and CB2 are asymptotically bounded by constants c(1)0 and c(1)0 :

P (CB1 > c
(1)
0 )→ 1 and P (CB2 > c

(2)
0 )→ 1 (22)
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However, due to the intradistributional changes leading to CB2 > CB1, one can pick
c
(1)
0 < c

(2)
0 and define c = c

(2)
0 − c

(1)
0 in

P (|CB2 − CB1| ≥ c)→ 1. (23)

This completes the proof of Theorem 4.

7.3 Appendix A3: Proof of Theorem 5 on the Comparison between
the Critical Bandwidth and the Polarization Measures

Proof. (a) In a bimodal setting, the reaction of CB, PW and PER to a ceteris paribus
increase (decrease) in between-cluster separation or within-cluster concentration follows
directly from the definition of the measures, see Section 3 for CB as well as Esteban
and Ray (2012) for PW and PER .

(b) Scale Invariance:

• The standardized values on which CB is calculated are unaffected by a multiplica-
tive factor c in z = cx: z−µz

σz
= cx−cµx

cσx
= x−µx

σx
.

•
PW (z) = 2

µz
mz

(
1− 2Lz(0.5)−Giniz

)
(24)

with z = cx can easily be reduced to PW (x). Substituting Lz = Lx, Giniz = Ginix
(the Gini formula (13) also involves division by the mean) and µz = cµx as well
as mz = cmx leads to the cancellation of c. This is also the reason why PW is the
same both on raw and mean-standardized data, because mean-standardization can
be seen as a scaling by a constant c = 1

µ .

• In
PαER(z, w) =

∫ ∫
f(z)1+αf(w)|z − w|dzdw, (25)

one can make use of

z = u(x) =⇒ fz(z) =
∣∣∣∂(u−1(z))

∂z

∣∣∣ · fx(u−1(z)). (26)

to obtain the density f(cx) (and equivalently f(cy)). With z = cx = u(x), f(z) =
1
cf(x) as well as dz = c · dx, one gets

PαER(z, w) =

∫ ∫ (1
c
f(x)

)1+α 1
c
f(y)|cx− cy|c2dxdy = c1−αPER(x, y). (27)

This is the homogeneity of degree zero property Duclos et al. (2004) point out:
Mean-standardizing (c = 1

µ ) the data scales PER by µα−1. It can directly be
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used to prove the second part of the statement, namely the scale-invariance for
polarization based on mean-standardized data:

PER

( z
µz

)
= µα−1z PER(z) = (cµx)

α−1c1−αPER(x)

= µα−1x µ1−α
x PER

( x
µx

)
= PER

( x
µx

)
(28)

(c) Invariance to Absolute Income Changes:

• The standardized values on which CB is calculated are unaffected by an additive
constant a in z = x+ a: z−µz

σz
= x+a−(µx+a)

σx
= x−µx

σx
.

•
PW (z) = 2

µz
mz

(
1− 2Lz(0.5)−Giniz

)
(29)

with z = x + a can be expressed in terms of PW (x). It holds that µz = µx + a,
mz = mx+a and Giniz = µx

µx+a
Ginix (following (13), hence increasing all incomes

by a positive amount decreases inequality). With

Lx(0.5) =

∑0.5n
j=1 xj

nµx
(30)

one can write Lz(0.5) in terms of Lx(0.5):

Lz(0.5) =

∑0.5n
j=1 zj∑n
k=1 zk

=

∑0.5n
j=1 xj + 0.5 · n · a
n(µx + a)

=
Lx(0.5) · n · µx + 0.5 · n · a

n(µx + a)
(31)

Hence, (29) can be written as

PW (z) = 2
µx + a

mx + a

(
1− 2

Lx(0.5) · µx + 0.5 · a
µx + a

− µx
µx + a

Ginix

)
, (32)

which after some algebra simplifies to PW (z) = mx
mx+a

· PW (x). Increasing all
incomes by a positive amount will thus decrease bipolarization.

• Following the same steps as in part (b) with the transformation z = x + a, one
can directly see that the densities and differences involved do not change, hence
PER(z) = PER(x). Together with part (b) this implies for the mean-standardized
data:

PER

( z
µz

)
= µα−1z PER(z) =

( 1

µx + a

)1−α
PER(x) =

( µx
µx + a

)1−α
PER

( x
µx

)
(d) Dispersion Invariance:

• The standardized values on which CB is calculated are unaffected by a λ-squeeze
or λ-dispersion z = λx+ (1− λ)µx: z−µz

σz
= λx+(1−λ)µx−µx

λσx
= x−µx

σx
.
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• Similar to (b) and (c), with z = λx + (1 − λ)µx it holds that µz = µx, while
mz 6= mx unless the distribution is symmetric. Giniz = λGinix (following (13),
hence inequality increases or decreases one-to-one with a dispersion or squeeze in
incomes). Furthermore,

Lz(0.5) =

∑0.5n
j=1 zj∑n
k=1 zk

=

∑0.5n
j=1 (λxj + (1− λ)µx)

nµx
= λLx(0.5) + 0.5(1− λ). (33)

Plugging all these expressions into the formula for PW (z) and simplifying yields
PW (z) = λmxmz · PW (x).

• One can follow the same steps as in part (b) to show that PER(z) = λ1−αPER(x)

because the transformation z = λx + (1 − λ)µx induces the same changes to the
density and differences as z = cx with c = λ. For the mean-standardized data it
holds:

PER

( z
µz

)
= µα−1z PER(z) = µα−1x λ1−αPER(x) = λ1−αPER

( x
µx

)
(34)

(e) Symmetry of the Polarization Measure - Swapping Rich and Poor:

• The transformation equals a reflection of the distribution along the vertical line at
xL+xu

2 . The density values of two points of the distribution are swapped, f(z) =
f(xU+xL−x), which also holds for the standardized densities. The modality of the
distribution remains unaffected by this symmetric reflection, which by construction
leaves CB unchanged.

• For PW one can proceed analogously to parts (b) to (d) and derive µz = xL+xU −
µx, Giniz = µx

µz
Ginix as well as

Lz(0.5) =
−Lx(0.5) · µx + 0.5(xL + xU )

xL + xU − µx
. (35)

Plugging all these terms into the formula for PW (z) and simplifying yields PW (z) =
mx
mz
PW (x).

• Following the same steps as in part (b) with the transformation z = xL + xU − x,
one can see the densities and differences involved do not change, hence PER(z) =
PER(x). For the mean-standardized data, it then holds that

PER

( z
µz

)
= µα−1z PER(z) = (xL + xU − µx)α−1PER(x)

=
( µx
xL + xU − µx

)1−α
PER

( x
µx

)
. (36)
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7.4 Appendix A4: Descriptive Overview of the Countries in the
Data Set

Country code Country Absolute Income per Cap. Stand. Income Per Cap. Growth per Year
1970 2011 1970 2011 (1970-2011)

ALB Albania 3747.64 7364.71 -0.1998 -0.3771 0.0166
ARG Argentina 2950.94 14507.62 -0.3534 0.0988 0.0396
AUS Australia 16750.87 38499.27 2.3062 1.6974 0.0205
AUT Austria 12406.66 37282.53 1.4690 1.6164 0.0272
BDI Burundi 558.01 490.14 -0.8145 -0.8352 -0.0032
BEL Belgium 14252.76 35446.27 1.8248 1.4940 0.0225
BEN Benin 1153.63 1231.88 -0.6997 -0.7857 0.0016
BFA Burkina Faso 503.75 1051.52 -0.8250 -0.7978 0.0181
BGD Bangladesh 1364.96 1554.21 -0.6590 -0.7643 0.0032
BGR Bulgaria 3023.84 12906.67 -0.3393 -0.7800 0.0360
BHS Bahamas 12045.06 19366.61 1.3993 0.4226 0.0117
BLZ Belize 3510.06 7366.64 -0.2456 -0.3770 0.0182
BOL Bolivia 1629.12 4166.78 -0.6081 -0.5902 0.0232
BRA Brazil 3116.37 9294.53 -0.3215 -0.2485 0.0270
BTN Bhutan 1084.23 4607.02 -0.7131 -0.5609 0.0359
BWA Botswana 706.120 11810.75 -0.7860 -0.0809 0.0711
CAF Central African Republic 1032.93 617.29 -0.7230 -0.8267 -0.0125
CAN Canada 16064.66 35344.87 2.1740 1.4872 0.0194
CHE Switzerland 23658.73 44823.64 3.6376 2.1188 0.0157
CHL Chile 6336.88 15243.33 0.2992 0.1479 0.0216
CHN China 966.92 8068.60 -0.7357 -0.3302 0.0531
CIV Cote d‘Ivoire 2363.19 1371.83 -0.4666 -0.7764 -0.0132
CMR Cameroon 1233.60 1857.53 -0.6843 -0.7441 0.0100
COD Congo (Dem. Rep.) 836.55 290.63 -0.7609 -0.8485 -0.0255
COG Congo (Rep.) 1270.84 2426.87 -0.6772 -0.7061 0.0159
COL Colombia 4025.07 8407.92 -0.1463 -0.3076 0.0181
COM Comoros 1166.41 921.28 -0.6973 -0.8064 -0.0057
CPV Cape Verde 965.64 4125.81 -0.7360 -0.5929 0.0361
CRI Costa Rica 5446.86 10123.36 0.1277 -0.1933 0.0152
CYP Cyprus 5797.19 28183.25 0.1952 1.0101 0.0393
DEU Germany 12944.22 34519.98 1.5726 1.4323 0.0242
DJI Djibouti 5402.75 2391.99 0.1192 -0.7084 -0.0197
DNK Denmark 16978.34 35641.17 2.3501 1.5070 0.0183
DOM Dominican Republic 2705.56 8726.60 -0.4600 -0.2864 0.0290
ECU Ecuador 2533.23 6828.09 -0.4339 -0.4129 0.0245
EGY Egypt 905.40 4836.37 -0.7476 -0.5456 0.0417
ESP Spain 9549.38 28740.77 0.9183 1.0472 0.0272
ETH Ethiopia 556.73 782.71 -0.8148 -0.8157 0.0083
FIN Finland 13099.40 33747.33 1.6025 1.3808 0.0233
FJI Fiji 2951.07 4644.74 -0.3533 -0.5583 0.0111
FRA France 14512.68 31437.94 1.8749 1.2269 0.0190
GAB Gabon 5351.55 12402.88 0.1093 -0.0414 0.0207
GBR United Kingdom 13004.91 32259.81 1.5843 1.2817 0.0224
GHA Ghana 2114.91 2522.37 -0.5145 -0.6998 0.0043
GIN Guinea 1590.00 958.320 -0.6156 -0.8040 -0.0123
GMB Gambia 1266.55 1236.29 -0.6780 -0.7854 -0.0006
GNB Guinea-Bissau 1230.59 906.67 -0.6849 -0.8074 -0.0074
GNQ Equatorial Guinea 353.50 9175.83 -0.8539 -0.2564 0.0827
GRC Greece 8588.25 23698.65 0.7331 0.7112 0.0251
GTM Guatemala 2889.37 4235.90 -0.3652 -0.5856 0.0094
HKG Hong Kong 6777.86 38568.79 0.3842 1.7021 0.0433
HND Honduras 2108.75 2919.84 -0.5157 -0.6733 0.0080
HUN Hungary 4940.08 18852.01 0.0300 0.3883 0.0332
IDN Indonesia 825.20 4339.49 -0.763 -0.5787 0.0413
IND India 1222.28 3601.68 -0.6865 -0.6278 0.0267
IRL Ireland 8125.97 36704.62 0.6440 1.5778 0.0375
IRN Iran 3028.48 11818.47 -0.3384 -0.0803 0.0338
ISL Iceland 14466.64 31921.62 1.8660 1.2591 0.0195
ISR Israel 11729.06 25081.19 1.3384 0.8034 0.0187
ITA Italy 11089.52 29089.05 1.2152 1.0704 0.0238
JAM Jamaica 5474.39 5078.14 0.1330 -0.5295 -0.0018
JOR Jordan 2702.27 5092.50 -0.4013 -0.5285 0.0156
JPN Japan 11451.39 30427.21 1.2849 1.1596 0.0241

Table 6: First Part of the Descriptive Overview of Countries in the Data Set

For the beginning and end of the sample, 1970 and 2011, both absolute and standardized values of income per
capita are given. Absolute values are expressed in PPP 2005 USD, standardization is carried out by subtraction
of the mean and division by the standard deviation. The growth rate is the average yearly growth rate for the
country based on the 1970 and 2011 absolute values.
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Country code Country Absolute Income per Cap. Stand. Income Per Cap. Growth per Year
1970 2011 1970 2011 (1970-2011)

KEN Kenya 1474.72 1297.57 -0.6379 -0.7814 -0.0031
KHM Cambodia 1298.75 2347.91 -0.6718 -0.7114 0.0145
KOR Korea Rep 1903.57 27522.30 -0.5552 0.9660 0.0673
LAO Laos 654.52 2623.87 -0.7959 -0.6930 0.0344
LBN Lebanon 5189.38 13158.62 0.0780 0.8900 0.0230
LBR Liberia 1596.03 474.47 -0.6145 -0.8362 -0.0292
LKA Sri Lanka 2560.14 4701.08 -0.4287 -0.5546 0.0149
LSO Lesotho 536.82 1487.82 -0.8186 -0.7687 0.0252
LUX Luxembourg 22242.02 78130.59 3.3645 4.3381 0.0311
MAC Macao 5327.00 69471.51 0.1046 3.7611 0.0646
MAR Morocco 1914.60 3647.45 -0.5531 -0.6248 0.0158
MDG Madagascar 1327.29 759.41 -0.6663 -0.8172 -0.0135
MDV Maldives 1108.23 10343.66 -0.7085 -0.1786 0.0560
MEX Mexico 6929.52 12709.82 0.4134 -0.0210 0.0149
MLI Mali 452.41 941.06 -0.8349 -0.8051 0.0180
MLT Malta 6220.10 23993.08 0.2767 0.7309 0.0335
MNG Mongolia 958.07 5219.47 -0.7374 -0.5200 0.0422
MOZ Mozambique 408.34 817.70 -0.8434 -0.8133 0.0171
MRT Mauritania 1665.12 2615.75 -0.6012 -0.6935 0.0111
MUS Mauritius 3806.06 9645.06 -0.1886 -0.2252 0.0229
MWI Malawi 774.91 802.26 -0.7727 -0.8144 0.0008
MYS Malaysia 2743.98 13468.81 -0.3932 0.0296 0.0396
NAM Namibia 4142.39 5146.14 -0.1237 -0.5249 0.0053
NER Niger 1030.42 522.560 -0.7235 -0.8330 -0.0164
NLD Netherlands 14861.05 38054.85 1.9420 1.6678 0.0232
NPL Nepal 754.17 1185.38 -0.7767 -0.7888 0.0111
NZL New Zealand 14157.92 26666.53 1.8065 0.9090 0.0156
PAK Pakistan 1453.33 2472.89 -0.6420 -0.7031 0.0130
PAN Panama 4630.29 12154.75 -0.0297 -0.0579 0.0238
PER Peru 3357.04 8923.98 -0.2751 -0.2732 0.0241
PHL Philippines 2076.39 3521.06 -0.5219 -0.6332 0.0130
POL Poland 4616.73 18430.43 -0.0323 0.3602 0.0343
PRT Portugal 6807.18 22289.90 0.3898 0.6174 0.0294
PRY Paraguay 1815.40 4351.30 -0.5722 -0.5779 0.0216
ROU Romania 2526.24 13574.31 -0.4352 0.0366 0.0419
RWA Rwanda 971.20 1201.50 -0.7349 -0.7878 0.0052
SDN Sudan 1010.46 2373.99 -0.7273 -0.7096 0.0211
SEN Senegal 1633.78 1411.72 -0.6072 -0.7738 -0.0036
SGP Singapore 5262.33 51643.66 0.0921 2.5732 0.0573
SLE Sierra Leone 1182.68 867.03 -0.6941 -0.8101 -0.0075
SLV El Salvador 816.88 1116.53 -0.7646 -0.7934 0.0077
SUR Suriname 4156.31 6699.65 -0.1210 -0.4214 0.0117
SWE Sweden 16515.69 36100.79 2.2609 1.5376 0.0193
SWZ Swaziland 1504.57 4239.25 -0.6321 -0.5854 0.0256
SYR Syria 2743.49 3919.02 -0.3933 -0.6067 0.0087
TCD Chad 1123.32 1851.12 -0.7056 -0.7445 0.0123
TGO Togo 1082.39 946.69 -0.7135 -0.8047 -0.0033
THA Thailand 1982.10 8491.04 -0.5401 -0.3021 0.0361
TTO Trinidad & Tobago 9203.12 20196.31 0.8516 0.4779 0.0194
TUN Tunisia 2200.01 6632.04 -0.4981 -0.4259 0.0273
TUR Turkey 5732.40 14437.29 0.1827 0.0941 0.0228
TWN Taiwan 3770.13 28413.56 -0.1955 1.0254 0.0505
TZA Tanzania 1287.40 1269.39 -0.6740 -0.7832 -0.0003
UGA Uganda 985.33 1187.03 -0.7322 -0.7887 0.0046
URY Uruguay 7049.31 12625.06 0.4365 -0.0266 0.0143
USA United States 20494.50 42646.21 3.0277 1.9737 0.0180
VNM Vietnam 700.06 3447.77 -0.7872 -0.6381 0.0397
ZAF South Africa 5312.42 8457.45 0.1018 -0.3043 0.0114
ZMB Zambia 3873.56 2051.71 -0.1755 -0.7311 -0.0154
ZWE Zimbabwe 2128.35 4347.79 -0.5119 -0.5781 0.0176

Sample Mean 4784.40 13024.30 0 0 0.0272
Sample Stand. Deviation 5188.72 15008.01 1 1 0.2449

Table 7: Second Part of the Descriptive Overview of Countries in the Data Set

For the beginning and end of the sample, 1970 and 2011, both absolute and standardized values of income per
capita are given. Absolute values are expressed in PPP 2005 USD, standardization is carried out by subtraction
of the mean and division by the standard deviation. The growth rate is the average yearly growth rate for the
country based on the 1970 and 2011 absolute values.
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