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Contract Nonperformance and Ambiguity in Insurance
Markets

By Christian Biener, Martin Eling, Andreas Landmann, and Maria
Isabel Santana∗

Insurance contract nonperformance relates to situations when
valid claims are not paid by the insurer. We extend probabilis-
tic insurance models to allow for such nonperformance risk as well
as ambiguity regarding nonperformance and loss probabilities. We
empirically test theoretical predictions from our model within a
field lab experiment in a low-income setting. This is a persua-
sive context, since especially in emerging and poorly regulated mar-
kets there is a higher chance of contract nonperformance. In line
with our predictions, insurance demand decreases by 17 percent-
age points in the presence of contract nonperformance risk and is
reduced by a further 14 percentage points when contract nonper-
formance risk is ambiguous. It also seems that ambiguity does not
easily disappear with experience. The results have implications for
both industrialized and developing insurance markets.

I. Introduction

Insurance contracts fail to perform when valid insurance claims are not paid
or not paid in full by the insurer. In this paper, we investigate the role of con-
tract nonperformance risk and ambiguity in the decision to buy insurance. We
provide both theoretical as well as empirical contributions to the literature by ex-
panding extant models of contract nonperformance to account for ambiguity and
empirically testing theoretical implications in an experimental field lab within a
low-income (i.e., microinsurance) context.

Various circumstances including insolvency, discord about the losses covered,
and payment delays can cause contract nonperformance. The concept of claim
validity thus signifies the perceived vailidity of a claim from the policyholder’s
perspective but not necessarily its legal vailidity (Doherty and Schlesinger, 1990).

The prospect of potential contract nonperformance of insurance policies is re-
lated to the concept of probabilistic insurance, which was first introduced by
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Kahneman and Tversky (1979) as a novel insurance policy, which, in the event of
a loss, reimburses policyholders only with some probability strictly less than one.
Wakker, Thaler and Tversky (1997) find that a 20 percent premium discount is
demanded for a 1 percent risk of contract nonperformance using an experimental
setup. Herrero, Toms and Villar (2006) observe similar results in that agents
prefer standard insurance to probabilistic insurance and probabilistic insurance
to no insurance.

Doherty and Schlesinger (1990) formalize the setting by providing a model of
insurance demand in an insurance market with a given premium and a known
probability of insurance default. For an actuarially fair insurance premium they
find that risk averse agents will not fully insure in the presence of contract nonper-
formance risk. Additionally, increasing risk aversion does no longer induce higher
optimal insurance coverage. Subsequent empirical work by Zimmer, Schade and
Gründl (2009) and Albrecht and Maurer (2000) support the hypothesis of strong
detrimental effects of contract nonperformance on insurance demand.

An innovative feature of this research is the incorporation of ambiguity about
probabilities for shocks and contract nonperformance, for which we provide both
a theoretical model as well as an empirical test. As opposed to risk, where prob-
abilities can be assigned to all possible outcomes, ambiguity relates to a situation
where the probabilities of outcomes are unknown (Epstein, 1999)1. Whereas there
has been some research on the role of ambiguous shock probabilities on insurance
demand (Alary, Gollier and Treich, 2013; Hogarth and Kunreuther, 1989), neither
theoretical nor empirical work we are aware of focuses on ambiguity in the context
of contract nonperformance2. Standard economic utility models such as expected
utility (von Neumann and Morgenstern, 1947) only incorporate the mean over a
probability distribution to affect decisions. However, approaches using the com-
plete distribution as in Bayesian analysis are feasible to account for ambiguity
(Hogarth and Kunreuther, 1989). Ambiguity is of general relevance to economic
decision making because only in very few cases probabilities can be assigned to all
possible outcomes. There is an even higher potential relevance for the low-income
population context because several factors magnify ambiguity about probabilities.
Individuals in developing countries face a broad variety of perils arising from ge-
ographic settings (e.g., natural disasters), lack of hygiene in public infrastructure
(e.g., risk of diseases due to lack of water provision), and economic (e.g., un-
employment), political (e.g., lack of education), and legal (e.g., lack of contract

1Different terms to refer to situations where probabilities are known or unknown are used in the litera-
ture. ”Risk” as opposed to ”uncertainty” is already applied in Knight (1921). The terms ”unambiguous”
and ”ambiguous” probabilities have been introduced by Ellsberg (1961). Savage Leonard (1954) uses the
terms ”precise” and ”sharpe,” whereas Gärdenfors and Sahlin (1982) differentiate between the level of
”epistemic reliability” of a probability estimate to infer about the amount of information available con-
cerning all possible states and outcomes. We rely on the term ”ambiguity” as it is common in literature
(Camerer and Weber, 1992).

2Bryan (2013) provides a theoretical framework and empirical evidence from Kenya and Malawi for
an index insurance containing states of the world in which actual yields suggest losses but the index
insurance provides no reimbursement. However, this issue rather resembles basis risk inherent in index
insurance, which is different from contract nonperformance risk as discussed in this paper.



3

enforcement) environment. All these risks might be hard to quantify for normal
citizens.

Not only does this paper make contributions to understanding contract non-
performance in low-income insurance and ambiguity about shock probabilities
and contract nonperformance separately, but provides a framework to test the
interaction of these two aspects. We implement these issues by allowing both the
shock probability as well as the contract nonperformance risk to be ambiguous.
This setting resembles real-world scenarios where probabilities cannot be assigned
to all possible states of the world by most individuals, which has not been dis-
cussed in the literature. For a theoretical analysis we adapt the model proposed
by Alary, Gollier and Treich (2013) to allow for contract nonperformance risk as
defined by Doherty and Schlesinger (1990).

Extant empirical and theoretical evidence suggests that contract nonperfor-
mance risk leads to a reduction of insurance demand at least in developed in-
surance markets. However, no rigorous empirical investigation exists for the low-
income insurance context. Several reasons underline the specific relevance of
contract nonperformance in low-income insurance. Trust in insurance is a highly
sensitive issue in microinsurance, being a significantly determinant for demand
(Cole et al., 2013). Claims considered eligible by the insured but not paid by mi-
croinsurers may have a severely negative impact on perceptions and trust and thus
emerge as a potential piece of the puzzle explaining low microinsurance demand.
Only recently, Liu and Myers (2014) provide theoretical evidence for significant
reductions in demand for insurance resulting from perceived insurer default in a
microinsurance contexts. Perceptions of high contract nonperformance risk are
furthermore fueled by limited trust in regulators and legal institutions to enforce
contracts and supervise insurance markets. One main contribution of our work is
thus an empirical evaluation of contract nonperformance effects in a low-income
developing country setting.

Lastly, our work is related to the literature on experimental framing effects.
Several experiments on decision-making and insurance have shown that context
matters, e.g., Brun and Teigen (1988), Budescu and Wallsten (1985), Hershey
and Schoemaker (1980), Johnson et al. (1993), Mano (1994), Kahn and Sarin
(1988), and Kahneman and Tversky (1979) and many more. In particular, we are
interested in analyzing variations of the source of contract nonperformance and
its impact on insurance uptake. We expect that potential low-income customers
will not react similarly to different sources of contract nonperformance, that is,
different sources will give rise to various emotions and reactions (Kunreuther et al.,
2002; Zimmer, Schade and Gründl, 2009) as has been identified for developed
insurance markets. For example, individuals are likely to be more upset about a
claim not paid due to fraudulent processes (e.g., an insurance policy is not valid
because an agent misappropriates insurance premiums) as opposed to situations
in which an insurer is insolvent (Churchill and Cohen, 2006; Zimmer, Schade
and Gründl, 2009). Just as affect regarding the insured object has an impact
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on insurance demand as shown by Hsee and Kunreuther (2000) or Slovic et al.
(2007), affect regarding the sources of contract nonperformance may matter as
well. Indeed, research shows that people are generally less willing to take risks
when the source of the risk is another person, which is referred to as ”betrayal
aversion” (Bohnet et al., 2008).

For our empirical test, we apply an innovative experimental field lab approach
on a low-income sample from the Republic of the Philippines. The experimen-
tal field labs were implemented with a total of 1,008 participants from 42 rural
villages of the Iloilo and Guimaras provinces. We find that eliminating contract
nonperformance risk (i.e., the insurer always pays a claim) as well as eliminat-
ing the ambiguity about contract nonperformance risk (i.e., the probability of
the insurer’s contract nonperformance is positive and known) increases insurance
uptake. For the former, we observe a significant 17 percentage points increase
in uptake resulting from reducing contract nonperformance risk from 10 to 0
percentage points. Relative to a known 10 percent chance of contract nonper-
formance, ambiguity about the contract nonperformance risk leads to a further
significant decrease in uptake by 14 percentage points. We do not find evidence
for increased insurance uptake when shock probabilities are ambiguous, which is
opposed to previous findings such as those by Hogarth and Kunreuther (1989).
Effects of ambiguity appear to be not affected by experience and remain relatively
stable over time. We also find no significant effect of a negative frame of contract
nonperformance (i.e., inability versus unwillingness to pay) on insurance demand.

The remainder of this paper proceeds as follows. In Section II we present the
theoretical framework and the hypotheses. The experimental design as well as
the field implementation is explained in Section III. In Section IV we present the
empirical identification strategy and an overview of the sample characteristics.
The results are discussed in Section V. We conclude in Section VI.

II. Theoretical Framework and Hypotheses

In this section we formalize the characteristics of contract nonperformance risk
and ambiguity and relate them to the optimal insurance buying decision. To
this end, we rely on the theoretical foundations originating from Doherty and
Schlesinger (1990)3 for contract nonperformance risk and Alary, Gollier and Treich
(2013) for ambiguity. We assume that a decision maker with initial wealth w has
a positive probability p of suffering a loss L > 0. The individual can purchase
insurance that pays ε for a premium I(ε).4 In the case that the decision maker
buys insurance and the loss does not occur (with probability 1 − p), the agent
loses 0 and is left with w− I(ε). In the case that the decision maker incurs a loss

3Contract nonperformance risk differs from basis risk such as inherent in index-based crop insurance
because it is a downside risk only. Theoretical results on the demand for index insurance (Clarke, 2011)
as well as empirical evidence (Clarke and Kalani, 2011) are available and suggest that only moderately
risk-averse individuals should take up insurance.

4Note that in our definition, we do not specify whether the insurance is actuarially fair.
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of L and has insurance, there is a positive probability (r) that the insurer does not
pay the claim. In this case the decision maker is left with w− I(ε)−L; otherwise
the insurer pays and the decision maker gets w − I(ε) − L + ε. Our benchmark
setting is one with known contract nonperformance probability r. The expected
utility U for the decision maker is defined as:

U = (1− p)u(w − I(ε)) +(1)

p[(1− r)u(w − I(ε)− L+ ε) + ru(w − I(ε)− L)],

where u is the utility derived from the final payoff. When the insured amount
can be freely chosen, the decision maker maximizes U with respect to I(ε). When
the insured amount and premium is fixed, however, utility with insurance is com-
pared to the non-insurance case where ε and I(ε) are equal to zero. Here, we
assume the latter case and assume binary insurance decisions.

Our first area of interest is how insurance decisions change when there is a
positive probability that the insurance does not pay. To analyze this question we
compare the benchmark setup when r > 0 to the situation when r = 0. Note that
when changing r we also change the expected payout and hence the loading of the
insurance policy.5 It is obvious that insurance without contract nonperformance
risk is always preferred by risk-averse agents, because it features lower risk and
lower loadings ceteris paribus (see Appendix Proofs). The case is less trivial
when the premium amount is discounted by the nonperformance probability, i.e.
making the comparison ”‘fair”’ in terms of the loading factor. Let Ir(ε) be the
insurance premium with default risk r > 0, while I0(ε) denotes the premium
without default risk. Specifying Ir(ε) = (1 − r)I0(ε) leads to a constant loading
factor. The utility derived from insurance with contract nonperformance risk
becomes:

Ur>0 = (1− p)u(w − I0(1− r)) +(2)

p[(1− r)u(w − I0(1− r)− L+ ε) + ru(w − I0(1− r)− L)],

whereas utility derived from insurance without contract nonperformance risk on
the other hand is:

Ur=0 = (1− p)u(w − I0) + pu(w − I0 − L+ ε).(3)

Introducing contract nonperformance risk increases the expected payoff (if in-
surance has a positive loading) but entails the risk of a default on insurance claims.
These advantages and drawbacks are weighted differently by different types. The

5The loading factor of the insurance policy is defined as the ratio between premium amount and
expected claims. Expected claims decreases when there is evidence of possible contract nonperformance.
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following Lemmas can be shown to hold (see Appendix Proofs).

LEMMA 1: For sufficiently low loadings there must exist agents with sufficiently
high risk aversion such that insurance without default risk is preferred.

LEMMA 2: For sufficiently high loadings there must exist agents with suf-
ficiently low risk aversion above zero such that insurance with default risk is
preferred.

In reality, agents with low risk aversion are very sensitive to loadings and tend
not to buy insurance anyway when it is too expensive. Therefore, there is reason
to believe that the share of the population actually switching from no insurance
to insurance with default risk is relatively small. Ultimately the results hinge on
the exact shape of the utility function. We therefore simulate result with constant
relative risk aversion (CRRA)-type utility functions over a range of loading and
risk aversion parameters to obtain more exact predictions. 6 The results are clear-
cut in that the set of parameter combinations predicted to take up insurance
with contract nonperformance risk is a subset of the parameter combinations
predicted to take up insurance without contract nonperformance. Hence, demand
can only be lower with contract nonperformance risk. We thus formulate our first
hypothesis as follows.

H1 : Contract nonperformance risk reduces insurance demand.

Next, we focus on the effect of ambiguity of contract nonperformance risk on
insurance demand; that is, r is unknown. We redefine contract nonperformance
risk as the ambiguous probability r(γ), now depending on an unknown parameter
γ. The ambiguity is defined as a probability distribution for γ. We consider
a discrete support {1, . . . , n} for the random variable γ̃. Let q(γ) denote the
subjective probability that the true value of the parameter is γ, with

∑n
γ=1 q(γ) =

1.
In the case that γ is known, the expected utility is (similar to Equation 1):

U(γ) = (1− p)u(w − I(ε)) +(4)

p[(1− r(γ))u(w − I(ε)− L+ ε) + r(γ)u(w − I(ε)− L)].

Following Klibanoff, Marinacci and Mukerji (2005) we model ambiguity aver-
sion using an increasing and concave valuation function Φ for the probability of
contract nonperformance. The decision maker’s expected utility corresponds to:

Φ−1 (Eγ̃Φ(U(γ̃))) = Φ−1
(∑n

γ=1 q(γ)Φ(U(γ))
)
.(5)

6We set all other parameters such as initial wealth, shock and default probability, etc. according to
our game specifications. More details on the simulations can be found in the Appendix.
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Concavity of Φ expresses ambiguity aversion, i.e., an aversion to mean-preserving
spreads in the random probability of contract nonperformance r(γ̃). An ambi-
guity neutral agent uses a linear valuation function, essentially evaluating his
expected utility with the mean probability of nonperformance, which is Eγ̃r(γ̃).
For ambiguity loving agents, Φ is convex. An individual hence maximizes the
following expected utility function:

Eγ̃Φ(U(γ̃)) = Eγ̃Φ [(1− p)u(w − I(ε))+(6)

p[(1− r(γ̃))u(w − I(ε)− L+ ε) + r(γ̃)u(w − I(ε)− L)]] .

From this setting the following Lemma can be shown to hold (see Appendix
Proofs):

LEMMA 3: For ambiguity averse agents, the marginal willingness to pay for ad-
ditional insurance is strictly lower at every coverage point when (mean-preserving)
ambiguity over contract nonperformance risk is introduced.

This general statement over the marginal willingness to pay implies that also for
binary insurance decisions, insurance with known default risk is always preferred
by ambiguity averse agents. This in turn implies that uptake should be higher
with known default risk for ambiguity-averse agents. We thus derive our second
hypothesis as follows.

H2 : Ambiguity about contract nonperformance probabilities reduces
insurance demand.

Next, we focus on the effect of ambiguous shock probabilities on insurance
demand when there is a known risk of contract nonperformance, that is, p is
not known with certainty. We redefine the loss probability as an ambiguous
probability p(α), where α is an unknown parameter. The ambiguity is defined
as a probability distribution for α. The random variable α̃ has discrete support
{1, . . . , n}. In this case, the decision maker’s expected utility can be defined as:

Eα̃Φ(U(α̃)) = Eα̃Φ [(1− p(α̃))u(w − I(ε))+(7)

p(α̃)[(1− r)u(w − I(ε)− L+ ε) + ru(w − I(ε)− L)]] ,

where Φ follows the same properties as described above but now represents the
decision maker’s ambiguity aversion towards loss probabilities. Using a similar
approach as before, the following Lemma can be shown to hold (see Appendix
Proofs):

LEMMA 4: For ambiguity averse agents, the marginal willingness to pay
for additional insurance is strictly higher at every coverage point when (mean-
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preserving) ambiguity over loss probabilities is introduced.

This general statement over the marginal willingness to pay implies that uptake
should be higher with ambiguous loss probabilities for ambiguity-averse agents.
We thus derive our third hypothesis as follows.

H3 : Ambiguity about loss probabilities increases insurance demand.

Our fourth hypothesis is motivated by our discussion in Section 1, where we
show that several experiments on decision-making and insurance found that con-
text matters. In particular, we expect that potential policyholders will not react
similarly to different sources of contract nonperformance, that is, different sources
will give rise to various emotions and reactions (Kunreuther et al., 2002; Zimmer,
Schade and Gründl, 2009) as has been identified for developed insurance markets.
Thus, we state hypothesis four as follows:

H4 : Negatively framing contract nonperformance risk negatively af-
fects insurance demand.

Whereas some theoretical as well as experimental research justifying hypotheses
1, 3, and 4 exist, the theoretical model as well as the experimental results for
hypothesis 2 are original and have so far not been discussed in the literature.

III. Experimental Design

We use a field lab experiment that was implemented in the Iloilo and Guimaras
provinces of the Republic of the Philippines in October and November 2013.
We applied a two-stage randomization procedure where in the first stage rural
villages (locally known as Barangays) were randomly selected7 and in the second
step twelve individuals aged between 18 and 65 years were randomly selected from
complete household lists. Each recruited participant was asked to bring one peer
to the experimental session. Peers remained together in the game, forming four
groups (or sessions) of six participants.

Our experimental setup includes five treatment and one control group, ran-
domized across the four groups in each village. This random assignment was
implemented such that distinct treatments were played in each village, in order
to reduce the likelihood of correlations between village-level covariates and treat-
ment assignment or -order. A complete overview of all treatments is presented in
Table 1.

In total we conducted 166 sessions with 1,008 participants in 42 villages. Sub-
jects played an insurance game where they decided whether to take up insurance
or not, facing a probability of loss and a probability of contract nonperformance of
the insurance policy. Every participant was provided with an initial endowment

7Villages from municipalities with income classes 1 and 2 were excluded from the study (income
classes range from 1 to 5 and are defined by the Department of Finance (of the Philippines, 2008)).
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Table 1—Experimental Treatments

Treatments Control TNoDef TDef TLoss CFr TDef−Fr

Loss probability: pLoss pLoss pLoss ? pLoss pLoss

Default probability: pDefault pDefault ? pDefault pDefault ?

Framing: - - - - negative negative

pLoss 0.3 0.3 0.3 0.3 0.3 0.3

pDefault 0.1 0 0.1 0.1 0.1 0.1

Insurance cost (PHP) 50 60 50 50 50 50

Number of sessions 24 27 28 30 29 28

Number of subjects 144 162 168 180 174 168

W of PHP 210. Participants could opt to buy insurance at a cost I of PHP 50
(PHP 60 in the case of TNoDef )8. Each participant played six rounds of the game
and the initial endowment was restored at the start of each round.

The experimental procedure for one round was as follows. First, the instructor
explained the game to all participants and each participant received an initial
endowment in play money. Participants then decided whether they want to buy
insurance and paid the required premium. Once the insurance decision was made,
participants drew a ball from a bag to determine their shock. An orange ball
implied that the participant lost PHP 150. Participants who bought insurance
and had a shock could claim a payment from the insurer (except in the treatment
TNoDef where the claim was paid with certainty). Whether the insurer paid the
claim or not was determined by drawing a ball from a second bag. An orange ball
implied that the claim was not to be paid by the insurer (i.e., nonperformance of
the insurance contract).

Participants in each group of six were not allowed to exchange information or
talk among each other during the first round of the game. This procedure aims at
avoiding peer effects on the participant’s initial belief about probabilities. Partic-
ipants were then allowed to communicate with other members for the remaining
rounds. Participants were paid one of the six rounds played, which was selected
randomly by the participant from a third bag with six numbered balls represent-
ing the six rounds of the game. Our setting with multiple rounds allows analyzing
effects over time, which is especially interesting under ambiguity when experience
about losses and nonperformance can be shared within the peer network. In par-
ticular, one might expect ambiguity to decrease over time once enough learning
has taken place.

Under the benchmark Control setting, both the 30 percent chance of losing

8The insurance premium charged for the six treatments has a loading factor of approximately 20%
(25% for the TNoDef treatment), with the aim of making the insurance setup more realistic to the
Philippine insurance market. Insurance premiums usually have a risk loading and a cost loading. In
microinsurance markets high risk loadings for uncertainty in the estimation of expected losses usually
need to be added due to data constraints (Biener, 2013).
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PHP 150 and the 10 percent chance of contract nonperformance were known to the
participants. The variation in contract nonperformance probability introduced
in treatment TNoDef , i.e., the elimination of the 10 percent chance of contract
nonperformance as in the control group, allows us to make inferences about our
hypothesis 1. This results in a higher premium for treatment TNoDef with PHP
60.

In treatments TDef and TLoss we focus on the effect of ambiguity to investigate
hypotheses 2 and 3. Here, the probability of contract nonperformance (TDef )
and the probability of loss (TLoss) were ambiguous to the participants. In order
to provide the participants with an initial signal of the probabilities, the balls
in the ambiguous bags (for TLoss the first bag where the shock is drawn from
and for TDef and TDef−Fr the second bag where the contract nonperformance
is drawn from) were selected blindly from a big bag with 100 balls during the
instructions by one research assistant. From the 100 balls, 30 were orange and 70
were white for the TLoss treatment and 10 were orange and 90 white for the TDef
and TDef−Fr treatments. One of the participants was invited to count the balls
in the bag blindly to make sure that 10 balls were placed in the ambiguous bags.

In order to gather the participant’s beliefs about loss and default probabilities
a brief survey was implemented at the beginning of rounds 1, 2, 4, and 6 (i.e.,
before the insurance decisions). Here the participants provided guesses about the
number of orange balls in the respective bag and also stated the minimum and
maximum amount of orange balls they believed were in the bag. The first survey
would provide us with the participants’ beliefs regarding the probabilities of loss
and contract nonperformance without any peer or network effects.

We employ treatments CFr and TDef−Fr to make inferences about potential
framing effects. The standard framing of contract nonperformance was that the
insurer could not pay the claim. This framing is neutral and was implemented in
the Control group as well as in TNoDef , TDef , and TLoss. The negative framing
in treatments CFr and TDef−Fr presents the source of potential contract nonper-
formance as the insurer’s unwillingness to pay (e.g., due to policy exclusions or
invalid contracts resulting from agent fraud).

One important addition to the insurance game were the lottery games which
we use to classify each participant in terms of risk and ambiguity aversion. In
the lottery game, participants were presented pairs of monetary lotteries with
one to four outcomes, of which they had to choose one (Glöckner, 2009). The
outcome values varied between PHP -250 and PHP 250 and participants played
up to 122 lotteries, depending on their response time9. We use lotteries following
Ellsberg (1961), with which we classify individuals as ambiguity averse, ambiguity
neutral, or ambiguity loving. Participants earned the average of four randomly
drawn gambles, two from the gain domain and two from the loss domain.

9Lotteries were divided in four blocks, and each block had a maximum amount of time the participant
could spend on. Once the time was reached, the next block was presented. The lotteries were randomly
assigned within each block.
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The structure of the experimental session was as follows. First, a pre experi-
mental survey was conducted to gather individual and household characteristics
data, followed by the lottery game. Subsequent to the lottery game, the insurance
game started with an instructional part. Detailed explanations were provided by
one instructor with the help of visual aids and a test questionnaire was imple-
mented to assess participant’s understanding. Only when all questions of the
test questionnaire could be answered correctly was the participant allowed to
continue. Otherwise, there was another round of explanation for the subject.
Once the insurance game concluded a post experimental survey was conducted
to gather data on perception of the experimental insurance product, math capa-
bilities, past shocks, and insurance ownership as well as general experiences and
beliefs. Finally, participants were paid their earnings from both games plus a
show up fee.

Average earnings from the experiment were PHP 156.5 in the insurance game
and PHP 13.5 in the lottery game, amounting to a total of PHP 170, which is
approximately equal to 4 U.S. dollars (6 U.S. dollars in PPP)10. Additionally,
each participant received PHP 100 for showing up for the experiment and an
additional PHP 20 if the participant was the head of the household.

IV. Empirical Identification Strategy and Sample Characteristics

A. Empirical Identification Strategy

To estimate the effect of the treatments on insurance uptake we use a linear
probability model with the following specification:

(8) yi = α+

5∑
d=1

βdTd,i + γXi + εi,

where d = 1, . . . , 5 and yi is the binary insurance decision of participant i.
T1, . . . , T5 represent the different treatments, whereas the Control group is omit-
ted as the reference category. Xi is a vector of covariates including individ-
ual characteristics such as age, gender, years of education, employment, owned
dwelling/land, marital status, household size, as well as risk aversion, math capa-
bilities, past shock experience, and insurance ownership. In our regression setup
we pool the insurance decisions from all rounds and use clustered standard errors

10The official exchange rate was PHP 43.3 per U.S. dollar in early October 2013. The maximum real
gain of PHP 210 from the experiment for each participant is approximately 4.8 U.S. dollars (7.5 U.S.
dollars in purchasing power parity (PPP) using the latest available PPP conversion factor for private
consumption of 28.2 from 2012 (Bank, 2014);and is slightly below the minimum daily wage of PHP 250
in the agricultural sector in the Iloilo province as of October 2013 (of the Philippines, 2008). Note that
few people of our target population in fact earn the minimum wage. The median daily earnings of those
participants receiving a daily wage (12% of total sample) is only PHP 180. In addition, participants were
able to earn an additional amount in the lottery games, which are described in the course of this section.
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at the group level to correct for intragroup correlation.11

B. Sample Characteristics and Balancing Checks

Table 2 presents the mean values of individual characteristics by treatment
group and equality of means test. Results show that individual characteristics
are balanced throughout the treatments (i.e., versus the Control group) and that
few variables exhibit significant differences. Treatments TNoDef and CFr have
slightly higher proportions of female participants. The proportion of employed
participants in the CFr treatment is a bit lower than in the Control group. The
proportion of participants that owned a dwelling they live in is higher in the
TNoDef treatment than in the Control group. The proportion of individuals that
had members of their household reducing meals due to lack of financial resources
is lower in TLoss as compared to the Control group. The mean score (7 point
likert-scale) of individuals that find purchasing insurance risky is lower in TLoss.
Finally, the mean score (7 point likert-scale) of individuals that responded to
the question ”I avoid risky things” is larger under treatment TDef−Fr than in
the Control group. Overall, it is apparent that the sample is balanced across
treatment groups, with only one variable not balanced in treatment TDef−Fr
versus the Control group and two variables not balanced in treatments TNoDef ,
TLoss, and CFr. All variables were balanced in treatment TDef .

As a final check, we implement a multivariate analysis of variance to test for
differences between the means across treatment group on each of the variables
presented in the summary statistics. Column 7 of Table 2 shows the p-value
associated with the F statistic based on Wilks’ Lambda. We do not reject the
null hypothesis that the means across the groups are all equal, thus we conclude
that the participants’ characteristics shown in Table 2 are balanced across the
treatments and the Control group.

V. Empirical Results

A. Main Results

Table 3 presents the results of our linear probability model as well as results
from a probit model, where we estimate the effect of the different treatments
on insurance uptake. Standard errors are clustered at the group level to correct
for intragroup correlation. The omitted group in our regression is the Control
group. Column 1 presents the primary results for the treatment effects, column
2 includes a typhoon variable which takes a value of 1 if the subject was exposed

11Note that clustering at that level also takes serial correlation of decisions over rounds into account,
such that all rounds can be analyzed jointly. Regression results hold for separate estimations by round,
as shown later in Section V.



13

Table 2—Descriptive Statistics

(1) (2) (3) (4) (5) (6) (7)

Equality
Control TNoDef TDef TLoss CFr TDef−Fr of Means

(p-value)c

Insurance Take-up (Round 1) 0.708 0.870*** 0.560*** 0.761 0.644** 0.619* 0.000

(0.456) (0.337) (0.498) (0.428) (0.480) (0.487)

Age 39.86 38.80 38.96 39.93 38.76 39.86 0.867
(10.50) (10.08) (9.966) (10.98) (10.94) (9.755)

Gender (1=female) 0.741 0.840* 0.810 0.722 0.833* 0.786 0.228

(0.439) (0.368) (0.394) (0.449) (0.374) (0.412)

Married or in partnership (1=yes) 0.903 0.889 0.869 0.911 0.902 0.899 0.814

(0.297) (0.315) (0.338) (0.285) (0.298) (0.302)

Years of education 9.573 9.580 9.911 9.594 9.552 9.381 0.634
(2.642) (2.472) (2.476) (2.419) (2.210) (2.619)

Employment status (1=employed) 0.465 0.358 0.387 0.433 0.351* 0.429 0.391

(0.501) (0.481) (0.488) (0.497) (0.479) (0.496)

Regular Income (1=yes) 0.270 0.295 0.282 0.270 0.250 0.275 0.769

(0.447) (0.460) (0.453) (0.446) (0.436) (0.449)

Seasonal Income (1=yes) 0.716 0.787 0.732 0.663 0.653 0.637 0.297
(0.454) (0.413) (0.446) (0.475) (0.479) (0.484)

Owned dwelling (1=yes) 0.799 0.895* 0.845 0.856 0.839 0.851 0.435

(0.402) (0.307) (0.363) (0.353) (0.369) (0.357)

Reduced meals in last month (1=yes) 0.273 0.210 0.214 0.156** 0.218 0.244 0.548

(0.447) (0.408) (0.412) (0.363) (0.414) (0.431)

Owns Land (1=yes) 0.133 0.142 0.113 0.139 0.167 0.161 0.885
(0.341) (0.350) (0.318) (0.347) (0.374) (0.368)

Math ability score (0 min 8 max) 6.660 6.654 6.661 6.500 6.655 6.494 0.888

(1.698) (1.815) (1.630) (1.851) (1.612) (1.754)

Numeracy Score (0 min 16 max) 9.236 9.142 9.119 9.050 9.040 8.994 0.988

(3.084) (2.988) (2.999) (3.143) (2.930) (2.958)

Purchasing insurance is riskya 5.590 5.385 5.476 5.239* 5.341 5.275 0.755
(1.875) (2.016) (1.917) (2.007) (1.948) (2.050)

Insurance policy performancea 5.306 5.590 5.101 5.217 5.249 5.156 0.236

(2.004) (1.745) (1.996) (1.841) (1.944) (1.963)

Insurance ownership 0.528 0.580 0.577 0.594 0.557 0.542 0.881

(0.501) (0.495) (0.495) (0.492) (0.498) (0.500)

Illness/accident shock (1=yes) 0.625 0.627 0.631 0.578 0.590 0.563 0.741
(0.486) (0.485) (0.484) (0.495) (0.493) (0.498)

Weather/livestock shock (1=yes) 0.451 0.391 0.423 0.450 0.439 0.425 0.91

(0.499) (0.490) (0.495) (0.499) (0.498) (0.496)

Avoid risky things a 5.493 5.354 5.583 5.583 5.434 5.820* 0.326

(1.840) (1.935) (1.859) (1.830) (1.989) (1.744)

Ambiguity b 1.763 1.734 1.774 1.721 1.756 1.776 0.994
(0.711) (0.767) (0.786) (0.762) (0.768) (0.799)

Observations 144 162 168 180 174 168

Note: Mean coefficients reported; standard errors in parentheses. ascores based on a 7 point likert-
scale: 1-strongly disagree, 7-strongly agree.b Ambiguity classification: 1-ambiguity averse, 2-ambiguity
neutral, 3-ambiguity loving. c p-values for multivariate equality of means test based on Wilks’ lambda
test statistics. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 significance level for equality of means t-test of all
treatments versus the Control group.
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to typhoon Haiyan12 and column 3 incorporates additional covariates.13

The discussion of results is structured along the hypotheses defined in the pre-
vious sections. Eliminating contract nonperformance in treatment TNoDef , that
is, setting pdef = 0% instead of pdef = 10% results in a significant increase in
insurance uptake of 17 percentage points and 18 percentage points when covari-
ates are included. For all specifications the treatment dummy is significant at the
1 percent level. The results in general show that contract nonperformance risk
considerably decreases insurance take up and thus support our hypothesis 1.

Table 3—Average Treatment Effects

(1) (2) (3) (4)
(OLS) (OLS) (OLS) (Probita)

TNoDef 0.171*** 0.172*** 0.182*** 0.216***

(0.062) (0.063) (0.064) (0.061)

TDef -0.144* -0.143* -0.126* -0.115*

(.077) (0.078) (0.074) (0.068)

TLoss 0.034 0.037 0.048 0.049
(0.070) (0.070) (0.067) (0.068)

CFr -0.121 -0.119 -0.104 -0.096

(0 .080) (0.079) (0.075) (0.069)

TDef−Fr -0.104 -0.101 -0.091 -0.085

(0.079) (0.079) (0.075) (0.070)

Typhoon 0.043 0.045 0.046
(0.039) (0.037) (0.036)

Constant 0.707*** 0.686*** 0.393***

(0.058) (0.061) (0.144)

Observations 5,976 5,976 5,952 5,952

R2 0.055 0.057 0.078 0.079

F 12.09 10.55 3.97
Covariates No No Yes Yes

Note: Standard errors in parentheses, clustered at the group level.a The probit model results are
provided in terms of marginal effects.∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 significance level at 10, 5 and
1%.

The establishment of ambiguity towards the probability of contract nonperfor-
mance as represented by treatment TDef reduces insurance uptake by 14 percent-
age points and by 13 percentage points when covariates are included. For all

12Typhoon Haiyan passed by the Iloilo Province halfway through our experiment, in November 2013.
Our main effects are consistent before and after the typhoon Haiyan.

13The added covariates are age, gender, years of education, employment, owns dwelling, married (or
in partnership), household size, reduced meals in last month, owns lands, responsible for household
decisions, score in math capabilities, financial risk, insurer performance risk, experience, risk aversion,
insurance ownership, health shocks, weather/livestock shocks.
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specifications the treatment dummy is significant at the 10 percent level. The
results suggest that ambiguous contract nonperformance probabilities decreases
uptake and thus provide evidence for our hypothesis 2.

Ambiguity about the probability of loss as represented in treatment TLoss in-
creases uptake by 3 percentage points; however, the effect is insignificant in all
regression specifications, thus we do not find a significant impact of ambiguity
about loss probabilities on insurance uptake and thus our hypothesis 3 is not
supported. This result is opposed to previous research on the effect of shock
ambiguity in the context of non-probabilistic insurance that indicates a positive
impact (Hogarth and Kunreuther, 1989). However, our setup deviates from the
previous studies by using the probabilistic insurance concept, i.e., there is prob-
ability strictly larger than zero that the insurance does not pay a valid claim.
Thus, we only observe the effect of shock ambiguity conditional on the fact that
the insurance pays valid claims only with a probability of 90 percent.

Framing the insurer’s contract nonperformance risk negatively rather than neu-
trally as represented by treatments CFr and TDef−Fr leads to a reduction in insur-
ance uptake that lies between 10 and 12 percentage points. The effect, however, is
insignificant independent on whether contract nonperformance risk is ambiguous
or not. Thus, we reject hypothesis 4.

B. Secondary Results

Numeracy

We also analyze treatment effects by subject’s numeracy levels because a min-
imum level of numeracy skills might be necessary to adequately understand the
game and thus react on the experimental treatments. In order to assess subjects
levels of numeracy we use survey questions on mathematical ability and numeracy
(Weller et al., 2013). We construct a total score of numeracy by putting together
the scores for the mathematical ability with those from the numeracy scale. The
total score goes from 0 (no correct answer) to 16 (all answers answered correctly).
High numeracy subjects are those with a total score of 10 or more and low nu-
meracy subjects are those with a score of 9 or less. Table 4 shows the results by
numeracy level. Columns 1 and 2 show the result for the full sample, columns
3 and 4 present the results for the high numeracy subjects and columns 5 and
6 for low numeracy subjects. Participants with higher numeracy skills in gen-
eral experience stronger treatment effects. Eliminating contract nonperformance
in treatment TNoDef leads to an increase in insurance demand of 21 percentage
points for the high numeracy sample compared to 14 percentage points in the low
numeracy sample and to 17 percentage points in the total sample.

Ambiguity about the probability of contract nonperformance as implemented
in TDef leads to a reduction of 18 percentage points in insurance uptake for the
high numeracy sample, 4 points more than the full sample and 7 points more
than the low numeracy sample, whereas for the latter the treatment effect is not
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significant. Thus, subjects with low levels of numeracy react less to the ambiguity
manipulation and seem to exhibit less ambiguity aversion, a finding we elaborate
more on in Section V.B.

Table 4—Average Treatment Effects by Numeracy Level

Total Sample High Numeracy Low Numeracy

(1) (2) (3) (4) (5) (6)
(OLS) (OLS) (OLS) (OLS) (OLS) (OLS)

TNoDef 0.17*** 0.17*** 0.21*** 0.22*** 0.14* 0.12*

(0.063) (0.062) (0.070) (0.067) (0.073) (0.070)

TDef -0.14* -0.13* -0.18** -0.17** -0.11 -0.10
(0.077) (0.076) (0.087) (0.084) (0.085) (0.085)

TLoss 0.034 0.038 0.096 0.10 -0.025 -0.025
(0.070) (0.067) (0.085) (0.078) (0.074) (0.071)

CFr -0.12 -0.11 -0.098 -0.087 -0.14 -0.14

(0.080) (0.076) (0.092) (0.087) (0.088) (0.084)
TDef−Fr -0.10 -0.094 -0.18* -0.16* -0.042 -0.037

(0.079) (0.077) (0.096) (0.089) (0.079) (0.076)

Constant 0.71*** 0.43*** 0.69*** 0.34 0.72*** 0.35*
(0.058) (0.15) (0.067) (0.39) (0.063) (0.18)

Observations 5,976 5,952 2,778 2,772 3,198 3,180

R-squared 0.055 0.089 0.095 0.144 0.037 0.070
Covariates Yes Yes Yes

Note: Standard errors in parentheses, clustered at the group level. Covariates: age, gender, years of
education, employment, owns dwelling, married (or in partnership), household size, reduced meals in last
month, owns lands, responsible for household decisions, score in math capabilities, financial risk, insurer
performance risk, experience, risk aversion, insurance ownership, health shocks, weather/livestock shocks.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 significance level at 10, 5 and 1%.

Ambiguity towards the probability of contract nonperformance in combination
with a negative framing as implemented in TDef−Fr reduces insurance uptake by
18 percentage points for the high numeracy sample, whereas in the low numeracy
sample and the total sample the reduction is insignificant with an effect size of
4 percentage points and 10 percentage points respectively. Our estimates show
evidence that framing plays no role on the insurance demand for individuals with
high numeracy skills. As seen in Table 4, the effects of the TDef and TDef−Fr
on subjects with high numeracy are very similar, leading to the conclusion that
the reduction of insurance uptake for the high numeracy subgroup is driven by
the ambiguity towards the probability of contract nonperformance and not by
the framing. Results are intuitive since the framing of the treatment provides
no additional information to individuals regarding the probability of contract
nonperformance or the probability of loss, which are the elements we expect
rational subjects would use when assessing their insurance decision. Again, this
suggests that a correlation exists between numeracy skills and ambiguity aversion.
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Ambiguity Aversion

Table 5 presents the results of our linear probability model for ambiguity averse,
ambiguity neutral, and non-ambiguity averse subjects. Columns 1 and 2 show the
result for the ambiguity averse subjects, columns 3 and 4 present the results for
the ambiguity neutral, and columns 5 and 6 those for the ambiguity loving. Fol-
lowing our theoretical model, we would expect ambiguity averse subjects to have
a strong reduction of insurance demand in the presence of ambiguity towards the
probability of contract nonperformance while for non-ambiguity averse subjects
there should be no effect.

In order to classify subjects according to their ambiguity aversion levels, we
rely on the results obtained from the lottery games played in the first part of
our experimental session, in which we use Ellsberg (1961) lotteries to classify
individuals as ambiguity averse, ambiguity neutral, or ambiguity loving.

Table 5—Average Treatment Effects by Ambiguity Aversion

Ambiguity Averse Ambiguity Neutral Ambiguity Loving

(1) (2) (3) (4) (5) (6)
(OLS) (OLS) (OLS) (OLS) (OLS) (OLS)

TNoDef 0.17** 0.15** 0.20** 0.20** 0.16 0.078

(0.068) (0.069) (0.092) (0.095) (0.13) (0.13)

TDef -0.18** -0.16* -0.15 -0.14 -0.086 -0.087
(0.091) (0.086) (0.10) (0.100) (0.15) (0.15)

TLoss 0.035 0.022 0.061 0.041 -0.061 -0.065

(0.080) (0.076) (0.097) (0.095) (0.14) (0.14)
CFr -0.19** -0.17** -0.046 -0.037 -0.13 -0.13

(0.090) (0.084) (0.11) (0.10) (0.16) (0.15)

TDef−Fr -0.22** -0.20** -0.030 -0.028 -0.076 -0.099
(0.093) (0.089) (0.099) (0.100) (0.16) (0.15)

Constant 0.75*** 0.67*** 0.66*** 0.38 0.74*** 0.53

(0.064) (0.24) (0.079) (0.30) (0.13) (0.35)

Observations 2,466 2,448 1,956 1,950 1,104 1,104

R-squared 0.096 0.162 0.051 0.083 0.042 0.158

Covariates Yes Yes Yes

Note: Standard errors in parentheses, clustered at the group level. Covariates: age, gender, years of
education, employment, owns dwelling, married (or in partnership), household size, reduced meals in last
month, owns lands, responsible for household decisions, score in math capabilities, financial risk, insurer
performance risk, experience, risk aversion, insurance ownership, health shocks, weather/livestock shocks.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 significance level at 10, 5 and 1%.

Results are in line with our theoretical predictions. Ambiguity averse subjects
have a stronger reduction in insurance demand when the probability of contract
nonperformance is ambiguous as is apparent from columns 1 and 2 for the TDef
and the TDef−Fr treatments. When subjects are confronted with the TDef treat-
ment, insurance demand is reduced by 18 percentage points and when negative
framing is added to the ambiguous probability of contract nonperformance insur-
ance demand falls by 22 percentage points. However, for ambiguity neutral and
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ambiguity loving subjects there is no significant effect of contract nonperformance
ambiguity on insurance demand.

Ambiguity about the probability of loss has a low and insignificant effect on
insurance demand for the ambiguity averse individuals and for the non-ambiguity
averse. Framing the insurer’s contract nonperformance risk reduces insurance
uptake by 19 percentage points for the ambiguity averse subjects, but has no
effect on the ambiguity neutral and ambiguity loving subjects. In conclusion, the
findings indicate that ambiguity averse subjects attach a higher weight to the
subjective probability of contract nonperformance, and thus are less willing to
accept insurance as compared to non-ambiguity averse subjects.

C. Ambiguity over Rounds

Finally, we are interested in analyzing whether there is evidence that ambiguity
decreases over the rounds for ambiguity averse individuals. In our experiment - as
well as in reality - information about ambiguous probabilities might accumulate
through own or peer experience. A rational individual should update beliefs about
the unknown stochastic process based on new realizations. With more and more
observations arriving, the true probability can be estimated more precisely.14 In
terms of our model from Section II the subjective probability distribution q(.) over
the possible probabilities should converge towards a degenerate distribution with
value one at the true probability. Decreasing ambiguity with experience should
then be reflected in the participant’s insurance decision. In particular, effects of
ambiguity in loss or nonperformance probabilities should go to zero.

In Table 6, we therefore repeat specification (1) from Table 3 separately by
round to assess whether effects of the ambiguity treatments (TDef , TLoss and
TDef−Fr) fade away. Contrary to the learning hypothesis, however, effects exhibit
no clear trend. The effect of ambiguity in loss probability (TLoss) is insignificant
in all rounds, which is consistent with the pooled results. Also the effect of
ambiguity regarding contract nonperformance (TDef , TDef−Fr) is consistent with
the pooled results. Coefficients are all negative and most of them are significant.
Variation over time appears to remain within confidence bounds and lacks any
clear time trend.

As a next step, we compare these findings with participant’s beliefs about loss
and default probabilities. We elicited beliefs via a guess on the number of orange
balls contained in the bags were the shocks (or nonperformance) were drawn.
Besides a ’best guess’ we also asked for the minimum and maximum number they
deemed possible. The spread between minimum and maximum number of balls
can be used as a proxy for the extend of ambiguity. Table 7 presents how mean
guesses and the spread between minimum and maximum guess evolve over rounds
for different treatments. Columns 1 to 3 present the mean guesses of how many

14For example, ambiguity measured by the standard error of the probability estimate should decrease
with the square root of observed realizations.
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Table 6—Average Treatment Effects per Round for Ambiguity Averse Individuals

(1) (2) (3) (4) (5) (6)

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6

TDef -0.18* -0.24** -0.17* -0.19** -0.14 -0.17*

(0.094) (0.10) (0.098) (0.097) (0.10) (0.098)
TLoss 0.11 0.048 0.087 -0.035 0.016 -0.015

(0.087) (0.089) (0.094) (0.094) (0.087) (0.081)
TDef−Fr -0.16 -0.21** -0.24** -0.28*** -0.16 -0.27***

(0.10) (0.10) (0.10) (0.10) (0.100) (0.097)

Observations 411 411 411 411 411 411
R-squared 0.075 0.111 0.136 0.096 0.093 0.092

Note: Standard errors in parentheses, clustered at the group level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
significance level at 10, 5 and 1%.

balls participants believed were in the bags where the contract non performance
shock was drawn for treatments TDef and TDef−Fr and where the loss shock was
drawn for treatment TLoss. Columns 4 to 6 illustrate the mean spread between
minimum and maximum guess. Additionally, columns 7 to 9 show the mean
difference between beliefs and the real number of balls in the bags.

Interestingly, participants appear to be pessimistic in treatments TDef and
TDef−Fr, as the average guess is substantially above the 1.0 that would be the av-
erage probability. These guesses if anything have a very subtle upward tendency,
away from the real value of balls contained in the bags. The spread between
maximum and minimum guess (columns 4 to 6) seems to decrease over round,
suggesting a decrease in the extend of ambiguity. On the other hand, the decrease
is very limited and a substantial spread remains. Also, the difference between the
orange balls that participants believe are in the bag and the real number of balls
(columns 7 to 9) has no such downwards tendency. Hence, overall participants
do not significantly improve their guesses over rounds.

Table 7—Individual’s Beliefs About Loss and Contract Non-Performance Probabilities

Mean Guess Mean Spread Mean Deviation
TDef TLoss TDef−Fr TDef TLoss TDef−Fr TDef TLoss TDef−Fr

Round 1 2.59 2.98 2.61 1.81 2.48 2.07 2.03 1.16 1.69
Round 2 2.67 3.14 2.60 1.93 2.40 1.91 2.17 1.20 1.64
Round 4 2.54 3.10 2.78 1.63 2.23 1.79 2.04 1.22 1.73
Round 6 2.65 3.17 2.70 1.55 2.29 1.83 2.16 1.15 1.63

Note: Guesses elicited via a short survey in rounds 1, 2, 4 and 6 about average, minimum and maximum
number of orange balls from a total of ten balls (compare explanation in Section III). Spread computed
as difference between minimum and maximum number of balls stated. Deviation measures the difference
between guesses and real number of orange balls.

In sum, there is no clear evidence of a reduction of ambiguity across rounds.
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This in particular holds for the TDef and TDef−Fr treatments where we found
persistent negative treatment effects on insurance uptake. There might be reasons
for the absence of learning that are particular to our experiment. It is possible, for
example, that participants did not have all the information from other players of
their shock history, so that they could not properly update on their signal. Second,
participants might have needed more experience with the insurance product in
order to reduce their ambiguity regarding probabilities, i.e. updating processes
might take longer than the duration of the experiment permits. However, it is
also possible that ambiguity persists even with better information transmission
and a longer time horizon.

VI. Conclusion

This paper finds evidence in support of the theoretical prediction of reduced
insurance uptake when contract nonperformance risk is present, providing first
evidence for this relationship in a low-income insurance setting. Furthermore,
we are the first to analyze the impact of ambiguous contract nonperformance
risk for which we find a significant detrimental impact on insurance uptake. In
contrast, we show that ambiguity does not play a large role when it comes to loss
probabilities as found in previous studies.

In particular, the results from our experimental field lab suggest that contract
nonperformance risk decreases insurance uptake by 17 percentage points and that
ambiguity about contract nonperformance risk reduces uptake even further by 14
percentage points. The variation of causes for contract nonperformance through
different framings of this aspect (i.e., the insurer cannot pay a claim versus the
insurer is not willing to pay a claim) does not lead to an obvious result.

The paper presents additional evidence that the effects of ambiguity are not
easily eliminated over time by learning about probabilities. While one might
argue that learning in reality might take place to a larger extend, it also seems
intuitive that random villagers from a low-income setting cannot effectively do
Bayesian updating or compute confidence bounds around their probability guesses
- neither in the experiment nor in reality.

The results have implications for all stakeholders with an interest in developing
microinsurance markets. In line with our results is a call for introducing sound
regulatory frameworks in microinsurance markets, particularly focusing on as-
suring low levels of contract nonperformance risk as well as limiting ambiguity
about this risk through an increase in market transparency. Furthermore, it al-
lows insurers active in this market to focus on sound policies and practices to gain
competitive advantage and build trust in the market.
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Proofs

A1. Positive Probability of Insurance Nonperformance Reduces Willingness to Pay

To show that demand for insurance is lower when there is a positive probability
of insurance nonperformance than when the probability is zero, it will suffice to
compare the marginal willingness to pay under both scenarios. The marginal
willingness to pay when r > 0 can be obtained with the first-order condition for
optimizing (1) with respect to coverage ε:

∂U

∂ε
= (1− p)u′(w − I(ε))(−I ′(ε)) + p[(1− r)(A1)

u′(w − I(ε)− L+ ε)(−I ′(ε) + 1) + ru′(w − I(ε)− L)(−I ′(ε))] = 0.

We solve (A1) for I ′(ε) and get:

I ′(ε) =
p(1− r)u′(w − I(ε)− L+ ε)

(1− p)u′(w − I(ε)) + p[(1− r)u′(w − I(ε)− L+ ε) + ru′(w − I(ε)− L)]
.

(A2)

This can be rewritten as:

I ′(ε) =
pu′(w − I(ε)− L+ ε)

(1− p)u′(w − I(ε)) · 1
(1−r) + p[u′(w − I(ε)− L+ ε) + r

(1−r)u
′(w − I(ε)− L)]

.

(A3)

The expected utility U for the decision maker when r = 0 is defined as:

U = (1− p)u(w − I(ε)) + p(u(w − I(ε)− L+ ε)).(A4)

The marginal willingness to pay is:

I ′(0) =
pu′(w − L)

(1− p)u′(w) + pu′(w − L)
.(A5)

Comparing equations (A3) and (A5) it is clear that the marginal willingness to
pay for insurance when there is a positive probability for contract nonperformance
is lower than that of the insurance paying with certainty.
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A2. Lemma 1 and Lemma 2

In order to show that LEMMA 1 and LEMMA 2 hold, it will suffice to show
that for some agents Ur>0 > Ur=0:

Ur>0 − Ur=0 = (1− p)[u(w − I0(1− r))− u(w − I0)]+(A6)

p(1− r)[u(w − I0(1− r)− L+ ε)− u(w − I0 − L+ ε)]−
pr[u(w − I0 − L+ ε)− u(w − I0(1− r)− L)]

We restrict our attention to risk averse agents with concave utility functions,
as only those would buy insurance. For agents with concave utility functions it
holds: u′(A) > u′(A + B). We implement an upper bound approximation such
that: u(A+B)− u(A) < u′(A). Hence:

Ur>0 − Ur=0 = (1− p) [u(w − I0 + rI0))− u(w − I0)]︸ ︷︷ ︸
<u′(w−I0)rI0≤u′(w−I0−L+ε)rI0

+(A7)

p(1− r) [u(w − I0(1− r)− L+ ε)− u(w − I0 − L+ ε)]︸ ︷︷ ︸
<u′(w−I0−L+ε)rI0

−

pr [u(w − I0 − L+ ε)− u(w − I0 − L+ rI0)]︸ ︷︷ ︸
>u′(w−I0−L+ε)(ε−rI0)

= (1− p)u′(w − I0 − L+ ε)rI0 − τ1+

p(1− r)u′(w − I0 − L+ ε)rI0−
τ2 − pru′(w − I0 − L+ ε)rI0 − τ3

= (1− pr)u′(w − I0 − L+ ε)rI0 − pru′(w − I0 − L+ ε)(ε− rI0)−
∑

i=1,2,3

τi,

where τi are the approximation errors which are zero for risk-neutral agents
and strictly increasing in risk aversion. Using I = (1 + α)εp we get:

Ur>0 − Ur=0 = (1− pr)u′(w − I0 − L+ ε)r(1 + α)εp−(A8)

pru′(w − I0 − L+ ε)(ε− r(1 + α)εp)−
∑

i=1,2,3

τi

= u′(w − I0 − L+ ε)prεα−
∑

i=1,2,3

τi.

From this result we know that for sufficiently low loadings there must exist
agents with sufficiently high risk aversion such that Ur>0 < Ur=0. On the other
hand, for sufficiently high loadings there must exist agents with sufficiently low
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risk aversion above zero such that Ur>0 > Ur=0. Yet, agents with low risk aver-
sion are very sensitive to loadings and tend not to buy insurance when it is too
expensive. Ultimately the results hinge on the exact shape of the utility function.
Therefore, we implement simulations over a range of parameters to obtain more
exact predictions. Simulation results can be found in Appendix section A.2.

A3. Lemma 3: Ambiguity of Contract Nonperformance

Lemma 3 can be shown by comparing the marginal willingness to pay when r
is unknown to when r is known. The marginal willingness can be obtained with
the first-order condition for optimizing (A8) with respect to coverage ε:

The first-order condition with respect to coverage ε is:

Eγ̃Φ′(U(γ̃))[(1− p)u′(w − I(ε))(−I ′(ε)) + p[(1− r(γ̃))u′(w − I(ε)−(A9)

L+ ε)(−I ′(ε) + 1) + r(γ̃)u′(w − I(ε)− L)(−I ′(ε))]] = 0.

His marginal willingness to pay I(ε) for a reduction ε in loss is:

I ′(ε) =
pu′(w − I(ε)− L+ ε)

(1− p)u′(w − I(ε)) · r̂ + p[u′(w − I(ε)− L+ ε) + r̄u′(w − I(ε)− L)]
,

(A10)

where r̂ =
Eγ̃Φ′(U(γ̃))

Eγ̃(1−r(γ̃))Φ′(U(γ̃)) and r̄ =
Eγ̃r(γ̃)Φ′(U(γ̃))

Eγ̃(1−r(γ̃))Φ′(U(γ̃)) .

We are interested in comparing the willingness to pay of an individual when
there is ambiguity regarding nonperfomance risk to the case when the probability
of nonperformance is known. That would be the same as comparing:

I ′(ε)Control =

(A11)

pu′(w − I(ε)− L+ ε)

(1− p)u′(w − I(ε)) · 1
(1−r) + p[u′(w − I(ε)− L+ ε) + r

(1−r)u
′(w − I(ε)− L)]

and

I ′(ε)Def =(A12)

pu′(w − I(ε)− L+ ε)

(1− p)u′(w − I(ε)) · r̂ + p[u′(w − I(ε)− L+ ε) + r̄u′(w − I(ε)− L)]
.

In order to compare the two equations it will suffice to compare 1
1−r to r̂ and

r
1−r to r̄.
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1

1− r
> r̂(A13)

1

1− r
>

Eγ̃Φ′(U(γ̃))

Eγ̃(1− r(γ̃))Φ′(U(γ̃))

r · Eγ̃Φ′(U(γ̃)) > Eγ̃r(γ̃)Φ′(U(γ̃)).

Comparing 1
1−r and r̂ is the same as comparing the left and right hand size

of equation (A13). The desired result follows from the concavity of Φ(.). Note
that as r(γ̃) increases, the ambiguity averse agent’s utility decreases, and due to
the concavity of Φ, Φ′(U(γ̃)) increases as r(γ̃) increases. The right hand side of
equation (A13) gives higher weight to Φ′(U(γ̃)) for larger values of r(γ̃) while the
left hand size gives a constant weight to Φ′(U(γ̃)), namely r.

r

1− r
> r̄(A14)

r

1− r
>

Eγ̃r(γ̃)Φ′(U(γ̃))

Eγ̃(1− r(γ̃))Φ′(U(γ̃))

r · Eγ̃Φ′(U(γ̃)) > Eγ̃r(γ̃)Φ′(U(γ̃)).

Same argument as presented above applies for equation (A14). Thus, we have
that the willingness to pay for the case in which the probability of contract non-
performance is known is higher than when it is unknown.

A4. Lemma 4: Ambiguity in Shock Probabilities

Lemma 4 can be shown by comparing the marginal willingness to pay when p
is unknown to when p is known. The marginal willingness can be obtained with
the first-order condition for optimizing (7) with respect to coverage ε:

The first-order condition with respect to coverage ε is:

Eα̃[(1− p(α̃))u′(w − I(ε))(−I ′(ε)) + p(α̃)[(1− r)u′(w − I(ε)−(A15)

L+ ε)(−I ′(ε) + 1) + ru′(w − I(ε)− L)(−I ′(ε))]]Φ′(U(α̃)) = 0,

and thus we get the marginal willingness to pay:

I ′(ε) =
(1− r)u′(w − I(ε)− L+ ε)

p̄u′(w − I(ε)) + (1− r)u′(w − I(ε)− L+ ε) + ru′(w − I(ε)− L)
,

(A16)

where p̄ = Eα̃(1−p(α̃))Φ′(U(α̃))
Eα̃p(α̃)Φ′(U(α̃)) .
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We are interested in comparing the willingness to pay of an individual when
there is ambiguity regarding loss probabilities to the case when the loss probability
is known. We thus compare I ′(ε)Control and I ′(ε)Loss:

I ′(ε)Control =(A17)

(1− r)u′(w − I(ε)− L+ ε)

u′(w − I(ε)) · 1−p
p + (1− r)u′(w − I(ε)− L+ ε) + ru′(w − I(ε)− L)

and

I ′(ε) =(A18)

(1− r)u′(w − I(ε)− L+ ε)

p̄u′(w − I(ε)) + (1− r)u′(w − I(ε)− L+ ε) + ru′(w − I(ε)− L)
.

In order to compare the two equations it will suffice to compare 1−p
p to p̄.

Eα̃(1− p(α̃))Φ′(U(α̃))

Eα̃p(α̃)Φ′(U(α̃))
<

1− p
p

(A19)

pEα̃Φ′(U(α̃))− pEα̃p(α̃)Φ′(U(α̃)) < Eα̃p(α̃)Φ′(U(α̃))− pEα̃p(α̃)Φ′(U(α̃))

Eα̃pΦ
′(U(α̃)) < Eα̃p(α̃)Φ′(U(α̃))

As p(α̃) increases the ambiguity averse agent will have lower levels of utility,
and due to the concavity of Φ, Φ′(U(α̃)) increases as p(α̃) increases. The right
hand side of (A19) gives higher weight to Φ′(U(α̃)) as p(α̃) increases while the
left hand size gives the constant weight p to Φ′(U(α̃)). Thus for ambiguous averse
agents the willingness to pay when the loss probability is ambiguous is larger than
when it is known.
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Simulations

We have derived that under some circumstances (i.e., high loading, low risk
aversion) the insurance with default risk might be preferred. Intuitively, some
might value the gain in expected payoff more than the risk of contract nonper-
formance. To assess the extent of this phenomenon we specify a CRRA utility
function of the following form:

u(A) =
A1−γ

1− γ
,(B1)

where γ = 0 indicates risk neutrality and risk aversion increases in γ.
We fix the following parameters:

Table B1—Parameters

Without Nonperformance With Nonperformance

Initial Endowment 210 210

Shock probability p 0.3 0.3

Loss 150 150
Insurance Payout ε 150 150

Nonperformance risk 0 0.1

Insurance premium I0 I0(1− r)
Loading factor α α

The insurance premium fully depends on the loading factor because I = (1 +
α)εp = (1 + α)45. Using the specifications shown in Table B1 we can calculate
the utility difference Ur>0−Ur=0 for any combination of (α, γ). Figure B1 shows
the result of our simulations.

As shown theoretically before, low risk-aversion types under high loading en-
vironment might prefer the nonperformance risk. However, for high loadings the
types preferring insurance with default might not opt for insurance anyway. To
illustrate this, figure B2 shows our simulation results for insurance uptake for the
case of insurance with default.

Indeed, only those who would anyway not take up insurance prefer insurance
with nonperformance risk. This implies that demand for the insurance product
without nonperformance risk must be larger, because it is always preferred by
those risk-averse enough to take up insurance. Figure B3 shows the results of our
simulations for the case of insurance without nonperformance risk.

Hence, our prior demand analysis is confirmed when comparing Figures B2 and
B3: The region of uptake with contract nonperformance risk is a subset of the
uptake region without nonperformance.
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Figure B1. Preference for insurance with contract nonperformance risk or without

Figure B2. Insurance uptake with contract nonperformance risk
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Figure B3. Insurance uptake without contract nonperformance risk


