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Flexible Modeling of Binary Data Using the

Log-Burr Link

February 27, 2015

Abstract

Popular link functions often fit skewed binary data poorly. We

propose the log-Burr link as flexible alternative. The link nests the

complementary-log-log and logit link as special cases, determined by

a shape parameter which can be estimated from the data. Shrinkage

priors are used for the shape parameter, furthermore the parameter is

allowed to vary between subgroups for clustered data. For modeling

of nonlinear effects basis function expansions are used. The associated

regression coefficients are reparameterized as random effects. Inference

is done in a fully Bayesian framework. Posterior simulation is done via

the No-U-Turn sampler implemented in Stan, avoiding convergence

problems of the Gibbs sampler and allowing for easy use of nonconju-

gate priors. The proposed methods and the effect of misspecification of

the modeled dgp are investigated in a simulation study. The approach

is applied on large scale unemployment data.

Keywords: Log-burr link; skewed binary data; shrinkage priors

1 Introduction

Most response functions for binary data are given by cdfs:

F (x) =

∫ x

−∞
f(x) du.

Popular choices for f(x) are densities from the location scale family such as

the logistic and normal distribution:

f(x) = σ−1g(
x− µ
σ

),
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where σ and µ are usually not identified. The shape of f(x) determines

the flexibility of the resulting response function. The most popular choices

for f(x) are symmetric and henceforth inappropriate for unbalanced binary

data. Data of this kind are e.g. common in discrete duration analysis, panel

data or in the context of propensity score weighting. More flexibility is

gained by using a distribution indexed by one additional shape parameter

which can be estimated from the data. In this paper, the choice of the

log-Burr distribution for f(x) is investigated. Here, the response function is

given by

P (y = 1) = 1− (1 + α exp(x))(−1/α), (1)

with shape parameter α ∈ (0,∞). For α < 1 the pdf is left-skewed, for α = 1

symmetric, for α > 1 right-skewed. The function nests the complementary-

log-log (limα → 0) and the logit model (α = 1) as special cases. The log-

Burr distribution is a special case of the generalized logistic distribution,

indexed by one additional parameter, used by Prentice (1976) for differen-

tiating between models. We argue that the log-Burr response function is a

good compromise between flexibility and parsimony and can be applied for

general use.

The log-Burr link has recently been investigated by Hess (2009) who

motivates the use for discrete duration data by the limiting distribution of

threshold excesses of a latent continuous duration variable. Hess et al. (2014)

show by simulation that misspecification of the response function leads to

biased predicted probabilities. In this paper existing modeling approaches

are extended, taking account the importance of the shape parameter which

has not been done in this form. Following extensions are given: (1) The

shape parameter is modeled using sparsity priors, allowing shrinkage in the

case of high variance. (2) The shape parameter is allowed to vary between

clusters, allowing flexible modeling for datasets containing left/right and

non-skewed clusters, while stabilizing estimates by borrowing information

between clusters. (3) Nonlinear effects can be estimated using P-splines and

other basis function expansions.

Inference is fully Bayesian. The advantages hereof are: (1) Variance

estimation accounts for the uncertainty in all parameters. (2) Estimation

is simple using MCMC methods. (3) Functions (and variance estimation

thereof) of parameters, e.g. marginal effects can be directly estimated. (4)
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Bayesian shrinkage priors apply naturally to the (log) shape parameter. Pos-

terior simulation is done using The No-U-Turn sampler sampler implemented

in Stan, a variant of Hamiltonian Monte Carlo (HMC). Hamiltonian Monte

Carlo updates all parameters in one block using gradient information, thus

avoiding convergence problems of Gibbs-samplers and allowing easy use of

non-conjugate priors. However, HMC depends on two tuning parameters.

The No-U-Turn sampler sets these parameter adaptively and is henceforth

fully automatic. Covariate effects can be measured by marginal effects or

the method of Chib and Jeliazkov (2006).

2 Model Formulation

We are working with γ = logα to bypass the positivity restriction, so that

P (yi = 1) = ri = 1− (1 + exp(γ + ηi))
− exp(−γ),

with linear predictor ηi = z>i β. The posterior distribution is given by

π(θ|D) ∝ π(θ)L = π(θ)

n∏
i=1

ryii (1− ri)1−yi ,

where θ is the vector of all parameters with prior π, D is the data and L is

the likelihood. Following Fahrmeir and Kneib (2011), the linear predictor

can be extended to include nonlinear effects, so we have

ηi = z>i β + f1(x1i) + ...+ fp(xpi). (2)

The functions fj , j = 1, ..., p are modeled via P-splines, where

fj(xj) = B(xj)Ξj ,

B(xj) is a matrix of evaluations of basis functions corresponding to B-

splines, given by Blj(·), so that Bij = Blj(xi), where l is the degree of the

spline. The case l=0 corresponds to a step function. More on Splines can be

found in Dierckx (2006). The mean level of fj , j = 1, ..., p is not identified,

so that identification restrictions are necessary.
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For a hierarchical data structure with J cluster, we have

L =

J∏
j=1

nj∏
i=1

r
yij
ij (1− rij)1−yij .

Here, the shape parameter is allowed to vary between cluster, so that γ =

(γ1, ..., γJ).

2.1 Priors

The prior distribution has the form

π(θ) = π(β)π(γ|γ0)π(γ0)π(Ξ1|ξ21)π(ξ21)...π(Ξp|ξ2p)π(ξ2p).

Conditionally, all priors for β, γ and Ξi, i = 1, ..., p have the generic

form

π(x|x0, vx,P ) ∝ exp(− 1

2vx
(x− x0)

>P (x− x0)), (3)

with varying form of (possibly rank-deficient) penalty matrix P controlling

the form of penalization of some form of prior information while vx controls

the degree of penalization and can be assigned a hyperprior to allow data

driven penalization. To implement possible identification constraints, the

prior can be adjusted to π(x|vx, x0,P )I[Ax = 0] where I[·] is the indicator

function. The different choices are given in the following.

2.1.1 Linear effects

For linear effects we consider informative priors N(m0,Σ0) and noninfor-

mative priors β ∝ 1. The former case corresponds to vx = 1, x0 = m0,P 0 =

Σ−10 while the latter corresponds to the limit case Σ−10 = 0, where in an

abuse of notation 0 denotes a matrix of zeroes.

2.1.2 Nonlinear effects

To avoid overfitting, overly rough function estimates are penalized. A good

choice is the difference penalty by Eilers and Marx (1996), extended to the

Bayesian case by Lang and Brezger (2004). Here ∆kβ ∼ N(0, ξ2), where

∆k is the difference operator of order k. Ξj , j ≤ k are assigned a flat prior

Ξj ∝ const. The penalty matrix is given by K = D>D with difference
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matrix D = Dk = D1Dk−1, where

D1 =


1 −1

1 −1
. . .

. . .

1 −1

 .

For π(ξ), the half-cauchy distribution is used as recommended by Gelman

(2006) and Nicholas G. and Scott (2011).

2.1.3 Shape parameters

• General idea: Shrinkage of γ to zero to avoid overfitting, or when

estimates became unstable

3 Computation and Inference

The main building block for posterior simulation is HMC. HMC updates

sample from the joint distribution

π(θ|D)N(p|0,M−1)

via simulating Hamiltonian Dynamics by taking L leap-frog steps (lines 5-13

in Algorithm 1) with stepsize ε steps in γ and p. The matrix M is usually

referred to as mass matrix. The obtained samples of u are ignored as u is

just an auxillary variable introduced to simplify sampling. In Hoffman and

Gelman (2014), an adaptive method for determiniation of tuning parameters

L and ε is given, implemented in the software RStan (Stan Development

Team 2014) which is used here.
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Algorithm 1: Hamiltonian Monte Carlo

1 set θ0;

2 for s← 2 to S do

3 sample p? ∼ N(0,M);

4 θ0 ← θ(s);

5 p0 ← p? + (ε/2)∇(θ0);

6 for l← to L do

7 θl = θl + (ε)pl−1;

8 if (l 6= L) then

9 pl = pl−1 + ε∇(θl);

10 else

11 pL = pL−1 + (ε/2)∇(θL);

12 end

13 end

14 α(θ(s),θ?))← min(1, exp{log( (θ?|D)
(θ(s)|D)) + 1

2(p>LMpL − p?>Mp?)};

15 sample U∼ Unif(0, 1) ;

16 if U < α(θ(s),θ?)) then

17 θ(s+1) ← θ? ;

18 else

19 θ(s+1) ← θ(s) ;

20 end

21 end

For regression coefficients associated with basis functions, a reparame-

terization as mixed model is used:

Ξj = Ajbj +U jtj ,

with priors bj ∝ 1 and tj ∼ N(0, ξ2I), corresponding to the unpenalized and

penalized part of Ξj , see Kneib (2006). For U j we can set D>k (DkD
>
k )−1.

For Aj a basis of the null space of Kj given by matrices of the form
1 1 . . . 1k−1

1 2 . . . 2k−1

...
...

...

1 dim(Ξj) dim(Ξj)
k−1

 ,
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where any sequence of equidistant values can be used.

3.1 Parameter Interpretation

Linear and nonlinear effects are not directly interpretable. As such, the pos-

terior mean of the marginal effects are used. Furthermore, we can marginal-

ize over the covariates whose effect we are not interested in using the method

of Chib and Jeliazkov (2006).

4 Application

4.1 Data

The Sample of Integrated Labour Market Biographies (SIAB) (Berge et al.

2013) of the Institute for Employment Research (IAB) is used to illustrate

the above-presented method. The SIAB is a 2 percent random sample of

all Germans that are employed (subject to social securoty contributions)

between 1975 and 2010, receiving unemployment benefits or are officially

registered as job seeking. The data therefore capture the majority of the

German workforce (1,639,325 individuals). Due to the comprehensive na-

ture and the longitudinal character the data is well suited to illustrate the

proposed method.

4.2 Results

5 Simulation study

Here, results of a simulation study will be reported. The following questions

will be answered:

• Does the proposed methodology work?

• What is the result of misspeficiation of the dgp? That is, of using a

logit/probit model if the underlying response function is the log-Burr

cdf and/or if the shape parameter varies by cluster.

• Does the proposed methodology finds the case where a simpler model

is enough?
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6 Conclusion
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