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Forecasting Euro Area Recessions in real-time with a

mixed-frequency Bayesian VAR

February 28, 2015

Abstract

In this paper I use the predictive distribution of the back-, now- and forecasts obtained with

a mixed-frequency Bayesian VAR (MF-BVAR) to provide a real-time assessment of the prob-

ability of a recession in the euro area for the period from 2003 until 2013. Using a dataset

that consists of 135 monthly data vintages and covers 11 soft and hard monthly indicators

as well as quarterly real GDP, I show that the MF-BVAR is able to capture current economic

conditions extremely well. For both recession periods in the sample, the Great Recession of

2008/2009 and the European debt crisis 2011/2013, the MF-BVAR real-time recession prob-

abilities soar right at the onset of the pending slump of GDP growth. By contrast a BVAR

estimated on quarterly data detects both recessions with a substantial delay. While typically

non-linear discrete-choice or regime switching models have to be used to predict rare events

such as recessions, my results indicate that the MF-BVAR can not only compete with other

nowcasting approaches in terms of the accuracy of point forecasts, but also reliably detect

rare events through the corresponding predictive distribution which is easily available as a

by-product of the estimation procedure.

Keywords: Nowcasting, Forecasting Recessions, Mixed-frequency data, Bayesian VAR

JEL-Codes: C53, E32, E37



1 Introduction

Reliable forecasts of macroeconomic activity are highly important for the decision making pro-

cess of economic policy makers. However, the problems associated with real-time data avail-

ability such as for example mixed data frequencies, the irregular and varying publication lags

of various macroeconomic indicators and data revisions pose huge challenges to practical fore-

casters (see Giannone et al. (2008) for a detailed discussion of these issues).

Recently, the success of different econometric forecasting methods in providing a reliable

assessment of the prevailing economic conditions in terms of point forecasts, while coping

with the outlined difficulties, has been demonstrated. These methods include bridge equa-

tion models (see e.g. Baffigi et al. (2004) and ECB (2008)), MIDAS-models (see e.g. Kuzin et al.

(2011) and Schumacher (2014)) and factor models (see e.g. Schumacher and Breitung (2008),

Rünstler et al. (2009) and Banbura and Rnstler (2011)) as well as combinations of the aforemen-

tioned methods (see e.g. Angelini et al. (2011) and Marcellino and Schumacher (2010)). The rel-

ative accuracy of these methods has been studied for example in Foroni and Marcellino (2014)

and Schwarzmüller (2015).

However, in addition to precise point forecasts a reliable and timely prediction of business

cycle turning points and in particular of recessions can be extremely useful for the design of

appropriate economic policy. After all, the effectiveness of monetary and fiscal policy measures

may depend on the current phase of the business cycle (see Auerbach and Gorodnichenko

(2012) for empirical evidence for fiscal policy and Lo and Piger (2005) for monetary policy).

Yet, rare events such as recessions are typically very hard to capture for linear forecasting mod-

els like those mentioned above. Hence, for this purpose researchers often turn to non-linear

models such as discrete-choice or regime switching models (for recent applications see Nyberg

(2010), Bellgo and Ferrara (2009) and Pauwels and Vasnev (2014) for discrete choice models

and Chauvet and Piger (2008), Nalewaik (2012) and Camacho et al. (2014) for regime switch-

ing models).

In this paper I demonstrate that the mixed-frequency Bayesian vector autoregression (MF-

BVAR) proposed by Schorfheide and Song (2015) is capable of meeting both of the above out-

lined forecasting needs. The model is estimated on mixed-frequency real-time data with ragged

edges and provides not only extremely precise point forecasts but can also reliably detect reces-

sions in real-time through the corresponding predictive distribution which is easily available

as a by-product of the estimation procedure. Of course, this advantage is in principle inherent

to all forecasting models estimated with Bayesian techniques. For example, Österholm (2012)

uses the predictive distribution of a quarterly BVAR to estimate the probability of a recession

in the US in the third and fourth quarter of 2008. However, due to the fact that the MF-BVAR

can exploit information in a much timelier manner by incorporating high-frequency indicators

into the estimation process the resulting real-time recession probabilities are considerably more

precise than those obtained with models estimated on quarterly data only.

Within the empirical application in this paper I use the predictive distribution of the MF-

BVAR to provide a real-time assessment of the recession probabilities in the euro area for the

period from 2003 until 2013. Using a real-time dataset that consists of 135 monthly data vin-
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tages and covers 11 soft and hard monthly indicators as well as quarterly real GDP, I show

that the MF-BVAR is able to capture current economic conditions extremely well. For both re-

cession periods in the sample, the Great Recession of 2008/2009 and the European debt crisis

2011/2013, the MF-BVAR real-time recession probabilities soar right at the onset of the pending

slump of GDP growth. By contrast a BVAR estimated on quarterly data indicates both reces-

sions with a substantial delay (which is in line with the findings in Österholm (2012) for the

US).

Previous papers have focused mainly on predicting recessions with financial variables.

In this context, especially the predictive power of the yield spread, i.e. the difference be-

tween the long- and short-term interest rate, has been emphasized1 (see among many oth-

ers Estrella and Mishkin (1998), Chauveta and Potter (2002), Wright (2006), Nyberg (2010) and

Clements and Harvey (2011) for the US as well as Duartea et al. (2005), Moneta (2005) and

Chionis et al. (2010) for the euro area). However, as pointed out by Fornari and Lemke (2010)

due to the determined expansionary response of monetary policy in 2008 the term spread rose

sharply which indicated a very short recession. Thus, in light of the actual course of the Great

Recession of 2008/2009 the usefulness of the yield spread seems to have deteriorated consider-

ably.

Most of the papers using financial variables to detect recessions estimate some version of

a discrete choice model such as static or dynamic probit or logit models. Here a binary indi-

cator variable, which is related to an unobservable latent business cycle indicator, is regressed

on a set of explanatory variables. Recently this approach has been combined with the vector

autoregressive model in order to allow a better assessment of the underlying dynamics of the

system as well as to be able to provide iterative multi-step forecasts. For example, Dueker

(2005) proposes a Qual VAR which incorporates binary information into the VAR framework

and finds that the values of the recession probabilites provided by this model are closely in line

with the actual US recession periods as declared by the NBER business cycle dating committee.

Fornari and Lemke (2010) estimate a Prob VAR which lacks some of the dynamics captured by

the Qual VAR but is considerably easier to estimate. They find that for the US and Germany the

model can reliably signal slowdowns of economic activity in the US.

However, while the Prob VAR, the Qual VAR as well as all the other discrete choice models

have been proven to be quite successful in detecting recessions ex post, these models are of

limited usefulness when it comes to the prediction of recessions in real-time. This is because,

as pointed out by Dueker (2005), in a real-time setting these models would require the inclusion

of real-time data on whether the economy was currently believed to be in a recession or not, i.e.

a real-time value for the binary indicator variable. This data might not be available or of very

limited reliability which constitutes a serious drawback of this class of models for real-time

applications2.

1The underlying theoretical argument can be summarized as follows: Since the long-term interest rate reflects
expectations about the values of future short-term interest rates, the spread reflects agent’s believes on the future
stance of monetary policy. While tighter monetary policy typically slows down economic activity and the term
spread flattens there is a strong historical relationsship between the yield sread and the odds of a recession.

2Moreover these models can solely be used to detect business cycle turning point while the MF-BVAR produces
reliable point and density now- and forecasts as well.
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Real-time forecasting of recessions is of course an incredibly challenging task (see Hamilton

(2011) for a discussion of the underlying issues and an overview of recent attempts). However,

a few related papers have been successful in forecasting recessions is a real-time setting. For ex-

ample, Chauvet and Piger (2008) estimate a monthly dynamic factor Markov-switching model

for the US, while Schreiber (2014) estimates a large monthly VAR with automated coefficient

restrictions following the general-to-specific method for the US and Germany. However, since

both of these approaches can not deal with mixed data frequencies they have to real on monthly

industrial production as a proxy of overall economic activity. Aastveit et al. (2014) solve the

mixed-frequency issue by applying the non-parametric Bry - Boschan rule to detect recessions

to a bridge equation model nowcast and compare the accuracy of the therewith obtained real-

time recession probabilities to those obtained with an autoregressive Markov-switching model

for Norwegian GDP. However, according to their results these models are not able to forecast

business cycle turning points in a timely manner in real time. Bellgo and Ferrara (2009) use a

broad set of financial market data and estimate time-varying probit models with parameters

evolving according to a Markov-chain as well as time-varying factor augmented probit mod-

els. They find that these models would have been very useful to provide an early signal of the

Great Recession in the euro area. Finally, Camacho et al. (2014) estimate an extension of the

dynamic Markov-switching factor model which is capable of dealing with mixed-frequency

data and ragged edges to compute euro area GDP growth now- and forecasts as well as to de-

tect euro area recessions in real-time. Their non-linear model captures not only comovements

across various economic indicators through a common business cycle factor but also regime

shifts. This allows for significant improvements in the timeliness with which they can detect

economic downturns. Similar to the MF-BAVR, the dynamic Markov-switching factor model

solves the issue of missing values at the end of a data vintage due to varying publication lags

through a time-varying state space representation that is estimated using a Kalman Filter that

simply skips missing values. However, one clear advantage of the MF-BVAR over the dynamic

Markov-switching factor model is the fact that it accounts for the uncertainty related to the

model point forecasts in form of the predictive distribution which is easily available as a by-

product of the estimation procedure and which can be used for inference on future paths of the

target variable. On this account, the associated MF-BVAR recession probabilities are determin-

istic functions of the target variable, i.e. euro area GDP growth, and not of an binary indicator

variable as is the case for most other approaches.

The remainder of this paper is structured as follows. In section 2 I describe the Bayesian

mixed-frequency VAR and outline the estimation approach. In section 3 I describe the dataset

used for the empirical application, while in section 4 I outline the forecasting approach and

explain how the real-time recession probabilities are obtained. The results are presented in

section 5. Finally, in section 6 I conclude.
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2 The Bayesian Mixed-Frequency VAR

Consider the following high-frequency VAR(p)

Xt = C + A1Xt−1 + ... + ApXt−p + ǫt, (1)

where the (nx1) vector Xt = (xm
1,t, ..., xm

nm,t, x
q
1,t, ..., x

q
nq,t)

′ contains nm observable high-frequency

(e.g. monthly) indicators and nq unobservable high-frequency variables, which are published

at a lower frequency (e.g. quarterly) only. Following Bańbura et al. (2010) I include the vari-

ables in log-levels rather than growth rates to not lose information that might possibly be con-

tained in the trends. p denotes the number of lags included in the estimation, C is a (nx1) vector

of constants, A1, ..., Ap are (nxn) parameter matrices and ǫt is a (nx1) vector of independently

identically distributed white noise error terms with zero mean and covariance matrix Σ.

The high-frequency model outlined in equation (1) can be rewritten in state-space form. For

that define a (npx1) vector of states as Zt = (X′
t, ..., X′

t−p+1)
′. Then, the transition equation reads

Zt = D + FZt−1 + νt. (2)

The first n rows of the (npx1) vector D contain the vector of constants C while the remaining

entries of D equal zero. The (nxnp) matrix F is given as

F =













A1 A2 ... Ap

In 0 ... 0

0 In ... 0

0 ... In 0













(3)

where In denotes the identity matrix of dimension n. νt is a (npx1) vector of independently

identically distributed white noise error terms with zero mean and a covariance matrix Ψ which

contains the matrix Σ in the upper-left submatrix and is zero otherwise.

Following Schorfheide and Song (2015) I define a (nx1) vector of observations as Yt =

(ym
1,t, ..., ym

nm,t, y
q
1,t, ..., y

q
nq,t)

′ and set up the measurement equation as

Yt = HtZt (4)

with

Ht = StΛ. (5)

To account for the fact that the low-frequency variables y
q
1,t, ..., y

q
nq,t are not observable in every

period and that some of the high-frequency variables might be missing at the current edge due

to publication lags, the form of matrix Ht is time-varying. In particular, Ht can be decomposed

into a (nxn) diagonal time-varying selection matrix St and the (nxnp) aggregation matrix Λ
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which is given as

Λ =



















1 0 0 ... 0

0 1 0 ... 0

0 0 1 ... 0
... 0

λ



















(6)

The (nqxnp) submatrix λ aggregates the unobservable high-frequency variables xq into their

low-frequency counterparts ỹq, i.e. ỹq = λxq.

Of course, the variables in ỹq are included in the measurement equation (4) only for periods

t∗q in which they are observable. Thus, for example, if the VAR(p) outlined in equation (1) is

specified at monthly frequency and the low frequency variables yq are published on a quarterly

basis then ỹq would be included in the measurement equation (4) only in every third month,

i.e. t∗q = (3, 6, 9, ...). In practice, this is governed through the selection matrix St.

The same principle applies for the variables in ym at the current edge. In particular, let Tb

denote the last period for which the data panel is balanced. Then the selection matrix St is

given as

St =

(

Θm ... 0

0 ... Θq

)

(7)

where the diagonal elements of the diagonal (nmxnm) submatrix Θm are given as

θm
ii,t =

{

1 for t ≤ Tb ∪ t > Tb ∩ t = t∗m

0 otherwise
(8)

where t∗m denotes periods at the current data edge in which a particular high-frequency indica-

tor is available. Similarly, the diagonal element of the diagonal (nqxnq) submatrix Θq are

θ
q
ii,t =

{

1 for t ≤ Tb ∩ t = t∗q

0 otherwise.
(9)

2.1 Estimation

The state space mixed-frequency VAR outlined in equations (2) - (9) is estimated with Bayesian

techniques. This involves the estimation of the marginal posterior distributions of the unknown

VAR parameters A1, ..., Ap, C and Σ as well as the estimation of the unknown state vector Zt. I

implement a Gibbs sampler which proceeds according to the following steps.

Step 1: Setting the priors and derivation of initial states For the unknown parameters of the

VAR A1, ..., Ap, C and Σ, I implement a version of the Normal inverse Wishart prior (see e.g.

Kadiyala and Karlsson, 1997) that retains the main principles of the widely used Minnesota

prior (see Litterman, 1986). This prior implies that the VAR coefficients A1, ..., Ap are assumed

to be a priori independently and normally distributed, while with respect to the constant C the

prior is assumed to be diffuse. The residual covariance matrix Σ is assumed to a priori follow
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an Inverse Wishart distribution with scale matrix S̄ and degrees of freedom ᾱ.

One of the main principles of the Minnesota prior is to center each equation of the VAR

around a random walk with drift. Thus the prior mean for the VAR coefficients A1, ..., Ap is

specified as:

E[(Aℓ)ij] =

{

1 for i = j, ℓ = 1

0 otherwise
(10)

Moreover, this prior also incorporates the belief that more recent lags of a variable should

provide more reliable information for the estimation than less recent lags. The zero coefficient

prior on more recent lags is therefore not imposed as tightly as on less recent lags which is

captured by specifying the prior variance as

Var[(Aℓ)ij] =







λ2

ℓ2 for i = j
λ2σ2

i

ℓ2σ2
j

otherwise,
(11)

where ℓ = 1, ..., p is the lag length, λ is a hyperparameter governing the importance of the prior

beliefs relative to the data and σi/σj is a scale parameter adjusting the prior for the different

scale and variability of the data. For the implementation, σi is set equal to the standard devi-

ation of the residuals of a simple univariate autoregression for each variable over a presample

t = T−, ..., 0. Following Schorfheide and Song (2015) I augment the prior outlined above to con-

strain the sum of coefficients of the VAR (see e.g. Sims and Zha, 1998) as well as to incorporate

the belief that the variables in the VAR follow a common stochastic trend.

I implement the prior outlined above using dummy variables YD and XD, which are given

as

YD =























diag(σ1...σn)
λ

0n(p−1)xn

diag(σ1...σn)

01xn

diag(µ1...µn)γ

ηµ1...ηµn























, XD =

















diag(1...p)⊗diag(σ1...σn)
λ 0npx1

0nxnp 0nx1

01xnp c

P ⊗ diag(µ1...µn)γ 0nx1

(P′ ⊗ diag(µ1...µn)η)′ η

















, (12)

where P is a (1xp) matrix of ones, c is a very small number reflecting the diffuse prior for the

constant C, µ1, ..., µn are the variable means over the presample t = T−, ..., 0 and γ and η gov-

ern the tightness of the sum of coefficients constraint and the common stochastic trend prior,

respectively. With these dummy variables the moments of the prior distributions for the param-

eters A1, ..., Ap, C and the residual covariance matrix Σ can be computed as E[(A1, ..., Ap, C)] =

Ā = (XD′
XD)−1XD′

YD, Var[(A1, ..., Ap, C)] = V̄ = (XD′
XD)−1, S̄ = (YD − XD Ā)′(YD − XD Ā)

and ᾱ = TD − n(p − 1)− 1, where TD is the number of rows of YD.

Given these prior moments I sample the state vector Z0 conditional on the presample t =

T−, ..., 0 by applying the Kalman filter to the state space system (2) - (9). I chose a presample

that ranges from April 1991 until December 1992. The initial value of the state vector ZT−

is obtained using actual data for the high-frequency variables, while for the low-frequency

variables I follow Schorfheide and Song (2015) and assume that the unobserved high-frequency
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variables are equal to the observed low-frequency averages.

Step 2: Sampling of the VAR coefficients Conditional on the most recent draw of the state

vector Zi−1
t the parameters Ai

1, ..., Ai
p, Ci and Σi are drawn from their respective posterior dis-

tributions3. With the Normal inverse Wishart prior the VAR coefficients (A1, ..., Ap, C) follow

a multivariate t-distribution with mean Ã, covariance matrix S̃ ⊗ Ṽ and degrees of freedom α̃,

while Σ ∼ IW(S̃, α̃). The respective moments of these distributions can be computed using

the dummy variables outlined in equation (12). In particular, augment the transition equation

(2) with the dummy variables to obtain Y∗ = [(Zi−1
t )′, YD′

]′ and X∗ = [(Zi−1
t−1)

′, XD′
]′. Then

Ã = (X∗X∗)−1X∗Y∗, Ṽ = (X∗X∗)−1, S̃ = (Y∗ − X∗ Ã)′(Y∗ − X∗ Ã) and α̃ = T∗ − np + 1, where

T∗ is the number of rows of Y∗.

Step 3: Sampling of the states Given the most recent draws of (Ai
1, ..., Ai

p, Ci) and Σi I sample

the state vector Zi
t by applying the Kalman filter and the Carter-Kohn algorithm to the state

space system (2) - (9).

Steps 2 and 3 are repeated 10000 times. The draws of A1, ..., Ap, C, Σ and Zt obtained during

last 7500 iterations approximate the respective marginal distributions.

3 Data

For the empirical application in this paper I use a dataset that consists of eleven monthly vari-

ables for the euro area, namely harmonized consumer prices, industrial production excluding

construction, unemployment, new passenger car registrations, money supply (M1 and M3),

the Economic sentiment indicator as well as indices for the stock markets, the oil price and

confidence in the industry and retail sales sectors. Moreover, a quarterly series for real euro

area GDP is included. All series were obtained from the real time database of the Statistical

Data Warehouse of the European Cental Bank4 in December 2014. The dataset consists of 135

monthly data vintages5 from October 2002 until December 2014 all of which start in January

1991. Each of these data vintages provides a historic snapshot of the data as it was available

at the time. This implies that the dataset perfectly reflects the publication lag of each variable

with respect to the reference date, i.e. the date the snapshot was taken, as well as changes in

the data flow over time due to recent improvements in the timeliness of various indicators. All

series are seasonally adjusted and natural logarithms are taken for all variables not expressed

in rates.

3Here i denotes the ith iteration of the Gibbs Sampler.
4A detailed description of the database, the variables included as well as the treatment of issues such as

data revisions, changing variable definitions and the changing composition of the euro over time can be found
in Giannone et al. (2010).

5The very few unavailable vintages were replaced with the most recent ones.
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4 Short-term Forecasting Approach

For euro area GDP, which is published at quarterly frequency, the first official release is avail-

able only in the third month after the end of the respective quarter6. This implies that not only

is current quarter GDP unknown throughout quarter but also last quarter GDP is not available,

at least in first and second month of a quarter. Thus, in order to assess the real-time recession

probabilities in a certain quarter an estimate of current quarter GDP (referred to as the nowcast)

and in some cases also of last quarter GDP (referred to as the backcast) has to be computed.

Moreover, the GDP now- and backcasts have to account for the different (and changing) pub-

lication lags of the various monthly indicators throughout the quarter under consideration. In

this application I compute three GDP now- and backcasts per quarter using the data vintages

available in the first, second and third month of the quarter, respectively. These nowcasts (back-

casts) are given as ŷtq |Ωj (ŷtq−1|Ω
j) with j = 1, 2, 3 (j = 1, 2), where ŷtq is the nowcast for GDP

growth in quarter tq and Ωj denotes the information set available in the jth month of the quarter

for which the nowcast is computed. Besides, I also compute up to hq-quarter ahead forecasts

for GDP growth for each information set denoted as ŷtq+hq |Ωj.

4.1 Forecasting GDP growth

The quarterly back-, now- and forecast ŷtq+h∗ for h∗ = −1, 0, 1, ..., hq are computed from the

monthly forecasts for unobservable monthly GDP obtained with the mixed-frequency BVAR

outlined in section 2. In particular, the model is estimated as described above using the data

vintage available at month T with information up to month T. For each of the 7500 retained

Gibbs draws of the VAR coefficients Ai
1, ..., Ai

p, Ci, Σi and the vector of states Zi
T the shock vec-

tors ǫi
T+h are drawn from ǫi

T ∼ (0, Σi) and equation (1) is iterated forward to compute forecasts

for the monthly observable and unobservable variables X̂i
T+h with h = 1, ..., hm. Taking into ac-

count the information set implied by T the forecasts for unobservable monthly GDP are trans-

formed into their quarterly counterparts based on equation (4) which are then used to compute

the implied quarterly GDP growth rates ŷi
tq+h∗ . The final now- and forecasts are obtained by

computing the average over all 7500 thereby obtained estimates. Note that the set of 7500 ŷi
tq+h∗

approximates the predictive distribution of the back-, now- and forecasts which will be used to

compute the real-time recession probabilities.

4.2 Assessing real-time recession probabilities

Österholm (2012) defines the probability of a recession as the probability that the current and

the following quarter both display negative GDP growth, i.e. Pr(ŷtq |Ωj < 0
⋂

ŷtq+1|Ω
j < 0),

a definition that is widely used. However, in this real-time application this definition is not

perfectly suitable since it does not account properly for the publication lag of euro area GDP

growth. Notably in the first two months of a given quarter a real-time recession probability as-

6To be precise the first flash estimate of euro area GDP growth is published about 45 days after the end of the
respective quarter. Since the monthly data vintages used in this application are snapshots of the available data taken
within the first half of each month, I assume that the data on GDP growth is updated only in every third month.
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sessment should take into account that no estimate of last quarter GDP growth is available yet.

Therefore, I will define the real-time probability of a recession as Pr(ŷtq−1|Ω
j < 0

⋂

ŷtq |Ωj < 0)

for j = 1, 2 and Pr(ŷtq |Ω3 < 0
⋂

ŷtq+1|Ω
3 < 0) in every third month of a given quarter. Thus

for month T the real-time recession probability ψT can be obtained by evaluating the joint cu-

mulative predictive distribution function of the two closet GDP growth estimates at (0, 0). In

practice, this is simply done by counting the number of paths of ŷtq+h∗ that fulfill the above

defined criterion and divide their number by the total number of Gibbs draws.

4.3 Forecast Evaulation

The real-time recession probabilities as well as the accuracy of the density and point forecasts

obtained with the mixed-frequency Bayesian VAR (MF-BVAR) are evaluated against a quar-

terly Bayesian VAR (QF-BVAR) and a simple quarterly univariate autoregression (AR). The

QF-BVAR is estimated for the same data as the MF-BVAR but aggregated to quarterly fre-

quency. The estimation strategy for the models is corresponds to that of the MF-BVAR outlined

above.

All models are estimated on a rolling window of 120 observations starting in October 2002.

The GDP back-, now- and one quarter ahead forecasts obtained with the tree different models

are evaluated for the period ranging from 2003 Q1 until 2013 Q4. Thus for each information

set Ωj I have T∗ = 44 point forecasts available for the evaluation. The accuracy of these point

forecasts is assessed by means of mean squared forecast errors which is given as

MSFE
j
h =

1

T∗ ∑
T∗

t=1
(ytq+h − ŷtq+h∗ |Ω

j)2. (13)

In principle, ytq+h denotes realized period tq + h euro area GDP growth. However, in the lit-

erature there is disagreement on whether ytq+h should be the first release for period tq + h or

rather a revised final estimate. While the former has an advantage in capturing the real-time

environment a forecaster is facing, the latter can be seen as a more precise assessment of the

fundamental value of ytq+h. In this application, I will focus on the latter concept, however the

results using first releases of euro area GDP growth are very similar and are available upon

request.

Further, I will evaluate the predictive distributions of the MF-BVAR and the QF-BVAR in

terms of sharpness and calibration. To this end I will compute the continuously ranked prob-

ability score (CRPS) which is given as the average over the evaluation sample of the period

CRPS which is given by

CRPS
j
h = EP|Y − ytq+h| −

1

2
EP|Y − Y′|, (14)

where EP denotes the expectations operator for the predictive cumulated distribution of the

MF-BAVR and the QF-BVAR, respectively and Y and Y′ are random draws of this distribution

(see e.g. Gneiting et al. (2007)).
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5 Results

5.1 Evaluation of GDP growth point and density forecasts

In this section the results of the forecast evaluation of the MF-BVAR and the QF-BVAR for

the period ranging from 2003 Q1 until 2013 Q4 are reported. In order to assess the accuracy

of the point now- and forecasts obtained with both models, table 2 shows the models’ mean

squared forecast errors relative to those of a simple univariate quarterly autoregressive bench-

mark model (AR) for the different information sets (IS 1, ..., 6) available for the computation of

the forecasts over the different horizons. In particular, IS 1 denotes the first month in the last

quarter, IS 2 the second month and so on, while IS 4 − 6 denote the three months of the current

quarter. Note that since the AR benchmark and the QF-VAR do not incorporate within-quarter

information, the data available to these models is updated only every third month. Hence, at

IC 3 − 5 the same level of predictive information is included into the estimation.

According to the entries both models clearly outperform the AR benchmark in most cases.

Only in the third month of the current quarter (IS 6) the advantage diminishes which is of

course not surprising given that at this point in time the flash estimate of last quarter GDP

growth is available for all models. Further, while the multivariate QF-BVAR apparently pro-

vides more precise forecasts than the univariate benchmark model, the entries in table 2 also re-

veal that the monthly within quarter information that the MF-BVAR can incorporate improves

the models’ forecast accuracy considerably. Particularly in the first two months of the current

quarter (IS 4 and 5) the MF-BVAR outperforms the QF-BVAR by far. For the one quarter ahead

forecast the difference between the two models’ MSFEs is less pronounced, especially at the

longest horizon (IS 1).

Table 1: RMSFE.

IS 1 2 3 4 5 6
h∗ = 1 h∗ = 0

MF-BVAR 0.68 0.31 0.53 0.33 0.36 0.80
QF-BVAR 0.67 0.67 0.74 0.74 0.74 0.99

Notes: The entries denote mean squared forecast errors for euro area
GDP growth relative to an AR benchmark evaluated for the sample
ranging from 2003Q1 until 2013Q4. h∗ = 1 refers to the one quarter
ahead forecast, while h∗ = 0 denotes the nowcast. IS denotes the respec-
tive information set, i.e. the monthly data availability when computing
the fore- and nowcast of a respective quarter.

In terms of density forecasts the MF-BVAR generally outperforms the QF-BVAR as well,

especially at within quarter information sets, but to a lesser extend. This can be seen from table

2 where the CRPS for both models is shown. While for the largest and the smallest forecast

horizons (IS 1 and 6) the density forecasts of both models seem to be equally accurate, for all

other horizons the MF-BVAR’s CRPS is smaller. This indicates that the MF-BVAR predictive

cumulated distribution resembles more closely the realized cumulative distribution of euro
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area GDP growth over the evaluation sample.

Table 2: CRPS.

IS 1 2 3 4 5 6
h∗ = 1 h∗ = 0

MF-BVAR 0.43 0.30 0.35 0.26 0.26 0.34
QF-BVAR 0.43 0.43 0.40 0.40 0.40 0.34

Notes: The entries denote the CRPS of the predictive distributions of the
MF-BVAR and the QF-BVAR for the sample ranging from 2003Q1 until
2013Q4. h∗ = 1 refers to the one quarter ahead forecast, while h∗ = 0
denotes the nowcast. IS denotes the respective information set, i.e. the
monthly data availability when computing the fore- and nowcast of a
respective quarter.

This picture is confirmed when we look at plot of the predictive distributions of the models.

From figure 1 it can clearly be seen that the uncertainty of the MF-BVAR density forecasts

diminishes considerably, i.e. the 90 % confidence bands become much narrower, the smaller

the forecast horizon. For the third month of the current quarter (IS 6) realized euro area GDP

growth lies mostly within the bands of the MF-BVAR predictive distribution, even for the Great

Recession period. By contrast, the predictive distribution of the QF-BVAR shown in figure 2 is a

lot smother compared to that of the MF-BVAR. However, event though the QF-BVAR predictive

distribution seems to displays slightly less forecast uncertainty realized euro area GDP growth

lies outside the 90 % confidence bands considerably more often7

5.2 MF-BVAR real-time recession probabilites

The CEPR business cylce dating committee is responsible of officially identifying business cy-

cle turning points for the euro area. However, this always happens with a substantial delay

since the committee seems to prioritize correctness over timeliness. For example, the euro area

business cycle peak that occurred in the first quarter of 2008 (in January as dated by the CEPR

committee) was announced only on the 31st March 2009. Similarly, the trough in the second

quarter of 2009 (in April according to he CEPR committee) as well as the peak in the third

quarter of 2011 were announced with more than 12 months delay. Recently the CEPR business

cycle dating committee has abandoned its practice to also announce the month of the business

cycle turning point. While other authors have attempted to establish a monthly business cycle

chronology for the euro area (see Anas et al. (2008) and Billio et al. (2012) for recent examples

covering also the Great Recession of 2008/2009), their assessment of for example the Great Re-

cession, which they date from September 2008 until July 2009, differs slightly from that of the

CEPR committee.

7The probability integral transform (PIT) of the predictive distributions of both models (plotted in figures 4 and
5 in the appendix) indicate that the MF-BVAR forecast densities are slightly worse calibrated that those of the QF-
BVAR. However, with only 44 quarters for the evaluation an assessment of the empirical validity of both models
seems not very reliable.
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Figure 1: MF-BVAR predictive density for euro area GDP growth
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Figure 2: QF-BVAR predictive density for euro area GDP growth
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Real−time recession probabilities for the euro area
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Figure 3: Real-time recession probabilites for the euro area.

As outlined in section 4 the real-time recession probabilities for the euro area are computed

using the predictive distribution of the MF-BVAR and the QF-BVAR. Figure 3 plots the models’

recession probabilities computed for each month over the period ranging from 2007Q1 until

2013Q4 thus covering both recessions in the evaluation sample as dated by the CEPR business

cycle dating committee8 (shaded areas). It can be seen very clearly that the MF-BVAR recession

probabilities (solid line) are much timelier than those obtained with the QF-BVAR (dashed line).

For the Great Recession the MF-BVAR real-time recession probabilities start rising steadily

from 5% in July 2008 to 96% in January 2009 and decrease thereafter until September 2009

where they reach a level of less than 10 %. Given that the business cycle peak prior to the great

slump in euro area GDP growth was announced by the CEPR only in March 2009 the MF-BVAR

would have been able to deliver a considerably faster assessment of the prevailing economic

situation. In this context the usefulness of within quarter high-frequency information becomes

apparent again. The QF-BVAR signals the ongoing recession only from March 2009 onwards,

while the respective real-time recession probabilities reach a level below 10 % only in December

2010 signaling the end of the recession.

These results indicate that the MF-BAR can clearly compete with other approaches to de-

8Given the most recent data vintage available in December 2014, euro area GDP growth was negative from 2008
Q2 until 2009 Q2 and from Q4 2011 until Q1 2013. While for the Great Recession and the beginning of the European
debt crisis this coincides with the assessment of the CEPR committee, it might be too early to evaluate the model
based recession probabilities at the current data edge.
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tect euro area recessions in real time. For example, Bellgo and Ferrara (2009) report that with a

recession detection criterion similar to the one used here, they would have been able to iden-

tify the Great Recession in November 2008. Hamilton (2011) uses the approach proposed by

Camacho et al. (2014) with daily data and finds that the corresponding odds of a recession in

the euro area would have started to increase sharply at the end of July 2008 and remained high

until the end of April 2009. Thus while the MF-BVAR and the dynamic Markov-switching fac-

tor model perform equally well at signalling the onset of the Great Recession, the latter model

seems to have captured the trough of the Great Recession better. However, in order to pro-

vide a reliable comparison of the performance of both models they would of course have to be

estimated with the same data.

For the European debt crisis the MF-BVAR real-time recession probabilities have started

to increase sharply in June 2011, while those of the QF-BVAR rose only from December 2011

onwards and to a much more gradual extent never exceeding 40%. Since September 2013 the

MF-BVAR has been signaling very low recession odds. By contrast the QF-BVAR real-time

recession probabilities are still elevated. Given that euro area GDP growth was negative from

the fourth quarter of 2011 until the first quarter 2013, the MF-BVAR was clearly able to capture

the onset of the recession much earlier. However, with respect to the end of the European debt

crisis it might be too early to draw a conclusion. After all, the CEPR has not yet declared an

end to the recession despite recent positive GDP growth rates.
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6 Conclusion

In this paper I use the predictive distribution of the back-, now- and forecasts obtained with

a mixed-frequency Bayesian VAR (MF-BVAR) to provide a real-time assessment of the prob-

ability of a recession in the euro area for the period from 2003 until 2013. Using a real-time

dataset that consists of 135 monthly data vintages and covers 11 soft and hard monthly indica-

tors as well as quarterly real GDP, I show that the MF-BVAR is able to capture current economic

conditions in the euro area extremely well.

Not only does the MF-BVAR clearly outperform a BVAR estimated on quarterly data for

all information sets and over all forecast horizons in terms of point forecasts. For both re-

cession periods in the sample, the Great Recession of 2008/2009 and the European debt crisis

2011/2013, the MF-BVAR real-time recession probabilities soar right at the onset of the pend-

ing slump of GDP growth. By contrast the quarterly BVAR detects both recessions only with a

substantial delay.

Typically non-linear discrete-choice or regime switching models are used to predict rare

events such as recessions. However, in order to truly detect recessions in a timely manner

these models would have to incorporate real-time data on what phase of the business cycle the

economy was currently believed to be in into the estimation process. Since the official dating

of business cycle turning points takes place only with a substantial delay models relying on

discrete business cycle indicators seem not well suited for real-time applications.

By contrast the MF-BVAR is estimated on high-frequency macroeconomic indicators which

allows for a very timely and precise signaling of the current stance of economic activity. More-

over, the predictive distribution of the model forecasts which is easily available as a by-product

of the estimation procedure not only fully accounts for the uncertainty related to the model’s

predictions but it can also be used to reliably spot rare events in real-time.

While this application focuses on euro area GDP growth and the detection of recessions in

real time, the approach could easily be extended to other issues. For example, the predictive

distributions of the MF-BVAR for inflation could be used to assess deflationary risks. Further

research could also focus on developing clear criteria to translate the model based real-time

recession probabilities into binary yes/no signals. However, the corresponding cut-off proba-

bilities would need to take into account the loss function for the underlying problem at hand.

Another natural extension would be to specify the model in a frequency higher than monthly

and incorporate a lot more financial variables thus allowing for an even timelier assessment of

economic conditions. Beyond that, the MF-BVAR is in principle also suited to conduct con-

ditional forecasting exercises in real-time or to analyze the impulse response functions of the

model based real-time recession probabilities to economic shocks or different policy measures.
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Figure 4: MF-BVAR Probability Integral Transform
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Figure 5: QF-BVAR Probability Integral Transform
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