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Abstract

In 2004, the German Social Health Insurance introduced a co-payment for the first doctor visit in a

calendar quarter. I combine a structural model of health care demand and a difference-in-differences

strategy to estimate the effect of that reform on the number of visits. In the model, the implied incentive

to delay a first visit also affects subsequent visits, as the expected remaining time to the end of quarter

is reduced. This effect has been ignored by the prior literature using standard hurdle count models.

Data are from the German Socio-Economic Panel. Results show no statistically significant reduction in

visits due to the reform.
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1 Introduction

Around 90% of the German population receive their health insurance coverage through the German statu-

tory health insurance system (SHI). Before 2004, the SHI did not require any co-payment for doctor visits,

although prescription drugs were subject to cost sharing for many years. Since January 1st, 2004, the

insured had to pay a fee of 10 Euros for the first visit to a doctor in each calendar quarter. Additional

visits in the same quarter were free of charge. Thus the individual out-of-pocket expense became a non-

linear function of utilization, dropping from 10 to 0 Euros after the first doctor visit in a quarter. Only

individuals without any visit to doctor could avoid paying the quarterly fee.

A number of researchers have conducted quantitative evaluations of the effect of that reform on demand

(Augurzky et al., 2006, Schreyögg and Grabka, 2010, Farbmacher and Winter, 2013). As in these papers,

the focus of the present study will be on the overall number of visits, as well as on the probability of

no visits. Whereas the earlier literature relied on reduced form count data or binary response models to

estimate the reform effect, I will analyse the effect in the context of a structural model of health care

demand. It will be a very simple model based on a stochastic sickness arrival process and a random utility

decision model for seeing a doctor. The non-linear pricing is represented by a change in the probability of

a visit given that one is sick, and a corresponding shift in the hazard rate for visits.

Despite its simplicity, the model allows addressing some important dynamic aspects of the health care

demand process that are absent in the other papers. For example, the co-payment for the first visit

provides an incentive to delay, thereby reducing the expected fraction of a quarter during which visits have

a price of zero. An extended version of the model also accounts for unobserved heterogeneity. A closed

form probability function for the number of visits can be derived, and the model parameters are estimated

by maximum likelihood. Some simple specification tests are available.
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Regarding data and identification, this paper largely follows the lead of the prior literature. Data are from

the German Socio-Economic Panel (SOEP, see Wagner et al., 2007). As in Augurzky et al. (2006), I use

two years, 2003 as pre-reform period and 2005 as post-reform period. For identification, a difference-in-

differences strategy is implemented. The control group consisting of people with private health insurance

provides a baseline, counterfactual trend in doctor visits pre-and post reform, for example due to changes

in general economic conditions. Any deviation from this baseline trend observed for the treated group

(SHI) is then assumed to reflect the effect of treatment.

Finally, I side with Farbmacher and Winter (2013) who worry about the discrepancy between calendar

quarter (i.,e., pricing period) and reporting period. The SOEP asks respondents to state the number of

visits during the three-months period preceeding the day of interview. Usually, this reporting period over-

laps with two calendar quarters, and misclassification arises if, unrecorded in the data and thus unobserved

by the analyst, a visit has taken place between the start of the calendar quarter and that of the reporting

period. In this case, the first visit in the reporting period has an effective price of zero under treatment,

not of 10 Euros, as it would be the case, if the reporting period and the calendar quarter matched perfectly.

Ignoring mismatch will tend to understate the true treatment effect. As a remedy, I follow Farbmacher

and Winter (2013) and base my estimation sample on the subset of individuals that were interviewed at

the end of a calendar quarter, or at least close to the end (within ± 10 days).

So far, substantive results have been mixed. Arguably, the introduction of a co-payment created an

incentive to avoid doctor visits in a particular quarter of the year and one would expect the probability to

visit a doctor within a quarter to decrease for those covered by by SHI relative to the privately insured.

Augurzky et al. (2006) report a negative and statistically significant difference-in-differences coefficient

in a logit model for “any visit”. In their preferred specification they control for individual specific fixed

effects, and the coefficient switches sign and becomes insignificant. Schreyögg and Grabka (2010) estimate

a hurdle-at-zero negative binomial model and find no effect in either part of the model. Farbmacher and
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Winter (2013) find a statistically significant 4 percentage point reduction of the probability of any visit,

for the non-misclassified observations. Here, I also avoid misclassification but nevertheless do not find a

significant effect.

While the main contribution of the paper is the development of a new model of demand for doctor visits

with non-linear pricing, and thus methodological, my results add to the existing evidence regarding the

difficulty of obtaining robust estimates for the effect of the 2004 reform on health care utilization. Perhaps,

household data from the SOEP provide simply too noisy indicators of utilization, and researchers should

better turn their attention to insurance level data, as done for instance by Farbmacher et al. (2013).

2 Modeling the number of doctor visits

Suppose that sickness events arrive according to a Poisson process with rate λ. The total number of

sickness events N during a quarter is then Poisson distributed with mean λ. At each event, the individual

decides whether or not to see a doctor, by comparing two utilities, u1 with a visit and u0 without. Let

utility be a function of income y net of the cost of a visit c. Then a visit takes place, and X = 1, if

u1(y − c) > u0(y)

and

Pr(X = 1) = Pr[u1(y − c) > u0(y)] = p(y, c)

With constant cost, the probability of a visit is the same for all sickness events, and the total number of

visits

Y = X1 + . . .+XN (1)
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has a compound Poisson distribution with mean λ × p(y, c) (Feller, 1977). Under the aforementioned

reform, the cost of a visit is not constant, however, since, abstracting from opportunity cost, the first visit

during a quarter has a price of c and only subsequent visits are free. Thus we have

Pr(X1 = 1) = p(y, c) < Pr(Xj = 1) = p(y, 0), j = 2, . . . , N

Equivalently, the compound Poisson distribution (1) is given by the distribution of the number of ”renewals”

(i.e. completed time spells between visits) during a fixed time interval, if spells are i.i.d exponentially

distributed with rate λ × p(y, c). The non-linear pricing model is then characterized by a one-time jump

in the hazard rate: λ0 = λ × p(y, c) is the hazard rate for the time to first visit, and λ1 = λ × p(y, 0)

that for the duration between subsequent visits. Under the assumptions of the model, λ0 < λ1. This

”non-stationarity” violates the assumptions of a standard renewal process and leads to a new kind of count

data model.

2.1 The distribution of the number of visits

Assume, as before, that sickness events follow a homogenous Poisson process. Hence, hazard rates are

constant (non-time dependent) before and after the first visit. It follows that the time of the first visit t

has an exponential distribution with rate λ0, and the number of further visits during the quarter ocurring

between t and T is Poisson distributed with rate λ1, Y (t, T ) ∼ Poisson(λ1(T − t)). Moreover, for k ≥ 1,

the total number of visits during a quarter has probability

Pr[Y (0, T ) = k] =

∫ T

0

exp(−λ1(T − t))[λ1(T − t)]k−1

(k − 1)!
λ0 exp(−λ0t)dt .
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One can show (see e.g. Baetschmann and Winkelmann, 2014) that the integral has closed form solution,

and using the normalization T = 1, the probability function is given by

f(y;λ0, λ1) =
λ0λ

y−1
1 exp(−λ0)
(λ1 − λ0)y

1−
y−1∑
j=0

exp(−(λ1 − λ0))(λ1 − λ0)j

j!

 y = 1, 2, . . . (2)

and f(0;λ0, λ1) = exp(−λ0). If λ0 = λ1, (2) simplifies to the probability function of the Poisson distribu-

tion.

2.2 Interpretation of parameters

The parameters of the model have a straightforward interpretation. λ0 is the hazard rate for the first

visit (or “stage 0” hazard), λ1 the hazard rate for subsequent visits (or “stage 1” hazard). For instance,

parameterizing λ0 = exp(x′β0), where x is a (k × 1) vector of covariates and β0 a conformable vector of

regression parameters, β0j is the approximate relative change in λ0 associated with a one-unit change in

xj . In the context of two-part or zero-inflated models, β0 and β1 are often denoted as “extensive margin”

and “intensive margin” effects, respectively.

The mean of the model has the generic form

E(Y (0, 1)) = Pr(y > 0) + Et[EY (t, 1)], 0 ≤ t ≤ 1

Since EY (t, 1) = λ1(1− t), where 1− t is the time from the first visit to the end of the calendar quarter,

one sees that the intensive margin effect depends not only on λ1 but on the expected duration of stage 1,

and thus on λ0, as well. In the model, a co-payment for the first visit means that it tends to happen later,

leaving less time for accumulating further visits. It is therefore not the case that the number of visits after

the first visit is unaffected by the co-payment.
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One can further use the assumptions of the Poisson processes to get the following closed form expression

for the mean:

E(Y ;λ0, λ1) = λ1 + (1− λ1/λ0)[1− exp(−λ0)] (3)

As required, the expected value of the distribution reduces to the Poisson mean when λ0 = λ1. The

expected value is greater than λ1 when λ0 > λ1, and smaller otherwise. A relative small value of λ0 is an

indication of ”zero-inflation”, or ”extra-zeros”, relative to the Poisson model, a situation encountered in

many count data applications (Mullahy, 1986, Lambert, 1986).

2.3 Discussion

The implied model for the first visit is identical to that used in a class of hurdle count data models

introduced by Mullahy (1986). The probability function of the fixed hurdle is given by

Pr(Y = y|x) =


p0(λ0) for y = 0

(1− p0(λ0))
f(y|λ1)

1− f(0|λ1)
for y ≥ 1

where f(y|λ1) denotes the probability function of a standard count data model, i.e., Poisson or negative

binomial distribution, and p0(λ0) has a complementary log-log specification. Pohlmeier and Ulrich (1995)

argue that such a hurdle model can be appropriate for modelling the demand for health care. In their in-

terpretation, the first contact decision for a general practitioner often triggers a number of re-appointments

or referrals to specialists that are subject to a different mechanism and thus a different λ.

The standard hurdle model is not derived from an underlying stochastic process, however. It treats λ0

and λ1 as unrelated parameters that can be estimated separately. It ignores the random timing of the first

visit, and thus the effect of λ0 on the length of the period for which visits have a zero co-payment. Thus,

it is not suitable to address the path dependence generated by non-linear pricing that I consider here.
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The ”stochastic hurdle” in model (2) implicitly accounts for the timing of the first visit. The co-payment

causes a lower stage 1 rate and decreases the expected time available for subsequent visits. Although the

timing of the first visit, if any, is unobserved, the corresponding count data model can be derived under

the maintained assumptions.

2.4 Identifying the effect of a co-payment on demand

In general, the two rates of the model can be expressed as functions of a number of exogenous factors x,

such as prior health status, income, gender, employment status and the like. Suppose that λi0 = exp(x′iβ0)

and λi1 = exp(x′iβ1). The above model would suggest that with non-linear pricing, λi0 < λi1, and thus

exp(x′i(β0 − β1)) < 1 for all i

However, attributing any such difference in rates to the existence of a co-payment for the first visit would

require the absence of other explanations. But there are a number of factors that can rationalize a low

initial rate and a higher one thereafter, perhaps the leading one being explored in the aforementioned paper

by Pohlmeier and Ulrich (1995), where visits occur in clusters and a first visit is followed by additional

appointments for a given sickness spell. Thus a different identification strategy is needed. In this paper, I

adhere to the previous literature evaluating the 2004 reform and use difference-in-differences. Specifically,

the co-payment was introduced in 2004 for those covered by SHI. Privately insured people were not affected

and they can serve as control group. Consider the following model:

λit,0 = exp(β0,0 + β0,1 treati + β0,2 postt + β0,3 treati × postt + x′itγ0)

where treati is a dummy variable equal to one if the person is covered by SHI, and postt is a dummy

variable equal to one in the post-reform year 2005. Thus, treati × postt indicates active treatment, and
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β0,3 is the treatment effect under the ”parallel trends assumption”. This assumption implies that the

counterfactual 2005 hazard rate for a first visit for the SHI population in the absence of a co-payment is

equal to the actual SHI rate before the reform in 2003 multiplied by a growth factor exp(β0,2).

Similarly, one could formulate a difference-in-differences effect for the (second) hazard rate for further

visits, λit,1. This offers a kind of placebo test, as, within the above model, the reform did not change the

incentives conditional on a first visit, and no effect should therefore be observed (i.e., the null hypothesis

H0 : β1,3 = 0 should not be rejected).

2.5 Dealing with mismatch

The empirical analysis will be based on information from the German Socio-Economic Panel on the number

of visits “during the previous three months”. Since interviews typically do not take place at the end of a

calendar quarter, this reporting period often overlaps with two calendar quarters.

In principle, the models predicates a method to deal with such a mismatch in a theory consistent way,

something that distinguishes this new model from the a-theoretical approach of the standard hurdle model.

Consider for example a calendar quarter (0, T ) (i.e., T = 3 is time is measured in months) that differs from

the reporting period (0 + r, T + r), 0 < r < T . In this case, the probability of no visit, Pr(Y = 0) is the

product of the probability of no visit in the new calendar quarter, equal to the exponential survivor rate

exp(−λ0r), times the probability of no visit between r and T , which depends on whether a visit has taken

place before, in the period (0, r), which is given by

exp(−λ0(T − r)) exp(−λ0r) + exp(−λ1(T − r))(1− exp(−λ0r))

The first term applies whenever no visit has taken place, so that the first visit in the reporting period is

subject to the co-payment. The second term refers to the case, where a visit has already taken place, so
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that all further visits are free of charge.

Ignoring mismatch would assume a different probability, in this case exp(−λ0T ) and thus use a misspecified

model. The expressions get quickly complex for Y ≥ 1, and this approach, while in principle feasible, is

therefore not implemented in the empirical application. Instead, I will use only observations on persons

interviewed at, or in proximity to, the end of a quarter, as suggested by Farbmacher and Winter (2013).

The downside of this approach is that the sample becomes much smaller, reducing the precision of the

estimators.

2.6 Unobserved heterogeneity

The prior count data literature has emphasized the importance of unobserved heterogeneity in most ap-

plications. If such heterogeneity is ignored, any evidence of path dependence in the underlying stochastic

process can be spurious. For instance, an excess of zeros does not need to indicate a differential hazard

rate. It could equally well mean that the data are drawn from a mixture of two heterogeneous populations

one of whom rarely or never goes to the doctor, while visits in the other group are generated from a Poisson

process.

Unobserved heterogeneity can be introduced into the model semi-parametrically, or by using a specific

distribution function. For the latter, suppose that f(yi|xi, εi) is Poisson distributed with rate exp(x′iβ+ εi)

where exp(εi) ≡ ui > 0 is i.i.d. gamma distributed with mean 1 and variance α. It is well known that

the distribution of yi conditional on xi but unconditional on ui is negative binomial with mean λ and

variance λ(1 + λα) (e.g., Cameron and Trivedi, 1986). Model (2) can be extended along the same lines.

Let the two rates be given by λj(xi, ui) = exp(x′iβj)ui, j = 0, 1, where ui is a gamma distributed individual

heterogeneity term that equally affects both rates. The probability of observing a count y, conditional on

9



x but unconditional on u is then given by

fuoh(y;λ0, λ1, α)

=

∫ ∞
0

f(y;λ0u, λ1u)g(u;α)du (4)

=


(λ0/α+ 1)−α for y=0

λ0λ
y−1
1

(λ1 − λ0)y
(

α

α+ λ0

)α 1−
y−1∑
j=0

(1− θ)j θα Γ(α+ j)

Γ(α)Γ(j + 1)

 for y = 1, 2, 3, . . . ,

where θ = (α+ λ0)/(α+ λ1) and g(u;α) is the gamma density function with mean 1 and variance σ2u = α.

For λ1 > λ0, the term in squared brackets is equal to the complementary cumulative distribution function

of the negative binomial distribution. The mean of the model with unobserved heterogeneity is given by

Euoh(Y |λ0, λ1, α) =

∫ ∞
0

λ1u+ (1− λ1u/λ0u) (1− exp(−λ0u))g(u;α)du

= λ1 + (1− λ1/λ0)(1− fNB(0;λ0, α))

The mean function preserves the essential structure of the mean of the model without heterogeneity, and

simplifies to it for α = 0.

2.7 Estimation and testing

One can estimate β0, β1 and α by maximum likelihood (Stata code is available from the author upon

request). In the application below, the data include (two) repeated observations for each person, one for

the pre-reform year 2003 and one for the post-reform year 2005. Assuming random sampling is therefore

unrealistic. As an alternative to the direct modelling of the intertemporal dependence, one can perform

quasi-likelihood estimation on the pooled observations and adjust the standard errors for clustering at

the individual level. As shown by Vuong (1989), the standard likelihood ratio statistics for nested, but

misspecified models do not have the usual chi-squared distribution in this case, and one should therefore
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rather use a Wald test, for example for testing the hypothesis that λ0 = λ1.

In addition, there is a possibility for an informal specification test of the new model. Define the binary

event “any visit yes/no”. Under the assumption of the model, this event has a Bernoulli distribution with

complementary log-log link and parameter λ0. Thus, λ0 is identified from a separate binary model and

does not require estimation of the full model. A specification test can be based on a comparison of β̂0 in

the full model with that of a simple binary model (i.e., the first stage of the standard hurdle model). If the

two differ a lot, the specification of the structural demand model with non-linear pricing is likely wrong.

Alternatively, one can use the contrast to compute a Hausman-type test statistic.

3 Data and Results

The sample is restricted to individuals between the age of 20 and 60. Table 1 shows selected summary

statistics of the variables employed in the estimation, separately by year. The sample is about evenly split

between the pre- and the post-treatment year. In 2003, the number of doctor visits had a mean of 2.12, and

37 percent of all persons in the sample did not visit a doctor during the previous quarter. In 2005, the mean

was slightly lower (2.07) although the proportion of people without any visits declined to 34.7 percent.

Note that these numbers lump together the treatment (about 83 percent of the sample) and control groups.

The remaining variables are additional determinants of health care utilization: two demographic variables

(age and its square as well as gender), three socio-economic variables (years of schooling, unemployment

and log of disposable household income), and a disability indicator.

— — — Table 1 about here — — —

In terms of overall fit, the simple Poisson model is clearly inferior to the two-part generalizations that

introduce different parameters for the utilization (yes/no) decision and for the intensity of use. When
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not allowing for unobserved heterogeneity, the stochastic hurdle model has a substantially higher quasi

loglikelihood value than the fixed hurdle model (-7010.7 as compared to -7351.1). The Hausman test

statistic, comparing estimates from a Bernoulli model with complementary log-log link with those of the

first visit hazard in the stochastic hurdle model, has a value of 121.0, indicating a statistically significant

difference, i.e., rejection of the new model.

— — — Table 2 about here — — —

One reason for rejection might be neglected heterogeneity. Allowing for such unobserved heterogeneity

reverses the ranking of the fixed and stochastic hurdle models, although the difference amounts only to

about 2 log points. Importantly, it leads to a further substantial increase in quasi loglikelihood values,

and the Wald test rejects the null-hypothesis of no unobserved heterogeneity. Unfortunately, a Hausman

test is not available, because unobserved heterogeneity is not identified in the simple Bernoulli model

(See Pohlmeier and Ulrich, 1995). In the following, I focus on the results of the model with unobserved

heterogeneity when discussing parameter estimates of the stochastic hurdle model shown in Table 3.

Recall that λ0 is the hazard rate for the time to a first visit. The probability of no visit (or utiliza-

tion) is then equal to the survivor rate exp(−λ0). Harzard rate and survivor rate are inversely related,

i.e., factors increasing the hazard rate lower the probability of no visit, and vice versa. With the expo-

nential parameterization, the displayed coefficients indicate the predicted approximate relative change in

the hazard rate associated with a unit change in the associated regressor. The exact relative change is

obtained from the transformation exp(β̂j) − 1. For instance, the hazard rate for a first visit for men is

(exp(−0.783)− 1)× 100 = 54.3 percent below that of women.

— — — Table 3 about here — — —
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There are some interesting asymmetries between first-visit hazard (λ0) and that of subsequent visits (λ1).

For instance, income has no effect on the former, but a statistically significant negative effect on the latter,

where a 10 percent increase in income is predicted to reduce the hazard rate for each further doctor visit

by 2 percent. A similar pattern holds for unemployment. Individuals with disabilities have higher hazard

rates in both states, and thus a higher predicted number of doctor visits, than individuals without.

The point estimate of the treatment effect is a 20 percent reduction in the hazard rate for the first visit.

However, it is measured imprecisely, and the hypothesis of no effect cannot be rejected at conventional

levels of significance. The effect on the stage 1 hazard (were the model would predict none) is positive,

but in magnitude only 1/3 that of the stage 0 hazard, and also statistically insignificant.

4 Concluding remarks

This paper introduced a simple model of health care demand under non-linear pricing, based on a Poisson

process for the arrival of sickness events. In the model, introducing a co-payment for the first visit during

a calendar quarter should lower the hazard rate for the first visit (stage 0 hazard), leaving the subsequent

hazard for further visits unchanged. The model was applied to an evaluation of a German health care reform

of 2004 when a co-payment of 10 Euros was introduced for those covered by statutory health insurance.

In my preferred specification allowing for unobserved heterogeneity, and using a difference-in-differences

setup, no statistically significant of the reform is found.

While the results thus confirm those of two earlier studies by Augurzky et al. (2006) and Schreyögg and

Grabka (2010) who also found no effect of the reform on utilization, the new methodological approach of

this paper offers a number of insights that might prove useful for future research in related contexts. For

instance, the perspective of a stochastic process is useful to understand that any changes to the first hazard

likely also affects the distribution of additional visits, simply because it changes the time left in the quarter
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to accumulate such visit. Thus, it is misleading to conclude that ”the number of doctor visits of a person

within a quarter should not be affected conditional on having visited a doctor at least once in the quarter”

(Augurzky et al., 2006, p.4). Second, while not explored in this paper, the approach also points towards

a theory consistent way to derive the likelihood of mismatched observations, i.e., observations for which

reporting period and calendar quarter do not overlap. Implementing such an approach would avoid a loss

of information incurred by limiting the sample to people interviewed at the end of a calendar quarter, and

thus increase power.

Finally, there are also a number of obvious limitations resulting from the simple sickness arrival process

and the rather mechanical decision process. For instance, a richer model might account for delay, whereby

a sickness episode shortly before the end of a quarter leads to a visit just at the beginning of the next

quarter, if no visit has taken place up to that point. There is also the possibility of anticipated visits, e.g.

for health preservation rather than acute sickness, towards the end of a quarter where a visit has already

taken place.

Furthermore, expectations may matter. As Farbmacher et al. (2013) point out, individuals who expect

(or even know for sure) that they have to visit a doctor at least once during the payment period have

little incentive to postpone their first visit, even if that visit is costly. Forward looking individuals should

therefore have been unaffected by the 2004 reform, if their subjective probability of having to visit a

doctor at least once was high, in contrast to those with a low subjective probability. Using a finite mixture

model for the probability of any visit, Farbmacher et al. (2013) find indeed evidence in support for such

heterogeneous effects. Standard evaluation approaches focussing on average effects might therefore yield

misleading policy conclusions.
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Table 1. Means and standard errors by year

2003 (N=1649) 2005 (N=1745)

Mean (Std. Err.) Mean (Std. Err.)

Number of doctor visits 2.120 (0.077) 2.072 (0.069)

Any visit (yes/no) 0.630 (0.011) 0.653 (0.011)

SHI (yes/no) 0.836 (0.009) 0.821 (0.009)

Age 40.24 (0.254) 41.20 (0.256)

Years of schooling 12.21 (0.066) 12.29 (0.064)

Unemployed (yes/no) 0.058 (0.005) 0.051 (0.005)

Disability (yes/no) 0.053 (0.005) 0.069 (0.006)

Male (yes/no) 0.482 (0.012) 0.482 (0.011)

Log net household income 10.47 (0.014) 10.52 (0.015)

Source: Socio-Economic Panel (SOEP), version 26, doi:10.5684/soep.v26

Table 2. Model fit (N = 3394)

quasi loglikelihood # of parameters

Poisson -8181.4 11

Fixed hurdle, no unobserved heterogeneity -7351.1 22

Stochastic hurdle, no unobserved heterogeneity -7010.7 22

Negative binomial -6446.8 12

Fixed hurdle, unobserved heterogeneity -6417.4 23

Stochastic hurdle, unobserved heterogeneity -6419.5 23
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Table 3. Stochastic hurdle models of health care utilization (N=3394

Poisson Without heterogeneity With heterogeneity

λ λ0 λ1 λ0 λ1

Post 0.001 0.202** -0.266 0.249 -0.139
(0.114) (0.100) (0.202) (0.212) (0.147)

Treat -0.197* 0.014 -0.379** -0.117 -0.306**
(0.101) (0.085) (0.181) (0.175) (0.130)

Post×Treat -0.047 -0.162 0.151 -0.203 0.068
(0.125) (0.110) (0.218) (0.228) (0.157)

Age 0.031* -0.010 0.067** 0.006 0.050**
(0.017) (0.015) (0.027) (0.029) (0.020)

Age squared×10−2 -0.026 0.020 -0.071** 0.010 -0.050**
(0.021) (0.019) (0.034) (0.036) (0.024)

Years of schooling -0.008 0.001 -0.014 -0.002 -0.016
(0.009) (0.009) (0.014) (0.017) (0.011)

Unemployment (yes/no) 0.366** 0.020 0.483** 0.106 0.437**
(0.102) (0.086) (0.162) (0.194) (0.128)

Disability (yes/no) 0.787** 0.589** 0.545** 1.752** 0.688**
(0.076) (0.085) (0.113) (0.305) (0.086)

Male (yes/no) -0.411** -0.386** -0.213** -0.783** -0.315**
(0.052) (0.044) (0.084) (0.075) (0.061)

Log net household income -0.145** 0.006 -0.242** -0.059 -0.187**
(0.044) (0.037) (0.067) (0.080) (0.050)

σ2u 0.320**
(0.055)

Source: Socio-Economic Panel (SOEP), version 26, doi:10.5684/soep.v26

Dependent variable: Number of doctor visits; Cluster robust standard errors in parentheses.
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