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Abstract

In a multi-country model with interconnected markets for fossil fuel and deposits

some countries fight climate damage by purchasing and preserving fossil fuel de-

posits, which would be exploited otherwise. We analyze the effectiveness of such

a deposit policy, when that policy stands alone or is combined with fuel cap poli-

cies. If the stand-alone deposit policy is non-strategic, it implements the first-best

allocation; otherwise, it distorts the allocation in the coalition’s favor. Following

Harstad (2012), we then analyze the policy mix consisting of the deposit pol-

icy, a fuel-supply-cap policy and a fuel-demand-cap policy. The fuel-supply-cap

policy turns out to be redundant and so is the fuel-demand-cap policy, if it is non-

strategic. Whenever the coalition acts strategically on one of the markets or on

both, it distorts the allocation in its own favor and is better off than in the efficient

price-taking scenario which contrasts the efficiency result of Harstad.

JEL classification: F55, H23, Q54, Q58

Key words: fuel deposits, deposit policy, fuel-supply cap

fuel-demand cap

∗Eichner: Department of Economics, University of Hagen, Universitätsstr. 41, 58097 Hagen, Germany,

email: thomas.eichner@fernuni-hagen.de; Pethig: Department of Economics, University of Siegen, Hölder-

linstr. 3, 57068 Siegen, Germany, pethig@vwl.wiwi.uni-siegen.de.

1



1 The problem

Scientific evidence strongly suggests that global warming is caused by anthropogenic green-

house gas emissions, notably by emissions of carbon dioxide from burning fossil fuels. The

substantial reduction of global carbon emissions necessary to retard global warming calls

for an effective international environmental agreement. The first legally binding agreement,

the Kyoto Protocol, stipulated rather unambitious commitments and therefore accomplished

only little more than global noncooperation. The Kyoto Protocol expired in 2012. If any

post-Kyoto cooperation will be reached at all, it will most likely be sub-global. That mo-

tivates the assumption of the present paper that some countries do not engage in reducing

climate damage while others cooperate in a climate treaty and form a climate coalition,

which we treat as one agent.

We consider a world with asymmetric countries all of which extract, trade, and consume

fossil fuel. All countries’ carbon emissions from fuel consumption generate climate damage.

The coalition may choose among three types of policies to mitigate climate damage. It may

reduce own fuel consumption and hence own carbon emissions (fuel-demand-cap policy),1

it may reduce own fuel production (fuel-supply-cap policy) or it may purchase fossil fuel

deposits to prevent their exploitation (deposit policy). The present paper aims to analyze

the effectiveness of the deposit policy as a unilateral means to reduce climate damage, when

that policy stands alone or is combined with fuel cap policies.

To see that the deposit policy is mutually advantageous for the coalition and the non-

coalition countries, observe that if the coalition purchases and preserves a small deposit

that would have been exploited otherwise, it reduces global emissions by a small amount

and its benefit from that purchase approximately equals the marginal climate damage. All

countries are willing to sell a deposit that stores some fuel in the ground, as long as the

deposit price covers at least the profit forgone of exploiting that deposit. Since extraction

costs increase progressively, the profit of the last unit of fuel extracted is zero. It follows

that in the no-policy regime the minimum asking price for the highest-cost deposit to be

exploited is approximately zero, while the coalition’s maximum willingness-to-pay for that

deposit approximately equals the strictly positive marginal climate damage. Hence, there is

room for mutually advantageous deposit trades.

The rationale of the coalition’s deposit policy is to buy some of those deposits, which

would have been exploited otherwise, and thus reduce global fuel production. Which de-

posits would have been exploited otherwise depends on the fuel price, for in the absence of

1We denote by fuel cap policy any policy, such as fuel taxation or ’cap and trade’ schemes, that reduces

the coalition’s fuel consumption or production compared to the no-policy scenario.

2



deposit purchases extraction firms exploit all deposits with marginal extraction costs less

than or equal to the fuel price. That observation points to the fundamental interdependence

of the markets for deposits and fuel, which we will investigate in an analytical model of

interconnected markets for fuel and deposits. Since the coalition is a monopsonist on the

deposit market, special emphasis needs to be placed on the coalition’s strategic behavior,

that is, on the extent to which the coalition accounts for the effects of its policy on the

terms of trade. To elaborate the impact of strategic behavior on the outcome, we also com-

pare the allocative distortions and the coalition’s benefits under conditions of strategic and

non-strategic action.

Fuel-demand-cap policies are the prevailing approach to unilateral climate policy in

practice, and they fill the bulk of the climate literature (see e.g. Copeland and Taylor 1995,

Ulph 1996, Kiyono and Ishikawa 2013). In contrast, fuel-supply-cap policies and the deposit

policy are not much explored.2 As for the deposit policy, Bohm (1993) and Harstad (2012)

are the only studies, to our knowledge, with an analytical approach to deposit policy. In

a stylized parametric model, Bohm considers a sub-global coalition that aims to reduce

global emission by a predetermined small amount either through reducing its fuel demand

or through a special mix of deposit policy and fuel-demand-cap policy, which leaves the fuel

price at its pre-policy level.3 Bohm derives conditions under which the policy mix implements

the emission cap at lower costs than the stand-alone fuel-demand-cap policy. Our approach

differs from Bohm’s in that we set up an analytical model with endogenous interdependent

prices for fuel and deposits. Neither do we set an exogenous global emission reduction goal,

nor do we compare policies with and without the purchase of deposits. Rather, our focus is

on the strategic deposit policy and supplementary fuel-cap policies.

Harstad (2012) adds the deposit policy to Hoel’s (1994) mix of fuel-demand-cap and

fuel-supply-cap policies. He models the deposit market as a set of bilateral trades to the

mutual advantage of the trading partners. "The market clears when there exists no pair of

countries that would both strictly benefit from trading some of their deposits at some price"

(Harstad 2012, p. 92). His remarkable result is that if the coalition pursues the fuel caps

policies strategically and purchases deposits as described above, it is able to restore efficiency

in unilateral action.4 Harstad’s design of the deposit market suits well for markets with few

2For studies combining the unilateral climate policies of capping fuel demand and supply in the absence

of a market for deposits see e.g. Hoel (1994), Eichner and Pethig (2014) and Faehn et al. (2014).
3In Bohm’s view, the stand-alone deposit policy is "rather farfetched" because of its high costs in the

form of the expenditure on deposits and the fuel price increase.
4Crucial for Harstad’s restoration of first best is his assumption that the non-coalition countries do not

suffer from climate damage. In the present paper, we take up that assumption to enable the comparison of

outcomes.
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sellers and buyers. Arguably, the supply side of the deposit market is not thin, however, for

worldwide there are many potential sellers of deposits. In contrast, the demand side is truly

thin, since the coalition is the only demander, i.e. the monopsonist. We therefore suggest

modeling the deposit market in an alternative way as a market with a uniform price, with

price-taking suppliers and with the coalition exerting monopsonistic market power.5

Section 2 formalizes the interdependent markets for deposits and fuel and shows that

the stand-alone deposit policy implements the first-best allocation in the benchmark case

in which all agents – including the coalition – act as price takers. Keeping the focus on the

stand-alone deposit policy, Section 3 dismisses the unrealistic assumption of a price-taking

monopsonist and shows how the strategically acting coalition distorts the terms of trade in

its own favor. In Section 4, we take up Harstad’s mix of the deposit policy, the fuel-supply-

cap policy and the fuel-demand-cap policy and assume that the coalition pursues the deposit

policy as well as the fuel-caps policies strategically. The coalition distorts the terms of trade

in its own favor, as expected, and the fuel-supply-cap policy turns out to be redundant.

Section 5 explores the role of the coalition’s strategic behavior by comparing scenarios

with and without strategic action. A general conclusion is that whenever the coalition acts

strategically on the fuel market, on the deposit market or on both, it distorts the allocation

in its own favor and hence is better off than in the efficient price-taking regime of Section

2. In sharp contrast, Harstad (2012) concludes that the allocation is first best in spite of

strategic fuel-caps policies. Thus, Harstad’s efficiency result is not robust with regard to the

alternative analytical concept of the deposit market developed in the present paper.

In Section 5, we also show that if the coalition combines the deposit policy with the

fuel-supply-cap policy but does not act strategically at all, the result is the same as in the

efficient regime of Section 2 with its stand-alone deposit policy; hence in that case the cap

policy is redundant. If the deposit policy is strategic but the fuel-supply-cap policy is not,

the outcome is the same as in the model of Section 3 with the stand-alone deposit policy;

hence in that case the cap policy is also redundant. Finally, based on a simple parametric

version of the model we show that the mix of the strategic deposit policy and the strategic

fuel-supply-cap policy is better for the coalition than the strategic stand-alone deposit policy,

which is better, in turn, than the completely non-strategic policies.

5Bohm (1993) appears to have taken that route, but his setup and illustration of the deposit market

provides limited insight into how the market works and how it is linked with the fuel market.
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2 Non-strategic deposit policy

We consider a world economy with two groups of countries, M andN . The members of group

M participate in an international climate agreement. To simplify, we treat group M as one

agent, referred to as coalition M . The countries of group N = {1, . . . , n} are no signatories

of the agreement. Each country i ∈ {M} ∪ N produces fossil energy (quantity esi ), called

fuel, from domestic fossil energy deposits. The cost of extracting fuel is C i(esi ) with6 C i
esi
> 0,

and C i
esi e

s
i
> 0. Following Harstad (2012, p. 85), we interpret the extraction cost function as

a function that implicitly orders country i’s (small) deposits according to their extraction

costs such that C i
esi
(esi ) ". . . is a mapping from country i’s deposits, ordered according to

costs, to the marginal extraction cost of these deposits."7 Fuel consumption generates the

greenhouse gas carbon dioxide proportional to fuel consumption. With a suitable choice of

units, edi represents both fuel consumption and emissions. Global emissions cause climate

damage Di
(
∑

{M}∪N e
d
j

)

in country i. The function Di is increasing and convex in global

emissions. As indicated in the introduction, we follow Harstad (2012) in setting

Di (·) ≡ 0 for all i ∈ N and DM (·) = D (·) > 0 (1)

throughout the paper.

The representative consumer of country i, consumer i for short, derives utility from

consuming fuel, Bi(edi ), with Bi
edi
> 0 and Bi

edi e
d
i

< 0 and suffers from climate damage Di (·).

Her utility is

ui = Bi(edi ) + ψi − pee
d
i −Di




∑

{M}∪N

edj



 , i ∈ {M} ∪N, (2)

where pe is the fuel price and ψi denotes net income that includes profits. Consumer i takes

the prevailing climate damage as given and maximizes her consumption utility,8 Bi(edi ) +

ψi − pee
d
i , with respect to edi . The first-order condition

Bi
edi
(edi ) = pe, i ∈ {M} ∪N, (3a)

readily yields the fuel demand

edi = Edi(pe) :=
(

Bi
edi

)−1

(pe), (3b)

6Upper-case letters denote functions and subscripts attached to them indicate derivatives.
7A deposit is characterized by the amount of fossil fuel in the ground that can be extracted from it and

by the cost of extracting that fuel. Deposits are supposed to contain very small but finite amounts of fuel.

To reduce clutter we refer to Ci
es
i

(esi ) as the cost of extracting the fuel contained in the deposit.
8It is straightforward to turn the model into a simple general equilibrium model by introducing a nu-

meraire consumption good with linear production technology. Denote the demand for this good by xdi , con-

sider the quasi-linear utility Bi(edi ) + xdi and observe that consumer i’s budget constraint is pee
d
i + xdi = ψi.

See e.g. Harstad (2012) or Eichner and Pethig (2013).
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where
(

Bi
edi

)−1

is the inverse of the marginal benefit function Bi
edi

.

Each country i hosts a firm, firm i for short, that owns the country’s fossil fuel deposits.

The firm extracts the amount esi of fuel to sell it on the fuel market at price pe, and it offers

at price pz the amount zsi of ’fuel in the ground’ on the deposit market.9 More precisely,

the item the firm offers on the deposit market is the right to exploit specific deposits that

embody the amount zsi of fuel. However, to avoid clumsy wording we will simply call zsi and

zdi the deposits supplied and demanded.

Next, we specify the deposits firm i exploits, or sells unexploited, or leaves in the

ground unsold. To that end, suppose for the time being there is no deposit market. Then

the firm maximizes the profit pee
s
i − C i(esi ). The first-order condition C i

esi
(esi ) = pe readily

yields the fuel supply

esi = Esi(pe) :=
(

C i
esi

)−1

(pe),

where
(

C i
esi

)−1

is the inverse of the marginal cost function C i
esi

. In terms of deposit language,

firm i exploits all deposits with extraction costs C i
esi
(esi ) ≤ pe. Firm i obviously has an

incentive to offer deposits with extraction costs C i
esi
(esi ) > pe, which it would not exploit

in the absence of deposit trading. However, the coalition’s one and only purpose of buying

deposits is to reduce total fuel extraction. That is, it seeks to prevent the consumption of

fuel that is stored in those deposits which firm i would have exploited in the absence of

deposit trading. It therefore buys only deposits with extraction costs C i
esi
(esi ) ≤ pe. Since

the deposit selling firm i observes that constraint, its fuel supply is

esi = Esi(pe)− zsi , (4)

when it offers the deposits zsi for sale. Suppose, the deposit price is pz = pe. In that case, all

firms offer all deposits for sale with extraction costs C i
esi
(esi ) ≤ pe, because their revenues from

selling those deposits, pzE
si(pe) = peE

si(pe), is higher than their profit peE
si −C i [Esi(pe)] in

the absence of deposit trading. Therefore, the fuel price pe is an upper bound for the deposit

price pz.
10 In contrast, if pz = 0, no country gives away free any deposit with extraction

costs C i
esi
(esi ) ≤ pe, because the extraction of those deposits generates a profit. We conclude

that pz ∈ [0, pe].

9Our implicit assumption is that firm i is entitled to sell (the right to exploit) deposits. Harstad’s (2012,

p. 86) alternative assumption is that governments own the deposits and decide on selling (the right to

exploit) the country’s deposits. The deposit supply of welfare-maximizing price-taking governments is the

same as that of profit-maximizing price-taking firms.
10The coalition will not accept prices pz > pe, since it can purchase all non-coalition countries’ profitable

deposits already at the price pz = pe.
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That information serves to derive the firm’s supply of fuel and deposits as follows.

The firm not only generates a profit from producing and selling fuel, but also receives the

revenues pzz
s
i from selling the deposits zsi . Taking pe and pz as given, it maximizes its total

income

pe
[
Esi(pe)− zsi

]
− C i

[
Esi(pe)− zsi

]
+ pzz

s
i

with respect to zsi . The first-order condition is

C i
esi
(esi ) = pe − pz, i ∈ {M} ∪N. (5a)

(5a) implies that firm i extracts fuel from all deposits with extraction costs11 C i
esi
(esi ) ≤

pe − pz. Correspondingly, the fuel supply is

esi = Esi(pe − pz) :=
(

C i
esi

)−1

(pe − pz), i ∈ {M} ∪N, (5b)

and we obtain the deposit supply

zsi = Esi(pe)−Esi(pe − pz), i ∈ {M} ∪N (6)

when combining (5b) and (4). The simultaneous determination of the supply functions (5b)

and (6) highlights the strong interdependence of the markets for deposits and fuel.

Figure 1 illustrates firm i’s simultaneous choice of fuel and deposit supplies for given

pe and pz. If there is no deposit market, the firm’s fuel supply is esi = Esi(pe) and its profit

equals the triangle FpeH . If there is a deposit market and the price is pz ∈]0, pe[, firm i’s

optimal fuel supply is Esi(pe−pz) in Figure 1, its revenues from selling deposits are GLHK,

and its profit is the area FpeLG. Hence, the firm gains the triangle GHK when the deposit

market is in operation. Figure 1 also shows that the firm offers all deposits with extraction

costs between pe − pz and pe, that is, it offers the least profitable of those deposits, which

it would have exploited in the absence of deposit trading. This selection of deposits for sale

is also in the coalition’s interest. To see that suppose, the firm would offer deposits with

extraction costs less than pe − pz subject to the constraint that it receives the same total

amount of money GLHK as in Figure 1. Then it would offer a number of deposits whose

total amount of stored fuel is smaller than zsi in Figure 1, because the firm requires to be

compensated for the higher loss of profits.

In view of the fuel demand in (3b) and the fuel supply in (5b), the fuel-market clearing

condition is

∑

{M}∪N

Edj(pe) =
∑

{M}∪N

Esj(pe − pz). (7)

11A (very) small deposit is fully characterized by the cost of extracting the fuel it contains. That cost is

(approximately) equal to the marginal extraction cost Ci
es
i

(esi ).
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pe

esi0

pe

pe − pz

F

Esi(pe − pz) Esi(pe)

L H

G K

pz

zsi

Figure 1: Firm i’s supply of fuel and deposits for given pe and pz

We have already specified the firms’ deposit supply in (6). It remains to derive the demand

for deposits. By assumption (1), the non-coalition countries refrain from mitigating climate

damage and hence do not buy deposits (zdi = 0 for all i ∈ N). In this section the coalition’s

executive body, the coalition for short, is assumed to act as a price-taker on the fuel market

and on the deposit market. The coalition accounts for esM = EsM(pe)− zsM from (4), takes

pe, pz, e
d
M and zsM as given and maximizes with respect to zdM the welfare

uM = BM (edM)− CM
[
EsM(pe)− zsM

]
− pe

{
edM −

[
EsM(pe)− zsM

]}

−D




∑

{M}∪N

Esj(pe)− zdM



− pz
(
zdM − zsM

)
. (8)

The first-order condition reads

De




∑

{M}∪N

Esj(pe)− zdM



 = pz withDe :=
dD

d
∑

{M}∪N e
d
j

, (9a)

which is equivalent to

zdM =
∑

{M}∪N

Esj(pe)−D−1
e (pz). (9b)

In (9a), the marginal climate damage De [·] is the marginal benefit and pz is the marginal

cost of purchasing deposits. In view of (6) and (9b), the deposit market is in equilibrium if

∑

{M}∪N

Esj(pe − pz) = D−1
e (pz). (10)
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According to (7) and (10), equilibrium on each market depends on both prices, pe and pz.

Hence, solving (7) and (10) for pe and pz simultaneously establishes the equilibrium on both

markets.

Finally, we wish to know whether the perfectly competitive equilibrium on both mar-

kets is efficient. The straightforward implication of (3a), (5a) and (9a) is that the equilibrium

is characterized by

Bi
edi
(edi )

︸ ︷︷ ︸

=pe

= Bj

edj
(edj )

︸ ︷︷ ︸

=pe

i, j ∈ {M} ∪N and (11)

De




∑

{M}∪N

edj





︸ ︷︷ ︸

=pz

= Bi
edi
(edi )− C i

esi
(esi )

︸ ︷︷ ︸

=pe−(pe−pz)

i ∈ {M} ∪N. (12)

The equations (11) and (12) turn out to be the first-best – or efficient – allocation rules.12

Equation (11) represents the rule for efficient fuel consumption across countries and equation

(12) is the rule for the coalition’s efficient purchase of deposits. The marginal benefit of

purchasing deposits, De, equals the marginal cost of purchasing deposits, pz.

Proposition 1 . Suppose the coalition purchases fossil fuel deposits and preserves

them. If all agents – including the coalition – are price-takers on the markets for fuel and

deposits, the resultant perfectly competitive equilibrium is efficient.

Proposition 1 is remarkable, because efficiency is reached without any regulatory action

other than the coalition’s price-taking purchase of deposits. The coalition’s dilemma is

that by assumption, the non-coalition countries contribute to its climate damage through

their carbon emissions, but the coalition has no direct lever at its disposal for inducing

non-coalition countries to curb their emissions. The coalition’s purchase of deposits is to

be an indirect instrument to reduce the non-coalition countries’ fuel supply. It is an effec-

tive measure, because it accomplishes the full internalization of the non-coalition countries’

transfrontier pollution. Since the (executive body of the) coalition also buys deposits from

its own extraction firm, it also fully internalizes the ’home-made’ pollution.13

Figure 2 illustrates the equilibrium of the world economy with and without non-

strategic stand-alone deposit policy. In the right-hand side panel, the intersection of the

12See also Harstad (2012), equation (1).
13Recall the assumption in equation (1) that the non-condition countries do not suffer from climate

damage. If they would do and still abstain from climate policy, the world allocation would not be efficient.
14In Figure 2 we use the notation eh :=

∑

{M}∪N ehj for h = d, s, zs :=
∑

{M}∪N zsj and point

E=̂
∑

{M}∪N Esj(p∗e).
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zdM zs

z∗
0′

p∗z

pz

p∗e − p∗z

poe

p∗e

p∗z

pe, pe − pz

ed

es
′′

es
′

z∗

B z∗ C

A
D ed

′

es

0 e∗ eo E

z∗

ed, es

Figure 2: The interdependent, perfectly competitive markets for fossil fuel and deposits14

aggregate fuel demand curve eded
′

and the aggregate fuel supply curve eses
′

determines

the inefficient equilibrium (poe, e
o) in the absence of deposit policy. It is characterized by

poe = Bi
edi
(eo) = C i

esi
(eo) for all i, j = {M} ∪ N . If deposits are traded, the fuel demand

curve eded
′

remains unchanged, but now the aggregate fuel supply curve is esABes
′′
. The

consumer price of fuel increases from poe to p∗e, the producer price of fuel decreases from poe

to p∗e − p∗z, and total fuel consumption declines from eo to e∗, reducing climate damage from

D(eo) to D(e∗). The coordinate system with origin 0′ in the left-hand side panel of Figure

2 shows how the deposit price pz clears the deposit market when the equilibrium fuel price

pe = p∗e is given.

Returning to the fuel market, we observe that the amount of deposits bought and sold

in equilibrium is z∗ = BC = AD = e∗E and the coalition’s expenditure on deposits is

p∗zz
∗ = ABCD. Interestingly, the coalition not only buys the deposits with extraction costs

C i
esi
(esi ) ∈ [p∗e − p∗z, p

o
e], that would have been extracted in the absence of deposit trading, but

it also purchases all deposits with extraction costs C i
esi
(esi ) ∈ [poe, p

∗
e], although these deposits

would not have been extracted in the absence of deposit trading.
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3 Strategic deposit policy

We consider the efficiency result of the previous section as an important benchmark rather

than as an empirically relevant case. Since the coalition is a monopsonist on the deposit

market, price-taking purchase of deposits is unrealistic. We now replace price-taking by

assuming that the coalition acts strategically in the sense that it takes the impact of its

deposit policy on the equilibrium prices of fuel and deposits into account. To analyze such

strategic action, we set up the two-stage game illustrated in Figure 3. At stage 1, the

coalition decides on its purchase of deposits, zdM , anticipating that both markets clear at

stage 2 and that its choice of zdM influences the equilibrium prices pe and pz.

stage 1 stage 2

time

policy

(zdM)

fuel market (edj , e
s
j , pe, j ∈ {M} ∪N)

deposit market (zsj , pz, j ∈ {M} ∪N)

Figure 3: Timing of the game with strategic deposit policy

At stage 2, the fuel-market equilibrium condition (7) is satisfied as well as the condition

for equilibrium on the deposit market,

zdM =
∑

{M}∪N

[
Esj(pe)−Esj(pe − pz)

]
, (13)

that builds on (6) and on the information that zdM has already been determined at stage 1.

Back at stage 1, the coalition chooses its demand for deposits. It does so by anticipating

the equilibrium conditions (7) and (13). The coalition realizes that its deposit purchase

influences the equilibrium prices of both markets. In formal terms, (7) and (13) imply price

functions P e and P z such that the equilibrium prices are15

pe = P e(zdM) and pz = P z(zdM), (14)

with P e
zd
M

> 0, P z
zd
M

> 0 and d(pe−pz)

dzd
M

= P e
zd
M

− P z
zd
M

< 0, if the coalition chooses zdM . Since

pe−pz is the producer price of fuel, d(pe−pz)/dz
d
M < 0 implies that all firms reduce their fuel

supply, which in turn raises the equilibrium fuel price, P e
zd
M

> 0. In addition, if (13) holds

initially and the deposit demand incrases, dzdM > 0, the firms are not willing to reequilibrate

the market by raising their supply of deposits, unless the deposit price increases, P z
zd
M

> 0.

15The functions P e and P z in (14) result from solving (7) and (13) for predetermined zdM . The sign of

their derivatives is derived in Appendix A.
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The coalition lets its firm sell deposits as in the last section. However, it takes into

account how the firm’s deposit supply zsM = EsM(pe)−EsM(pe − pz) from (6) changes when

the equilibrium prices (14) change with variations of zdM . Accounting for that information,

the coalition maximizes

uM = BM
[
EdM(pe)

]
− CM

[
EsM(pe − pz)

]
− pe

[
EdM(pe)−EsM(pe − pz)

]

−D




∑

{M}∪N

Esj(pe)− zdM



− pz
[
zdM − EsM(pe) + EsM(pe − pz)

]
(15)

with respect to zdM subject to (14). The first-order condition is16

(De − pz)
(

1− EsM
pe
P e
zd
M

)

︸ ︷︷ ︸

>0

=
(
zdM − zsM

)
P z
zd
M
+

(

De

∑

N

Esj
pe

+ edM − esM

)

P e
zd
M
. (16)

A straightforward implication of (16) is that the outcome is efficient, if P e
zd
M

= P z
zd
M

= 0, that

is, if the coalition refrains from exerting its market power. That special case restates the

efficiency result of Section 2. However, if the coalition acts strategically (P e
zd
M

, P z
zd
M

> 0) the

right-hand side of (16) is non-zero, in general,17 which renders the equilibrium allocation

inefficient. To get more specific results we assume in the sequel that all countries have

identical benefit and cost functions (Bi = Bj and C i = Cj for all i, j ∈ {M} ∪ N). That

symmetry assumption yields edi = esi for all i ∈ {M} ∪ N and secures that the right-hand

side of (16) is positive.

To compare the outcomes of strategic and non-strategic deposit policy, we attach a

’tilde’ to the solution values of the former and a ’star’ to the solution values of the latter. Con-

sider the term De−pz on the left-hand side of (16). Since De−pz = 0 if z̃dM = zd∗M due to (3a),

(5a) and (9a), it is true thatDe−pz > 0 implies z̃dM < zd∗M , if and only if (De−pz) is monotone

declining in zdM . Differentiation yields d(De − pz)/dz
d
M =

(
∑

{M}∪N Esj
pe
P e
zd
M

− 1
)

Dee −P z
zd
M

.

From Dee ≥ 0, P z
zd
M

> 0 and
∑

{M}∪N Esj
pe
P e
zd
M

=
∑

{M}∪N Esj
pe

∑
{M}∪N(E

sj
pe−E

dj
pe)

< 1 follows d(De −

pz)/dz
d
M < 0 and hence z̃dM < zd∗M . If we start with zdM = zd∗M and reduce zdM succes-

sively, the equality (16) is eventually restored.18 To put it differently, for any given zdM

the coalition realizes that its marginal benefit of purchasing deposits is smaller and/or its

marginal cost of purchasing deposits is larger with than without strategic action, and it

therefore chooses z̃dM < zd∗M . From z̃dM < zd∗M follows, in turn, that p̃e < p∗e, p̃z < p∗z and

16The derivation of (16) can be found in Appendix A.
17We cannot exclude the possibility that the distortionary effects in (16) cancel out. However, it is

reasonable to neglect such extremely exceptional cases.
18Strictly speaking, that conclusion presupposes that the coalition’s welfare uM in (18) (subject to (17))

is single-peaked in zdM . In Appendix C we show for parametric functions B, C and D that the coalition’s

welfare uM in (18) is strictly concave in zdM .
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p̃e − p̃z > p∗e − p∗z, because P e
zd
M

> 0, P z
zd
M

> 0 and d(pe − pz)/dz
d
M < 0. Moreover, the

inequality p̃e − p̃z > p∗e − p∗z implies D̃ > D∗. That is, the climate damage the coalition

chooses in case of strategic deposit policy is above its first-best level.

Next we turn to answer the question, whether strategic action pays for the coalition.

Clearly, it could have purchased the first-best amount of deposits, zd∗M . Therefore, its choice

to distort the allocation proves that it is better off with than without strategic action. How-

ever, it is unclear, how the partial welfare loss of higher climate damage is overcompensated.

Either, the coalition’s consumption of fuel is sufficiently higher than the first-best level or

the higher income due to lower expenditures on fuel and deposits is used to buy a stan-

dard consumption good not explicitly considered in our formal model.19 In any case the

welfare gain from higher consumption over-compensates the welfare loss from higher climate

damage. The results are summarized in

Proposition 2 . Suppose that the coalition purchases fossil fuel deposits to preserve

them and that it acts strategically in the two-stage game of Figure 3.

(i) Then the allocation is inefficient, in general.

(ii) Suppose the benefit and cost functions are the same across countries. Compared to the

first-best non-strategic deposit policy (Proposition 1), the prices of fuel and deposits are

lower, the coalition buys fewer deposits and hence puts up with higher climate damage.

However, it is better off with than without strategic action, because it overcompensates

the welfare loss from higher climate damage by higher consumption.

Essentially, the coalition takes advantage of its monopsonistic market power to distort the

efficient allocation in its own favor. Since the markets for deposits and fuel are interdepen-

dent, the deposit price change caused by the demand for deposits triggers a change of the

fuel price, which, in turn, spills back to the deposit market.

4 Strategic deposit- and -caps policy

Following Harstad (2012), we now suppose the coalition purchases deposits, as before, and

regulates its own demand and supply of fuel in the form of caps on fuel consumption and

production.20 To avoid clumsy wording, we denote that policy as deposit-and-caps policy.

Since carbon emissions are proportional to fuel consumption, the cap on fuel consumption

19See footnote 8.
20See Hoel (1994) and Harstad (2012) for the discussion of various means such as taxes or emission trading

to implement these fuel caps.
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amounts to the conventional demand-side emission-reduction policy. Hoel (1994) showed in

an analytical framework without deposit trading that under certain conditions the coalition

prefers capping fuel demand and supply to capping fuel demand only. Harstad (2012) ex-

tended Hoel’s two-instrument fuel regulation by the purchase of deposits. As pointed out

in the introduction, Harstad finds that the coalition’s three-instrument policy attains effi-

ciency although it acts strategically. That result is remarkable and intriguing, in fact, since

we showed in the last section for the case of stand-alone deposit policy that the coalition’s

move from price-taking (Section 2) to strategic (Section 3) action distorts the first-best al-

location. The principal question we wish to answer in the present section is whether it is

possible to "replicate" Harstad’s efficiency result with our analytical design of the deposit

market which differs significantly from Harstad’s.

Throughout the present section, the non-coalition countries’ supply and demand of

fuel and supply of deposits are as in the previous sections, i.e. the equations

edi = Edi(pe), esi = Esi(pe − pz), and zsi = Esi(pe)− Esi(pe − pz), i ∈ N (17)

from (3b), (5b) and (6) are still satisfied. The coalition’s fuel demand and supply are now

regulated by the fuel production cap ēsM and the fuel consumption cap ēdM . Correspond-

ingly, the deposit supply of the coalition’s firm is zero (zsM ≡ 0). Since a non-binding fuel

production cap ēsM ≥ EsM(pe) is redundant, the coalition will set the cap ēsM , if any, such

that ēsM < EsM(pe). That is, setting the cap ēsM amounts to the preservation of the amount

z̄sM := EsM(pe)− ēsM > 0 (18)

of the coalition’s deposits, which its firm would have exploited in the absence of climate

policy.21 Although z̄sM is not offered for sale on the deposit market, it is relevant for the

coalition’s mitigation policy, because now total emission reduction is ẑdM := zdM + z̄sM instead

of zdM . The coalition’s welfare is

uM = BM(ēdM)− CM(ēsM)− pe(ē
d
M − ēsM)−D

[
∑

N

Esj(pe) + ēsM − zdM

]

− pzz
d
M ,

when it implements the fuel production cap ēsM , the fuel consumption cap ēdM and buys the

amount zdM of deposits. The coalition’s policy instruments interfere directly either with the

fuel market (ēdM , ē
s
M) or with the deposit market (zdM). Accordingly, it may act strategically

on both markets, on either market or on neither market. Put differently, the coalition may

choose a strategic or non-strategic fuel-caps policy and a strategic or non-strategic deposit

policy. We will place our main emphasis on – and begin with – the case of strategic action

on both markets, but will then also take up the other policy scenarios.

21Note, however, that EsM (pe)− ēsM is not offered for sale on the deposit market.
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Modeling strategic policies on both markets requires constructing a sequential game.

Similar as in the previous section, one could employ a two-stage framework, where all policy

parameters (ēdM , ē
s
M , z

d
M) are set at stage 1 and both markets equilibrate at stage 2. However,

since we wish to compare Harstad’s and our approach, we adopt the four-stage time structure

illustrated in Figure 4, because that is closer than a two-stage approach to Harstad’s (2012)

three-stage game model. To solve the game we follow the standard procedure of backward

induction.

stage 1 stage 2 stage 3

time
deposit policy

(zdM)

deposit market

(zsj , pz; j ∈ N)

caps policy

(ēdM , ē
s
M)

stage 4

fuel market

(edj , e
s
j , pe; j ∈ N)

Figure 4: Timing of the game with strategic deposit-and-caps policy22

Stage 4: Fuel market equilibrium. The non-coalition countries form their demand

and supply of fuel, edi = Edi(pe) and esi = Esi(pe − pz), according to (17). The fuel caps

ēdM and ēsM have already been chosen at stage 3 and hence are given at stage 4. With this

information, the fuel market equilibrium is

∑

N

Edj(pe) + ēdM =
∑

N

Esj(pe − pz) + ēsM . (19)

Stage 3: Strategic fuel-caps policy. At this stage, the coalition anticipates the fuel

market equilibrium (19). It also anticipates Esi(pe − pz) = Esi(pe) − zsi , i ∈ N from (17),

ēsM = EsM(pe)− z̄
s
M from (18) and accounts for the deposit market equilibrium

∑

N z
s
j = zdM ,

attained at the earlier stage 2, to replace equation (19) by

∑

N

Edj(pe) + ēdM =
∑

{M}∪N

Esj(pe)− ẑdM with ẑdM := zdM + z̄sM . (20)

Recall that z̄sM are the non-marketed deposits the coalition preserves by choosing ēsM and

that ẑdM := zdM + z̄sM are all marketed and non-marketed deposits preserved by the coali-

tion’s deposit-and-caps policy. The coalition infers from (20) that the equilibrium fuel price

depends on ēdM and ẑdM . Formally, (20) implies a function P e, such that

pe = P e(ēdM , ẑ
d
M). (21)

22Harstad (2012, FIG. 3) employs a three-stage game, because in his analytical approach to the deposit

market the coalition’s deposit policy is not analyzed at a stage of its own.
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Hence the coalition’s problem is to maximize

uM = BM(ēdM )− CM(ēsM)− pe(ē
d
M − ēsM)−D




∑

{M}∪N

Esj(pe)− ẑdM





−pz
[
ẑdM − EsM(pe) + ēsM

]
(22)

with respect to ēdM and ēsM subject to (21). The corresponding first-order conditions are

duM
dēdM

= BM
ēd
M

− pe −



ēdM − ēsM +De

∑

{M}∪N

Esj
pe − pzE

sM
pe



P e
ēd
M

= 0, (23)

duM
dēsM

= −CM
ēs
M
+ pe − pz = 0. (24)

Implicitly, (23) and (24) determine the coalition’s fuel caps for the prevailing prices pe and

pz.
23 We denote the solution of (23) and (24) with respect to the fuel caps by

ēdM = ĒdM(pe, pz) and ēsM = ĒsM(pe, pz) = EsM(pe − pz) :=
(

CM
ēs
M

)−1

(pe − pz). (25)

The surprising conclusion from (24) and (25) is that the coalition chooses ēsM exactly as the

coalition’s firm would choose esM in the absence of fuel policy. Thus, the three-instrument

policy mix studied by Harstad is equivalent to a policy mix consisting of the fuel-demand-cap

policy and the deposit policy.24 In other words, the coalition should refrain from regulating

the fuel supply and leave that supply at the discretion of its extraction firm, instead, as in

the previous Sections 2 and 3.

The fuel-supply-cap policy is redundant for the following reason. It is clear from (18)

that the choice of ēsM determines z̄sM and vice versa. At the earlier stage 1, the coalition has

already made a decision on zdM and ẑdM in anticipation of the deposit market equilibrium.

Thus, it has implicitly also chosen z̄sM taking into consideration (at stage 1) that the reduc-

tion of total fuel supply at minimum cost is a necessary condition for minimizing its climate

damage burden. Cost minimization requires, in turn, equalizing marginal extraction costs

across countries. The coalition anticipates that all firms in non-coalition countries choose

their fuel supply according to (5a) and (5b) that therefore must be satisfied too for its own

extraction firm with or without fuel-demand-cap regulation. In conclusion, the coalition

chooses

z̄sM = EsM(pe)−EsM(pe − pz), (26)

23Note that ẑdM is contained in (22), but not in (23) and (24).
24Interestingly, Bohm (1993) has discussed a special form of that policy. To avoid notational confusion, we

continue analyzing the three-instrument policy, because switching to the equivalent two-instrument policy

would require slight purely formal modification, e.g. in (19).
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Stage 2: Deposit market equilibrium. At stage 2, the deposit market clears. The non-

coalition countries’ firms supply the deposits zsi = Esj(pe)−E
si(pe−pz), i ∈ N , according to

(17), while the coalition has already made a decision at stage 1 on its purchase of deposits, zdM

and on the own deposits to be preserved, z̄sM . Hence, the deposit-market clearing condition

is

∑

{M}∪N

[
Esj(pe)−Esj(pe − pz)

]
= ẑdM , where ẑdM := zdM + z̄sM . (27)

Stage 1: Strategic deposit policy. At stage 1, the coalition purchases deposits antici-

pating the market equilibria (20) and (27). Specifically, it accounts for the functions (18),

(21), (25) and

pz = P z(pe, ẑ
d
M), (28)

where (28) solves (27) for pz. The function P e specifies the dependence of the equilibrium

fuel price on ēdM and ẑdM as at stage 3.25 The functions ĒdM and EsM express the dependence

on pe and pz of the caps and the function P z captures the dependence on pe and ẑdM of the

equilibrium deposit price. (21), (25) and (28) highlight that due to the interdependence of

the markets for fuel and deposits the coalition’s deposit policy at stage 1 has direct and

indirect effects not only on the equilibrium prices of both markets, but also on the fuel caps

at stage 3. The coalition maximizes

uM = BM(ēdM )− CM(ēsM)− pe(ē
d
M − ēsM)−D




∑

{M}∪N

Esj(pe)− ẑdM





−pz
[
ẑdM − EsM(pe) + ēsM

]
(29)

with respect to ẑdM subject to (21), (25) and (28). The corresponding first-order condition

is26

duM
dẑdM

= De − pz +
(

BM
ēd
M

− pe

)

µd − µe

dpe
dẑdM

− zdM
dpz
dẑdM

= 0, (30)

where µd := ĒdM
pe

dpe
dẑd

M

+ ĒdM
pz

dpz
dẑd

M

, µe := ēdM − ēsM +De

∑

{M}∪N Esj
pe

− pzE
sM
pe

,

dpe
dẑdM

= −
P e
ēd
M

ĒdM
pz
P z
ẑd
M

+ P e
ẑd
M

P z
pe
P e
ēd
M

ĒdM
pz

+
(

P e
ēd
M

ĒdM
pe

− 1
) and

dpz
dẑdM

= −
P z
pe
P e
ẑd
M

− P z
ẑd
M

(

P e
ēd
M

ĒdM
pe

− 1
)

P z
pe
P e
ēd
M

ĒdM
pz

+
(

P e
ēd
M

ĒdM
pe

− 1
) . (31)

25The coalition considers (21) twice. However, at stage 3 it takes ẑdM as given, whereas at stage 1 it also

accounts for the dependence of the fuel equilibrium price on ẑdM .
26The derivation of (30) and (31) is delegated to Appendix B.
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Efficiency check of the deposit-and-caps policy. It remains to investigate whether

the equilibrium allocation of the strategic deposit-and-caps policy satisfies the efficiency

conditions (11) and (12). According to (3a), (5a) and (9a), the equilibrium allocation satisfies

Bi
edi

= pe and C i
esi
= pe−pz for all i ∈ N and pz = De, which are necessary conditions for (11)

and (12). However, the coalition’s allocation rules (23) and (30) contain distortionary terms

such that, in general;27 BM
ēd
M

6= pe in (23) and De 6= pz in (30). Combined with Bi
edi

= pe

and C i
esi

= pe − pz for all i ∈ N , these inequalities yield Bi
edi

6= BM
ēd
M

for all i ∈ N and

De

(
∑

{M}∪N e
d
j

)

6= Bi
edi
(edi )−C

i
esi
(esi ) for all i ∈ {M}∪N . Hence, the allocation is inefficient

although production is globally efficient.

To gain further insights into the outcome of the strategic deposit-and-caps policy, we

resort to the parametric functional forms28

Bi(e
d
i ) = aedi −

b

2
(edi )

2, Ci(e
s
i ) =

c

2
(esi )

2, D




∑

{M}∪N

edj



 = δ
∑

{M}∪N

edj , i ∈ {M} ∪N.(32)

In the Appendix C, we calculate the first-best allocation with the parametric functions

(32) as well as the equilibrium allocation and prices in the four-stage game of the strategic

deposit-and-caps policy. We find that the coalition uses the instrument triple (ēdM , ē
s
M , ẑ

d
M)

strategically to reduce the prices of fuel29 (pe < p∗e) and deposits (pz < p∗z) compared to their

first-best level such that the coalition preserves fewer deposits (ẑdM < zd∗M ) and suffers from

higher climate damage (D > D∗). Its overall welfare is higher than the first-best welfare

(uM > u∗M). These deviations from first best are the same, in qualitative terms, we found

in case of the stand-alone strategic deposit policy in the non-parametric model of Section

3. Our parametric approach gives rise to the same results that are more specific than those

reported in Proposition 2. With the strategic deposit-and-caps policy the coalition turns out

to consume less (edM < ed∗M) but produces more fuel (esM > es∗M) than in the first-best regime.30

Consequently, its expenditures on fuel and deposits are lower such that the coalition can

consume more of the standard consumption good not explicitly considered in our formal

model.31 The coalition’s welfare increases compared to the efficient allocation since the

welfare loss from lower fuel consumption and higher climate damage is smaller than the

welfare gain from higher consumption of the standard consumption good. We summarize

our conclusions in
27See footnote 17.
28The parametric version (32) of the game model is an illustration with no claim of generality. We kept it

deliberately simple to allow for straightforward comparisons of different assumptions on strategic behavior.

All results based on the parametric functions (32) we report here and later in the paper are proved in the

Appendix C.
29The superscript ∗ indicates efficient levels of variables.
30Note also that edM < ed∗M and esM < es∗M imply that the coalition exports fuel.
31See footnote 8.
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Proposition 3 . Suppose the coalition purchases fossil-fuel deposits to preserve them

(deposit policy), and caps its fossil-fuel production and consumption (fuel-caps policy).

(i) If the coalition pursues both policies strategically in the four-stage game of Figure 4,

– the allocation is inefficient, in general;32

– the fuel-supply-cap policy is redundant.

(iia) Compared to the efficient non-strategic stand-alone deposit policy of Section 2, the

prices of fuel and deposits are lower and their difference is larger; hence fuel production

is higher in all countries and so is the climate damage; the coalition consumes less

but produces more fuel and buys fewer deposits; it overcompensates the welfare loss

from higher climate damage and lower fuel consumption by a welfare gain from higher

non-fuel consumption.

(iib) Compared to the strategic stand-alone deposit policy of Section 3, the coalition’s welfare

is higher; the prices of fuel and deposits are lower, but their difference is smaller; hence

fuel production is lower in all countries and so is the climate damage, although the

coalition buys fewer deposits; non-coalition countries consume more, but the coalition

consumes less fuel.33

Some remarks are in order on the comparison of the strategic stand-alone deposit policy and

the strategic deposit-and-cap policy in Proposition 3(iib). The prime message is that the

two-instrument policy is better for the coalition than the stand-alone deposit policy. Since

the fuel demand cap is binding, the consumer fuel price is higher inside than outside the

coalition, and this price wedge induces carbon leakage. However, the leakage is so small

that it does not prevent the reduction of total fuel consumption. Thus, the fuel-demand-

cap enhances the coalition’s welfare above the level achieved under the stand-alone deposit

policy because it reduces fuel consumption for the benefit of less climate damage and more

non-fuel consumption.

5 Fully or partly non-strategic deposit- and -caps policy

In the preceding Section 4, we have analyzed the coalition’s deposit- and -caps policy with

strategic action in both the deposit and fuel market. Now we briefly investigate the scenarios

32The symmetry assumption Bi = B and Ci = C for all i ∈ {M} ∪N is sufficient but not necessary for

BM
ēd
M

6= pe and hence for Proposition 3(i).
33Proposition 3(iia) and 3(iib) follow from the first column of Table 3 and from Table 4, respectively, of

the Appendix C.
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in which the coalition acts non-strategically either in the deposit market or in the fuel market

or in both markets. Although we found (Proposition 3(i)) that the fuel-supply-cap policy

is redundant, we will stick to the three-instrument deposits-and-caps policy to ease the

exposition.

Non-strategic fuel-caps policy (P e
ēd
M

= 0) and non-strategic deposit policy (P e
ẑd
M

=

P z
ẑd
M

= 0). P e
ēd
M

= 0 in (23) yields BM
ēd
M

= pe and P e
ēd
M

= P z
ẑd
M

= P e
ẑd
M

= 0 in (31) leads to
dpe
dẑd

M

= dpz
dẑd

M

= 0 such that (30) turns into De = pz. The allocation rules BM
ēd
M

= pe, C
M
ēs
M

=

pe−pz from (24), and De = pz yield (11) and (12). Hence, the coalition attains the first-best

allocation, if it refrains from strategic action altogether. Moreover, the policies of capping the

production and consumption of fuel are redundant in this scenario, because the coalition’s

caps-setting rules CM
ēs
M
= pe−pz and BM

ēd
M

= pe are the same as those the coalition’s firm and

consumer, respectively, follow in the absence of any fuel-caps policy. We conclude that the

scenario of non-strategic action on both markets is equivalent to the perfectly competitive

regime studied in Section 2. As already emphasized, this scenario serves as a benchmark

only, because it is extremely implausible to assume that the monopsonist purchases deposits

as a price taker.

Non-strategic fuel-caps policy (P e
ēd
M

= 0) and strategic deposit policy (P e
ẑd
M

, P z
ẑd
M

6=

0). P e
ēd
M

= 0 in (23) yields BM
ēd
M

= pe, and P e
ēd
M

= 0 in (31) leads to dpe
dẑd

M

= P e
ẑd
M

6= 0 and
dpz
dẑd

M

= P z
pe
P e
ẑd
M

6= 0, which implies De 6= pz via (30), in turn. The allocation rules BM
ēd
M

= pe,

CM
ēs
M
= pe − pz from (24), and De 6= pz satisfy (11) but violate (12) such that the pertaining

equilibrium allocation is inefficient. As in the scenario of the last paragraph, the policies

of capping the production and consumption of fuel are redundant, because the coalition’s

caps-setting rules are the same as those of the coalition’s firm and consumer, respectively,

in the absence of fuel-caps policies. In fact, we show in the Appendix B that the scenario

of non-strategic fuel-caps policies and strategic deposit policy is equivalent to the two-stage

game with stand-alone deposit policy studied in Section 3. Hence the deviations from the

efficient allocation are as recorded in Proposition 2(ii).

Strategic fuel-caps policy (P e
ēd
M

6= 0) and non-strategic deposit policy (P e
ẑd
M

=

P z
ẑd
M

= 0). As the case of non-strategic action on both markets, this scenario appears to

be empirically irrelevant, because it portrays the monopsonist as price taker. Nonetheless,

we briefly make the efficiency check for the sake of completeness. P e
ēd
M

6= 0 in (23) yields

BM
ēd
M

6= pe, and P z
ẑd
M

= P e
ẑd
M

= 0 in (31) leads to dpe
dẑd

M

= dpz
dẑd

M

= 0 such that (30) turns

into De = pz. The allocation rules BM
ēd
M

6= pe, C
M
ēs
M

= pe − pz from (24), and De = pz
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violate (11) and (12) such that the pertaining equilibrium allocation is inefficient. The

Appendix C applies the parametric model (32) to the scenario under review and shows

that, in qualitative terms, the equilibrium allocation deviates from the efficient allocation

as described in Proposition 3(iia).

Proposition 4 summarizes these results – and also ranks the coalition’s payoff in the

scenarios of strategic and non-strategic action discussed above.

Proposition 4 . Suppose the coalition purchases fossil-fuel deposits to preserve them

(deposit policy), and caps its fossil fuel production and consumption (fuel-caps policy).

(i) In the scenario of non-strategic policies on both markets, the allocation is efficient. This

scenario is equivalent to the perfectly competitive world economy of Section 2.

(ii) If the coalition acts strategically on one market and non-strategically on the other, the

allocation is inefficient, in general.

(iii) The scenario in which the coalition pursues a non-strategic fuel-caps policy and a strate-

gic deposit policy is equivalent to the strategic stand-alone deposit policy of Section 3.

(iv) Suppose the parametric functional forms (30) apply.

(iva) If the coalition sets the fuel caps strategically but purchases deposits non-strategically,

the equilibrium allocation deviates from the efficient one, in qualitative terms, as

in the case of strategic action on both markets (as described in Proposition 3(iia)).

(ivb) If the coalition pursues both policies strategically, its payoff is highest. If it acts

strategically on one market only, its payoff is higher than in case of non-strategic

action on both markets. The ranking of the scenarios in which the coalition acts

strategically on one market only depends on parameters.

Proposition 4 provides a number of interesting results. First, the strategic pursuit of both

policies is better for the coalition than the stand-alone strategic deposit policy. The use of

three instruments instead of one enables the coalition to distort the allocation further in

its own favor. Moreover, if we disregard the unrealistic scenarios with non-strategic deposit

policies, we conclude that there is a case for the deposit-and-caps policy only, if the coalition

pursues both policies strategically.

The common feature of Harstad’s model and ours is that the coalition pursues a strate-

gic fuel-caps policy in the sense that the coalition takes the influence of its fuel-caps policy

on the equilibrium fuel price into account (ibidem, p. 85).34 As shown above, strategic

34Another common feature is that the non-coalition countries choose their fuel demand and supply as

price-takers (ibidem, p. 84).
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fuel-caps policy implies inefficiency in our approach, but efficiency in Harstad’s. Therefore,

our finding that efficiency cannot be attained unless the coalition refrains from strategic

action altogether is at variance with Harstad’s (2012) efficiency result. The principal reason

for that striking difference appears to lie in the profoundly different design of the deposit

market. As indicated in the introduction, Harstad does not model that market as a textbook

market with a uniform price, as we do, but rather conceives of that market as a series of

bilateral trades of deposits with unspecified and not necessarily uniform exchange rates. His

conclusions are based on the notion that the deposit market is in equilibrium, ". . .if and

only if there exists no pair of countries . . . [ i and j] and no price of deposits such that both

[countries] i and j strictly benefit from transferring the right to exploit a deposit from i to

j at that price." (ibidem, p. 86).

Harstad’s design of the deposit market implies that the bilateral deposit trades endog-

enize each country’s extraction cost function, whereas in our model extraction cost functions

are invariant. More importantly, in our model the coalition’s monopsony power on the de-

posit market is explicitly defined by P z
ẑd
M

, P e
ẑd
M

6= 0 and spills over to the fuel market due

to the strong interdependence of both markets. As shown above, in our approach the equi-

librium allocation differs markedly when the coalition acts strategically (P z
ẑd
M

, P e
ẑd
M

6= 0) or

non-strategically (P z
ẑd
M

= P e
ẑd
M

= 0) when purchasing deposits. In contrast, Harstad’s formal

analysis does without the distinction between strategic or non-strategic deposit policy, and

it appears to play no role for his results how the gains from bilateral trades are shared

between the bargaining agents.

6 Concluding remarks

The aim of the paper is to improve our understanding of how the deposit market works,

how it is interconnected with the fuel market and what the differences are in outcome when

the coalition implements strategically, semi-strategically or non-strategically the deposit

policy or a combination of the deposit policy with the fuel cap policies. The efficiency

result we attained in the case that all agents are price-takers is an interesting benchmark.

Through the purchase of deposits the coalition reduces the non-coalition countries’ – and

its own - fuel supply by an appropriate amount and thus fully internalizes the ’home-made’

negative externality as well as the negative externalities generated by non-coalition countries.

The coalition’s purchase of deposits from non-coalition countries satisfies the pollutee-pays-

principle. As expected, the coalition’s strategic action always influences the terms of trade

such and reduces its burden of unilateral climate policy. That result is at variance with

Harstad’s (2012) finding of full internalization in spite of strategic action. The reason for
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that intriguing discrepancy appears to be the difference in design of the deposit market in

his model and ours.

For the benefit of informative results we followed Harstad (2012) in seeking analytical

relief by employing additive, quasi-linear consumer preferences and, more importantly, by

assuming that no non-coalition country suffers from climate damage. From an analytical

viewpoint, the absence of climate damage in non-coalition countries sharpens the focus on

the coalition’s climate policy because that assumption is a rationale for disregarding climate

policy or other responses of non-coalition countries to the coalition’s policy.35 However,

allowing for climate damage not only in the coalition but also in non-coalition countries is a

desirable extension of the model and an important item on the agenda of further research.

Such an extension is non-trivial, because it reintroduces the free-rider problem. To see

that suppose non-coalition countries also suffer from climate damage and consider buying

deposits. These countries are willing to pay for deposits and hence have an incentive to

take action, but they would clearly benefit even more from the purchase of deposits by the

coalition or other non-coalition countries. With climate damage in non-coalition countries

and deposit policy, free-rider incentives also jeopardize the formation of self-enforcing climate

coalitions, similar as the free-rider incentives in the context of fuel-demand-cap policies

studied e.g. by Eichner and Pethig (2013).
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Appendix

Appendix A

Derivation of (14):

Differentiating (7) and (13) yields

∑

{M}∪N

Edj
pe
dpe =

∑

{M}∪N

Esj
σ (dpe − dpz) , (A1)

dzdM =
∑

{M}∪N

Esj
pe
dpe −

∑

{M}∪N

Esj
σ (dpe − dpz) , (A2)

where σ := pe − pz. Subtraction of (A1) from (A2) leads to

dzdM =
∑

{M}∪N

Esj
pe
dpe −

∑

{M}∪N

Edj
pe
dpe ⇐⇒

dpe
dzdM

= P e
zd
M
=

1
∑

{M}∪N

(

Esj
pe −Edj

pe

) > 0.(A3)

Combine (A1) and (A3) to obtain

dpz
dzdM

= P z
zd
M
=

∑

{M}∪N

(
Esj

σ − Edj
pe

)

∑

{M}∪N

(

Esj
pe −Edj

pe

)

·
∑

{M}∪N E
sj
σ

> 0. (A4)

From (A3) and (A4) we infer

d(pe − pz)

dzdM
= P e

zd
M
− P z

zd
M
=

∑

{M}∪N E
dj
pe

∑

{M}∪N

(

Esj
pe − Edj

pe

)

·
∑

{M}∪N E
sj
σ

< 0. (A5)

The signs in (A3) - (A5) follow from Edj
pe

= 1
B′′

j

< 0, Esj
σ = 1

C′′
j
[Esj(σ)]

> 0 and Esj
pe

=
1

C′′
j [E

sj(pe)]
> 0.
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Derivation of (16):

Maximizing (15) w.r.t. zdM yields the first-order condition

duM
dzdM

= De − pz + (B′
M − p)

︸ ︷︷ ︸

=0

EdM
pe
P e
zd
M

+ (C ′
M − pe + pz)

︸ ︷︷ ︸

=0

EsM
σ

(

P e
zd
M

− P z
zd
M

)

−
(
zdM − zsM

)
P z
zd
M
−



De

∑

{M}∪N

Esj
pe
+ edM − esM − pzE

sM
pe



P e
zd
M
= 0. (A6)

Accounting for

De

∑

{M}∪N

Esj
pe

+ edM − esM − pzE
sM
pe

= (De − pz) E
sM
pe

+De

∑

N

Esj
pe

+ edM − esM (A7)

in (A6) establishes (16).

Observe also that EsM
pe
P e
zd
M

=
EsM
pe∑

{M}∪N(E
sj
pe−E

dj
pe)

∈ [0, 1] and that (9) implies esM = edM in case

of identical benefit and cost functions.

Appendix B

Proof of (30) and (31):

The coalition purchases that amount of deposits which maximizes w.r.t. zdM the welfare

uM = BM
(
ēdM
)
− CM (ēsM )− pe

(
ēdM − ēsM

)
−D




∑

{M}∪N

Esj(pe)− ẑdM





−pz
[
ẑdM − Esj(pe) + ēsM

]
, (B1)

subject to

pe = P e
(
ēdM , ẑ

d
M

)
, (B2)

ēdM = ĒdM(pe, pz) and ēsM = ĒsM(pe, pz). (B3)

pz = P z
(
pe, ẑ

d
M

)
. (B4)

The equations (B2), (B3) and (B4) characterize the joint equilibria on the markets for fuel

and deposits as a function of the coalition’s policy parameters. In order to observe these

equations, the coalition determines the equilibrium displacement effects of small changes in

its policy parameters by totally differentiating (B2), (B3) and (B4). (B2) and (B3) yield

pe = P e
[
ĒdM(pe, pz), ẑ

d
M

]
. (B5)
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Total differentiation of (B4) and (B5) leads to

P z
pe
dpe − dpz = −P z

ẑd
M
dẑdM , (B6)

(

P e
ēd
M

ĒdM
pe

− 1
)

dpe + P e
ēd
M

ĒdM
pz

dpz = −P e
ẑd
M

dẑdM , (B7)

or in matrix notation



P z
pe

−1
(

P e
ēd
M

ĒdM
pe

− 1
)

P e
ēd
M

ĒdM
pz



 ·

[

dpe

dpz

]

=




−P z

ẑd
M

dẑdM

−P e
ẑd
M

dẑdM



 . (B8)

Solving (B8) yields (31).

The first-order condition of maximizing (B1) subject to ēdM = ĒdM(pe, pz), ē
s
M =

ĒsM(pe, pz) and (31) is

duM
dẑdM

= De − pz +
(

BM
ēd
M

− pe

)

µd −
(

CM
ēs
M
− pe + pz

)

︸ ︷︷ ︸

=0

µs −
[
ẑdM − Esj(pe) + ēsM

] dpz
dẑdM

−



ēdM − ēsM +De

∑

{M}∪N

Esj
pe

− pzE
sM
pe




dpe
dẑdM

, (B9)

where µh := ĒhM
pe

dpe
dẑd

M

+ĒhM
pz

dpz
dẑd

M

with h = d, s. Finally, accounting for (24) and ẑdM = zdM+z̄sM

establishes (30).

Proof of Proposition 4(iii):

P e
ēd
M

= 0 in (23) yields BM
ēd
M

= pe or equivalently ēdM = EdM (pe). From (24) we infer

ēsM = EsM(pe−pz). Making use of ēdM = EdM(pe) and ēsM = EsM(pe−pz) in the fuel market

equilibrium condition (19) proves the equivalence of (7) and (19). Next, observe that (29)

coincides with (15) when zdM in the two-stage game is set equal to ẑdM in the four-stage game.

To sum up, both the fuel market and deposit market equilibrium condition are the same in

the two-stage game as in the four-stage game if the coalition sets caps non-strategically and

buys deposits strategically. To put it differently, the price functions

pe = P e
[
EdM(pe), ẑ

d
M

]
, pz = P z

(
pe, ẑ

d
M

)

from (B6) and (B7) yield the price functions

pe = P̃ e
(
ẑdM
)
, pz = P̃ z

(
ẑdM
)

from (14), where

dpe
dẑdM

= P̃ e
ẑd
M

,
dpz
dẑdM

= P̃ z
ẑd
M

. (B10)

Accounting for (B10) it is straightforward to show that the first-order conditions of deposit

purchase in the two-stage game (A6) is equivalent to the associated first-order condition in

the four-stage game (30).
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Appendix C: Parametric functions

Efficiency. Inserting

edj = Edj(pe) =
a− pe
b

, esj = Esj(pe − pz) =
pe − pz

c
, Esj(pe) =

pe
c

and De = δ (C1)

into (9a) yields36 p∗z = δ. Using this information in (7) we get p∗e =
ac+bδ
b+c

. Next, we obtain

zs∗i = δ
c
=

zd
∗

M

n+1
from (6). The associated allocation and welfare levels follow from inserting

(p∗e, p
∗
z, z

d∗
M ) into (C1) and into the welfare function (8), and are listed in column 2 of Table

1.

Strategic deposit policy. Inserting (C1) into (7) and (13) leads to

a− pe
b

=
pe − pz

c
, zdM =

(n+ 1)pz
c

. (C2)

Solve (C2) with respect to pe and pz to get

P e(zdM) =
c[a(n+ 1) + bzdM ]

(n + 1)(b+ c)
, P z(zdM ) =

czdM
n+ 1

. (C3)

Inserting (C1) and (C3) in (16) yields after rearrangement of terms,

duM
dzdM

= δ − pz −

(

zdM −
zdM
n+ 1

)

P z
zd
M

−

[
(n + 1)δ

c
−
pz
c

]

P e
zd
M

= −
c
[
[2n(b+ c) + c]zdM − (n+ 1)2δ

]

(b+ c)(n+ 1)2
= 0. (C4)

The derivative of (C4) is

d2uM
d(zdM)2

= −
c[2n(b+ c) + c]

(b+ c)(n+ 1)2
< 0. (C5)

Solving (C4) with respect to zdM results in

z̃dM =
(n + 1)2δ

2n(b+ c) + c
. (C6)

After substituting (C6) into (C1), (C3) and uM we obtain the allocation and prices listed in

column 1 of Table 1.

Deposit policy combined with fuel caps regulation.

36The efficient allocation is marked by an asterisk.
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strategic efficiency (non-strategic)

column 1 2

zdM
(n+1)2δ

2n(b+c)+c

(n+1)δ
c

pe
c[a[c+(b+c)2n+(n+1)bδ]]

(b+c)[c+(b+c)2n]
ac+bδ
b+c

pz
c(n+1)δ

(b+c)[c+(b+c)2n]
δ

edM
a[c+(b+c)2n]−(n+1)cδ

(b+c)[c+(b+c)2n]
a−δ
b+c

esM
a[c+(b+c)2n]−(n+1)cδ

(b+c)[c+(b+c)2n]
a−δ
b+c

esM − edM 0 0

uM
a[c+(b+c)2n][a−(n+1)δ]+(n+1)2cδ2

2(b+c)[c+(b+c)2n]
ac[a−2(n+1)δ]+(c−2bn)δ2

2c(b+c)

vM
a2[c+(b+c)2n]−(n+1)2cδ2

2(b+c)[c+(b+c)2n]
a2c[2n(b+c)+c]δ

2c(b+c)

D (n+1)δ[a[c+(b+c)2n]−(n+1)cδ]
2(b+c)[c+(b+c)2n]

(n+1)(a−δ)δ
b+c

Table 1: deposit policy in the 2 stage game: allocation, prices and welfare

[1] Strategic deposit policy and caps policy. In that case (B2) - (B4) are specified by

P e(ēdM , z
d
M) =

c[an + b(edM + ẑdM)]

b(n+ 1) + cn
, (C7)

ĒdM(pe, pz) =
a[b(n + 1) + cn]− cnpe − b[δ + (pe + δ)n]

b(b+ c)(n+ 1)
, (C8)

ĒsM(pe, pz) =
pe − pz

c
, (C9)

P z(pe, z
d
M) =

cẑdM
n + 1

. (C10)

Solving (B4) and (B5) with respect to pe and pz yields

pe =
c[a[b(n + 1)2 + cn(n+ 2)] + b(n + 1)[(b+ c)ẑdM − δ]

(b+ c)[b(n + 1)2 + cn(n+ 2)]
, (C11)

pz =
cẑdM
n+ 1

. (C12)

with

dpe
dẑdM

=
bc

(b+ c)(n + 1)
> 0 and

dpz
dẑdM

=
c

n+ 1
> 0. (C13)

We invoke pe and pz from (C11) and (C12), ĒdM (pe, pz) and ĒsM(pe, pz) from (C9) and
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(C10), and (C13) to turn (30) into

duM
dẑdM

= δ − pz + (a− bēdM )ĒdM
pe

dpe
dẑdM

−
(

ẑdM −
pe
c
+ ēsM

) dpz
dẑdM

−

[

ēdM − ēsM +
δ(n + 1)

c
−
pz
c

]
dpe
dẑdM

= 0. (C14)

Solving (C14) for zdM yields:

ẑdM =
(n + 1)2(n+ 2)δ

b̂+ ĉ
, (C15)

where b̂ := 2(n + 1)2b and ĉ := (2n2 + 5n + 2)c. The associate equilibrium quantities,

prices and welfare levels are listed in column 1 of Table 2.

[2] Non-strategic deposit policy and strategic caps policy. Observe that (C11) and (C13)

still hold. We now deviate from [1] by setting dpz
dẑd

M

= 0 in (C14) and solve that equation

with respect to ẑdM to get

ẑdM =
(n+ 1)(n+ 2)δ

b̆+ c̆
, (C16)

where b̆ := (n + 1)b and c̆ := (n + 2)c. The associated equilibrium quantities, prices,

and welfare levels are listed in column 2 of Table 2.
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strategic deposits and strategic caps strategic deposits, non-strategic caps

column 1 2

ẑdM
(n+1)2(n+2)δ

b̂+ĉ

(n+1)(n+2)δ

b̆+c̆

pe
c[a(b̂+ĉ)+bn(n+1)]δ

(b+c)(b̂+ĉ)

c[a(b̆+c̆)+b̆δ]

(b+c)(b̆+c̆)

pz
c(n+1)(n+2)δ

b̂+ĉ

c̆δ

b̆+c̆

edM
a(b̂+ĉ)−(n+1)[2b+(n+2)c]δ

(b+c)(b̂+ĉ)

a(b̆+c̆)−(n+1)(b+2c)δ

(b+c)(b̆+c̆)

esM
a(b̂+ĉ)−(n+1)[2b(n+1)+(3n+2)c]δ

(b+c)(b̂+ĉ)

a(b̆+c̆)−[b+(n+2)c]δ

(b+c)(b̆+c̆)

esM − edM
2n(n+1)δ

b̂+ĉ

nδ

b̆+c̆

uM
a(b̂+ĉ)[â−2(n+1)δ]+(n+1)2 [2b+(n+2)c]δ2

2(b+c)(b̂+ĉ)

a(b̆+c̆)[a−2(n+1)δ]+[b̆2+bc̆(n+2)+c̆2]δ2

2(b+c)(b̆+c̆)

vM
a2(b̂+ĉ)−(n+1)2[2b+(n+2)c]δ2

2(b+c)(b̂+ĉ)

a2(b̆+c̆)2−[b̆2+bc̆(n+2)(2n+1)+c̆2(2n+1)]δ2

2(b+c)(b̆+c̆)2

D (n+1)(b̂+ĉ)δ−(n+1)[2b+(n+2)c]δ

(b+c)(b̂+ĉ)

(n+1)δ[a(b̆+c̆)−[b+(n+2)c]δ]

(b+c)(b̆+c̆)

Table 2: deposit policy and caps policy in the four stage game: allocation, prices and welfare
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strategic deposits and caps strategic deposits, non-strategic caps

column 1 2

ẑdM − zd∗M − (n+1)[b̂+(n+2)nc]δ

(b̂+ĉ)c
< 0 − (n+1)b̆δ

(b̆+c̆)δ
< 0

pe − p∗e − b[b̂+c(n2+4n+2)]δ

(b+c)(b̂+ĉ)
< 0 − b(b̆+c)δ

(b+c)(b̆+c̆)
< 0

pz − p∗z − [b̂+(n+2)nc]δ

b̂+ĉ
− b̆δ

b̆+c̆
< 0

edM − ed∗M − cn2δ

(b+c)(b̂+ĉ)
< 0 − cnδ

(b+c)(b̆+c̆)
< 0

esM − es∗M
n[(n+1)2b+(n+2)c]δ

(b+c)(b̂+ĉ)
> 0 bnδ

(b+c)(b̆+c̆)
> 0

uM − u∗M
n[4bb̂+(n+2)nc2+2bcĉ]δ2

2(b+c)c(b̂+ĉ)
> 0 bn[2b̆2+4bc(n2+3n+2)+c2(2n2+7n+6)]δ2

2(b+c)c(b̆+c̆)2
> 0

vM − v∗M
n[4bb̂+(3n2+8n+4)c2+(4n2+9n+4)2bc]δ2

2(b+c)c(b̂+ĉ)
> 0 bn[2b̆2+2bc(3n2+8n+5)+c2(4n2+13n+10)]δ2

2(b+c)c(b̆+c̆)2
> 0

D −D∗ n(n+1)[(n+1)2b+(n+2)c]δ2

(b+c)(b̂+ĉ)
> 0 nb̆δ2

(b+c)(b̆+c̆)

Table 3: deposit policy and caps policy: deviation from first-best
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column MI −DS

ẑd(MI)− zd(DS) − 2b(n+1)2δ

[2n(b+c)+c](b̂+ĉ)
< 0

pe(MI)− pe(DS) − 2bc(2n2+3n+1)δ

[2n(b+c)+c](b̂+ĉ)
< 0

pz(MI)− pz(DS) − 2bc(n+1)δ

[2n(b+c)+c](b̂+ĉ)
< 0

edM(MI)− edM(DS) −2n(n+1)[2b(n+1)+c(2n+1)]

[2n(b+c)+c](b̂+ĉ)
< 0

esM(MI)− esM(DS) − 4bn(n+1)δ

[2n(b+c)+c](b̂+ĉ)
< 0

uM(MI)− uM(DS) 2bn(n+1)2δ2

[2n(b+c)+c](b̂+ĉ)
> 0

vM(MI)− vM(DS) − 2bn(n+1)2δ2

[2n(b+c)+c](b̂+ĉ)
< 0

D(MI)−D(DS) − 4bn(n+1)2δ2

[2n(b+c)+c](b̂+ĉ)
< 0

Table 4: Comparison MI and DS

Proof of Proposition 4(iv):

Below we use the following acrynoms:

DS = stand-alone strategic deposit policy.

MI = policy mix consisting of the strategic deposit policy, the strategic fuel-demand-cap

policy and the strategic fuel-supply-cap policy.

MIII = policy mix consisting of the non-strategic deposit policy, the strategic fuel-demand-cap

policy and the strategic fuel-supply-cap policy.

Comparing MI and DS yields Table 4.

Finally, comparing the welfare levels under DS, MI and MIII we get:

u(MI)− u(DS) =
2bn(n+ 1)2δ2

[c+ (b+ c)2n](b̂+ ĉ)
> 0,

u(MI)− u(MIII) =
c̆n(n + 2)[b̆(n+ 1) + c̆n]δ2

2(b̆+ c̆)2(b̆+ c̆)
> 0,

u(DS)− u(MIII) =
n[−2b̆+ nc̆2 + bc(n3 + 2n2 − 3n− 6)]δ

2[c+ (b+ c)2n](b̆+ c̆)2
.
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