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Abstract

We analyze how modeling international dependencies improves forecasts for

the global economy based on a Bayesian GVAR with SSVS prior and stochastic

volatility. To analyze the source of performance gains, we decompose the predic-

tive joint density into its marginals and a copula term capturing the dependence

structure across countries. The GVAR outperforms forecasts based on country-

specific models. This performance is solely driven by superior predictions for the

dependence structure across countries, whereas the GVAR does not yield better

predictive marginal densities. The relative performance gains of the GVAR model

are particularly pronounced during volatile periods and for emerging economies.
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1 Introduction

Forecasters dealing with global economic policy issues or risk management need to have

a good understanding of how to optimally model national economies that are strongly

integrated with the world economy. Global economic projections must, above all, be

coherent across countries.1

Against this backdrop, global vector autoregressive (GVAR) models (Pesaran et al.,

2004) have been proposed as a forecasting tool (Pesaran et al., 2009) because such

models cover all major economies of the world and their interactions. While forecast

coherence is potentially the major advantage of GVAR models as a forecasting tool, past

assessments of the forecast performance of GVAR models have been conducted variable

by variable, i. e., from a univariate perspective. However, for forecasters seeking to

forecast a range of variables (e. g., GDP growth in all countries) or to review the joint

predictive density of the entire system, such univariate evaluation approaches clearly

miss important aspects.2 The idea is very intuitive: Two vector forecasts with the

same accuracy in terms of marginal predictive densities could perform very differently in

terms of the copula that links the marginal distributions and captures the dependencies

between the vector elements. In fact, even a model that performs significantly worse

compared to a benchmark model in terms of predicting the marginal densities could

yield superior joint predictive densities.

We add to the literature by assessing the forecast performance of a GVAR model

from a multivariate perspective: we analyze whether the rich model structure of GVAR

1Think, for instance, of the business-cycle forecasts published by the International Monetary Fund
(IMF) for all member states in its World Economic Outlook (WEO). The IMF has to make sure that
the individual country-specific forecasts are coherent in that they reflect the same view about the
outlook of the world economy and historical experience with co-movement of business cycles across
countries. A recent investigation reports that top-down elements are important in the production
process of the WEO (IEO, 2014).

2This point was raised already in a comment by Swanson (2009) in response to the seminal paper
by Pesaran et al. (2009).
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models pays off by yielding superior predictive joint densities relative to a benchmark

that consists of country-specific forecast models. Our paper makes several contributions.

First, it is the first analysis of GVAR forecast performance in terms of the overall joint

predictive density of all model variables. Second, we suggest to decompose the joint

predictive density into the marginal densities and a copula term to analyze the source

of performance gains in more detail. Finally, we enhance the Bayesian estimation of

GVAR models. We modify the Bayesian GVAR model with stochastic volatility as

outlined by Huber (2014) and introduce a variant of the stochastic search variable

selection (SSVS) prior. Using a restricted stochastic volatility model in the spirit of

Carriero et al. (2012) and a conjugate version of the SSVS prior leads to significant

computational gains that are essential when estimating large-scale models such as the

GVAR.

Our paper is linked to a number of companion papers that develop a Bayesian

framework for GVAR models and analyze the forecast performance of such Bayesian

GVAR models. Crespo Cuaresma et al. (2014) put forward a Bayesian version of

the GVAR model and analyze how different prior setups perform in terms of yielding

accurate density forecasts. They find that the SSVS prior, on which we concentrade

in this paper, exhibit the best forecasting ability among a wide range of priors. Huber

(2014) shows how a Bayesian GVAR model can be augmented to account for stochastic

volatility. Finally, Dovern and Huber (2015) show, in a complementary paper, that the

GVAR model used in the paper at hand yields better turning point prediction than

country-specific time-series models.

The main results of this paper can be summarized as follows: First, the GVAR model

outperforms, on average, the country-specific Bayesian VAR models with stochastic

volatility, which are used as a benchmark, in terms of the quality of the joint predictive

density. This holds true also for all types of variables (financial and real) separately.
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Second, these performance gains are driven by better predictions for the dependence

structure across variables and countries rather than by improved predictive marginal

densities. Third, the forecast performance of both the GVAR and the country-specific

benchmark models is strongly time-varying, and forecasts deteriorate during the global

recession. However, the loss in forecast accuracy during turbulent times is much smaller

for the GVAR model than for the benchmark models. That is, incorporating interna-

tional linkages among countries is essential for forecasting and in particular so during

crisis times. Last, and taking a regional angle, the gains of using a world-wide model

seem particularly pronounced for emerging economies. More specifically, while taking

cross-country linkages between advanced economies into account seems sufficient to

generate accurate forecasts for these countries, forecasts for emerging economies tend

to improve when based on a truly global sample. Taken at face value this means that

modeling spillovers from advanced to emerging economies tends to improve forecasts

for these countries, whereas the opposite is not true.

The remainder of this paper is structured as follows. Section 2 summarizes the

relevant literature. Section 3 presents the model framework that we use. It explains

the structures of the GVAR model as well as our benchmark model and describes our

estimation strategy. Section 4 documents the data set that we use and specifies the

choices that we make with respect to the priors of the Bayesian GVAR model. Section 5

describes the design of our out-of-sample forecast analysis and documents the evaluation

criteria that we use. Section 6 contains the empirical results. It documents the baseline

results and shows how the performance of GVAR forecasts varies over time and across

different country groups. Finally, Section 7 concludes the paper.
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2 Related Literature

Our paper builds on the growing literature on GVAR models. This type of model,

which was proposed by Pesaran et al. (2004) and further developed by Dées et al.

(2007a) and Dées et al. (2007b), is designed to model dependencies across a wide range

of macroeconomic variables from a large number of countries. GVAR models capture

the dynamics of a large part of the world economy by linking country-specific vector

autoregressive (VAR) models to each other. GVAR models were first developed as

a tool for financial stress-testing following the Asian crisis in the late 1990s. Since

then, they have been heavily used to analyze the dynamic effects of a wide range of

country-specific or global shocks.3

More recently, GVAR models have been proposed as a tool for forecasting global

economic activity (Pesaran et al., 2009). Most studies attest GVAR models a forecast

performance that is about as good or slightly better, on average, as that of simpler

benchmark models. Pesaran et al. (2009) find superior performance of GVAR forecasts

(relative to univariate benchmark models) for output growth and inflation when they ob-

tain GVAR forecasts by averaging over different model specifications.4 In contrast, the

performance is more mediocre for forecasting financial variables such as interest rates

or equity prices. Greenwood-Nimmo et al. (2012) use a GVAR model with country-

specific intercept shifts to produce probabilistic forecasts for a number of variables in

major economies. They show that forecasts based on the GVAR model outperform

univariate benchmark models especially over long forecast horizons. Crespo Cuaresma

3GVAR models have, for instance, been used to analyze the international transmission of oil price
shocks (Cashin et al., 2012), house price shocks (Cesa-Bianchi, 2013), credit supply shocks (Eickmeier
and Ng, 2015), cost-push shocks (Galesi and Lombardi, 2013), financial stress shocks (Dovern and van
Roye, 2014), monetary policy shocks (Feldkircher and Huber, 2015), liquidity shocks during the Great
Recession of 2007-2009 (Chudik and Fratzscher, 2011), and for stress-testing of the financial sector
(Castrén et al., 2010). For a more complete overview, see Chudik and Pesaran (2014).

4It remains unclear from their paper how much the performance of the univariate models could be
improved by averaging over different models/specifications. The study by Pesaran et al. (2009) has
been updated with similar findings by Smith (2013).
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et al. (2014) estimate a Bayesian GVAR model and show that forecasts based on this

model outperform forecasts from several univariate benchmark models for virtually all

variables and different forecast horizons. Two other recent contributions have looked

at the forecast performance of GVAR models for small open economies: Assenmacher

(2013) shows that a small GVAR model for the Swiss economy delivers forecasts that

are comparable in accuracy with widely used benchmark forecasts. de Waal et al. (2013)

show that a richer GVAR model delivers better forecasts for the South African economy

than a small version including only the three main trading partners. They show, how-

ever, that Bayesian country-specific VAR models and univariate autoregressive models

tend to beat the GVAR models in terms of forecast accuracy.

Our work relates also to the literature on econometric models that account for

stochastic volatility. The recent synchronous increase in the volatility of many macroe-

conomic variables suggests that traditional linear models fail to properly capture salient

features of the data. Clark (2011) uses a standard VAR augmented by stochastic volatil-

ity (SV) to produce predictive densities for a set of macroeconomic aggregates. He con-

cludes that allowing for stochastic volatility generally improves the accuracy of density

forecasts. Recently, Carriero et al. (2012) proposed a Bayesian VAR with stochastic

volatility, which exploits the fact that most macroeconomic variables obey the same

pattern of realized volatility. They conclude that imposing a factor structure on the

latent log-volatilities helps to improve the accuracy of the density forecasts at little

additional costs in terms of computational demands. Huber (2014) proposes a GVAR

model with a factor SV structure. He reports that allowing each country’s volatility to

be driven by a country-specific latent factor improves forecasts of GDP and short-term

interest rates, while leading to no improvements for forecasts of inflation, real exchange

rates and long-term interest rates.
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The third related strand of literature is concerned with multivariate evaluation of

vector forecasts. Since we are going to evaluate density forecasts, the methods that

we use are most closely linked with the literature on multivariate evaluation of such

forecasts which was initiated among others by Diebold et al. (1999) and which is sur-

veyed in Gneiting (2008). Our study is complementary to a number of recent papers

that address the issue of evaluating vector-valued point forecasts from a multivariate

perspective (see, e. g., Eisenbeis et al., 2002; Bauer et al., 2003; Sinclair and Stekler,

2013; Müller-Dröge et al., 2014).

3 Model Framework

GVAR models (Pesaran et al., 2004) are designed to capture the dynamics of a large

part of the world economy by linking country-specific vector autoregressive models

to each other using trade weights. Though GVAR models are linear, they allow for

a range of different interdependencies between variables and countries, such as long-

run relationships consistent with theory, short-run spillover effects or cross-sectional

dependence in the error structure. Thus, they offer a fair degree of flexibility in modeling

the business-cycle dynamics of the world economy in a coherent fashion. In the following

sections, we briefly sketch the assumptions that we make about the specification of the

GVAR model, and we explain what priors we use for the Bayesian estimation of the

model and how we generate density forecasts based on the estimated GVAR model.

3.1 Global Vector Autoregressive Models

Basically, a GVAR model consists of a number of country-specific models that are com-

bined to form the global model. In a first step, the country-specific models can be

estimated individually under certain restrictions. In a second step, the GVAR model is

“solved” by combining the individual models. Consider a sample of N+1 different coun-
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tries. Let xi,t be the ki×1 vector of domestic random variables for country i = 0, . . . , N

and time t = 1, . . . , T . For each country, we consider a VAR model which is augmented

with a set of (weakly exogenous) foreign variables (VARX∗). To enhance readability of

the notation, we restrict all formulas to a VARX∗(1,1) specification although we allow

for higher order lags in our empirical application:

xi,t = ai0 + ai1t+ Φi1xi,t−1 + Λi0x
∗
i,t + Λi1x

∗
i,t−1 + εi,t. (3.1)

Here, ai0, ai1, Φi1, Λi0 and Λi1 are properly sized coefficient matrices measuring the

impact of deterministic components, lagged domestic variables and foreign variables.

The foreign variables are calculated as a weighted average of the domestic variables of

all other countries based on trade weights, x∗i,t =
∑N

j=0wijxj,t, under the restriction

that wii = 0 and
∑N

j=0 wij = 1. The assumption that x∗i,t is weakly exogenous at the

individual country level reflects the belief that most countries are small relative to the

world economy.

Most existing papers on GVAR models make the assumption of a fixed covari-

ance matrix for εi,t. We are skeptical about this approach, tough. Especially for

fast-moving financial variables, this assumption proves inadequate in the presence of

sudden shifts in the level of volatility and volatility-clustering. Therefore, we assume

that εi,t ∼ N(0,Σi,t). Following Carriero et al. (2012) and Huber (2014), we use the

following stochastic volatility specification

Σi,t = exp(hi,t)× Σi (3.2)

hi,t = κi + ρi(hi,t−1 − κi) + ηiui,t (3.3)

ui,t ∼ N(0, 1), (3.4)
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where hi,t denotes a country-specific log-volatility process, with κi being its uncondi-

tional mean and ρi an autoregressive parameter.5 Finally, ηi denotes the variance of

the log-volatility process. To identify the model it is sufficient to set hi,0 = 0. Note that

we assume that the variance of the entire VARX∗ is driven by a single latent process.

This is justified because most macro variables exhibit similar volatility dynamics and

especially when it comes to predicting financial crises the correlation between variables

tends to increase dramatically.6 Huber (2014) showed empirically that (for a smaller

information set) the differences between a full stochastic volatility specification and the

simplified variant proposed above tend to be rather small for most countries considered.

Pesaran et al. (2004) show how the N + 1 country models can be combined to yield

a global VAR representation. Defining a (ki+k∗i )×1 vector zi,t = (x′i,t, x
∗
i,t
′)′, collecting

all contemporaneous terms on the left-hand side and ignoring deterministic terms for

notational simplicity, we can rewrite equation (3.1) as

Aizi,t = Bizi,t−1 + εi,t, (3.5)

with Ai = (Iki ,−Λi,0) and Bi = (Φi1,Λi1) denoting ki × (ki + k∗i )-dimensional matri-

ces, respectively. We collect all endogenous variables in a k × 1 global vector xt =

(x′0,t, x
′
1,t, . . . , x

′
N,t)

′, where k =
∑N

i=0 ki is the total number of endogenous variables in

the GVAR. By defining a suitable (ki + k∗i ) × k linking matrix Wi, it is possible to

rewrite zi,t exclusively in terms of xt and Wi. More specifically, the linking matrix is

5We depart from the macroeconomic literature by assuming that the log-volatility follows an au-
toregressive process of order one rather than a random walk. This choice, motivated in Eisenstat and
Strachan (2014) implies that in the limit, the level of the volatility is bounded in probabilistic terms.

6Even though the number of additional parameters to be estimated would not increase dramatically
by assuming that ki log-processes govern the behavior of Σi,t, we would lose several convenient features
of the estimation algorithm, which would induce significant computational costs.
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set such that the following equality holds

zit = Wixt. (3.6)

Inserting equation (3.6) into equation (3.5) and stacking the models for all countries

yields

Gxt = Hxt−1 + εt, (3.7)

whereG = ((A0W0)′, . . . , (ANWN)′)′, H = ((B0W0)′, . . . , (BNWN)′)′, and εt = (ε′0,t, . . . , ε
′
N,t)

′.

Multiplying from the left by G−1 yields the reduced-form GVAR representation:

xt = Fxt−1 + et, (3.8)

where F = G−1H and et = G−1εt. Equation (3.8) resembles a standard first-order

reduced form VAR. The structure of the VARX∗ model induces restrictions on the

parameter matrix F . In addition to the restrictions imposed on F , the structure of

the model has important implications for the specific form of the variance-covariance

matrix of et, Σe,t. In the present application, Σe,t is a positive definite matrix, given by

Σe,t = G−1Σε,tG
−1′. (3.9)

Σε,t is a block-diagonal matrix which consists of the country-specific variance-covariance

matrices Σi,t. The block-diagonality of Σε,t is predicated by the fact that the inclusion

of the weakly exogenous variables accounts for cross-country correlation and renders the

estimation problem of the N+1 submodels embarrassingly parallel, providing significant

computational advantages.
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3.2 Selection of Priors and Estimation

We consider a Bayesian version of the GVAR model as introduced by Crespo Cuaresma

et al. (2014) and rely on the stochastic search variable selection (SSVS) prior on the

coefficients, which Crespo Cuaresma et al. (2014) demonstrated to yield excellent fore-

casts. Since we are going to use a slightly more complex framework allowing for SV, we

modify the prior setup from Crespo Cuaresma et al. (2014) and propose a (conditionally)

conjugate version of the SSVS prior. This allows us to reduce the computational burden

significantly. Additionally, as noted above, the factor structure of the log-volatilities

permits us to exploit a convenient Kronecker structure of the likelihood function.

For prior implementation it proves convenient to rewrite the VARX∗ in equation

(3.1) in the following way

xi,t = ΓiZit + εit, (3.10)

where Zi,t = (1, t, x′i,t−1, x
∗
i,t
′, x∗i,t−1

′)′ is aKi-dimensional data vector, whereKi = 2+ki+

2k∗i . The ki×Ki matrix of stacked coefficients is denoted by Γi = (ai0, ai1,Φi1,Λi0,Λi1).

Furthermore, let us denote the vectorized coefficient matrix as Ψi = vec(Γi). Our

stochastic volatility setup can be implemented in a straightforward fashion by dividing

xi,t and Zi,t by exp(hit/2), where the normalized data matrices are denoted by x̃i,t

and Z̃i,t. Finally, we denote full data matrices by Z̃i = (Z̃ ′i,0, Z̃
′
i,1, . . . , Z̃

′
i,T )′ and x̃i =

(x̃′i,0, x̃
′
i,1, . . . , x̃

′
i,T )′.

As advocated in Carriero et al. (2012), we use the following conjugate prior setup

on Ψi and Σ−1
i

Ψi|Σ−1
i , ψi ∼ N (µ

Ψi
,Σi ⊗ V Ψi

), (3.11)

Σ−1
i ∼ W(vi, Si), (3.12)
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where ψi = (ψi1, . . . , ψiKi
)′ denotes a vector of binary random variables. This implies

that conditional on ψi, the prior on the dynamic coefficients is a standard conjugate

prior with mean µ
Ψi

and variance Σi⊗ V Ψi
. Knowledge of ψi fully specifies V Ψi

. More

specifically, V Ψi
is a diagonal matrix where the (j, j)th element is given by vj, with

vj =


τ 2

0j if ψij = 0

τ 2
1j if ψij = 1.

(3.13)

τ0j and τ1j are prior-variances set such that τ1j � τ0j. By setting µ
Ψi

equal to zero,

equation (3.13) implies that we impose a mixture prior on the different variable types

in (3.1) similar to the prior discussed in Koop (2013). To see this, let us define the

element corresponding to the lth equation and the jth variable as [Γi]lj. Under the

assumption that the prior mean is set equal to zero, we impose the following mixture

prior

[Γi]lj|ψij ∼ (1− ψij)N (0, σillτ
2
0,ij) + ψijN (0, σillτ

2
1,ij), (3.14)

for l = 1, . . . , ki, j = 1, . . . , Ki and σill = [Σi]ll. Thus ψij controls which of the two

Normal distributions applies for the jth regressor. Since the Normal distributions differ

only by their variances, and the variances are set such that τ1j � τ0j, we either impose

a dogmatic or a loose prior on [Γi]lj.
7 In contrast to the traditional implementation of

the SSVS prior in the spirit of George et al. (2008), the conjugate SSVS specification

either includes or excludes a given explanatory variable in all equations of a particular

country model.

For Σ−1
i we impose a standard Wishart prior with scaling matrix Si and degrees of

freedom vi. Note that we assume prior dependence between Σ−1
i and Ψi.

7Thus, if ψij equals zero, the prior variance is set to a very small value, indicating that the posterior
distribution of the associated coefficient will shrink towards zero. Otherwise, the coefficient could be
anything on the real line.
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Finally, we also have to impose prior distributions on the parameters of the log-

volatility equation. Following Frühwirth-Schnatter and Wagner (2010) and Kastner

and Frühwirth-Schnatter (2014), we impose the following set of priors:

κi ∼ N (µ
κi
, V κi

), (3.15)

ρi + 1

2
∼ B(a1, b1), (3.16)

ηi ∼ G(
1

2
,
1

2
Rηi). (3.17)

We use a Normal prior on the level of the log-volatility process κi, a Beta prior on the

autoregressive parameter ρi, and a non-conjugate Gamma prior on the variance of the

log-volatility specification with a scalar hyperparameter Rηi .

Due to the conjugacy of the prior setup, “dummy observations” can be used to

implement the prior (see Bańbura et al., 2010; Koop, 2013). This implies that the

conjugate SSVS prior can be implemented using the following artificial observations

xi =

 V
− 1

2
Ψi
A

diag(s1, ..., ski)

 , Zi =

 V
− 1

2
Ψi

0ki×Ki

 , (3.18)

where V
− 1

2
Ψi

is defined by V Ψi
= V

1
2
Ψi
V

1
2
Ψi

and A equals the zero matrix.8 Following Doan

et al. (1984), s1, . . . , ski are the residual standard deviations from a set of ki univariate

autoregressions of order four for the elements of xi,t. Finally, 0ki×Ki
denotes a ki ×Ki

matrix of zeros.

8The first ki rows and columns of A correspond to the prior means on the first lag of the endogenous
variables, which is set equal to zero in the present application.
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Combining the “dummy observations” with the real data, we obtain the following

quantities:

xi =

x̃i
xi

 , Zi =

Z̃i
Zi

 . (3.19)

It can be shown, that this prior setup gives rise to the following posterior distributions:

Ψi|Σ−1
i , ψi, hi,DiT ∼ N (µΨi

, V Ψi
), (3.20)

Σ−1
i |Ψi, ψi, hi,DiT ∼ W(vi, Si), (3.21)

where hi = (hi,0, . . . , hi,T ) denotes the full history of log-volatilities and DiT denotes

the data specific to country i up to time T . The posterior mean and variance for Ψi

are given by V Ψi
= (Z

′
iZi)

−1 and µΨi
= V Ψi

Z
′
ixi, the posterior scaling matrix for Σ−1

i

is given by Si = (xi − ZiµΨi
)′(xi − ZiµΨi

), and the posterior degrees of freedom are

simply vi = T + vi.

Due to conjugacy, Ψi and Σ−1
i can be simulated using a simple Gibbs sampler by

drawing sequentially from the appropriate Normal and Wishart distributions. Unfor-

tunately, the conditional posterior distributions of the remaining parameters are not

available in closed form. Hence, for these parameters we have to use other posterior

simulation strategies. For ψi, we depart from Brown et al. (1998b) and Koop (2013)

and use a Markov Chain Monte Carlo Model Composition step in the spirit of Brown

et al. (1998a). In short, this implies starting with the full model (i. e., all elements of

ψi are set equal to one) and then using a simple birth-death sampler to explore the

posterior distribution (Madigan and York, 1995). The history of log-volatilities and

the corresponding parameters are sampled using an ancillarity sufficiency interweaving

strategy proposed in Kastner and Frühwirth-Schnatter (2014).
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This algorithm allows us to draw from the country-specific joint posterior distri-

butions. However, for the subsequent forecasting exercise, we need estimates for the

global posterior distribution, i. e., the posterior quantities for the parameters of equa-

tion (3.8), p(F,Σe,t, h|DT ), with DT denoting the full data set available for all countries

up to time T and h is the (N + 1) × T matrix collecting all log-volatilities. Drawing

from the individual country posterior distributions and using the algebra outlined above

allows us to obtain valid draws from the posterior distribution of F and Σe,t. Knowing

p(F,Σe,t, h|DT ), we can use Monte Carlo integration to obtain any quantity of interest

like predictive densities or impulse response functions.

3.3 Benchmark Model

With a view to assessing the potential superiority of GVAR models over country-specific

models, we select a set of country-specific Bayesian vector autoregression (BVAR) mod-

els with stochastic volatility as a benchmark.9 We obtain this benchmark by ‘shutting

down’ the interaction between variables from different countries in our baseline GVAR.

More formally, we restrict the impact of the foreign variables to zero in all equa-

tions of the model by setting Λi0 and Λi1 equal to zero matrices in equation (3.1). It

follows that G has a block-diagonal structure such that also the covariance matrix Σe,t,

given in equation (3.9) remains block-diagonal. In other words: the benchmark model

neither allows for contemporaneous nor lagged spillover effects between any pair of two

countries.

9We believe that this is a more natural benchmark than traditional univariate models (as, e. g., in
Pesaran et al., 2009), which might be overly restrictive for macroeconomic variables such as growth
rates or inflation.
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4 Data & Prior Implementation

4.1 Data Overview

We extend the data set used in previous studies (Dées et al., 2007a;b) with respect

to country coverage and time span. More specifically, we use quarterly data for 36

countries (see Table 1) spanning the period from 1979q2 to 2013q4.

[Table 1 about here.]

The domestic variables that are covered in our analysis are real activity (GDP), the

change of the consumer price level, real equity prices, the real exchange rate, and short-

and long-term interest rates. Thus, our data set features the same variables as Dées et

al. (2007a,b) and Pesaran et al. (2009). We follow the bulk of the literature by including

oil prices as a global control variable and by using bilateral trade flows as the measure

of economic proximity between countries. That is, we construct the weakly exogenous

foreign variables based on the average bilateral annual trade flows in the period from

1980 to 2003, which denotes the end of our initial estimation sample.10 Following

Crespo Cuaresma et al. (2014) and Feldkircher and Huber (2015), we calculate foreign

counterparts for all variables including the bilateral real exchange rate vis-á-vis the U.S.

dollar.11

The U.S. model deviates from the other country models in that the oil price is

determined within that country-model. The dominant role of the U.S. economy for

global financial markets is often accounted for by including only a limited set of weakly

10Note that recent contributions (Dovern and van Roye, 2014; Eickmeier and Ng, 2015) suggest using
financial data to compute foreign variables related to the financial side of the economy (e. g., interest
rates or credit volumes). Since our data sample starts in the early 1980s, reliable data on financial
flows—such as portfolio flows or foreign direct investment—are not available. See the appendix of
Feldkircher and Huber (2015) for a sensitivity analysis with respect to the choice of weights.

11Carriero et al. (2009) show that controlling for co-movements of currencies is important to improve
macroeconomic forecasts.
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exogenous variables. It is not necessary to impose this ad-hoc restriction in our Bayesian

approach since it entails variable selection at the country model level.

Finally we correct for outliers in countries that witnessed crisis-induced, extraordi-

narily strong movements in some of the variables contained in our data. We opted to

smooth the relevant time series in these cases.12 In particular, this applies to the short-

term interest rate in Argentina during the periods 1983q4, 1984q3 to 1985q2, 1989q2,

and 1990q1. The data are described in more detail in Table 2.13

[Table 2 about here.]

4.2 Prior Implementation

To implement the prior setup discussed above, we have to specify suitable hyperparam-

eters for all priors. For the prior on Ψi, we scale the prior variances using the so-called

“semi-automatic” approach put forward in George et al. (2008). This implies that the

prior variances are scaled by the respective least squares variance of the parameter in

question. However, due to the fact that we only have to specify Ki variance param-

eters, we follow Koop (2013) and use the maximum of the variance corresponding to

each variable type across all equations.

The prior on the precision matrix, Σ−1
i , is rendered fairly uninformative by setting

Si = Iki and vi = ki. Robustness checks lead to the conclusion that this specific prior

choice proves to be non-influential for the qualitative ordering of the models discussed.

For the autoregressive parameter in the log-volatility equation ρi, we set a1 = 25

and b1 = 1.5, resulting in a prior mean of 0.89 and standard deviation of 0.08. This puts

12Alternatively one could introduce a set of dummy variables for the observations in question as
in Crespo Cuaresma et al. (2014) or Feldkircher and Huber (2015). While this might improve the
behavior of the country-models’ residuals, it still poses the risk that outlier effects could be carried
over to other country models via the trade-weighted foreign variables.

13With the exception of long-term interest rates, the cross-country coverage of all variables is above
90%. Long-term interest rates are hardly available for emerging markets that do not feature well
developed capital markets.
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most prior mass on positive values of ρi. This prior choice implements the view that

the log-volatility follows a fairly persistent autoregressive process rather than a random

walk. Due to the fact that our time series are rather short for a model that deals with

stochastic volatility, the choice of the hyperparameter is rather crucial in empirical

applications. However, robustness checks indicate that the qualitative ordering of the

models remains unaffected by changes in the quantitative results. The prior on the

level of the log-volatility is set to be uninformative given the scale of data. This implies

that we set µ
κi

= 0 and V κi
= 10. Finally, for the Gamma prior of the variance of

the log-volatility equation, we set Rηi = 1. This choice is of minor influence in our

application.

5 Design of Out-of-Sample Forecast Analysis

Given the posterior distribution of the model parameters, simulating predictive densities

for different forecast horizons is straightforward. More formally, the r-steps-ahead

predictive density for the model in (3.8) in period τ is given by

p(xτ+r|Dτ ) =

∫
Ξ

p(xτ+r|Ξ,Dτ )p(Ξ|Dτ )dΞ, (5.1)

where Ξ = {F,Σe,t, h} denotes all estimated parameters of the GVAR model. As men-

tioned above, estimates for (5.1) are readily available using a numerical approximation.

We propose the following recursive forecasting exercise. Beginning in τ = t0, we re-

estimate the GVAR and simulate the predictive density p(xτ+r|Dτ ) for r = 1, 4 for each

period. This procedure is repeated until τ = T − r is reached, producing a sequence

of predictive densities for the verification period. Our initial estimation period ranges

from 1979q2 to τ0=2003q4. The hold-out sample consists of 40 observations, covering

the time span from 2004q1 to T=2013q4.

18



To investigate the accuracy of predictive densities, researchers have opted for a

plethora of different loss functions. In this paper, we focus on the log predictive score

(LPS), which has been motivated, for instance, in Geweke and Amisano (2010). It

has the advantage that it is widely used and that it is a so-called proper scoring rule

(Gneiting, 2008).

More specifically, the log predictive score at time τ is the r-step-ahead predictive

density conditional on the estimated parameters and past data and evaluated at the

actual outcome for time τ + r, xOτ+r:

LPS(xOτ+r|Dτ ) = log p(xτ+r = xOτ+r|Dτ ). (5.2)

Unfortunately, p(xτ+r = xOτ+r|Dτ ) does not have a closed form solution for r > 1

(Adolfson et al., 2007). We proceed like Adolfson et al. and assume that it can be

approximated by a multivariate normal density whose parameters can be estimated

from the predictive sample. The resulting approximation is given by

L̃PS(xOτ+r|Dτ ) ≈− 0.5[k log(2π) + log |Ωτ+r|τ |

+ (xOτ+r − xτ+r|τ )
′Ω
−1

τ+r|τ (x
O
τ+r − xτ+r|τ )], (5.3)

with Ωτ+r|τ denoting the posterior variance-covariance matrix and xτ+r the mean vector

of the predictive density.

In our analysis, we also look at the forecast performance in terms of the predictive

density for all variables of a specific type. To investigate the corresponding variable-

specific LPS we have to integrate out the effects of all other variables. Under the

assumption of a multivariate normal predictive density, the marginal distribution of a

subset of variables can be obtained by dropping the (ir-)relevant rows and columns of

Ωτ+r|τ , xτ+r, and xOτ+r. Thus, computation of the LPS corresponding to variables of type
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m also simply boils down to evaluating the density of a multivariate normal distribution.

Formally, this implies replacing xτ+r|τ ,Ωτ+r|τ and xOτ+r in equation (5.3) with xm,τ+r|τ ,

Ωm,τ+r|τ and xOm,τ+r where xOm,τ+r is a vector which consists exclusively of variables

of type m. Likewise, xm,τ+r|τ denotes the posterior mean of the predictive densities

of variables of type m and Ωm,τ+r|τ denotes the posterior variance-covariance matrix

corresponding to type-m variables. Note that by the same reasoning the variance and

the mean of each of the k marginal predictive densities are given by the proper elements

of the main diagonal of Ωτ+r|τ and xτ+r, say
[
Ωτ+r|τ

]
ll

and [xτ+r]l for l = 1, 2, . . . , k.

To analyze the source of the overall forecast performance in more detail, we make

use of the following result. It is straightforward to decompose the log score of the joint

predictive density into the sum of the log scores of the predictive marginal (normal)

densities and the log score of the predictive (Gaussian) copula density. The first term

can serve as a measure of how well each of the variables is forecast integrating out all

other variables.14 The second term can serve as a measure of how well the dependence

structure among all variables of the model is forecast. Formally, we have

L̃PSτ+r|τ (x
O
τ+r|Dτ ) =

k∑
l=1

log p(xOl,τ+r|Dτ )

+ log c
(
P−1(xO1,τ+r|Dτ ), . . . , P−1(xOk,τ+r|Dτ )

)
, (5.4)

where p(xOl,τ+r|Dτ ) denotes the predictive marginal density of the lth variable evaluated

at the final outcome and conditional on current information, P (xOl,τ+r|Dτ ) denotes the

corresponding cdf , and c(·) is the probability density function of the Gaussian copula.

14Using the unweighted sum over all marginal densities implies an equal weighting scheme across
variables.

20



6 Empirical Results

6.1 Baseline Comparison: Average Forecast Accuracy

As stated in the previous section, we use the log scores of the joint predictive densities to

compare the forecast performance of different models from a multivariate perspective.

Table 3 shows these average joint log predictive scores for the GVAR forecasts and our

benchmark forecasts based on country-specific stochastic volatility BVAR models. It is

evident from the results that the GVAR model outperforms the BVAR models in terms

of forecast performance for both forecast horizons. This holds true for the overall joint

predictive density as well as for the joint predictive densities of each variable group

conditional on the forecasts for the respective other variable groups.

[Table 3 about here.]

The average log score of the overall predictive densities of 1-step-ahead forecasts is

314.6 for the GVAR model compared to 271.6 for the BVAR models. Similarly, for 4-

steps-ahead forecasts the corresponding average log score for the GVAR model (169.6)

is much higher than that of the BVAR models (123.8).15

Where do these gains come from? A priori, there are two possibilities: First, it

is possible that the GVAR performs better, on average, in terms of providing good

forecasts for the predictive marginal densities for each of the variables. Second, perfor-

mance gains could stem from more accurate predictions for the dependence structure

among the variables in the system. These two effects can be analyzed based on the

decomposition given in equation (5.4). A gain along the second dimension would not

be very surprising because the collection of benchmark BVAR models does not model

15Note that we cannot formally test the statistical significance of the difference in accuracy by using
the test proposed by Amisano and Giacomini (2007), which only applies for a rolling sample scheme
during the out-of-sample forecast analysis. In this paper we conduct the forecasting exercise based on
an “expanding” window, which is more frequently used among practitioners.
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cross-country dependencies by assumption whereas the GVAR model is designed to

capture such interactions. Looking at the second and third row of Table 3 reveals that

the second effect does indeed drive the overall forecasting performance of the GVAR:

the log score of the predictive copula density for the GVAR model is much higher

for both forecast horizons than that of the BVAR model. Interestingly, the gains are

much higher for the 4-steps-ahead forecasts (69.6) than for the short-term forecasts

(42.5).16 At the same time, the log scores for the predictive marginal densities indicate

that they do not contribute to the superior overall forecast performance of the GVAR

model. On the contrary: the GVAR performance for a forecast horizon of 4 quarters

is much weaker along this dimension relative to the benchmark. Thus, the bottom

line seems to be that the increased number of parameters in the GVAR model leads

to a deterioration of forecast performance in terms of marginal predictive distributions

which is outweighed by the gains that are realized in terms of better predictions of the

cross-country dependencies.

Further results (shown in the lower part of Table 3) indicate that these perfor-

mance gains are not driven by improved GVAR forecasts of some variable types. By

contrast, the GVAR outperforms forecasts from local, country-specific VARs for all

macro-variables considered in this paper. Focusing, for instance, on the log score of the

joint predictive density of all GDP variables of the sample conditional on the forecasts

for the other variables reveals that the GVAR model provides better forecasts for this

group of variables for the short forecast horizon (61.9 vs 59.0) and for the longer fore-

cast horizon (27.2 vs. 22.0). The difference seems to be especially pronounced when

focusing on the conditional joint predictive densities of the short-term interest rate (iS)

and equity prices (eq) respectively.

16The difference is even more astonishing when comparing the differences of the predictive log copula
scores to the levels of the overall predictive log scores, which are much smaller for the 4-steps-ahead
forecasts.
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Overall, the results point to strong evidence of the GVAR framework outperforming

country-specific benchmark VAR forecasts by a great margin. More specifically, this

result is driven by the better predictions of the cross-country dependencies between

variables which is a salient feature of the GVAR framework.

6.2 Performance Variation over Time

There is empirical evidence that the predictive accuracy of forecast models fluctuates

over time both in terms of absolute accuracy (which obviously varies because shocks of

different sizes hit the economy at different times) and relative accuracy (when different

models are compared).17

This is why we also investigate whether and, if so, how the relative forecast per-

formance of the GVAR model varies over time. On the one hand it could be argued

that the complexity of the GVAR model captures the dynamics that once in a while

cause volatile business-cycle fluctuations – thus its relative forecast performance could

be especially pronounced during turbulent times. On the other hand it is well known

that simpler forecast models tend to outperform complexer models especially during

volatile periods because they are able to adjust more quickly to structural change.

Figure 1 shows that the log predictive scores of both models indeed vary strongly

over time, with large decreases of the log scores for both models standing out during

the period of the Great Recession. Three other aspects are noteworthy. First, the joint

log predictive score of the GVAR model is consistently higher than that of the BVAR

models over all periods of the evaluation sample and for both forecast horizons. Sec-

ond, the deterioration of the log predictive scores during the Great Recession is—not

surprisingly—more moderate for the medium-term forecasts. Finally, the deterioration

of the log predictive scores during the Great Recession is much more severe for the

17See, for instance, Del Negro et al. (2014) or Geweke and Amisano (2010).
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BVAR models than for the GVAR model. In other words, the relative forecast per-

formance of the GVAR model increased during the Great Recession. Two features are

likely to contribute to this finding. First, the GVAR model reflects information from

countries that fall into the recession earlier than others, thus anticipating the economic

slowdown in the other countries. Second, the multiple channels of cross-country inter-

action built into the GVAR model allow anticipating the synchronicity of events during

a global downturn.

[Figure 1 about here.]

A decomposition of the log score of the joint predictive density for each forecasting

period as described in equation (5.4) can be interpreted as a confirmation of the two

hypotheses. Figure 2 shows that two effects are at play which explain the good relative

performance during the Great Recession. First, the decline of log scores for the marginal

predictive densities is not as sharp in case of the GVAR model as it is for the BVAR

benchmark. Second and very interestingly, the GVAR log scores for the predictive

copula density actually increase during the Great Recession while they slightly decline

for the BVAR benchmark. Thus, it seems that non-systematic, idiosyncratic shocks

played a smaller role during the global downturn, which enhances the benefit of using

a GVAR model that captures the systematic dependencies across countries.

[Figure 2 about here.]

An analysis of the different groups of variables reveals some interesting similarities

and differences (Figure 3). First, the log predictive scores for the variable-type-specific

conditional joint densities are higher for the GVAR than for the BVAR models in all

periods for all types of variables.18 Second, the forecast performance sharply falls during

18For the presentation of results we focus on the short-run forecasts. Results for the 4-steps-ahead
forecasts are very similar and available upon request.
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the Great Recession virtually across the board. Third, this fall in forecast performance

is equal in magnitude for both types of models with two exceptions, namely the joint

predictive distribution of short-term interest rates and of equity prices, which drops

more sharply in the BVAR models than in the GVAR model. This indicates that the

very large differences of average log predictive densities that were documented for short-

term interest rates and equity prices in the previous section mainly reflect the strong

forecasting record of the GVAR during times of economic crisis.

[Figure 3 about here.]

6.3 A Closer Look at Regions in the GVAR

Undoubtedly, the countries of our sample are very different with respect to how strongly

they are integrated into the world economy and how strongly they drive the global busi-

ness cycle.19 Therefore, we want to analyze the gains in terms of forecast performance

from using the GVAR model for forecasting different regions. To keep things simple

and straightforward, we split the sample into a group of advanced economies (AE) and

a group of emerging economies (EE).20

Specifically, we set all trade weights, wij, equal to 0 if country i is in a different

country group than country j. All other trade weights are adjusted accordingly to sum

to unity. In essence, this yields two separate regional GVAR models for advanced and

emerging economies, respectively. These models take information about the intercon-

nectedness of countries within each of the groups into account while neglecting any

spillover effects from advanced to emerging economies, and vice versa. The analysis

19See, for instance, Kose et al. (2003) for an extensive exploration of the importance of the global
business cycle for a wide range of countries.

20The group of AE comprises the 15 European countries and the 5 other developed economies. The
remaining 16 countries form the group of EE.
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shows how relevant it is to use information from different country groups when the

single aim is to forecast variables from a particular group of countries.

To measure this relevance, we report the difference of log predictive scores. Since

at this point we focus on forecasting all variables from one particular country group,

we use the joint log predictive score for this subset of variables once the predictions

for the variables of the other country group have been integrated out from the overall

joint predictive density. We compute this measure for the newly constructed regional

GVAR model and subtract the corresponding log score for the conventional GVAR

model. Thus, negative values indicate an inferior forecast performance of the regional

GVAR models while positive values indicate that moving to the more parsimonious

model actually improves the quality of forecasts.

Figure 4 shows the differences of log scores for both country groups and the two

forecast horizons. Evidently, neither the regional GVAR models nor the GVAR model

dominates the other model over all periods. Both country groups exhibit periods with

negative and positive log score differences. It is striking that the gains from using a

truly global model increases especially during the time of the Great Recession.21

[Figure 4 about here.]

Furthermore, looking at the average over time reveals that taking spillover effects

across country groups into account is more important for business-cycle forecasts for

emerging economies than for advanced economies. For the 1-step-ahead forecasts, the

mean difference is -16.8 for advanced economies but -67.0 for emerging economies,

i. e., switching off transmission channels between advanced and emerging economies

leads to a much larger deterioration of short-term forecast performance for emerging

economies relative to advanced economies. Likewise for 4-steps-ahead forecasts: the

21This results is similar to the finding in section 6.2, which showed that the GVAR model outper-
formed the country-specific BVAR models especially during the Great Recession.
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average forecast performance for advanced economies increases when moving from the

GVAR to the regional GVAR model (mean log score difference of 26.7) while it decreases

slightly for emerging economies (-18.9).

7 Conclusion

In this paper, we analyze the ability of the GVAR model to generate accurate joint

predictive densities for all variables of the system. To this end, we estimate a Bayesian

GVAR model with SSVS priors and stochastic volatility and perform an out-of-sample

forecast analysis. Our GVAR specification allows for a computationally efficient es-

timation of the model—which is essential when dealing with such high dimensional

multi-country models in a context that requires repeated estimation.

Our results suggest that GVAR forecasts consistently improve the joint log predic-

tive score compared to benchmark forecasts that are based on country-specific stochastic

volatility BVAR models. This result holds true for the entire evaluation period of our

forecasting sample but especially so for the Great Recession when the GVAR outper-

forms the benchmark by a great margin. Thus, it seems that modelling cross-country

linkages is particularly important during times of global economic turbulences. By us-

ing a decomposition of the joint predictive density into the marginal densities and a

copula term, we show that the performance gains of the GVAR are exclusively driven

by better predictions of the cross-country dependencies. This decomposition approach

might be of independent interest also in other forecast evaluation setups.

We proceed by estimating two regional GVAR models for advanced and emerging

economies, respectively. A forecast analysis based on these models indicates no deterio-

ration of forecasts for advanced economies when emerging economies are excluded in the

regional GVAR. By contrast, shutting down spillover effects from advanced to emerg-

ing economies significantly deteriorates the quality of forecasts for emerging economies.
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This implies that while advanced economies could be modeled more parsimoniously tak-

ing into account only within-region spillover effects, forecasts for emerging economies

can be significantly improved by considering information from advanced economies.

However, for both regions the truly global GVAR framework featuring all economies in

the sample excels in terms of forecast accuracy during the Great Recession 2008/09.

Thus, our results only partially confirm the evidence in Kose et al. (2012) who find no

strong links between the business cycles of advanced and emerging economies, respec-

tively.

Our results suggest that there are clear gains from using GVAR models when the aim

is to coherently forecast the economies of a range of countries. Modeling cross-country

linkages seems to pay off relative to the use of country-specific benchmark models.

Our results concerning the minor contribution of modeling emerging economies when

forecasting advanced economies suggest that further gains in forecast performance could

be achieved by properly trimming the bilateral weights that are used to link different

countries. However, our results also suggest that this applies mostly during tranquil

times and that a parsimonious GVAR might do worse when the world economy is hit

by a truly global shock such as the Great Recession, which is in line with the evidence

in Crespo Cuaresma et al. (2014). We leave these issues for future research.
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Table 1: Country coverage of GVAR model

Europe Other Developed Emerging Asia Latin America Mid-East and Africa

Austria (AT) Australia (AU) China (CH) Argentina (AR) Turkey (TR)
Belgium (BE) Canada (CA) India (IN) Brazil (BR) Saudi Arabia (SA)
Germany (DE) Japan (JP) Indonesia (ID) Chile (CL) South Africa (ZA)
Spain (ES) New Zealand (NZ) Malaysia (MY) Mexico (MX)
Finland (FI) United States (US) Korea (KR) Peru (PE)
France (FR) Philippines (PH)
Greece (GR) Singapore (SG)
Italy (IT) Thailand (TH)
Netherlands (NL)
Portugal (PT)
Denmark (DK)
Great Britain (GB)
Switzerland (CH)
Norway (NO)
Sweden (SE)

Notes: ISO-2 country codes in brackets.
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Table 2: Data description

Variable Description Min. Mean Max. Coverage

y Real GDP, average of
2005=100. Seasonally
adjusted, in logarithms.

2.173 4.298 5.400 100%

∆p Consumer price inflation.
CPI seasonally adjusted, in
logarithms.

-0.157 0.027 1.790 100%

e Nominal exchange rate vis-
à-vis the U.S. dollar, de-
flated by national price lev-
els (CPI).

-7.591 -2.818 5.459 97.2%

iS Typically 3-months-market
rates, rates per annum.

-1.006 0.190 52.360 94.4%

iL Typically government bond
yields, rates per annum.

0.000 0.077 0.306 61.1%

poil Price of oil, seasonally ad-
justed, in logarithms.

- - - -

Trade flows Bilateral data on exports
and imports of goods and
services, annual data.

- - - -

Notes: Summary statistics pooled over countries and time. The coverage refers to
the cross-country availability per country, in %. Data are from the IMF’s IFS data
base and national sources. Trade flows stem from the IMF’s DOTS data base. For
more details see the data appendix in Feldkircher (2015).

36



Table 3: Average joint log predictive scores

1-step-ahead 4-steps-ahead
GVAR BVAR GVAR BVAR

Overall 314.576 271.608 169.622 123.758
Marginals 270.791 270.326 149.596 173.356
Copula 43.785 1.281 20.025 −49.598

y 61.945 58.976 27.176 22.002
∆p 64.888 61.271 35.159 32.319
iS 50.680 41.762 17.770 10.323
iL 59.291 56.768 26.967 24.125
e 39.606 36.066 18.491 13.857
eq 27.948 15.465 −2.257 −14.309

Notes: Average log predictive scores over the hold-out sample. Joint
and variable-specific log scores have been obtained by using the multi-
variate normal approximation to the predictive density as in Adolfson
et al. (2007). Variable-specific log scores are computed by integrating
out the effects of other variables. The scores labeled “Marginals” and
“Copula” refer to the decomposition of the overall log predictive score
presented in equation (5.4)
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Figure 1: Evolution of the joint log predictive score over time
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(b) 4-steps
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Notes: Evolution of the joint (for all variables and countries in the sytem) log predictive score for

the hold-out sample. Results are based on the quadratic approximation to the log predictive score.
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Figure 2: Components of the joint log predictive score over time

(a) GVAR
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Notes: Evolution of both components of the (1-step-ahead) joint log predictive score (given in

equation (5.4)) over the hold-out sample. Results are based on the quadratic approximation.
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Figure 3: Variable-specific log predictive scores over time

(a) GDP
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(c) Short-term interest rates
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(d) Long-term interest rates
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(f) Equity indices
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Notes: Evolution of the variable-specific (1-step-ahead) log predictive score for the hold-out sample.

Results are based on the quadratic approximation to the log predictive score after integrating out the

effects of other variables.
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Figure 4: Performance of regional GVAR models
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(b) 4-steps
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Notes: The figure shows the difference between the region-specific joint log predictive score for the

regional GVAR models and the corresponding log score for the benchmark truly global GVAR.

Region-specific joint log predictive scores are obtained by integrating out the effects of the other

region. Positive values indicate that the regional GVAR models outperform the benchmark GVAR

model.
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