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Abstract

Productivity growth in electricity generation can have multiple positive ef-

fects, as e.g. setting free scarce resources, a generally lower use of natural

resources and subsequently lower CO2 emissions. Increasing (scale) efficiency,

technical change or the introduction of new technologies are ways to raise pro-

ductivity in a sector. This paper analyzes productivity growth for conventional

combustion power plants in Germany. A unique panel data set ranging from 2003

to 2010 including in total 1555 observations allows to estimate production fron-

tiers for coal, lignite, gas and biomass fired power plants. Production functions

are estimated using stochastic non-smooth envelopment of data (StoNED) in a

meta-frontier framework. Productivity growth is assessed at representative units

using a metafrontier Malmquist decomposition. Results indicate (1) a stagna-

tion of productivity for the whole sector, (2) technical progress for biomass plants

with a catch-up to the other technologies (3) and the highest productivity for

gas-fired power plants.
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1 Introduction

Productivity growth in electricity and heat generation can have multiple positive ef-

fects: First, productivity gains can be translated in lower prices for electricity, a major

input of the whole economy. Further, productivity gains can set free resources for other

uses, as e.g. labor and capital. Furthermore, productivity gains can lead to overall re-

duced consumption of scarce natural resources as fossil fuels. Thus, besides positive

environmental effects, productivity growth can also reduce import dependencies. And

finally, a more productive use of combustion materials can reduce CO2 output and

ultimately help reaching ambitious climate goals. To achieve such productivity gains,

multiple channels are available. Increasing (scale) efficiency of existing plants helps us-

ing resources more productive and allows lowered resource use with preexisting industry

structures. Further, technical progress and learning allows to achieve new productivity

levels with existing technologies. Finally, introduction of new technologies with often

steep learning curves may allow to reach new productivity levels.

In the literature, productivity and efficiency of power generating units has been studied

by numerous papers (for overviews see Song et al., 2013; Zhou et al., 2008). However,

most studies focus on the measurement of inefficiency and its determinants. Besides

cross-country comparisons (e.g. Sueyoshi and Goto, 2013; Zhang and Choi, 2013), em-

pirical evidence exists for several countries. More recently, the Chinese power gener-

ating sector has drawn major attention, and regulatory reforms and their impact on

efficiency has been analyzed by a number of papers, including analysis on the plant

level (e.g. Zhao and Ma, 2013; Du et al., 2013, 2009) and on regional level (e.g. Bi et al.,

2014; Wang et al., 2013; Lin and Du, 2013). Likewise, a vast number of studies of the

power generating sector exists for the US, however, most often in a cross-sectional set-

ting and evidence from intertemporal analysis is limited (e.g. Craig and Savage, 2013;

Fleishman et al., 2009). Other countries are analyzed as well in panel settings and for

example the Chilean hydroelectric power generation has been studied by Atkinson and

Halabi (2005) and Iran’s power generation has been analyzed by Fallahi et al. (2011).

Empirical evidence on efficiency in European electricity generation is limited and to

the authors knowledge the study of Seifert et al. (2014) on efficiency in Germany is the

only study on the plants level.

Productivity developments and technical change in the electricity generating sector

has attracted less attention and little empirical evidence can be found. See and Coelli

(2013) have analyzed productivity growth and its components in the Malaysian electric-

ity generating sector. Using a parametric approach (Stochastic Frontier Analysis, SFA)

they analyze a panel from 1998 to 2005. For this period, the authors find an annual

total factor productivity (TFP) growth of 2.5%. Decomposition of the results show a
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strong contribution of technical progress to this development, and the authors argue

that these improvements can be mainly attributed to investments into new capacities.

Opposing results are found in a study by Heshmati et al. (2014) on productivity devel-

opments in Korean power plants by means of a simple linear regression model and a

semi-parametric smooth coefficient model (SPSC). Based on a sample covering a simi-

lar time period, 1995 - 2006, results indicate productivity decline and technical regress

over the sample period and over the whole frontier, irrespective of the methodology

chosen. The authors argue, that this finding can be explained by higher energy secu-

rity, practices of demand side management in the electricity markets and thus lower

rates of generation intensity per unit. For the US Atkinson and Primont (2002) analyze

productivity of fossil-fuel fired steam electric utilities between 1961 and 1997 by means

of stochastic cost and distance functions. The authors find overall small productivity

gains of around 0.3 to 0.7% per year, with productivity losses for nearly half of the

observation period. Results furthermore indicate overall small technical progress (0.7

to 1.2%) with technical regress during the beginning of the sample period. Similarly,

Rungsuriyawiboon and Stefanou (2008) and Genius et al. (2012) analyze productivity

of fossil-fuel fired steam electric power generation during the time period of 1986 - 1999

using identical data sets. The former study finds annual TFP growth of 2.3%, mainly

driven by allocative efficiency gains and accompanied by periods of both, technical

progress and regress. The latter study further analyzes partial productivity of labor

and fuel inputs in this context. Results indicate small productivity growth of 0.4% for

fuel, but much stronger gains for labor. However, technical progress is found to be very

low in magnitude for fuel input (around 0.15%) and slightly negative for labor input.

For both studies, Rungsuriyawiboon and Stefanou (2008) and Genius et al. (2012), dif-

ferences in the point estimates in comparison to Atkinson and Primont (2002) can be

attributed to the shorter observation period that leaves out years in which productivity

decline and technical regress seem to dominate.

To summarize, the literature does not show a clear picture of trends in productivity

development in electricity generation. Generally, productivity growth point estimates

surely vary with the context of the analysis, but are generally found to be low in

magnitude. Further, results of the studies mentioned above indicate technical progress

and regress, but again, generally with estimates of low magnitude. The literature on

productivity growth in electricity (and heat) generation indicates several gaps that

should be addressed in this paper: First, most studies can not account for hetero-

geneity in the combustion technologies. Second, the studies from the field of efficiency

and productivity analysis are typically based on Data Envelopment Analysis (DEA)

or Stochastic Frontier Analysis (SFA). Whilst the former is purely deterministic and
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does not account for noise in the data, the latter needs the assumption of a functional

form as Cobb-Douglas and Translog. Finally, there is only little empirical evidence on

productivity in electricity generation in general and for Europe in particular.

This paper tries to contribute to the literature by analyzing technical change for the

first time for the German electricity and heat generating sector. Based on an unique

and uncommonly rich data set, productivity changes and its components are analyzed

for coal, lignite, gas and biomass-fired power plants between 2003 and 2010. Produc-

tivity growth is decomposed using a Malmquist decomposition that is adjusted to a

metafrontier framework following Battese et al. (2004), which allows to account for

technological heterogeneity among the different fuel types. Further, using stochastic

non-smooth envelopment of data (StoNED, Kuosmanen and Kortelainen, 2012) for

frontier estimation allows to combine both, a frontier estimation without any assump-

tions on its functional form whilst allowing for disentangling noise and inefficiency.

The German electricity generating sector is an especially interesting case to study with

considerable changes in the industry structure, and with a special role of conventional

energy sources. With a total generation capacity of 190 GW Germany’s power plant

fleet is the largest in Europe and the sixth largest in the world. Around the half

of this capacity are conventional combustion plants, including coal, lignite, gas and

biomass-fired stations. For coal and lignite capacities have been stable since the 2000s,

while a considerable number of new installations and capacity extensions have taken

place for gas and biomass. However, supporting policies have also fostered sizeable

investments in renewable energy sources. In 2013, wind and solar contribute around

70 GW in capacity, after only 15 GW ten years before. On the other side, with the

nuclear phase-out - agreed on in 2002 and reconditioned in 2011 - substantial capacity

of around 12 GW will go off-line until 2022. These changes in the capacity structure

have also impacted the electricity generation. While coal and lignite are still the most

important single fuel sources accounting for nearly 50% of total generation, wind and

solar already contributed more than 10% of total generation in 2013. For the conven-

tional combustion technologies, this change in the energy mix poses a new challenge:

as long as no storage facilities are available for wind and solar, conventional combus-

tion capacities will be needed as a back-up for these intermittent source. At the same

time, the nuclear capacities that go off-line need replacement, partly by conventional

sources. In this environment, combustion technologies are competing with virtually

zero-variable cost competitors, wind and solar, creating considerable pressure on pro-

ductivity developments in such plants.

The remainder of study is organized as follows: section 2 presents the theoretical back-

ground of the metafrontier approach and will outline the methodology to estimate the
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production frontier and the frontier shift. The data set is outlined in section 3. Results

are presented in section 4, and section 5 summarizes this paper.

2 Methodology

In this paper, productivity growth in the German electricity sector is studied in a pro-

duction context using a metafrontier Malmquist decomposition. The analysis is based

on a metafrontier framework, following Battese et al. (2004), that is outlined in section

2.1. Production functions are estimated using stochastic non-smooth envelopment of

data (StoNED) outlined in section 2.2. To evaluate productivity changes in a setting

with multiple technologies, a metafrontier Malmquist productivity index is constructed

as outlined in 2.3.1. Finally, section 2.3.2 outlines at which points productivity is mea-

sured and how those points are derived.

2.1 Metafrontier Framework

The metafrontier framework is a methodological toolkit that allows to account for

heterogeneity in the units of analysis. Introduced by Hayami and Ruttan (1970) and

operationalized for efficiency analysis methods by Battese et al. (2004), it has since then

found application for different sectors. Examples from the literature on efficiency anal-

ysis in the electricity generating sector include the study by Zhang and Choi (2013),

in which the metafrontier is used to control for the location of a plant in different

countries, and the studies by Zhang et al. (2013) and Seifert et al. (2014) that use this

framework to differentiate technologies based on the fuel input types.

To describe the production process some notation needs to be introduced. Assume I

(i = 1, ..., I) decision making units (DMUs, power plants in this case) are observed in

T (t = 1, ...T ) periods. Each power plants uses a technology to transform an m dimen-

sional input vector xit (x εRm
+ ) into the scalar output yit (y εR). Further, denote by

Ψ the entirety of feasible production plans, (xit, yit) ∈ Ψ. The transformation process

can be represented by the production function ft : Rm
+ → R+. Following microeco-

nomic theory f is a monotonically increasing, concave and continuous function that

gives the maximum output attainable for a given input level. Now, output of firm i,

yit, may deviate from this maximum for given inputs due to inefficiency u > 0 and

and a random disturbance v such that yit = ft(xit) ∗ exp(ε) = ft(xit) ∗ exp(vit − uit).
This production function is called the metafrontier and represents the maximum pro-

duction for each input level for the I observations in period t. Furthermore, assume

that each DMU has chosen one of C (c = 1, ..., C) technologies and could thus re-

alize all potential input-output combinations in Ψc. In this paper c represents the
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combustion technology that prevents the plants from simply switching from one fuel

to another. This allows us to divide the sample into C groups with each group rep-

resenting one combustion technology. For each group a production function (group

technology) defines the maximum attainable output for a given level of input. Again,

observed output may deviate from this maximum due to inefficiency and noise such

that ycit = f ct (x
c
it) ∗ exp(ε) = f ct (x

c
it) ∗ exp(vcit − ucit).

By definition, the production possibility set for each group technology Ψc is a sub-

set of the metatechnology Ψ. Therefore, the metatechnology production function en-

velopes all group technologies such that f(x) ≥ f c(x) ∀x. This furthermore allows

to relate the locations of the meta- and the group frontiers using the technology gap

ratio (TGR) that measures the distance between the group and the metatechnology as

TGR = f c(x)/f(x). This measure indicates whether technology c is able to produce

maximum output for a given input level if TGR = 1. On the contrary, if TGR < 1 firms

using this group technology can potentially achieve a higher output level by switching

to the technology defining the metafrontier for this input level.

2.2 Frontier Estimation

For the estimation of the group frontiers and the metafrontier a StoNED approach (Ku-

osmanen and Kortelainen, 2012) is used in this paper. This approach consists mainly

of two steps: first, an piece-wise linear average production function g(x) is estimated

using convex non-parametric least squares (CNLS). This estimation is free of any dis-

tributional assumptions or assumptions on a functional form. In a second stage, based

on distributional assumptions, estimates for the parameters of inefficiency and noise (u

and v) are obtained. In the second step, the average production function g(x) is shifted

upwards by the expected value of inefficiency to get a frontier estimate f̂(x). Thus,

this method combines aspects of the two standard methods DEA and SFA: similarly

to DEA, the production frontier is estimated without specification of a functional form

and based only on few microeconomic assumptions on the shape of a production func-

tion (concavity, monotonicity and continuity). However, similar to SFA, disentangling

noise and inefficiency is possible based on distributional assumptions on inefficiency

and noise. Therefore, StoNED combines strengths of both methodologies, DEA and

SFA.

For the first stage Kuosmanen (2008) derives a representation of the infinitely many

monotonically increasing, concave and continuous (not necessarily differentiable) func-

tions that would solve the corresponding least squares problem to derive the aver-

age production function. Kuosmanen and Kortelainen (2012) extend this approach

to the case of a production function with multiplicative noise and inefficiency, i.e.
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y = f(x) ∗ exp(ε) = f(x) ∗ exp(v − u). Kuosmanen and Kortelainen (2012) derive

a quadratic programming problem (QP) to obtain slope and intercept estimates for

the average production function based on the log-transformation of the multiplicative

model. This procedure is used to estimate a production function for each group tech-

nology and for the metatechnology in each year separately by solving the following

non-linear QP.

min
α,β,ŷ

n∑
i=1

(ln yit − ln ŷit)
2

ŷit = αit + β′itxit

αit + β′itxit ≤ αht + β′htxit ∀i, h = 1, ..., n

βit ≥ 0 ∀i = 1, ..., n

This QP tries to find the α and β coefficients that minimize the sum of the squared

residuals, ηit = ln yit − ln ŷit. α and β are the solution to this QP and represent firm-

specific estimates for the intercept and the slope of a firm specific hyperplane tangent

to the average production function g(x). Microeconomic requirements on this hyper-

planes are imposed as constraints: The first constraint establishes a linear form for the

estimated hyperplanes leading to a piece-wise linear estimate of the function similar to

DEA. The second constraint imposes concavity of the estimated function using Afriats

theorem (Afriat, 1967). Finally, the third constraint imposes monotonicity. As no fur-

ther restrictions are imposed on the sign of α, the estimated frontier is allowed to have

variable returns to scale (VRS). However, a constant return to scale (CRS) model can

be imposed by setting α = 0. Furthermore, the model delivers fitted values ŷit on the

hyperplanes. The lower envelope of these fitted values is used as the estimated average

production function ĝ(x) (see Kuosmanen and Kortelainen, 2012).

What should be noted is the size of the QP. To estimate the n∗m+n parameters in the

VRS case and the n ∗m parameters under CRS, the second and the third constraint

sum up to n ∗ n + n constraints. Especially the concavity constraints impose a large

number of restrictions (n ∗ n) and can create a computational burden. To overcome

this restriction, a sweet spot approach following Lee et al. (2013) is implemented. This

algorithm is based on the assumption that the relevant hyperplane of an observation is

most likely only influenced by observations close to the unit of interest. Therefore, in

a first stage, for each unit, only constraints relative to observations within 30 percent

of the maximum Euclidean distance of one arbitrarily chosen input are included. After

solving this initial model, for each observation the most violated constraint is added.

This procedure is used iteratively until no constraint is violated, which assures opti-

mality of the solution.

After obtaining the α and β coefficients in the first stage, the residuals ηit = ln yit−ln ŷit
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are used to recover estimates for the parameters of the distributions of inefficiency and

noise, σu and σv in each t for each of the C group technologies and the metafrontier.

Based on these estimates, g(x) is shifted to obtain a frontier estimate. This needs

more detailed distributional assumptions in advance. Following Kuosmanen and Ko-

rtelainen (2012), a normal distribution is imposed for the noise term, v ∼ N(0, σ2
v). The

inefficiency term is assumed to take only positive values, and to follow a half-normal

distribution, u ∼ |N(0, σ2
u)|. Thus, the composed error term ε = vi − ui is assumed

to follow a normal-half normal distribution. To recover these parameters, Kuosmanen

and Kortelainen (2012) suggest decomposing the residuals from the first stage (ηit)

using a pseudolikelihood estimators (PSL) as proposed by Fan et al. (1996) (FLW).

Following FLW, for each period t and for each technology c a log-likelihood function

for the normal-half-normal model can be expressed as function of a single parameter

λ ≡ σu/σv such that

lnL(λ) = −n ln σ̂ +
n∑
i=1

ln Φ[−ε̂iλ
σ̂

]− 1
2σ̂2

n∑
i=1

ε̂i
2

with Φ denoting the CDF of a standard normal and

ε̂i = ηi − (
√

2λσ̂)/[π(1 + λ2)]1/2

σ̂ =

(
[ 1
n

n∑
i=1

ηi]/[1− 2λ2

π(1+λ2)
]

)1/2

Maximization of the likelihood function delivers estimates of λ and subsequently σ̂.

Further, estimates of σ̂u and σ̂v are available with σ̂u = σ̂λ̂/(1+ λ̂) and σv = σ̂/(1+ λ̂).

Given this estimate of the variance of the inefficiency the expected value of inefficiency

µ̂ can be calculated as E(ui) = µ̂ = σ̂u ×
√

2/π. This procedure is done for each tech-

nology and the metatechnology in each of the T periods leading to T (C + 1) estimates

of σu, σv and µ. The estimated production functions are then derived as the average

production functions shifted upwards by the expected value of inefficiency, such that

f̂t(x) = ĝ(x) ∗ exp(µ̂) for each t.

2.3 Estimation and Decomposition of Productivity Growth

2.3.1 Metafrontier Malmquist Decomposition

Based on the consistent estimate of the production function in each t we are now

interested in measuring productivity growth and its components using a Malmquist

productivity index (MPI) in a metafrontier setting. Therefore, we will briefly introduce

the standard VRRS Malmquist decomposition in the spirit of Fare et al. (1994). In

a second step, this productivity index will be extended to a metafrontier Malmquist
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productivity index (MMPI) using the insights of Chen and Yang (2011). This MMPI

measures productivity growth on the metafrontier level but includes also information

about productivity growth on group level including productivity trends relative to the

whole sector (the metafrontier). Further, this MMPI is based on the Fare et al. (1994)

scale change factor, contrary to Chen and Yang (2011), which base their decomposition

on the Ray and Desli (1997) scale change component.

Let denote Do
t the distance of a an input-output combination (xc, yct ) to the boundary

of the technology set, i.e. the best practice frontier, such that φ gives the potential

expansion of output for a given input level.

Do
t (x, y) = inf{φ > 0 : (x, y/φ) ∈ Ψ}

Using such a distance function one may calculate the standard Malmquist productivity

index following Färe et al. (1994), which is based on a CRS technology.

MPIo,crst (xt, yt, xt+1, yt+1) =
Do,crs

t (xt+1,yt+1)

Do,crs
t (xt,yt)

In this formulation, the MPI measures productivity growth relative to the period-t

benchmark technology. However, as there is no argument to favor this over a period-

t+1 benchmark technology, typically the geometric mean of both is taken:

MPIo,crst,t+1(xt, yt, xt+1, yt+1) =
[
Do,crs

t (xt+1,yt+1)

Do,crs
t (xt,yt)

× Do,crs
t+1 (xt+1,yt+1)

Do,crs
t+1 (xt,yt)

]1/2
As we assume VRS for the technologies to estimate, we introduce a scale change factor

following the decomposition by Fare et al. (1994) and differentiate three different fac-

tors: technical efficiency change (EC), technical change (TC) and scale change (SC).

MPIo,crst,t+1(xt, yt, xt+1, yt+1) = ECvrs × TCvrs × TCcrs/TCvrs × SC
with

EC =
Do

t+1(xt+1,yt+1)

Do,crs
t (xt,yt)

TC =
[
Do

t (xt+1,yt+1)

Do
t+1(xt+1,yt+1)

× Do
t (xt,yt)

Do
t+1(xt,yt)

]1/2
SC =

Dcrs
t+1(xt+1, yt+1)/D

vrs
t+1(xt+1, yt+1)

Dcrs
t (xt, yt)/Dvrs

t (xt, yt)

This VRS based Malmquist index measures productivity changes and its components

for one technology (i.e. the metatechnology). An MPI score greater than unity in-

dicates productivity growth. Likewise, EC > 1 indicates an increase in technical

efficiency over time; TC > 1 indicates positive technical change, i.e. an upward shift

of a production function; and SC > 1 indicates an increase in scale efficiency.

However, this Malmquist decomposition neglects the position of the frontier of the C
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subtechnologies relative to the metafrontier. This relationship can be incorporated by

two additional decomposition factors as introduced by Chen and Yang (2011). They

suggest that the position of the group technologies relative to the metafrontier is mea-

sured by two further elements in the Malmquist decomposition: First, the change of

the distance between the group and the metafrontier can be measured using a Pure

Technological Catch-Up (PTCU) component. This component measures the change of

the TGR by comparing the TGR for one DMU in two consecutive periods. Second, the

authors introduce a Frontier Catch-Up (FCU) component. This component measures

the change in the distance over a whole band of technology gaps. Now let Dc denote

the distance of an input output combination to the frontier of subtechnology c while

D∗ denotes the distance to the metatechnology and define PTCU and FCU for two

consecutive periods as

PTCU c
t,t+1 =

TGRc
t+1(xt+1,yt+1)

TGRc
t (xt,yt)

=
D∗

t+1(xt+1,yt+1)/Dc
t+1(xt+1,yt+1)

D∗
t (xt,yt)/D

c
t (xt,yt)

FCU c
t,t+1 =

[
TGRc

t (xt+1,yt+1)

TGRc
t+1(xt+1,yt+1)

× TGRc
t (xt,yt)

TGRc
t+1(xt,yt)

]1/2
=

TC∗
t,t+1

TCc
t,t+1

A PTCU score larger than unity indicates a shrinking technology gap, i.e. a catch-

up relative to the metafrontier for a specific firm. On the contrary, for the FCU

component, a value smaller than one indicates a catch-up, but measured for the whole

band of TGRs between the input-output combinations in t and t+ 1.

Using the insights of Chen and Yang (2011) a VRS based Malmquist decomposition

can be extended to the Metafrontier Malmquist Productivity Index (MMPI). Using

the definitions above, it is easy to show that this MMPI can be decomposed into

Technical Efficiency Change and Technical Change for the VRS group frontiers, a Scale

Efficiency component for each of the C groups , and the Pure Technological Catch-Up

component, and the Frontier Catch-Up component for all group frontiers relative to the

metafrontier. Finally, two ”residual” components terms that further relate the scale

efficiency component of meta- and group frontier and the technical change component

of the VRS and the CRS frontiers (see Appendix for details). Thus, we can write the

MMPI as:

MMPIcrs = ECc,vrs×TCc,vrs×SCc×PTCU vrs×FCU vrs×SC∗/SCc×TC∗,crs/TC∗,vrs

This productivity index delivers the productivity growth of the metafrontier as MMPI

score. Further, it contains information on the productivity growth of the subtechnology

c by incorporating the VRS Malmquist decomposition on group level (groupfrontier

Malmquist productivity index, GMPI), and information on this productivity growth

relative to the metafrontier productivity developments. Rewriting this decomposition

underlines the different aspects:

MMPIcrs = GMPIc,vrs × SCc × PTCU vrs × FCU vrs × SC∗/SCc × TC∗,crs/TC∗,vrs

9
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2.3.2 Construction of Hypothetical Evaluation Units

Standard Malmquist decomposition is typically based on balanced panel data sets,

which is not the case for our sample. However, different adjustments are possible to

use such methods for non-balanced panels see (see Kerstens and Van de Woestyne,

2014, for an overview): one may either just drop the ”incomplete” observations or back-

ward merge observations that actually merged during the observation period. Other

approaches to balance the panel include imputation of missing data, creation of ar-

tificial units or achieving balancedness at least on a two-year basis. However, in our

model set-up such methods seem not to be applicable as inclusion of artificial units or

exclusion of observations may impact the precision of the frontier estimation. To avoid

the problem of unbalancedness we evaluate productivity changes in hypothetical units

that are not included in the estimation of the frontier. Productivity growth is then

decomposed for these hypothetical units using the Malmquist decomposition outlined

above. This offers some advantages: first, frontier estimation is done using the maxi-

mum number of observations as no observations are excluded for balancedness. Second,

as we look at hypothetical units we can describe technical change for the whole range

of potential input values. Furthermore, hypothetical units allow to assume that the

evaluated units contain on average no noise making a deterministic treatment of the

distance to the frontier available. Therefore, inefficiency does not need to be calculated

using the widely used and unbiased but statistically inconsistent efficiency estimate of

Jondrow et al. (1982). And finally, such a construction of hypothetical evaluation units

allows to actually analyze our data which was not possible on real existing units due

to data privacy limitations (see section 3).

For the analysis we construct hypothetical observations (xcp, y
c
t,p) that resemble an av-

erage plant at the p-percentile of the plant size in terms of input with the expected

output including the expected inefficiency of such an observation. To do so, we fix

an input vector constructed at the p = {10%, 25%, 50%, 75%, 90%} percentiles from

the distributions of the inputs over the pooled observations of all years for each of

the C technologies. For each of these input values, corresponding output values yct,p
are constructed using the CNLS average production function estimate ĝc(x) in each

year. For each of these observations the corresponding output yct,p is calculated as the

value on ĝc(x) using the lower envelope of the fitted values of the StoNED QP ŷcit (see

Kuosmanen, 2008, Theorem 4.1). This lower envelope is constructed as a simple linear

programming problem (LP) that envelopes the fitted values from the StoNED estima-

tion similar to a VRS-DEA and allows to extrapolate points on ĝc(x) for unobserved

inputs. Slope and intercept parameters a and b are obtained by solving the following

LP:
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yct,p(x
c
p) = min

a,b
{a+ b′xcp | a+ b′xcp ≥ ŷcit}

The corresponding frontier reference point ỹct,p is derived by multiplication with the

expected value of inefficiency, µct :

ỹct,p = yct,p(x
c
p) ∗ exp(µct)

Thus, we construct for each of the C groups five evaluation units with fix inputs

over time and output corresponding to the estimated average production function.

Each of this units has an inefficiency identical to the expected inefficiency. Thus, these

hypothetical units resemble an average plant at their p-percentile of their group c.

This procedure has several implications in the Malmquist decomposition. First, we can

assume that the average unit does not incorporate noise. Thus, Do
t collapses to a simple

ratio in the one-output case, and, for example, the distance function of input-output

combinations in t relative to the benchmark technology in t + 1 can be calculated as

Do
t+1(x

c
t,p, y

c
t,p) = yct,p/ỹ

c
t+1,p. Further, as there is no variations in the inputs - xcp is con-

stant over time - PTCU = 1/FCU in each period as the scale of the operations does

not change. This also influences the interpretation of the scale change component that

now measures change of the optimal scale size over time, not whether a firm moved

closer to optimal scale size. Finally, and most importantly, the deterministic treat-

ment of the inefficiency allows to measure the MMPI independent from distributional

assumptions. For illustration, replace the distance function in the MPI definition and

let ξt be the expected inefficiency in period t from some distributional assumption in

the StoNED estimation to obtain:

MPIcrst,t+1(xt, yt, xt+1, yt+1) =
[
Dcrs

t (xt+1,yt+1)

Dcrs
t (xt,yt)

× Dcrs
t+1(xt+1,yt+1)

Dcrs
t+1(xt,yt)

]1/2
=
[
yt+1/yt∗exp(ξt)
yt/yt∗exp(ξt) ×

yt+1/yt+1∗exp(ξt+1)
yt/yt+1∗exp(ξt+1)

]1/2
= yt+1

yt

Thus, the productivity measure depends only on few assumptions, namely concavity,

monotonicity and continuity of the production technology. However, the components

of the decomposition may vary with the assumptions on the distributions of inefficiency

and noise.

3 Empirical Model and Data

This section provides the background for the empirical analysis. First, the selection

criteria for the construction of the different subtechnologies will be explained. After-

wards, section 3.1 outlines the modeling approach for the input-output transformation

process. Finally, section 3.2 shows the data sources and descriptive statistics for the
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data set and the units under analysis.

As outlined in section 2.1, a production process is modeled using a metafrontier ap-

proach. In this framework, firms choose a technology among a set of available sub-

technologies, whilst the entirety of these technologies is collected in the metatechnol-

ogy. To adept this framework in our context of electricity and heat generating power

plants, we model all power plants in the sample together as metatechnology, while

subtechnologies are based on the primary fuel of the production process. Four different

conventional combustion power plants are considered as subtechnologies: coal, lignite,

gas and biomass-fired power plants. In 2010, these four groups accounted for a over

60% of German electricity generation and build - together with nuclear power - the

backbone of German electricity generation. However, nuclear sources are neglected in

this analysis due to Germany’s nuclear phase out until 2022. Table 1 lists the included

fuels in the different groups.

Coal Lignite Gas Biomass

Coal, coal coke,

coal briquette,

coal derivatives

and other coals

Lignite, black lig-

nite, lignite bri-

quette, lignite

coke, fluidized

bed lignite, lig-

nite dust, other

lignites

Natural gas,

marsh gas, coke

oven gas, furnace

gas, other syn-

thetic gases

Wood, straw,

liquid biomass,

biogas, land-

fill gas, sewage

gas, biosolid and

sewage sludge,

municipal waste

Table 1: Subsets by Fuels

3.1 Input and Output Specification

To model the production process of power plants, a standard set-up for inputs and out-

puts is used (e.g. Zhao and Ma, 2013; Lam and Shiu, 2001). For the model formulation

it is assumed that capital, labour and energy are used as inputs to produce energy in

form of heat and electricity as output. The analysis focus on operational rather than

environmental performance and undesirable outputs are therefore not included in the

model specification.

Capital input is approximated with the plants average available capacity in MW, which

is the average of the monthly available capacity throughout the year. Using the aver-

age rather than the maximum capacity we control for potential capacity extensions or
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reduction during the year. The measure therefore includes the decision of the owner to

maintain full capacity or not. Contrary to most other studies, we are able to measure

labor input using the sum of hours worked, rather than a head count. This measure

is more accurate to approximate labor input as it accounts for part-time workers. As

a third input, energy use is measured using the fuel input of the primary fuel in GJ.

As typically a secondary fuel is only used for the start-up of the plants, neglecting the

secondary fuel input is expected to have little influence on the results. On the output

side, we consider heat and electricity supplied as sole outputs measured as the sum of

both in MWh. Net values are used as own consumption reduces the actual provided

energy and should not influence a productivity measure.

3.2 Data Sources and Descriptive Statistics

In this paper a unique data set from the Research Data Centres (FDZ) of the German

Federal Statistical Office and the Statistical Offices of the Länder is used. The data is

based on the survey EVAS 43311 for power plants and connected with EVAS 43111 for

labor input data. For data privacy reasons remote data processing is used and one can

neither obtain nor report detailed information - such as minima and maxima - about

the data set.

Based on monthly questionnaires, the surveys delivers annual data for electricity gen-

erating facilities from 2003 till 2010. The included power plants have a bottleneck

capacity of at least 1 MW and can be both, large scale electricity and heat suppliers

or small scale power plants for industrial use (also autoproducers). Private as well as

public and mixed ownership facilities are covered. In total, 1555 observations in eight

years are included (compare table 2). The number of firms in the panel increases over

the observation period from 156 in 2003 to over 200 plants for the last four years.

The largest sample is available for gas-fired plants, whereas this subsample includes a

considerable share of small industrial plants. For coal and lignite fired power plants

sample size remains stable over the observation period. For the group of biomass-fired

stations the sample size steadily increases over the eight years. For coal and gas-fired

stations the sample covers between 30% and 40% of the total capacity of plants using

these fuels. For lignite-fired plants, these numbers vary more strongly and between

33% (2004) and 80% (2008) are covered. Among the biomass-fired stations about 10

to 18% of total available capacity is covered.
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2003 2004 2005 2006 2007 2008 2009 2010

Coal 22 27 27 27 29 28 27 27

Lignite 8 10 11 11 15 15 14 11

Gas 114 137 120 142 139 147 146 145

Biomass 12 15 15 19 20 23 25 27

Meta 156 189 173 199 203 213 212 210

Table 2: Sample sizes for different subsets and total sample

Detailed descriptive statistics for the input and output variables are provided in the

appendix (tables 12 to 15). However, mean and quantile values show up to be rather

stable over time. The descriptives underline that on average, lignite fired power plants

are the largest plants in the sample, while especially biomass and gas-fired plants are

considerably smaller. For gas-fired stations, the descriptives furthermore reveal a very

skewed distribution in terms of plant size with a few large plants and a larger number

of very small plants.

For the construction of the hypothetical evaluation units, for each fuel type the whole

sample pooled over the observation period is used. The resulting evaluations units are

presented in table 3 and figure 1, and underline again the large dispersion in terms

of plant size between the different combustion technologies. However, we furthermore

see that all the intervals for the different technologies overlap, such that e.g. the 90%

quantile of the coal fired power plants is larger then the 10% quantile of the lignite

fired plants. This means that parts of the metafrontier estimate will be influenced by

only one combustion technology, while others will be influenced by plants of differ-

ent combustion technologies. At this overlapping points, plants can be benchmarked

against plants using a different fuel when looking at the metafrontier. This is espe-

cially pronounced for the biomass-fired stations as their evaluation units are framed

by gas-fired stations, i.e. the smallest biomass evaluation unit is larger than the small-

est gas-fired stations, but the largest biomass station is still smaller than the largest

gas-fired stations.
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10% 25% 50% 75% 90%

Coal
Capital 31.40 107.20 410.00 727.10 908.00

Fuel 2190.7 3946.4 13867.0 26144.7 26968.7
Labor 68.5 173.4 293.3 653.3 1504.7

Lignite
Capital 57.33 261.33 920.00 1875.45 2895.25

Fuel 2598.8 18571.7 62275.4 149977.9 214503.3
Labor 83.9 270.8 487.7 1180.5 1432.3

Gas
Capital 0.99 1.87 4.40 19.50 116.34

Fuel 35.7 85.7 247.0 876.3 4213.0
Labor 24.5 53.4 110.6 188.5 416.7

Biomass
Capital 2.53 5.51 12.47 18.00 24.31

Fuel 440.8 644.3 772.9 1699.1 2618.4
Labor 18.6 32.2 46.6 118.1 165.4

Note: Fuel input is measured in thousand GJ, Labor in 100 hours

Table 3: Discriptive Statistics: Hypothetical Evaluation Units
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Figure 1: Descriptive Statistics: Quantile Units
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4 Results

The following two subsections will outline the results of our analysis of productivity

changes and its components. The first section discusses the frontier estimation results

as well as challenges in the estimation procedure. The second section outlines, the

estimates of productivity change for the sector as a whole (MMPI) as well as the

different components of Malmquist decomposition. All calculations are done using R

3.2 (R Core Team, 2015) with the packages quadprog, alabama, bbmle and lpSolve.

4.1 Frontier Estimation Results

The results of the frontier estimates for the different technologies as well as the metafron-

tier are provided in Table 4 in terms of expected inefficiency.1 In this table, a value of

1 indicates full efficiency and no more potential output expansion. Generally, results

indicate fairly low expected inefficiency in the German electricity generating sector

meaning that the power plants operate close to the best-practice frontier. As expected,

under the VRS assumption the large scale baseload plants fired with coal and lignite

perform best with on average 98.6 and 98.3% expected efficiency. This can be explained

by the usage of a mature technology with little differences among the different plants

and a constantly high number of load hours for all those plants. However, the on aver-

age smaller gas- and biomass fired plants perform on average also very well indicating

potential output extensions of only 2%. Results furthermore indicate a fairly stable

upward trend for both, gas and biomass-fired stations. For the metafrontier, expected

inefficiency develops parallel to the gas-fired stations. This is not surprising, as the

gas-fired stations are the largest subsample in the estimation of the metafrontier. Un-

der CRS results are fairly similar with highest efficiency scores for the baseload plants

and more intertemporal variation among gas- and biomass fired stations.

The technology gap ratios (TGR) that measure the gap between meta- and groupfron-

tier estimates are shown in the tables 5 to 8. Results indicate the smallest technology

gap for gas-fired plants, meaning that they generally operate closest to the frontier.

The results for the coal-fired stations are similar and indicate only a small technology

gap. On the contrary, the largest gap can be found for biomass-fired stations, although

this gap closes over time. This means, that switching the combustion technology from

biomass to gas would have increased potential output in the beginning of the observa-

tion period; however, these potential gains diminish over time as biomass can close this

technology gap. Finally, an interesting pattern is visible for the lignite fired-stations

1As the amount of actual estimation results is fairly large, detailed results for the frontier estimates
are available from the author upon request.
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as their technology gap decreases with plant size. Since lignite-fired stations are the

largest in the sample, there are just no technologies to compare the largest plants with,

meaning that the lignite-fired stations necessarily span the metafrontier at the upper

end leading to nearly no technology gap. Conversely, the smallest lignite-fired stations

operate at the scale of gas- and coal-fired stations and results indicate a considerable

technology gap for those plants.

To summarize, our frontier estimation results indicate fairly low inefficiency in the Ger-

man electricity generating sector. Further, results indicate leading positions for gas-

and coal-fired stations, while biomass faces a certain technology gap that can be closed

over time. The indicated savings potentials are much lower than in Seifert et al. (2014)

with nearly identical data and a similar model specification; however, inefficiency es-

timates and technology gaps remain the same order but lower in magnitude. The

differences can be explained by the frontier estimation approach: while Seifert et al.

(2014) use a deterministic sequential DEA approach, that strongly reacts on highly

efficient units and carries them through the panel structure of the data, the StoNED

approach used in this paper assumes noise in the data. Thus, whilst the sequential

DEA approach might underestimate efficiency in the presence of noise, StoNED might

overestimate efficiency if only little noise is present.

Two further methodological points should be noted here: first, the results show that

the metafrontier envelopes all group frontiers. However, as this is not automatically

case, one may consider using a further constraint in the frontier estimation similar to

the SFA metafrontier approach suggested by Battese et al. (2004). Second, a prob-

lem that did occur in the estimations is the inconsistency of CRS and VRS frontier

estimates if the CRS does not envelope the VRS in every point or intersects it. In

this study, the frontier reference points of all observations have been compared for the

different scale assumption. If this inconsistency occured, the CRS frontier estimate has

been further shifted upwards by increasing the correspong σu such that CRS equals

VRS in the most productive scale size similar to DEA (cp. Bogetoft and Otto, 2011, for

details). This solution is rather ad-hoc but assures the consistency of the scale change

components.
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Figure 2: Annual Expected Efficiency for Cross-Sectional Frontiers
in Percent under VRS
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VRS Coal Lignite Gas Biomass Meta
2003 0.9881 0.9830 0.9572 0.9991 0.9573
2004 0.9891 0.9856 0.9673 0.9609 0.9634
2005 0.9894 0.9785 0.9838 0.9990 0.9750
2006 0.9872 0.9788 0.9796 0.9993 0.9696
2007 0.9880 0.9896 0.9877 0.9730 0.9709
2008 0.9845 0.9864 0.9816 0.9975 0.9697
2009 0.9832 0.9840 0.9851 0.9644 0.9788
2010 0.9813 0.9894 1.0000 0.9476 0.9995

Mean 0.9863 0.9844 0.9803 0.9801 0.9730

CRS Coal Lignite Gas Biomass Meta
2003 0.9881 0.9829 0.9560 0.9991 0.9547
2004 0.9847 0.9813 0.9630 0.9601 0.9602
2005 0.9883 0.9780 0.9785 0.9984 0.9739
2006 0.9869 0.9787 0.9760 0.9993 0.9557
2007 0.9877 0.9842 0.9833 0.9726 0.9681
2008 0.9836 0.9844 0.9711 0.9611 0.9666
2009 0.9824 0.9837 0.9841 0.9642 0.9780
2010 0.9813 0.9878 0.9999 0.9447 0.9765

Mean 0.9854 0.9826 0.9765 0.9749 0.9667

Table 4: Annual Expected Efficiency for Cross-Sectional Frontiers
in Percent under VRS

Lignite 10% 25% 50% 75% 90% Mean

2003 0.9425 0.9547 0.9674 0.9720 0.9738 0.9621

2004 0.9411 0.9458 0.9490 0.9696 0.9735 0.9558

2005 0.9563 0.9685 0.9751 0.9907 0.9948 0.9771

2006 0.9533 0.9644 0.9740 0.9872 0.9900 0.9738

2007 0.9449 0.9511 0.9677 0.9800 0.9802 0.9648

2008 0.9445 0.9564 0.9714 0.9798 0.9825 0.9669

2009 0.9497 0.9639 0.9778 0.9875 0.9893 0.9736

2010 0.9553 0.9681 0.9816 0.9865 0.9881 0.9759

Mean 0.9484 0.9591 0.9705 0.9817 0.9840

Table 6: Technology Gap Ratio: Lignite
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Coal 10% 25% 50% 75% 90% Mean
2003 0.9658 0.9630 0.9596 0.9635 0.9659 0.9636
2004 0.9644 0.9610 0.9582 0.9664 0.9729 0.9646
2005 0.9767 0.9743 0.9700 0.9770 0.9840 0.9764
2006 0.9789 0.9744 0.9681 0.9702 0.9762 0.9736
2007 0.9740 0.9726 0.9727 0.9754 0.9791 0.9748
2008 0.9758 0.9742 0.9736 0.9768 0.9816 0.9764
2009 0.9828 0.9793 0.9788 0.9818 0.9871 0.9820
2010 0.9968 0.9949 0.9935 0.9939 0.9949 0.9948

Mean 0.9769 0.9742 0.9718 0.9757 0.9802

Table 5: Technology Gap Ratio: Coal

Gas 10% 25% 50% 75% 90% Mean

2003 0.9778 0.9775 0.9784 0.9829 0.9854 0.9804

2004 0.9750 0.9727 0.9739 0.9815 0.9856 0.9778

2005 0.9830 0.9764 0.9720 0.9787 0.9828 0.9786

2006 0.9820 0.9832 0.9847 0.9870 0.9821 0.9838

2007 0.9830 0.9823 0.9809 0.9803 0.9795 0.9812

2008 0.9879 0.9879 0.9879 0.9878 0.9870 0.9877

2009 0.9847 0.9812 0.9813 0.9827 0.9844 0.9829

2010 0.9651 0.9565 0.9589 0.9704 0.9723 0.9647

Mean 0.9798 0.9772 0.9773 0.9814 0.9824

Table 7: Technology Gap Ratio: Gas

20



D
RA

FT

Biomass 10% 25% 50% 75% 90% Mean

2003 0.4881 0.8357 0.9057 0.9118 0.9178 0.8118

2004 0.9730 0.9775 0.9790 0.9816 0.9806 0.9784

2005 0.9271 0.9071 0.9229 0.9245 0.9244 0.9212

2006 0.9211 0.9117 0.9164 0.9157 0.9149 0.9160

2007 0.9474 0.9396 0.9398 0.9389 0.9356 0.9403

2008 0.9351 0.9262 0.9308 0.9300 0.9287 0.9302

2009 0.9836 0.9810 0.9897 0.9922 0.9807 0.9855

2010 0.9840 0.9816 0.9874 0.9885 0.9872 0.9857

Mean 0.8949 0.9326 0.9465 0.9479 0.9463

Table 8: Technology Gap Ratio: Biomass

4.2 Productivity Growth and its Components

In this paper productivity changes are measured using a metafrontier Malmquist pro-

ductivity index (MMPI) decomposition. The first subsection will show the results for

the overall productivity measure on metafrontier (MMPI). Subsequently, productiv-

ity growth estimates on group frontier level (GMPI) and the detailed decomposition

results will be outlined.

MMPI

The MMPI measures productivity growth on for the whole sector. Productivity is

evaluated at 20 points determined by the evaluation units as outlined in section 2.3.2,

and an MMPI of 1 indicates no productivity change over the observation period. Ta-

ble 9 and figure 4 summarize the estimates of annual productivity growth on the

metafrontier level. The MMPI shows overall very small productivity changes at nearly

all evaluated points. Generally, as figure 4 suggests, productivity losses are observed

for the medium sized plants, while productivity gains are observed for the smallest

and largest evaluated points. Except for smallest biomass-fired stations no evaluation

point is found to have productivity changes larger than 1% annually. For coal- and

lignite-fired plants results indicate a reduction or stagnation in productivity over all

analyzed input quantiles, although low in magnitude. Similarly, overall productivity

changes for gas-fired plants are fairly small, irrespective of the input quantile under

analysis. For gas-fired stations results indicate annual productivity gains of about 0.2%

for the smaller quantiles, but also small losses for the larger plants. Finally, for the
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biomass plants results indicate productivity gains especially at the lower quantiles (10

and 25%). These large leaps can be explained by strong gains in the first period, 2003

to 2004, which can be attributed to the instability of the frontier estimate for small

samples. However, excluding the first years of the observations leads to annual produc-

tivity gains over the whole range of inputs indicating a robust productivity increase

for these plants.

Coal Lignite Gas Biomass
10% 0.9984 0.9977 1.0017 1.0934
25% 0.9990 0.9981 1.0005 1.0105
50% 0.9997 0.9994 1.0000 0.9998
75% 0.9996 0.9999 0.9998 0.9988
90% 0.9999 1.0007 0.9997 0.9982

Table 9: Geometric Mean of MMPI - Annual Productivity Growth

●
●

● ● ●

10 12 14 16

0.998

1.000

1.002

1.004

1.006

1.008

1.010

Plant size in log output (MWh)

M
M

P
I

● Coal
Lignite
Gas
BM

Figure 4: Geometric mean of MMPI for different plant sizes
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MMPI decomposition

As outlined in section 2.3.1 overall productivity growth on the metafrontier level can

be decomposed into several components. Table 10 shows overall productivity growth

on the group level (GMPI); table 11 indicates the components of the decomposition,

namely an efficiency change, a technical change, a scale efficiency change and a pure

technological catch up component.

Coal Lignite Gas Biomass
10% 0.9944 0.9978 0.9971 1.2047
25% 0.9953 0.9989 0.9948 1.0288
50% 0.9978 1.0004 0.9938 1.0071
75% 0.9988 1.0003 0.9934 1.0052
90% 1.0004 1.0008 0.9932 1.0040

Table 10: Group Frontier Malmquist Productivity Index -
Geometric Mean of Productivity Changes

The GMPI estimates indicate overall very little productivity changes on the group

level, similar to the MMPI results. Noteworthy differences are that the GMPI indi-

cates productivity gains for all evaluated units in the group of biomass-fired stations

with annual productivity growth between 0.4 and 2.8%. Thereby, productivity for the

biomass-fired stations measured in the group increased stronger than the MMPI for

the same evaluation units. This means that there is productivity growth for a subset

of the power plant fleet that would not have been measured when looking at the sector

as a whole. Further, the differentiation by technology using hypothetical units avoids

that these effects are averaged out.

The efficiency change (EC) component reflects the change in the distance of the aver-

age plant to the best practice for the different group frontiers. As EC depends only on

the shift factor from the average production function to the frontier in two consecutive

periods, i.e. the expected inefficiency µt and µt+1, the calculated EC is constant for

the different evaluation units. In general, the efficiency change component indicates

similar trends as the GMPI with smaller changes for the baseload plants and higher

volatility for the small scale plants. Again, results show up to be of small magnitude,

ranging between 0.4% average annual efficiency loss for biomass and 0.6% efficiency

increase for gas. As the expected inefficiency estimates presented in 4.1 show, average
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Coal Lignite Gas Biomass
EC 0.9990 1.0009 1.0063 0.9925
TC 10% 0.9994 0.9967 0.9954 1.1017

25% 1.0000 0.9972 0.9943 1.0182
50% 1.0007 0.9984 0.9938 1.0074
75% 1.0006 0.9989 0.9936 1.0064
90% 1.0009 0.9997 0.9935 1.0058

PTCU 10% 1.0045 1.0019 0.9981 1.1054
25% 1.0047 1.0020 0.9969 1.0232
50% 1.0050 1.0021 0.9971 1.0124
75% 1.0044 1.0021 0.9982 1.0116
90% 1.0042 1.0021 0.9981 1.0105

SEC 10% 1.0001 0.9997 0.9990 0.9994
25% 1.0006 0.9997 0.9982 0.9996
50% 1.0012 0.9997 0.9983 0.9995
75% 1.0012 0.9996 0.9994 0.9995
90% 1.0012 0.9996 0.9999 0.9995

Table 11: GMPI Decomposition -
Geometric Means of Components of Productivity
Changes

intra-group efficiency is already fairly high for each technology leading to only little

potential efficiency changes in the observation period. Furthermore, a look at the an-

nual estimates shows no clear time trend for any of the technologies, but underlines

the higher volatility of the estimates for the gas and biomass-fired plants.

The technical change (TC) component reflects the annual shift of the frontier irrespec-

tive of potential efficiency or scale effects. Thus, the TC component does not evaluate

changes for the average firm, but changes at the best practice frontier. Results show

in each technology for all plant sizes the same direction, i.e. common frontier shifts

over the whole range. For gas-fired plants results indicate technical regress, but again

low in magnitude with 0.5 to 0.65%. Similarly, results indicate technical regress for

the lignite-fired stations ranging from 0 to 0.3% technical regress. For coal, the TC

component indicates basically no frontier shift at all. On the contrary, strong positive

values between 0.6 and 10% technical change are found for the biomass plants. Again,

the strongly positive values for the small biomass plants is driven by a large change

in the first periods, but a positive trend is found also when neglecting these periods.

Thus, our results indicate a considerably positive technical change only for biomass

fired stations, while no considerable frontier shifts can be detected for the other tech-

nologies. This is not surprising given the overall little installations of capacity for coal

and lignite. On the other hand, biomass combustion technology is not as mature as
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the other technologies, which allows for larger initial productivity gains.

The Pure Technological Catch Up (PTCU) components measures the group frontier

shifts relative to shifts of the metafrontier. Thus, the PTCU component does not eval-

uate changes for the average firm, but changes at the best practice of a group relative

to the best practice for the whole sector. The results indicate a catch-up for coal,

lignite and biomass, while values below one are found for gas-fired station. Again,

the magnitude of this effect is found to be low for coal, lignite and gas, but much

more pronounced for biomass. When comparing the PTCU component with the TC

component and the TGR, one can see very high correlations revealing some interesting

pattern. The generally higher values for PTCU compared to the TC component indi-

cate that group frontiers partly caught-up to the metafrontier due to a downward shift

of the latter. This means, that overall production potentials in the sector decreased.

Furthermore, this also indicates that the decrease in the TGR for coal and biomass

(compare 5 and 8) is partly driven by developments of the technology of the whole

sector. Finally, the negative PTCU and TC scores for gas-fired stations indicate that

gas is losing production potentials faster then the sector as a whole. However, this

effect is partly offset by the positive EC component for gas.

Finally, the Scale Efficiency Change (SEC) component indicates changes in the op-

timal scale size of the firm. Given that initial scale efficiency estimates are already

high with a minimum of 96% for biomass-fired stations and around 98% for the other

technologies, only little gains are available in terms of scale efficiency. This is now

reflected in the very small SEC component for all technologies that indicate basically

no scale efficiency effects. Comparing this results to Seifert et al. (2014), which find

much higher inefficiencies stemming from having non-optimal plant size, underlines

again the effect of the estimation method on the results. The StoNED results indicate

a very flat shape of the VRS production function, close to the CRS function, whilst the

DEA estimate indicates considerable gaps between these frontiers for most technologies.

25



D
RA

FT

5 Conclusion

This paper analyzes productivity growth of the German electricity generating sector,

which is the largest European electricity generating sector and the sixth largest in the

world. Further, with the largest share of GHG emissions in Europe coming from the

German electricity and heat generating sector, the German performance situation plays

an important role in European efforts to meet Kyoto Protocol targets. Using a panel

data set from 2003 to 2010 productivity growth for four different conventional combus-

tion technologies, namely coal, lignite, gas and biomass is analyzed. A metafrontier

framework allows to assess changes within these groups and evaluation of technological

catch-up between technologies. For this purpose, a new metafrontier Malmquist de-

composition in the style of Ray and Desli (1997) has been developed based on the work

by Chen and Yang (2011). Finally, the use of the newly developed StoNED approach

(Kuosmanen and Kortelainen, 2012) allows to base the estimation on a small number

of assumptions with superior properties compared to standard DEA or SFA methods.

The results indicate relatively small productivity changes irrespective of the fuel source.

Further, our results indicate an overall reduction in production potential, i.e. a down-

wards shift of the sector production function. In the absence of efficient carbon capture

technologies this is closely related to constant or even increasing CO2 emissions per

output unit. This casts doubt on the supporting effect of conventional energy sources

in reaching Germany’s ambitious climate goals. However, our results also indicate that

biomass-fired stations experienced a considerable positive technical change during the

sample period helping them to catch up to the conventional sources. This catch-up

is accompanied by an efficiency decrease. This indicates that new potentials are not

fully used, but that the frontier shift is driven by newly installed capacities rather than

by technical progress of existing installations. As biomass is considered as less CO2

intensive, this technology can support emission reduction. However, overall potential

of use of biomass-fired power plants is naturally limited. For gas-fired power plants

results indicate technical regress that is however offset with an increase in efficiency.

On the contrary, the technology gap of the coal-fired power plants decreases over time

due to the general downward shift of the metafrontier.

In comparison to the existing literature on productivity in the electricity generating

sector our result show productivity growth estimates of a magnitude similar to other

studies. Further, our results support the existing explanations of productivity changes.

Similar to See and Coelli (2013) we find a technology with considerable capacity instal-

lations to possess higher rates of technical change. However, contrary to their finding,

we do not observe a translation into overall productivity gains. Further, similar to

Heshmati et al. (2014), results indicate no productivity gains for mature technologies.
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However, contrary to their results, this analysis does not detect a stable downward

trend in productivity.

Finally, the paper shows StoNED to be useful when estimating productivity changes.

Although the frontier is absolutely flexible in its shape, results underline stability of

the estimation procedure also for small data sets. Further, overall productivity evalu-

ation is independent from distributional assumption and relies only on microeconomic

assumptions on the shape of a production function. Generally, the method might

underestimate intertemporal changes as the frontier is less sensitive against a small

number of observations as for example newly installed capacities; however, the risk of

overestimating productivity changes due to erroneous data is reduced.
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A Apendix

A.1 Derivation of Metafrontier Malmquist Decomposition

The aim of the MMPI decomposition is an index that explains productivity growth in

the metafrontier with the elements of the group frontiers and connecting decomposition

elements that link GMPI and MMPI. Output oriented MMPI and GMPI under VRS

in the spirit of Fare et al. (1994) are defined as

MMPIcrs = EC∗,vrs × TC∗,vrs × TC∗,crs/TC∗,vrs × SC∗ =

MMPIvrs × TC∗,crs/TC∗,vrs × SC∗

GMPIcrs = ECc,vrs × TCc,vrs × TCc,crs/TCc,vrs × SCc =

GMPIvrs × TCc,crs/TCc,vrs × SCc

with the decomposition elements Efficiency Change (EC), Technical Change under

VRS (TCV RS) and CRS (TCCRS) and Scale Change (SC). Ignoring the superscript of

the relevant returns-to-scale assumption they are defined as

EC = Dt+1(xt+1,yt+1)
Dt(xt,yt)

TC =
[

Dt(xt+1,yt+1)
Dt+1(xt+1,yt+1)

× Dt(xt,yt)
Dt+1(xt,yt)

]1/2
SC =

Dcrs
t+1(xt+1,yt+1)/Dvrs

t+1(xt+1,yt+1)

Dcrs
t (xt,yt)/Dvrs

t (xt,yt)

To connect the MMPI and the GMPI Chen and Yang (2011) introduce two more

elements in their decomposition, the pure technological catch-up (PTCU) and the

Frontier Catch-Up (FCU). They are defined as:

PTCU c
t,t+1 =

TGRc
t+1(xt+1,yt+1)

TGRc
t (xt,yt)

=
D∗

t+1(xt+1,yt+1)/Dc
t+1(xt+1,yt+1)

D∗
t (xt,yt)/D

c
t (xt,yt)

FCU c
t,t+1 =

[
TGRc

t (xt+1,yt+1)

TGRc
t+1(xt+1,yt+1)

× TGRc
t (xt,yt)

TGRc
t+1(xt,yt)

]1/2
=

TC∗
t,t+1

TCc
t,t+1

To derive a Metafrontier Malmquist decomposition, first rewrite PTCU to see that the

catch-up is influenced by the efficiency change components. This decomposition of the

PTCU indicates that if a firm is able to catch up faster to the metafrontier than to

the group frontier, the shift of the group frontier needs to be larger. This leads to a

PTCU value larger than one.

PTCU c
t,t+1 =

D∗
t+1(xt+1,yt+1)/D∗

t (xt,yt)

Dc
t (xt,yt)/D

c
t+1(xt+1,yt+1)

= EC∗ × 1
ECc

Now, MMPI is multiplied and diveded by PTCU and FCU relative to the VRS frontiers

to derive

MMPIcrs = MMPIcrs × PTCU vrs × FCU vrs × 1
EC∗,vrs × ECc,vrs × 1

TC∗,vrs × TCc,vrs

MMPIcrs = [EC∗,vrs × TC∗,vrs × TC∗,crs/TC∗,vrs × SC∗]× PTCU vrs × FCU vrs ×
1

EC∗,vrs × ECc,vrs × 1
TC∗,vrs × TCc,vrs
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EC∗,vrs and TC∗,vrs can cancel out. Further, with ECc,vrs and TCc,vrs we already

have included the GMPIvrs. Finally, multiplication and division adds the scale change

component against the group frontier. Simplification yields the decomposition outlined

in section 2.3.1:

MMPIcrs = ECc,vrs × TCc,vrs × PTCU vrs × FCU vrs × SC∗ × TC∗,crs/TC∗,vrs

MMPIcrs = ECc,vrs×TCc,vrs×SCc×PTCU vrs×FCU vrs×SC∗/SCc×TC∗,crs/TC∗,vrs

MMPIcrs = GMPIc,vrs × SCc × PTCU vrs × FCU vrs × SC∗/SCc × TC∗,crs/TC∗,vrs
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A.3 Graphical illustration of MMPI decomposition

MMPI decomposition for coal-fired stations
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MMPI decomposition for gas-fired stations
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