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Signaling Crises: How to Get Good Out-of-Sample

Performance Out of the Early Warning System
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Abstract

In past years, the most common approaches for deriving early-warning models be-

long to the family of binary-choice methods, which have been coupled with a separate

loss function to optimize model signals based on policymakers preferences. The evidence

in this paper shows that early-warning models should not be used in this traditional

way, as the optimization of thresholds produces an in-sample over�t at the expense

of out-of-sample performance. Instead of ex-post threshold optimization based upon a

loss function, policymakers' preferences should rather be directly included as weights in

the estimation function. Doing this strongly improves the out-of-sample performance

of early-warning systems.
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1 Introduction

Early-warning models provide quantitative means for early identi�cation of vulnerabilities
preceding systemic �nancial crises. The most common approaches for deriving early-warning
models descend from the family of binary-choice methods, which have been coupled with
a separate loss function based on misclassi�cation costs for false and missing warnings.
This paper puts forward joint maximum likelihood optimization of the loss function and
standard binary-choice methods by using policymakers' preferences as observation weights
in the likelihood function.
The past years of �nancial turmoil have stimulated research on early-warning analysis, with
the result of more mature models and more direct mappings to macroprudential policies. The
two dominating approaches for deriving early-warning models consist in the signals approach
and logit/probit analysis. The signals approach (a univariate analysis of indicators and their
optimal signaling thresholds) descends originally from Kaminsky & Reinhart (1999), but has
also been common in the past years (Alessi & Detken 2011, Knedlik & von Schweinitz 2012).
Logit/probit analysis was already applied by Frankel & Rose (1996) and Berg & Pattillo
(1999) to exchange-rate pressure. More recently, it has been the predominant approach
for predicting banking and systemic �nancial crises (Betz, Opric , Peltonen & Sarlin 2014,
Lo Duca & Peltonen 2013).
An own strand of literature has focused on the explicit forecasting objectives of early-warning
systems (EWS) and on loss functions tailored to the preferences of a political decision-maker.1

Demirgüç-Kunt & Detragiache (2000) introduced the notion of a policymakers' loss-function
in the context of banking crises, where the policymaker faces costs for taking unnecessary
preventive actions (type 2 errors) and those of an occurring, but unpredicted, crisis (type 1
errors). Later, adaptations of this very general type of loss functions have been introduced to
EWSs for other types of crises, e.g. currency crises (Bussiere & Fratzscher 2008), debt crises
(Fuertes & Kalotychou 2007, Knedlik & von Schweinitz 2012), and asset price boom/bust
cycles (Alessi & Detken 2011). These contributions mostly focus on the trade-o� between
type 1 and 2 errors, but they also provide usefulness measures that indicate whether and
to what extent the loss of the prediction is smaller than the loss of disregarding the model
(Sarlin 2013).
Yet, when applying binary-choice methods, common practice has been an ex-post minimiza-
tion of the loss function, or, equivalently, maximization of a usefulness function which is based
on the loss function. This paper postulates that early-warning models based upon binary-
choice methods should account for policymakers' preferences directly as part of the maximum
likelihood estimation rather than applying an ex-post optimization of a loss function as a
second step. We do this by introducing observation weights (re�ecting the preferences) in
the likelihood function of the binary choice model.2 One-step maximization as suggested
by our paper strongly improves out-of-sample performance of the model and reduces the
positive bias of in-sample predictive power. Therefore, our method provides a much more
reliable early-warning model than the traditional estimation. Additionally, while the maxi-

1The literature on early-warning models has used a wide range of measures for evaluating performance.
We do not herein summarize measures focusing on model robustness, such as the Receiver Operating Char-
acteristics curve and the area below it, as they do not provide guidance on the choice of a threshold.

2The estimation routine (in R) can be obtained from the authors on request.
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mum likelihood estimation is nearly identical, the second optimization step of the traditional
approach is left out, making our approach simpler overall.
We provide two-fold evidence for our claim concerning the quality of the early-warning
system. First, we run simulations with di�erent data generating processes to illustrate
the superiority of weighted maximum likelihood estimation vis-a-vis ex-post optimization
of thresholds on data with known patterns. Second, we make use of a real-world case to
illustrate both in-sample and out-of-sample performance of the two approaches. We replicate
the early-warning model for currency crises in Berg & Pattillo (1999).
As our critique and suggested solution applies to the failures of loss/usefulness function
optimization, it holds for every early-warning system with this feature. For methods built
on an initial (maximum likelihood) estimation of event probabilities, our proposed solution
is directly transferable. However, our critique speci�cally extends to the signals approach
as well, which consists solely of the optimization step. That is, in the context of the signals
approach a weighted estimation is not possible. This leaves the practicioner with two di�erent
solutions to the problems presented in this paper: First, the signals approach can be replaced
altogether by equivalent univariate weighted probit models (following the route taken here).
Alternatively, the signals approach can be enhanced by con�dence measures as proposed
by El-Shagi, Knedlik & von Schweinitz (2013). While the �rst solution tackles the positive
in-sample bias introduced by threshold optimization, the second one aims at measuring it.
The paper is structured as follows. The next section presents the methods, followed by a
discussion of our experiments in the third section and a conclusion.

2 Estimating and evaluating early-warning models

This section presents the methods analyzed in this paper. It starts with a description of
the usual estimation and evaluation of (binary-choice) early-warning models, followed by an
introduction to the combination of these two steps in a single, simple maximum-likelihood
estimation.

2.1 Estimating early-warning models

The literature on early-warning models has used a range of conventional statistical methods
for estimating distress probabilities. Most common approaches rely on logit/probit analyses,
although model speci�cations and estimation strategies have varied to some extent. We
follow herein the approach based on a standard pooled probit model (Kumar, Moorthy &
Perraudin 2003, Fuertes & Kalotychou 2007, Davis & Karim 2008).
The occurrence of an event of interest is represented by a binary state variable Ij(h) ∈ {0, 1},
where the index j = 1, 2, . . . , N represents instances and h is a speci�ed forecast horizon.
The state variable Ij(h) is set to 1 if an event (mostly a crisis) happens sometime in the
next h periods. In the standard binary choice model, it is assumed that Ij(h) is driven by a
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latent variable

y∗j = Xjβ + ε

Ij(h) =

{
1 , if y∗j > 0

0 , otherwise
.

Under the assumption ε ∼ N (0, 1), this leads to the probit log-likelihood function

LL(y|β,X) =
N∑
j=1

1Ij(h)=1 ln(Φ(Xjβ)) + 1Ij(h)=0 ln(1− Φ(Xjβ)),

which is maximized with respect to β. If we assume a logistic distribution of errors, the
likelihood function changes only with respect to a distribution function F , which is logistic
instead of normal. This binomial model (probit or logit) returns probability forecasts pj ∈
[0, 1] of the occurrence of the event.

2.2 Evaluating early-warning models

Luckily, crises are scarce. However, this poses a serious problem in the early-warning liter-
ature, where the estimated probability of a crisis seldom exceeds 50% (which would be an
intuitive threshold for a binary choice model). Therefore, practitioners have to determine
which probability should be used as a threshold above which a the early warning system
issues a warning, eventually leading to precautionary action to prevent a crisis from hap-
pening. Introducing a probability threshold transforms the event probabilities into binary
signals. The evaluation of these signals follows the methodology of the signals approach. The
framework applied here follows that in El-Shagi et al. (2013) and Sarlin (2013). As they do,
we derive a loss and usefulness function for a cost-aware decision maker with class-speci�c
misclassi�cation costs, where the classes depend on the instances Ij(h).
To mimic the state variable Ij(h), the probabilities pj need to be transformed into binary
point forecasts Pj ∈ {0, 1} that equal one if pj exceeds a speci�ed threshold λ and zero
otherwise. The correspondence between Pj and Ij can be summarized by a so-called contin-
gency matrix (frequencies of prediction-realization combinations): false positives (FP), true
positives (TP), false negatives (FN) and true negatives (TN).3 The sum of true positives and
false negatives is the number of instances where the state variable is equal to 1 (all positives),
while the sum of false positives and true negatives is just the number of instances where the
state variable is equal to zero (all negatives).
While entries of a contingency matrix can be used to de�ne a large palette of goodness-
of-�t measures, such as overall accuracy, we approach the problem from the viewpoint of a
decision maker that is wary of conducting two types of errors. Type 1 errors � a missed event
� represent the conditional probability P (pj ≤ λ|Ij(h) = 1). This conditional probability is
estimated from data as the share of false negatives to all positives (T1 = FN/(FN + TP )).
Similarly, type 2 errors � a falsely predicted event � represent the conditional probability

3Kaminsky & Reinhart (1999) use a matrix of these four states, denoting them by B, A, C and D.
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P (pj > λ|Ij(h) = 0), and are estimated as the proportion of false positives to all negatives
(T2 = FP/(FP + TN)). Given probabilities pj of a model, the decision maker should focus
on choosing a threshold λ such that her loss is minimized. To account for imbalances in class
size in the loss function, the share of errors T1 and T2 has to be weighted by unconditional
probabilities of positives P1 = P (Ij(h) = 1) and negatives P2 = P (Ij(h) = 0) = 1 − P1.
Frequency-weighted errors are then further weighted by policymakers' relative preferences
between FNs (µ ∈ [0, 1])and FPs (1− µ). Finally, the loss function is as follows:

L(µ) = µT1P1 + (1− µ)T2P2.

The speci�cation of the loss function L(µ) enables computing the usefulness (sometimes also
called utility) of a model. A decision maker could achieve a loss of min(P1, P2) by always
issuing a signal of a crisis if P1 > 0.5 or never issuing a signal if P2 > 0.5. When also paying
regard to the policymakers' preferences between errors, the decision maker achieves a loss
min(µP1, (1−µ)P2) when ignoring the model. The usefulness Ua of a model is computed by
subtracting the loss generated by the model from the loss of ignoring it:

Ua(µ) = min(µP1, (1− µ)P2)− L(µ).

This measure highlights the fact that achieving bene�cial models on highly imbalanced data
is challenging as a non-perfectly performing model is easily worse than always signaling the
more frequent class. Hence, already an attempt to build a predictive model with imbalanced
data implicitly requires a decision maker to be more concerned about the rare class.
As a third measure, relative usefulness computes the percentage of absolute usefulness Ua to
a model's available usefulness min(µP1, (1− µ)P2):

Ur(µ) =
Ua(µ)

min(µP1, (1− µ)P2)
.

The relative usefulness Ur computes absolute usefulness Ua as a share of the usefulness that
a decision maker would gain with a perfectly performing model. Hence, Ur is nothing more
than a rescaled measure of Ua. Yet, the Ur provides means for better assessment of usefulness
by extracting a number with a meaningful interpretation; performance can be compared in
terms of percentage points. When interpreting models, we can hence focus solely on Ur.
In the following, we will focus on the over�t created by usefulness maximization. This
tendency (or rather, characteristic) of the EWS evaluation and optimization is independent
of the exact de�nition of the employed loss und usefulness function. That is, our results are
robust to many di�erent speci�cations. However, we choose this speci�c formulation of the
loss and usefulness function, because the preferences µ are de facto applied to false positives
and negatives as shares of the total number of instances. That is, µ and 1− µ are actually
observation-speci�c weights.

2.3 Estimating and evaluating the early-warning system jointly

As described in the beginning of subsection 2.2, one would intuitively see an event as likely
if the estimated probability exceeds 50%. Transforming probability forecasts into binary
signals by the use of a threshold λ changes this intuitive threshold. The reason to do this is
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because policy makers need to account for the di�erent costs of crisis prevention and crisis
occurrence. These costs, however, can also be introduced in the form of weights into the
likelihood of the binary choice model.4 For the weighted probit model, the log-likelihood
function is the following:

LL(y|β,X,w) =
N∑
j=1

1Ij(h)=1w ln(Φ(Xjβ)) + 1Ij(h)=0(1− w) ln(1− Φ(Xjβ)),

If the usefulness measure is de�ned as in the previous section, the number of type 1 and
2 errors are weighted by µ and (1 − µ) respectively. That is, setting observation weights
w = 1− µ is equivalent to the de�nition of usefulness given above.5

This function can be maximized just as easily as the standard binary choice model. Com-
pared to the standard model before threshold optimization, it will result in slightly shifted
probability forecasts, with the direction of the shift depending on µ. The appealing feature
of the weighted binary choice model is that �nding a probability threshold that optimizes a
usefulness measure is not necessary anymore. Instead, the intuitive threshold of 50% from
the weighted model already accounts for all policy preferences captured in µ. Therefore, the
second and � as we shall see � extremely problematic step of the traditional construction of
an EWS becomes unnecessary.

3 Comparing the two models

In this section, we compare the use of ex-post threshold optimization in early-warning models
vis-a-vis direct use of a loss function when optimizing likelihoods. We �nd strong evidence
favoring the weighted binary choice model. To illustrate di�erences among the approaches,
we provide a large number of experiments on simulated data. Then, we compare the ap-
proaches on real-world data using the well-known early-warning model for currency crises in
Berg & Pattillo (1999).

3.1 Simulated data

Before testing our approach with real data, we apply it to simulated, simple datasets. We
use three explanatory variables X = (X1, X2, X3), a constant and a coe�cient vector β =
(1, 0, 0,−1). That is, in the true model only X1 contains information on the latent variable
y∗ and therefore the observable event. The constant (with negative coe�cient) is chosen
such that the probability of an event is slightly below 25%. For a normal application of an
early-warning model, this would be quite a lot of events, although not unusually many.
We draw the explanatory variables independently from a standard normal distribution. We
simulate N = 100, 1′000, 10′000 datapoints, calculate the probability Φ(Xβ) of an event and
draw I(h) from these probabilities (abstracting from index j).

4Observation-speci�c weights have already been introduced in binary-choice models to adjust for non-
representativeness of an estimation sample in cases where an average e�ect for the whole population is of
interest.

5In case of other de�nitions of usefulness, equivalent observation weights can mostly be obtained by simple
algebraic transformations.

6



We then estimate four di�erent econometric models from the �rst half of our simulated
dataset (N = 50, 500, 5′000): a standard probit, standard logit and their weighted counter-
parts with weights w = 1 − µ. The logit estimations are performed as they are by far the
most simplest way to test if the results are robust against an admittedly very mild form of
misspeci�cation. We use the parameter estimates from the �rst half of the data together
with the second half of the data to construct out-of-sample event probabilities. For the stan-
dard models, we search for the optimal probability threshold λ given the policy preference
µ, while we use the natural threshold of 50% for weighted models. These thresholds are used
to calculate in-sample and out-of-sample absolute and relative utilities.
The above steps are performed for three di�erent preference settings for µ: 0.2, which gives
strong preference to avoiding type-2 errors. In practice, such a preference would be chosen
to account for the (assumedly) higher frequency of type-2 errors, as non-events are more
frequent. 0.5 gives equal weights to both errors and is a setting, where the weighted models
boil down to standard binary choice estimation (without threshold optimization). 0.8 gives
a strong preference to avoiding type-1 errors. This preference would be used in practice to
account for the fact that missing a crisis may be very costly.
Simulating every model 1'000 times gives reasonable estimates of the mean and standard
deviation of λ as well as absolute and relative utilities. Furthermore, we can calculate the
probability that the in- and out-of-sample usefulness from the standard econometric model
is lower than the one from the corresponding weighted model. In the following (with the
exception of subsection 3.1.1), we will only present results from the baseline speci�cation.
Many other speci�cations, as described in the last subsection on robustness, yield both
qualitatively and quantitatively similar results.

3.1.1 Randomness of utility

First, let us take a look at a speci�cation (di�erent from above), where events have no
relation to explanatory variables (that is, β = (0, 0, 0, 0), and the event probability is 50%
in every period). Figure 1 shows the in-sample Receiver-Operator-Characteristics (ROC)
curves from a probit model for three simulations with di�erent N. An ROC-curve shows the
trade-o� between type-1 errors and type-2 errors that one has to face at di�erent thresholds.
Usefulness-optimization basically chooses the combination of type-1 and 2 errors on the black
curve that maximizes the weighted (L1) distance to the red diagonal.
Ideally, the distance (and therefore absolute usefulness) should be zero, because there is no
relation between X and I(h) in this speci�cation. However, in practice this is not the case.
For small N, β is estimated to produce an optimal �t. This means that the ROC curve will
be above the diagonal on average (otherwise, the �t would be worse than for coe�cients
equal to zero). With less observations there is more uncertainty concerning true coe�cients,
resulting in stronger ROC-movements.6 If now, in a second step, the weighted distance
of the ROC-curve is maximized in order to maximize usefulness, this produces an over�t.
Essentially, threshold optimization chooses the best possible outcome (in-sample) instead of
the most likely possible outcome.

6This argument is very much related to El-Shagi et al. (2013), who argue that � in order to judge the
quality of an early warning system � it is paramount to obtain a distribution of the usefulness under the null
hypothesis of no relation between X and I(h), instead of only a measure of usefulness itself.
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Figure 1: ROC-curve for three simulations with random events (N=50, 500, 5'000) from the
probit estimation.

Note: Type-2 error probability on the x-axis, (1 - type-1 error probability) on the y-axis.

As can be seen, this distance, and therefore usefulness of the random model, decreases
strongly with increasing N. This happens because, as N increases, uncertainty on true co-
e�cients decreases, bringing the ROC-curve closer to the diagonal and bringing usefulness
closer towards its true level of zero.

3.1.2 Is the optimal probability threshold in the end only determined by policy

preferences?

Opposite to the previous subsection, we analyze the simple baseline speci�cation with a
true relation between the exogenous variables and the observed events (but without any
additional properties that might negatively in�uence the estimation of the probit). Figure
2 presents the mean plus/minus one standard deviation of optimal λ for the di�erent policy
preferences µ and di�erent number of observations N.
As the true data generating process is always identical, all uncertainty on λ comes from the
number of observations. Therefore, it is quite natural that the standard deviation of λ does
not depend on the preferences µ and decreases with N. The much more interesting feature,
however, is that λ approaches 1 − µ for larger N. On second thought, this is again quite
logical: As N goes to in�nity, the ROC-curve gets smoother and approaches the �ideal� form
that is solely determined by the underlying data generating process. Under this �ideal� form,
we get a uniform distribution of type-1 and 2 errors, that is, P (pj ≤ λ|Ij(h) = 1) = λ.
Figure 2 depicts another frequently found result: the di�erence between probit and logit
estimations is marginal. If anything, the λ obtained from logit estimations seems to approach
the true λ faster � even though the logit model is misspeci�ed.
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Figure 2: Development of mean λ plus/minus one standard deviations as N increases, for
di�erent values of µ.

3.1.3 Di�erences in usefulness: is it really optimal to optimize usefulness?

Di�erences in usefulness among di�erent models are probably the most important aspect for
practitioners, as this is the main quality measure of an early-warning model.
Under the assumption that data are created by a constant data generating process, and that
this process can be captured by the estimated model, in-sample and out-of-sample usefulness
should both converge to the true long-run usefulness of that process. As in-sample models
are �tted to the data, we would expect that in-sample usefulness is higher for a lower number
of observations and drops towards a boundary value. This view is con�rmed by �gure 3.
This �gure equally con�rms that out-of-sample usefulness (the lower 4 curves in every plot),
which essentially depend on a correct assessment of the properties of the data-generating
process, improves as N goes to in�nity.
In addition to the general results holding for all four estimation methods, we see that the
usefulness (in- and out-of-sample) of the weighted methods is on average closer to their
true value than those of the threshold methods. Concerning in-sample usefulness (which is
higher than the true value from the DGP), this seems to be bad at �rst sight. However, it
has to be acknowledged that one of the main reasons for calculating in-sample usefulness is
an evaluation of the quality of the early-warning system. If this quality is biased upwards
(as it usually is), it induces an overstated sense of con�dence, trust and security. This
bias is much lower for weighted methods, where it only stems from estimation uncertainty.
However, what really matters is out-of-sample usefulness. Here, weighted models perform
better on average than their threshold peers. This holds especially in the case of the logit
model: the results of the (misspeci�ed) weighted logit are nearly identical to the ones of
the weighted probit, while out-of-sample usefulness of the threshold logit is far below the
one for threshold probit, when µ is di�erent from 0.5. That is, in addition to being on
average better out-of-sample than their peers, weighted methods provide robustness against
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Figure 3: Mean relative usefulness for threshold estimation and weighted estimations.
Note: In-sample usefulness is higher than out-of-sample usefulness for every number of observations N. The

black line signi�es the limiting usefulness as N goes to in�nity. Usefulness below zero is (mostly) not
displayed.

method misspeci�cation. Altogether, the argument for weighted models is even stronger
out-of-sample (which matters signi�cantly more in practice) than in-sample.

3.1.4 Probability of out-performance by weighted models

Figure 3 shows that out-of-sample usefulness of weighted model is on average be better than
out-of-sample usefulness of threshold models. The question now is: are weighted models so
much and so often better that we should abandon threshold optimization and use weighted
binary choice models instead? Here, the result presented in �gure 4 is not as clear-cut
as above. In-sample, weighted models produce nearly always worse usefulness than their
threshold peers. This should be desired if in-sample usefulness is biased upwards. Out-of-
sample, weighted models have a slight advantage. For the probit model (which is the true
econometric model in this case), the advantage of the weighted model is minor, although
it seems to be slightly growing as N increases. However, as seen in subsection 3.1.3, the
precision of estimates and the �t of the model increases for growing N, which may make
such small di�erence mostly irrelevant in practice. For the logit model and µ 6= 0.5 (i.e.,
the misspeci�ed model where weights actually play a role), the probability of a better early-
warning system approaches 100%. This result re�ects again the result on average usefulness
from subsection 3.1.3.

3.1.5 Robustness to other speci�cation

Above, we reported only results for a very simple speci�cation where no estimation problems
are to be expected. This may change if the data generating process gets more complicated.
Speci�cally, it could well be that estimation of the slightly more complicated weighted mod-
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Figure 4: Probability that the weighted model has a higher usefulness than the threshold
model.
Note: In-sample usefulness is higher than out-of-sample usefulness for every number of observations N. The

black line signi�es the limiting usefulness as N goes to in�nity. Usefulness below zero is (mostly) not
displayed.

els su�ers, if the complexity of the data generating process is increased. Therefore, we
tested many di�erent speci�cations. The only constant in this was that we kept the number
of exogenous variables at three, and that the true β remained (1, 0, 0,−1) (including the
constant). The following adjustments were tested:

1. Correlation of 50% among all exogenous variables. Multicollinearity is known to be a
bigger problem for binary choice models than it is for OLS. Thus, it could potentially
a�ect the weighted estimations strongly. Furthermore, an early warning system with
non-correlated exogenous variables is virtually non-existent in practice.

2. Autocorrelation of all exogenous variables with lag coe�cients 0.7 (�rst lag) and −0.3
(second lag). Autocorrelation is highly relevant for macroeconomic variables that are
usually used in early-warning systems.

3. Combination of correlated and autocorrelated exogenous variables.

4. Testing omitted variables, excluding X1 in the baseline model. As X2 and X3 do not
provide any information on Y , the results should be very similar to a purely random
model as presented in subsection 3.1.1.

5. Testing omitted variables, excluding X1 in the correlated model. Now, X1 is correlated
with X2 and X3. Thus, Y given X2 andd X3 is not completely random. We would
therefore expect results close to the correlated model.
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In short, the results are nearly identical for di�erent models. That is, our baseline results
hold fully for the full battery of di�erent model speci�cations.7

3.2 The currency crisis model of Berg and Patillo (1999)

This section turns the attention to indicators commonly used to describe and explain the
vulnerabilities to a currency crisis. These indicators were originally introduced to crisis
monitoring in a predictive model by Berg & Pattillo (1999). The dataset consists of �ve
monthly indicators for 23 emerging market economies from 1986:1 to 1996:12 with a total
of 2,916 country-month observations: foreign reserve loss, export loss, real exchange-rate
overvaluation relative to trend, current account de�cit relative to GDP, and short-term
debt to reserves. To control for cross-country di�erences, each indicator is transformed
into its country-speci�c percentile distribution. In order to date crises, we use an exchange
market pressure index as de�ned by Berg & Pattillo (1999). A crisis occurs if the sum of a
weighted average of monthly percentage depreciation in the currency and monthly percentage
declines in reserves exceeds its mean by more than three standard deviations. Using the crisis
occurrences, we de�ne an observation to be in a vulnerability state, or pre-crisis period, if it
experienced a crisis within the following 24 months.
The data is divided in a training sample for in-sample �tting from 1986:1 to 1995:4, and a
test sample for out-of-sample analysis from 1995:5 to 1996:12 (around 15% of the sample).
Despite the short period of the test sample, nearly 25% of all events happen in that window.
This shows that there may have been a structural di�erence between the training and the
test sample which could be re�ected in in- and out-of-sample usefulness.
In our estimations, we set µ to the share of instances that are not vulnerable to a crisis
(0.832). That is, we choose preferences that give higher weight to the more frequent calm
periods. If we optimize the early warning system �rst on the full sample (instead of di�ering
between training and test sample), relative usefulness is for all models between 40.1% and
42.5%, with threshold models having a small advantage. The di�erence is minor and occurs
mainly, because weighted models issue fewer false negatives at the expense of many more
false positives.
Dividing the sample in training and test part, the di�erence between models is dramatic.
In-sample usefulness of threshold models is above 80%, while weighted models achieve only
around 35%. The higher usefulness of threshold models may be explained by increased un-
certainty and therefore �room to optimize�, while the slightly lower usefulness of weighted
models might just be random. The picture reverses completely for out-of-sample useful-
ness. Here, the absolute usefulness of threshold models is strongly negative. That is, as
a policymaker it would have been better to disregard the model altogether. This result is
shocking insofar as the in-sample �t provides overwhelming support for the �tted early warn-
ing models in the threshold case. For weighted models, however, relative usefulness remains
around 20%. Despite dropping from 35%, this is still relatively good. That is, weighted
early-warning models may be suitable � to a certain extent � to counter the very general
concern on out-of-sample performance voiced by Rose & Spiegel (2012).
The real dataset strengthens our simulation results. The traditional way of estimating and

7Detailed results can be obtained from the authors on request.
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evaluating binary choice models by applying a threshold to probability forecasts introduces
an over�t with strongly negative consequences for out-of-sample capabilities. As hinted
above, the di�erence between in- and out-of-sample �t may be further enhanced by the
possibility that the importance of explanatory variables changes over time. Although this
may not necessarily be due to a change in the data-generating process, it will make an
estimation of the true process harder with limited datasets. The resulting uncertainty, in
turn, in�uences threshold models much more negatively than weighted models. In practice,
it is very likely that di�erent crises have di�erent origins8. That is, the importance of
explanatory variables will most de�nitely change over time. Therefore, our example with
real data provides suggestive evidence that early warning models relying on weighted binary
choice models may be far more robust to these changes than their traditional counterparts.

4 Conclusion

To subsume, we �nd that early-warning systems where preferences for certain types of errors
are included as weights in the estimation outperform their traditional peers (which account
for preferences only in a second optimization step) in two ways. First, the bias of in-sample
utility is much lower, reducing the false degree of con�dence in out-of-sample capabilities of
the early-warning system. Second, out-of-sample performance is higher, especially in cases
where the econometric model is misspeci�ed or where estimation uncertainty is high. This
is because weighted models estimate the most likely instead of the implausable best possible
outcome, and do therefore properly account for estimation uncertainty. We think therefore
that weighted models are preferable.
As our results hold not only for the simple binary choice models tested in this paper, but for
every early-warning system using threshold optimization (including the much-used signals
approach), we strongly recommend to include policymakers' preferences as weights in the
estimated likelihood and move away from threshold optimization in general.
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