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Misspecification Testing in GARCH-MIDAS Models

March 1, 2015

Abstract

We develop a misspecification test for the multiplicative two-component GARCH-

MIDAS model suggested in Engle et al. (2013). In the GARCH-MIDAS model a

short-term unit variance GARCH component fluctuates around a smoothly time-

varying long-term component which is driven by the dynamics of a macroeconomic

explanatory variable. We suggest a Lagrange Multiplier statistic for testing the

null hypothesis that the macroeconomic variable has no explanatory power. Hence,

under the null hypothesis the long-term component is constant and the GARCH-

MIDAS reduces to the simple GARCH model. We provide asymptotic theory for our

test statistic and investigate its finite sample properties by Monte Carlo simulation.

Our test statistic can be considered as an extension of the Lundbergh and Teräsvirta

(2002) ‘ARCH nested in GARCH’ test for evaluating GARCH models. We illustrate

the usefulness of our procedure by an empirical application to S&P 500 return data.

Keywords: Volatility Component Models, LM test, Long-term Volatility.

JEL Classification: C53, C58, E32, G12



1 Introduction

During the recent financial crisis, macroeconomic determinants have been rediscovered

as relevant factors for accurate prediction of stock market volatility. In particular, an

increasing amount of empirical studies has employed the GARCH-MIDAS framework in-

troduced by Engle et al. (2013) and identified economic variables that anticipate changes

in long-term volatility (see, e.g., Asgharian et al., 2013, Conrad and Loch, 2014, Do-

rion, 2014, Opschoor et al., 2014). In a GARCH-MIDAS specification, the conditional

variance consists of two multiplicative components, whereby macroeconomic conditions

enter through the smooth long-term component around which a short-term unit variance

GARCH component fluctuates. Besides the predictive evidence, however, it is still an

open question if these macroeconomic effects are indeed significant. But standard test

procedures for GARCH type specifications do not cover the case of macroeconomic ex-

planatory variables. As most of them also require additive separability of the additional

component under the alternative, they are also not straightforward to adapt to a general

GARCH-MIDAS structure.

We develop a misspecification test for the multiplicative two-component GARCH-

MIDAS model. In particular, we propose a Lagrange Multiplier (LM) statistic for testing

the null hypothesis that the macroeconomic long-term component has no significant effect.

Thus, under the null hypothesis, the long-term component is constant and the GARCH-

MIDAS model reduces to the simple GARCH. Note that a simple t- or F -test cannot be

employed in this context, as there exists no asymptotic theory yet for the general case

of macroeconomic effects in the GARCH-MIDAS model. The most recent theoretical

results available so far by Wang and Ghysels (2013), are specific to long-term components

of realized volatility type and only hold in a restrictive parameter space which does not

admit our null hypothesis. We derive the asymptotic properties for our test statistic.

In a Monte Carlo simulation, we find good size and power properties in finite samples.

Moreover, we illustrate the usefulness of our procedure by an empirical application to

S&P 500 return data.

Our test statistic is closely related to the LM-test for evaluating GARCH models by

Lundbergh and Teräsvirta (2002). In their ‘ARCH nested in GARCH’ setting, however,

squared log-returns in the GARCH component are not rescaled by the the second mul-

tiplicative component which causes our test statistic to differ. In contrast to our set-up,

log-returns standardized by the second “long-run” volatility component follow no longer
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a GARCH process if the null hypothesis does not hold yielding different power properties

of both tests. Considering general alternatives with exogenous variables, our work also

complements the general GARCH specification tests with non-zero mean by Halunga and

Orme (2009) and with multiplicative components by Amado and Teräsvirta (2014).

The plan of the paper is as follows. In Section 2, the GARCH-MIDAS model is intro-

duced and the LM-test statistic is derived. In particular, we highlight how our statistic

compares to existing GARCH-type specification tests of Lundbergh and Teräsvirta (2002)

and Halunga and Orme (2009). Moreover, this section also contains the main asymptotic

results. Section 3 provides some finite sample evidence in a Monte Carlo study. In Section

4, we illustrate how the test can contribute to modelling S&P 500 return data. Section 5

concludes. All proofs are contained in the Appendix.

2 Model and Test Statistic

In this section we first introduce the GARCH-MIDAS specification of Engle et al. (2013)

and then discuss the null hypothesis of our test. The actual test statistic is closely related

to the ‘ARCH nested in GARCH’ Lagrange multiplier (LM) test originally proposed in

Lundbergh and Teräsvirta (2002). Moreover, Halunga and Orme (2009) suggest general

misspecification tests for GARCH models. In particular, they focus on estimation effects

from the correct specification of the conditional mean. While we simply assume that

returns have mean zero and, therefore, do not deal with estimation effects from the mean,

the proofs of our main results in Section 2.4 follow along similar lines as the proof of

Theorem 2 in Halunga and Orme (2009).

2.1 The GARCH-MIDAS Model

We define the log-returns as given by

εt = σ0tZt, (1)

where Zt is IID with mean zero and variance equal to one. σ2
0t is measurable with respect

to the information set Ft−1 and denotes the conditional variance of the returns. We

consider the following multiplicative decomposition of σ2
0t into a short-term and a long-

term component:

σ2
0t = h̃0tτ̃ 0t (2)
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The short-term component is specified as a unit variance GARCH(1,1):

h̃0t = (1− α0 − β0) + α0

ε2t−1

τ̃ 0,t−1
+ βh̃0,t−1 (3)

On the other hand, the long-term (MIDAS) component depends on the K lagged values

of a (non-negative) explanatory variable xt:

τ̃ 0t = σ2
0 + π̃0

K∑

k=1

ψ0k(ω01, ω02)xt−k (4)

with MIDAS weights ψ0k(ω01, ω02) ≥ 0 summing to one. A popular choice for determin-

ing the ψ0k(·) is the Beta weighting scheme. The sign of the effect of xt on long-term

volatility can be inferred from the parameter π̃0. Note that in equation (4) we consider a

specification in which the explanatory variable and the returns are observed at the same

frequency. Alternatively, one might also assume that the explanatory variable is observed

at a lower frequency than the returns (see, e.g., Conrad and Loch, 2014). Nevertheless,

our long-term component can be considered as a MIDAS specification in the sense that

it parsimoniously models the dependence of τ̃ 0t on (possibly) many lags of xt in terms of

only two parameters ω01 and ω02 via the flexible weighting scheme ψ0k(·).
Following Conrad and Loch (2014), we denote the model with (exogenous) explanatory

variables as GARCH-MIDAS-X. Engle et al. (2013) and Wang and Ghysels (2014) also

consider a specification with the realized volatility, RVt =
∑N−1

j=0 ε
2
t−j , of the last N days

as the explanatory variable. In this case the long-term component can be rewritten as

τ̃ 0t = σ2
0 + π̃0

N+K−1∑

l=1

c0lε
2
t−l

with
∑N+K−1

l=1 c0l = N
∑K

k=1 ψ0k(ω01, ω02) = N (see Wang and Ghysels, 2014).1 In other

words, in this alternative representation the squared returns can be considered as the

explanatory variables.

For the specific case of a GARCH-MIDAS-RV model, Wang and Ghysels (2014) pro-

vide conditions for the strict stationarity of εt and establish consistency and asymptotic

normality of the QMLE. However, the proof of the asymptotic normality of the QMLE

rests on the assumption that ψ0k > 0 for k = 1, . . . , K and, hence, their framework does

not directly allow to test the null that all ψ0k are equal to zero (see Assumption 4.3 in

1Let νt =
√
h̃0tZt. Then εt =

√
τ̃0tνt can be interpreted as a semi-strong ARCH process with

multiplicative GARCH error (see Wang and Ghysels, 2014).
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Wang and Ghysels, 2014). In addition, there is no asymptotic theory for the general

GARCH-MIDAS-X model yet. We will circumvent this problem by deriving an LM test

for the hypothesis that xt does not affect the long-term component, i.e. the long-term

component is constant and the GARCH-MIDAS-X reduces to the simple GARCH(1,1).

The LM test will require only the estimation of the model under the null. For deriving

our test statistic we re-parameterize equation (2) as follows:

σ2
0t = h̃0tτ̃ 0t = (σ2

0h̃0t)

(
τ̃ 0t
σ2
0

)
= h̄0tτ 0t

The short-term component can then be expressed as

h̄0t = ω0 + α0

ε2t−1

τ 0,t−1

+ βh̄0,t−1 (5)

with ω0 = σ2
0(1 − α0 − β0). We denote the vector of true parameters in the short-term

component as η0 = (ω0, α0, β0)
′. Similarly, the long-term component can be rewritten as

τ 0t = 1 +

K∑

k=1

π0kxt−k = 1 + π′
0xt (6)

with π0k = σ−2
0 π̃0ψ0k(ω01, ω02), π0 = (π01, . . . , π0K)

′ and xt = (xt−1, . . . , xt−K)
′.

Using this notation, we are interested in testing H0 : π0 = 0 against H1 : π0 6= 0.

Under H0 the long-term component is equal one and the GARCH-MIDAS-X reduces to

the nested GARCH(1,1) with unconditional variance σ2
0 = ω0/(1 − α0 − β0) (provided

that α0 + β0 < 1). Note that equation (5) is specified such that we can write

h̄0t = ω0 + (α0Z
2
t−1 + β0)h̄0,t−1

which means that εt/
√
τ 0t =

√
h̄0tZt follows a GARCH(1,1) both under the null and

under the alternative.

We make the following assumptions about the true data generating process.

Assumption 1. η0 ∈ Θ where the parameter space is given by Θ = {η = (ω, α, β)′ ∈
R

3×1|0 < ω < ω, 0 < α, 0 < β, α+ β < 1}.

Assumption 2. Z2
t has a nondegenerate distribution, E[Z2

t ] = 1 and κZ = E[Z4
t ] <∞.

Assumptions 1 and 2 imply that
√
h̄0tZt is a covariance-stationary process with uncon-

ditional variance σ2
0. Further, by Jensen’s inequality, they imply that E[ln(α0Z

2
t +β0)] < 0

which ensures that under the null εt is strictly stationary and ergodic (see, e.g., Francq

and Zaköıan, 2004). Finally, the assumption on the existence of a fourth-order moment

of Zt will be necessary to ensure that the variance of the score vector exists.
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2.2 Relation to Lundbergh and Teräsvirta (2002) LM Test

The LM test suggested by Lundbergh and Teräsvirta (2002) is based on the following

specification εt =
√
h0tξ0t =

√
h0tτ 0tZt, where

h0t = ω0 + α0ε
2
t−1 + β0h0,t−1 (7)

and the long-term component τ 0t in equation (6) is based on the specific choice for the

explanatory variable: xt = ξ20t = ε2t/h0t. Because under this assumption ξ20t =
√
τ 0tZt

follows an ARCH(K), Lundbergh and Teräsvirta (2002) refer to this specification as

‘ARCH nested in GARCH’ and test the null hypothesis H0 : π0 = 0. The LM test

statistic in Lundbergh and Teräsvirta (2002) is based on
(
ε2t

ĥt
− 1

)
r̂LTt , (8)

where η̂ is the QMLE of η estimated under the null, ĥt = ω̂ + α̂ε2t−1 + β̂ĥt−1 and r̂LTt =

(ε2t−1/ĥt−1, ε
2
t−2/ĥt−2, . . . , ε

2
t−K/ĥt−K)

′. Intuitively, equation (8) is used to test whether

the standardized returns are still correlated.

The above specification is remarkably similar to the GARCH-MIDAS-X. However,

there is also an important difference. In the specification of h0t the ε
2
t−1 is not divided by

τ 0t. Because of this,
√
h0tZt is a GARCH(1,1) process under the null but not under the

alternative.2 As a consequence, our test statistic – which is based on h̄0t – will rely on an

appropriately modified version of equation (8).

2.3 Likelihood Function and Partial Derivatives

We denote the processes that can be constructed from the parameter vectors η = (ω, α, β)′

and π = (π1, . . . , πK)
′ given initial observations for εt and xt by h̄t and τ t. We dis-

tinguish between the unobserved log-likelihood function based on h̄∞t =
∑∞

j=0 β
j(ω +

αε2t−1−j/τ t−1−j) which depends on the infinite history of all past observations and the

observed likelihood which is based on h̄t =
∑t−1

j=0 β
j(ω+αε2t−1−j/τ t−1−j)+β

th̄0. We write

the unobserved log-likelihood function as

L∞
T (η,π|εT , xT , εT−1, xT−1, . . .) =

T∑

t=1

l∞t (9)

2The observation that h0t does not follow a GARCH process under the alternative is closely related

to the argument in Halunga and Orme (2009) that the alternative models considered in Lundbergh and

Teräsvirta (2002) are not “recursive” in nature.
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with

l∞t = ln(f(εt|η,π)) = −1

2

[
ln(h̄∞t ) + ln(τ t)−

ε2t
h̄∞t τ t

]
. (10)

Conditional on initial values (ε0, h̄0 = 0,x0) the observed log-likelihood can be written as

LT (η,π|εT , xT , εT−1, xT−1, . . . , ε1, x1) =
T∑

t=1

lt (11)

with

lt = ln(f(εt|η,π)) = −1

2

[
ln(h̄t) + ln(τ t)−

ε2t
h̄tτ t

]
. (12)

2.3.1 First derivatives

In the following, we consider the unobserved log-likelihood function. We define the average

score vector evaluated under the null and at the true GARCH parameters as

D∞(η0) =


 D∞

η
(η0)

D∞
π
(η0)


 =

1

T

T∑

t=1

d∞
t (η0) =

1

T

T∑

t=1


 d∞

η,t(η0)

d∞
π,t(η0)




where d∞
η,t(η0) = ∂l∞t /∂η

∣∣
η
0
,π=0

and d∞
π,t(η0) = ∂l∞t /∂π

∣∣
η
0
,π=0

. Next, we derive expres-

sions for d∞
η,t(η0) and d∞

π,t(η0). First, consider the partial derivative of the log-likelihood

with respect to η:

∂l∞t
∂η

=
1

2

[
ε2t

h̄∞t τ t
− 1

](
1

h̄∞t

∂h̄∞t
∂η

+
1

τ t

∂τ t
∂η

)
(13)

with ∂τ t/∂η = (∂xt/∂η)
′π. Under the null hypothesis, the long-term component reduces

to τ t = 1 and the short term component simplifies to h̄∞t = h∞t , i.e. the expression in

equation (7). We then distinguish between

d∞
η,t(η) =

∂l∞t
∂η

∣∣∣∣
π=0

=
1

2

[
ε2t
h∞t

− 1

]
y∞
t (14)

with

y∞
t =

1

h̄∞t

∂h̄∞t
∂η

∣∣∣∣
π=0

=
1

h∞t

∞∑

i=0

βis∞t−i, (15)

where s∞t = (1, ε2t−1, h
∞
t−1)

′, and the corresponding quantity which is evaluated at η0:

d∞
η,t(η0) =

1

2

[
ε2t
h∞0,t

− 1

]
y∞
0,t, (16)

where h∞0,t = ω0 + α0ε
2
t + β0h

∞
0,t−1 and y∞

0,t = (h∞0,t)
−1
∑∞

i=0 β
i
0s

∞
0,t−i.
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The partial derivative with respect to π leads to:

∂l∞t
∂π

=
1

2

[
ε2t

h̄∞t τ t
− 1

](
1

h̄∞t

∂h̄∞t
∂π

+
1

τ t

∂τ t
∂π

,

)
(17)

whereby the partial derivative of h̄∞t is given by

∂h̄∞t
∂π

= −α
∞∑

j=0

βj
ε2t−1−j

τ 2t−1−j

∂τ t−1−j

∂π
. (18)

Since ∂τ t/∂π = xt + (∂xt/∂π)
′
π, we have ∂τ t/∂π|π=0 = xt and, hence,

d∞
π,t(η) =

∂l∞t
∂π

∣∣∣∣
π=0

=
1

2

[
ε2t
h∞t

− 1

]
r∞t (19)

with

r∞t = xt − α
1

h∞t

∞∑

j=0

βjε2t−1−jxt−1−j . (20)

Similarly as before, the corresponding expression evaluated at η0 is given by:

d∞
π,t(η0) =

1

2

[
ε2t
h∞0,t

− 1

]
r∞0,t (21)

with

r∞0,t = xt − α0
1

h∞0,t

∞∑

j=0

βj
0ε

2
t−1−jxt−1−j . (22)

Remark 1. Recall that in Lundbergh and Teräsvirta (2002) the log-likelihood function is

not based on h̄∞t but on h∞t . Since ∂h∞t /∂π = 0, in their setting equation (22) reduces

to r∞0,t = xt. Finally, for the specific choice of xt suggested in Lundbergh and Teräsvirta

(2002), we obtain the version of r∞0,t employed in equation (8). However, the form of

equation (22) suggests that the properties of the two resulting test statistics might be

similar if α0 is small.

In summary, we have

D∞(η0) =
1

T

T∑

t=1

d∞
t (η0) =

1

2T

T∑

t=1

[
ε2t
h∞0,t

− 1

]
 y∞

0,t

r∞0,t


 .

Using that E[ε2t/h
∞
0,t] = E[Z2

t ] = 1, it follows that E[d∞
t (η0)|Ft−1] = 0 and

Var[d∞
t (η0)] = Ω =


 Ωηη Ωηπ

Ωπη Ωππ




=


 E[d∞

η,t(η0)d
∞
η,t(η0)

′] E[d∞
η,t(η0)d

∞
π,t(η0)

′]

E[d∞
π,t(η0)d

∞
η,t(η0)

′] E[d∞
π,t(η0)d

∞
π,t(η0)

′]




=
1

4
(κZ − 1)


 E[y∞

0,t(y
∞
0,t)

′] E[y∞
0,t(r

∞
0,t)

′]

E[r∞0,t(y
∞
0,t)

′] E[r∞0,t(r
∞
0,t)

′]


 . (23)
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In the proof of Theorem 1 we will show thatΩ is finite and positive definite. This will allow

us to apply a central limit theorem for martingale difference sequences to 1√
T

∑T
t=1 d

∞
t (η0).

2.3.2 Second derivatives

In the subsequent analysis we also make use of the following second derivatives:

∂d∞
η,t(η)

∂η′
= −1

2

ε2t
h∞t

y∞
t (y∞

t )′ +
1

2

[
ε2t
h∞t

− 1

]
∂y∞

t

∂η′
(24)

and

∂d∞
π,t(η)

∂η′
= −1

2

ε2t
h∞t

r∞t (y∞
t )′ +

1

2

[
ε2t
h∞t

− 1

]
∂r∞t
∂η′

(25)

We then define

Jηη = −E

[
∂d∞

η,t(η0)

∂η′

]
=

1

2
E[y∞

0,t(y
∞
0,t)

′] (26)

and

Jπη = −E

[
∂d∞

π,t(η0)

∂η′

]
=

1

2
E[r∞0,t(y

∞
0,t)

′]. (27)

Note that d∞
η,t(η0) corresponds to the score of observation t in a standard GARCH(1,1)

model and ∂d∞
η,t(η0)/∂η

′ to the respective second derivative. It then directly follows from

the results for the pure GARCH model in Francq and Zaköıan (2004) that Jηη is finite

and positive definite. Finally, note that Ωηη = 1
2
(κZ − 1)Jηη and Ωπη = 1

2
(κZ − 1)Jπη.

If Zt is normally distributed, then κZ = 3 and Ωηη = Jηη and Ωπη = Jπη, respectively.

2.4 The LM Test Statistic

If Assumptions 1 and 2 hold and the model is estimated under the null, the QMLE of the

GARCH(1,1) parameters will be consistent and asymptotically normal (see Francq and

Zaköıan, 2004). More precisely, if Assumptions 1 and 2 hold and the model is estimated

under the null:
√
T (η̂ − η0)

d−→ N (0, (κZ − 1)J−1
ηη
). (28)

In the following theorem we derive the asymptotic distribution of the average score

evaluated at η0. In order to ensure the finiteness of the covariance matrix of the average

score we assume that xt has finite fourth moment.

Assumption 3. xt ≥ 0 is strictly stationary and ergodic with E[|xt|4] <∞.
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For simplicity, we also assume that the explanatory variable takes only nonnegative

values. This assumption is line with the GARCH-MIDAS-RV model with xt = ε2t or

the specification of Lundbergh and Teräsvirta (2002) with xt = ε2t/h0t. For testing the

GARCH-MIDAS-RV against the simple GARCH model, Assumtion 3 requires that the

observed process has finite eighth moment: E[|εt|8] < ∞. The corresponding constraints

on the parameters of the GARCH(1,1) are provided in Francq and Zaköıan (2010), equa-

tion (2.54). In general, nonnegative explanatory variables could be the unemployment

rate, interest rates, the VIX, disagreement among forecasters or measures of political un-

certainty. However, our results can be generalized for the case that τ t = exp (1 + π′xt).

Theorem 1. If Assumptions 1-3 hold, then

√
TD∞(η0)

d−→ N (0,Ω). (29)

Next, we consider the asymptotic distribution of the relevant lower part of the score

vector evaluated at η̂. As an intermediate step, we show that Jπη can be consistently

estimated by

− 1

T

T∑

t=1

∂d∞
π,t(η̃)

∂η′
,

where η̃ = η0 + oP (1). The result is presented in Proposition 1 in the Appendix. For

doing so the following Assumption 4 is required.

Assumption 4. E[|εt|4(1+s)] <∞ for some s > 0.

Note that in general ε2t = h̄∞0t τ 0tZ
2
t , i.e. depends on η0 and π0. Under the null,

ε2t = h∞0,tZ
2
t depends on η0 only. In the proof of Proposition 1 we will use this insight to

argue that E[sup
η
|εt|4(1+s)] = E[|εt|4(1+s)].

Theorem 2. If Assumptions 1-4 hold, then

√
TD∞

π
(η̂)

d−→ N (0,Σ), (30)

where

Σ = Ωππ − JπηJ
−1
ηη
Ω′

πη

=
1

4
(κZ − 1)

(
E[r∞0,t(r

∞
0,t)

′]− E[r∞0,t(y
∞
0,t)

′]
(
E[y∞

0,t(y
∞
0,t)

′]
)−1

E[y∞
0,t(r

∞
0,t)

′]
)
. (31)

The covariance matrix Σ in equation (31) takes the same form as in Lundbergh and

Teräsvirta (2002).
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The actual test statistic will be based on the observed quantity Dπ(η̂). The following

theorem states the test statistic and its asymptotic distribution. For the proof of the

theorem, we show that
√
TDπ(η̂) and

√
TD∞

π
(η̂) have the same asymptotic distribution.

Theorem 3. If Assumptions 1-4 hold, then

LM = TDπ(η̂)
′Σ̂−1Dπ(η̂)

=
1

4T

(
T∑

t=1

[
ε2t

ĥt
− 1

]
r̂t

)′

Σ̂−1

(
T∑

t=1

[
ε2t

ĥt
− 1

]
r̂t

)
a∼ χ2(K) (32)

where η̂ = (ω̂, α̂, β̂)′ is the vector of parameter estimates from the model under the null,

ĥt = ω̂+α̂ε2t−1+β̂ĥt−1, r̂t = xt−α̂/ĥt
∑t−1

j=0 β̂
j
ε2t−1−jxt−1−j and Σ̂ is a consistent estimator

of Σ.

Following Lundbergh and Teräsvirta (2002), we also consider a regression version of

the test. The corresponding test statistic is given by

L̃M = T
SSR0 − SSR1

SSR0

(33)

where SSR0 =
∑T

t=1(ε
2
t/ĥt− 1)2 and SSR1 is the sum of squared residuals from a regres-

sion of (ε2t/ĥt − 1) on r̂′t and ŷ′
t. Hence, L̃M is simply T times the uncentered R2 of the

regression.

Remark 2. It is interesting to consider two special cases of our test. If there are no

GARCH effects, i.e. α = β = 0, then h̄t = ω. In this case, the model under H0 : π0 = 0

has constant conditional and unconditional variance equal to σ2
0 = ω0. Under the alterative

there is multiplicative conditional heteroskedasticity, i.e. Var[εt|Ft−1] = σ2τ t. Without

GARCH effects the partial derivative of the log-likelihood under H0 simplifies to

∂l∞t
∂π

∣∣∣∣
π=0

=
1

2

[
ε2t
σ2
0

− 1

]
xt

σ2
0

. (34)

The regression based test would be to regress (ε2t/σ
2
0 − 1) on a constant and xt/σ

2
0 and

to compute TR2 which is χ2(K). Thus, if there is a conditional mean function with

explanatory variables xt, our LM test reduces to the Godfrey (1978) test for multiplicative

heteroskedasticity. Finally, if we choose xt−k = ε2t−k our test coincides with the Engle

(1982) test for ARCH effects.

11



3 Simulation

In this section, we examine the finite sample behavior of the proposed test in a Monte Carlo

experiment. We simulate return series with T = 1000 observations and use M = 1000

Monte Carlo replications. Four alternative GARCH(1,1) specifications are considered.

The first and second one can be described by medium (M1/M2) persistence (α0 + β0 =

0.95), the third and fourth by high (H1/H2) persistence (α0 + β0 = 0.99). The first and

third specifications are also used in Halunga and Orme (2009). In order to illustrate the

effect of α being low/high while holding the degree of persistence fixed, we additionally

employ the second and fourth specification. ω0 is always chosen such that under the null

σ2
0 = 1. The innovation Zt is assumed to be either normally distributed or t-distributed

with 5 degrees of freedom.

M1: h̄t = 0.05 + 0.05
ε2t−1

τ t−1
+ 0.90h̄t−1

M2: h̄t = 0.05 + 0.10
ε2t−1

τ t−1
+ 0.85h̄t−1

H1: h̄t = 0.01 + 0.09
ε2t−1

τ t−1

+ 0.90h̄t−1

H2: h̄t = 0.01 + 0.15
ε2t−1

τ t−1
+ 0.84h̄t−1

We first consider the size properties of the test. Under null, we test for remaining ARCH

effects by choosing xt = ε2t/ht. In Table 1 we report the empirical size of the LM test given

in equation (32), the regression version of the test, L̃M , and the Lundbergh and Teräsvirta

(2002) test statistic L̃MLT . As the table shows, the empirical size of all three versions of

the test statistic is very close to the nominal size when Zt is normally distributed. Also,

the size properties do not depend on the choice of K.

Under the alternative we consider the following ‘ARCH(1) nested in GARCH’ speci-

fication:

τ 0,t = 1 + π0,1

ε2t−1

h0,t−1

with π0,1 ∈ {0.1, 0.2}. In the test statistic we correctly specify xt = ε2t/ht. As Table 2

shows, all three versions of the test statistic lead to almost identical results for a given

GARCH specification. However, the simulated power is much higher for GARCH specifi-

cations with high persistence than for GARCH specifications with low persistence. Also,

the power of the tests strongly increases with the deviation from the null hypothesis. For

example, for the process H1 and at the nominal size of 5% the simulated power of the LM

12



Table 1: Empirical size.

K = 1 K = 5

M1 M2 H1 H2 M1 M2 H1 H2

LM 1% 0.9 0.9 1.3 1.1 1.3 1.6 1.2 1.7

5% 4.6 5.0 5.4 5.2 5.1 5.0 5.3 5.4

10% 9.2 10.5 10.1 10.7 9.2 9.4 9.7 9.5

L̃M 1% 0.9 0.9 1.3 1.1 1.3 1.5 1.2 1.7

5% 4.6 5.0 5.5 5.2 5.1 5.0 5.3 5.4

10% 9.2 10.5 10.1 10.7 9.2 9.4 9.8 9.5

L̃MLT 1% 0.9 1.0 1.4 1.2 1.6 1.5 1.8 1.9

5% 5.0 5.3 5.3 5.4 5.1 4.3 5.0 5.5

10% 10.2 10.3 11.1 11.2 9.4 8.8 8.8 9.1

Notes: Entries are rejection rates in percent over the 1000 repli-

cations at the 1%, 5% and 10% nominal level.

statistic is 66.9 when π0,1 = 0.1 but increases to 94.0 when π0,1 = 0.2. Table 2 also shows

that the power deteriorates if the lag length K is chosen too large in comparison to the

true data generating process. Again, the loss in power is more severe if the underlying

GARCH process is less persistent. Interestingly, when the persistence is low, the power

is much higher for the process with high α0 (M2) than for the process with low α0 (M1).

A comparison of the power of the LM and L̃M test with the Lundbergh and Teräsvirta

(2002) version, L̃MLT , of the test shows that the correct specification of r̂t leads to a

modest increase in power when the data generating process is an ‘ARCH(1) nested in

GARCH’.

Next, we consider two more realistic examples in which the long-term component is

based actual data. We use continuously compounded daily stock returns on the S&P

500 for the period January 2000 to August 2014. Using five-minute intra-day data, we

construct daily realized volatility, RVt, as the sum of the squared five-minute returns

over the day. In addition, we construct monthly and quarterly realized volatilities as

RV
(N)
t =

∑N−1
j=0 RVt−j with N = 22 and N = 65. As a second explanatory variable we

use the daily VIX index. As for the realized volatility, we also construct monthly and

quarterly rolling window versions of the VIX as V IX
(N)
t =

∑N−1
t=0 V IXt, with N = 22

and N = 65. Figure 1 shows the evolution of the VIX and the realized volatility over the

13



Table 2: Size-adjusted power.

K = 1 K = 5

M1 M2 H1 H2 M1 M2 H1 H2

π0,1 = 0.1

LM 1% 16.0 27.5 46.0 44.2 7.6 13.2 24.3 22.5

5% 31.0 49.0 66.9 69.2 17.2 27.4 41.8 40.9

10% 42.3 62.5 77.2 77.7 26.0 38.9 53.3 51.3

L̃M 1% 16.0 27.6 45.9 44.2 7.5 13.2 24.4 22.5

5% 30.9 49.2 66.9 69.1 17.3 27.3 41.8 40.9

10% 42.2 62.5 77.2 77.7 25.9 39.1 53.3 51.5

L̃MLT 1% 16.0 26.4 43.9 41.7 6.8 11.8 22.6 20.7

5% 30.7 47.0 65.0 62.8 17.3 26.0 41.6 39.6

10% 41.0 59.0 74.6 74.0 26.5 37.8 51.7 50.9

π0,1 = 0.2

LM 1% 19.0 51.8 86.9 92.6 11.5 29.3 68.4 71.2

5% 29.9 69.6 94.0 97.5 22.2 50.5 84.7 87.6

10% 38.7 78.2 96.1 98.6 31.5 62.8 88.9 92.9

L̃M 1% 19.0 51.8 87.0 92.7 11.5 29.3 68.4 71.4

5% 29.9 69.7 94.0 97.5 22.3 50.4 84.7 87.6

10% 38.7 78.2 96.1 98.6 31.5 62.8 89.0 93.0

L̃MLT 1% 18.6 46.1 84.5 87.3 11.4 30.7 64.0 66.3

5% 29.3 64.2 91.6 94.9 22.6 49.8 81.1 83.8

10% 37.4 73.5 93.6 97.2 32.4 62.0 88.6 91.8

Notes: Entries are rejection rates in percent over the 1000 replications

at the 1%, 5% and 10% nominal level.

sample period.

Using the rolling window versions of the realized volatility and the VIX we can create

smooth long-term components. We specify the long-term component as

τ 0,t = 1 + 0.6xt−1 + 0.3xt−2 + 0.07xt−3 + 0.03xt−4. (35)

As Table 3 shows, for the smooth long-term components that are based on actual data

the difference in the power of the tests based on r̂t and the Lundbergh and Teräsvirta

(2002) version based on r̂LTt becomes much more pronounced.
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Figure 1: The upper and lower panel show the evolution of the VIX and the realized

volatility (and the rolling window versions) over the period October 2010 to October

2014.

4 Conclusions

We develop a Lagrange-Multiplier test for the null hypothesis of a GARCH volatility

against the alternative of a GARCH-MIDAS specification. The test provides a first so-

lution to statistically evaluate if there is a separate long-term varying volatility compo-

nent driven by a macroeconomic explanatory variable, besides the standard short-term

GARCH part. We derive the asymptotic properties of our test and study its finite sample

performance. In an application to S&P 500 returns, we find that the test provides useful

guidance in model specification.
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Table 3: Rejection rates for long-term components based on actual data.

K = 1

xt V IX
(65)
t−1 V IX

(22)
t−1 V IXt−1 RV

(65)
t RV

(22)
t−1 RVt−1

LM 1% 38.2 73.2 88.8 62.5 96.4 99.7

5% 64.7 89.9 96.1 84.0 99.0 99.9

10% 78.2 94.8 97.7 91.2 99.6 99.9

L̃M 1% 38.2 73.0 88.6 62.1 96.3 99.7

5% 64.4 89.8 96.1 83.8 99.0 99.9

10% 78.0 94.7 97.7 91.2 99.6 99.9

L̃MLT 1% 19.1 34.3 65.5 29.1 57.5 100

5% 45.1 62.2 85.8 56.2 84.2 100

10% 62.5 75.3 92.7 70.6 92.6 100

Notes: See Table 1. In the GARCH component we choose specification H1.

Table 4: Rejection rates for long-term components based on actual data.

K = 4

xt V IX
(65)
t−1 V IX

(22)
t−1 V IXt−1 RV

(65)
t RV

(22)
t−1 RVt−1

LM 1% 25.0 54.7 83.0 43.2 86.1 99.9

5% 47.8 77.7 93.6 66.7 96.7 100

10% 61.5 85.8 96.6 78.4 98.3 100

L̃M 1% 24.7 54.3 82.8 42.5 85.4 99.9

5% 47.5 77.6 93.4 66.4 96.6 100

10% 60.8 85.8 96.4 77.8 98.3 100

L̃MLT 1% 28.9 54.5 63.8 46.3 79.6 99.5

5% 51.0 77.8 82.3 67.2 92.0 99.9

10% 63.6 85.7 88.5 78.3 96.2 100

Notes: See Table 1. In the GARCH component we choose specification H1.
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A Proofs

Proof of Theorem 1. First, we show that Ω is finite and positive definite. From Francq

and Zak̈ıoan (2004) it follows that Ωηη is finite and positive definite. What remains to be

shown is that Ωππ is finite and positive definite. If this is true then, by Cauchy-Schwarz,

also the “off-diagonal matrices” will be finite and positive definite.

Finiteness of Ωππ:

Recall from equation (23) that Ωππ = E[d∞
π,t(η0)d

∞
π,t(η0)

′] = 1
4
(κZ − 1)E[r∞0,t(r

∞
0,t)

′].

It follows from Assumption 2 that 0 < κZ − 1 < ∞. Hence, ||E[r∞0,t(r∞0,t)′]|| is finite if

E[||r∞0,t(r∞0,t)′||] <∞. A typical element of the K × 1 vector r∞0,t is given by

r∞0,kt = xt−k − α0
1

h∞0,t

∞∑

j=0

βj
0ε

2
t−1−jxt−1−k−j . (36)

First, E[|xt−k|2] <∞ by Assumption 3. Second,


E

∣∣∣∣∣

∑∞
j=0 α0β

j
0ε

2
t−1−k−jxt−1−j

h∞0,t

∣∣∣∣∣

2



1/2

≤


E

∣∣∣∣∣

∞∑

j=0

α0β
j
0ε

2
t−1−j(

ω0 + α0β
j
0ε

2
t−1−j

)xt−1−k−j

∣∣∣∣∣

2



1/2

(37)

≤
∞∑

j=0


E

∣∣∣∣∣
α0β

j
0ε

2
t−1−j(

ω0 + α0β
j
0ε

2
t−1−j

)xt−1−k−j

∣∣∣∣∣

2



1/2

(38)

≤
∞∑

j=0


E

∣∣∣∣∣∣

(
α0β

j
0

ω0

ε2t−1−j

)s/4

xt−1−k−j

∣∣∣∣∣∣

2


1/2

(39)

≤ α
s/4
0

ω
s/4
0

(
E
[
ε2st−1−j

])1/4 (
E
[
|xt−1−k−j |4

])1/4

∞∑

j=0

β
js/4
0 <∞

The arguments used above are similar to the ones in Francq and Zak̈ıoan (2004, Eq. (4.19),

p.619). In particular, in equation (37) we use that h∞0,t ≥ ω0+α0β
j
0ε

2
t−1−j . In equation (38)

we use Minkowski’s inequality. Next, in equation (39) we use the fact that w/(1+w) ≤ ws

for all w > 0 and any s ∈ (0, 1). Finally, Assumption 1 implies that there exists some

s > 0 such that E
[
ε2st−1−j

]
< ∞ (see Proposition 1 in Francq and Zak̈ıoan, 2004, p.607).

By Assumption 3, E
[
|xt−1−k−j |4

]
<∞.

This implies E[|r∞0,kt|2] < ∞ and E[|r∞0,ktr∞0,jt|] < ∞ by Cauchy-Schwarz inequality

which means that Ωππ is finite.

Positive definiteness of Ωππ:
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As κZ −1 > 0, it remains to show that c′E[r∞0,t(r
∞
0,t)

′]c > 0 for any non-zero c ∈ R
K×1.

Assume the contrary, i.e., there exists a c 6= 0 such that c′E[r∞0,t(r
∞
0,t)

′]c = 0. This implies

E[(c′r∞0,t)
2] = 0 and thus c′r∞0,t = 0 a.s.. Hence, there exists a linear combination of

r∞0,1t, . . . , r
∞
0,Kt which equals zero a.s., i.e.,

0 =
K∑

k=1

ck

(
xt−k −

α0

h∞0,t

∞∑

j=0

βj
0ε

2
t−1−jxt−1−k−j

)
a.s. (40)

With rearranging, this requires

c′xt =

[
α0

h∞0,t
(1− β0L)

−1L

]
(ε2tc

′xt) a.s. (41)

According to Assumption 1, β0 < 1, i.e. the operator in square brackets cannot have

an eigenvalue 1. Moreover, Assumption 2 imposes Z2
t and therefore also ε2t to be non-

degenerate. Hence the only way to fulfill the above equation is by c′xt = 0 a.s.. As the

xt are positive, this implies that c1 = . . . = cK = 0 which is a contradiction to the initial

assumption. Thus Ωππ must be invertible and hence positive definite.

Next, E[d∞
t (η0)|Ft−1] = 0. From Francq and Zaköıan (2004) and Assumptions 1-3 it

then follows that d∞
t (η0) is a stationary and ergodic martingale difference sequence with

finite second moment. Applying Billingsley’s (1961) central limit theorem for martingale

differences gives the result.

The following proposition will be used in the proof of Theorem 2.

Proposition 1. Under Assumptions 1-4, we have that

− 1

T

T∑

t=1

∂d∞
π,t(η̃)

∂η′

P−→ Jπη = −E

[
∂d∞

π,t(η0)

∂η′

]
(42)

where η̃ = η0 + oP (1)

Proof of Proposition 1. We obtain (42) in two steps. a) In a first step, we show that

Jπη(η) = −E
[
∂d∞

π,t(η)

∂η′

]
is finite with a uniform bound for all η ∈ Θ. Then a uniform

weak law of large numbers (see, e.g., Theorem 3.1. in Ling and McAleer (2003)) implies

sup
η

∣∣∣∣
∣∣∣∣−

1

T

T∑

t=1

∂d∞
π,t(η)

∂η′
− Jπη(η)

∣∣∣∣
∣∣∣∣ = op(1).

Equation (42) then follows from the triangle inequality and the fact that η̃ = η0 + oP (1).
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Using equation (25) we obtain

∣∣∣∣
∣∣∣∣
∂d∞

π,t(η)

∂η′

∣∣∣∣
∣∣∣∣ ≤ 1

2

(∣∣∣∣
ε2t
h∞t

∣∣∣∣ · ||r∞t || · ||(y∞
t )′||+

∣∣∣∣
ε2t
h∞t

− 1

∣∣∣∣ ·
∣∣∣∣
∣∣∣∣
∂r∞t
∂η′

∣∣∣∣
∣∣∣∣
)

≤ C|ε2t + ω|
(
||r∞t || · ||(y∞

t )′||+
∣∣∣∣
∣∣∣∣
∂r∞t
∂η′

∣∣∣∣
∣∣∣∣
)
. (43)

The last inequality follows with a generic constant 0 < C <∞ and h∞t ≥ ω > 0.

First, consider the three elements of ||(y∞
t )′||. To simplify the notation note that

∂h̄∞

t

∂η
|π=0 =

∂h∞

t

∂η
. Since

∂h∞

t

∂ω
= 1/(1 − β), we have | 1

h∞

t

∂h∞

t

∂ω
| ≤ 1/(ω(1 − β)) < ∞. Then

α
∂h∞

t

∂α
=
∑∞

j=0 αβ
jε2t−1−j ≤ h∞t and, therefore, | 1

h∞

t

∂h∞

t

∂α
| ≤ 1/α < ∞. Finally,

∂h∞

t

∂β
=

∑∞
j=0 jβ

j−1(ω + αε2t−1−j). We then obtain

∣∣∣∣
1

h∞t

∂h∞t
∂β

∣∣∣∣ ≤
∣∣∣∣∣
1

β

∞∑

j=0

jβj(ω + αε2t−1−j)

ω + βj(ω + αε2t−1−j)

∣∣∣∣∣

≤ 1

βωs

∞∑

j=0

j
∣∣βjs(ω + αε2t−1−j)

s
∣∣ , (44)

where we again use the fact that w/(1 + w) ≤ ws for all w > 0 and any s ∈ (0, 1). It

follows that ||(y∞
t )′|| ≤ K(1 +

∑∞
j=0 j

∣∣βjs(ω + αε2t−1−j)
s
∣∣) for some constant K > 0.

Hence, by Cauchy-Schwarz inequality, the first summand in equation (43), i.e.

E
[
sup

η
|ε2t + ω| · ||r∞t || · ||(y∞

t )′||
]
, can be bounded from above by the terms

√
E[sup

η
|ε2t + ω|2]E[sup

η
||r∞t ||2] (45)

and

sup
η

∞∑

j=0

jβjsE[sup
η
(ω + αε2t−1−j)

s|ε2t + ω| ||r∞t ||] ≤

sup
η

∞∑

j=0

jβjs
√
E[sup

η
(ω + αε2t−1−j)

2s|ε2t + ω|2]E[sup
η
||r∞t ||2]. (46)

The finiteness of (45) follows from Assumption 4 and similar arguments as in the proof

of Theorem 1. The finiteness of (46) follows by applying Hölder’s inequality, since for the

elements in the sum which involve expectations of the squared observations we have

E[sup
η
(ω + αε2t−1−j)

2s|ε2t + ω|2] ≤
(
E[sup

η
(ω + αε2t−1−j)

2(1+s)]
)s/(1+s) (

E[sup
η
|ε2t + ω|2(1+s)]

)1/(1+s)
(47)

and again Assumption 4.
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Using the Cauchy-Schwarz-Inequality for the two factors in the second term in (43),

we are left with showing that E
[
sup

η

∣∣∣∣∂r∞t
∂η′

∣∣∣∣2
]
is finite. This follows from

∂r∞t
∂η′

=
∂

∂η′
xt −

∂

∂η′

(
1

h∞t

∞∑

j=0

αβjε2t−1−jxt−1−j

)

=
∂

∂η′
xt −

1

h∞t

(
∞∑

j=0

αβjε2t−1−j

∂

∂η′
xt−1−j

)

+

(
1

h∞t

∞∑

j=0

αβjε2t−1−jxt−1−j

)
(y∞

t )′ − 1

h∞t

∞∑

j=0

xt−1−j

(
∂

∂η′
αβjε2t−1−j

)
(48)

The first two terms vanish in the GARCH-MIDAS-X with exogenous explanatory variable

xt as
∂xt

∂η′
= 0 or in the GARCH-MIDAS-RV with xkt = ε2t−k.

Remark 3. Note that in the case of xt with elements xkt =
ε2
t−k

h∞

t−k

there also exists a bound

for E
[
sup

η

∣∣∣∣∂r∞t
∂η′

∣∣∣∣2
]
. Here in the last two terms in (48) we have ∂xkt

∂η′
= − εt−k

(h∞

t−k
)2

∂h∞

t−k

∂η′

and explicit bounds for terms of this type apply as before.

Boundedness of the norm of the third term follows for all η in expectation with a

combination of the argument right above and the considerations in the proof of Theorem 1.

The fourth term can be written as:

1

h∞t




0
∑∞

j=0 β
jε2t−1−jx1,t−1−j α

∑∞
j=0 jβ

j−1ε2t−1−jx1,t−1−j

0
∑∞

j=0 β
jε2t−1−jx2,t−1−j α

∑∞
j=0 jβ

j−1ε2t−1−jx2,t−1−j

...

0
∑∞

j=0 β
jε2t−1−jxK,t−1−j α

∑∞
j=0 jβ

j−1ε2t−1−jxK,t−1−j




(49)

Hence, for typical elements of the second and third column it follows that

Esup
η

∣∣∣∣∣
1

h∞t

∞∑

j=0

βjε2t−1−jxk,t−1−j

∣∣∣∣∣

2

<∞

and

Esup
η

∣∣∣∣∣
1

h∞t
α

∞∑

j=0

jβj−1ε2t−1−jxK,t−1−j

∣∣∣∣∣

2

<∞

by similar arguments as used before.

Proof of Theorem 2. First, consider a mean value expansion of
√
TD∞

η
(η̂) around the

true value η0

0 =
√
TD∞

η
(η̂) =

√
TD∞

η
(η0) +

1

T

T∑

t=1

∂d∞
η,t(η̃)

∂η′

√
T (η̂ − η0) (50)
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with η̃ = η0+oP (1). Under Assumptions 1 and 2, Francq and Zaköıan (2004) have shown

that

− 1

T

T∑

t=1

∂d∞
η,t(η̃)

∂η′

P−→ Jηη = −E

[
∂d∞

η,t(η0)

∂η′

]
(51)

and, hence, equation (50) can be written as

√
T (η̂ − η0) = J−1

ηη
D∞

η
(η0) + op(1). (52)

Similarly, a mean value expansion of
√
TD∞

π
(η̂) around the true value η0 leads to

√
TD∞

π
(η̂) =

√
TD∞

π
(η0) +

1

T

T∑

t=1

∂d∞
π,t(η̃)

∂η′

√
T (η̂ − η0). (53)

Combining equation (52) and Proposition 1 leads to

√
TD∞

π
(η̂) =

√
TD∞

π
(η0)− JπηJ

−1
ηη

√
TD∞

η
(η0) + oP (1) (54)

= [−JπηJ
−1
ηη

: I]
√
T


 D∞

η
(η0)

D∞
π
(η0)


+ oP (1) (55)

= [−JπηJ
−1
ηη

: I]
√
TD∞(η0) + oP (1) (56)

Applying Theorem 1 gives the asymptotic distribution

√
TD∞

π
(η̂)

d−→ N (0, [JπηJ
−1
ηη

: I]Ω[JπηJ
−1
ηη

: I]′) (57)

which has the form of AΩA′ in Halunga and Orme (2009, p.372/373). The covariance

matrix can be written as

Σ = [−JπηJ
−1
ηη

: I]Ω[−JπηJ
−1
ηη

: I]′

= Ωππ + JπηJ
−1
ηη
ΩηηJ

−1
ηη
J′
πη

− JπηJ
−1
ηη
Ωηπ −ΩπηJ

−1
ηη
J′
πη

Finally, using equations (23), (26) and (27) the expression for Σ simplifies to:

Σ =
1

4
(κZ − 1)

(
E[r∞0,t(r

∞
0,t)

′]− E[r∞0,t(y
∞
0,t)

′]
(
E[y∞

0,t(y
∞
0,t)

′]
)−1

E[y∞
0,t(r

∞
0,t)

′]
)
. (58)

Proof of Theorem 3. First, we show that

√
TDπ(η̂) =

√
TD∞

π
(η̂) + op(1). (59)

Hence,
√
TDπ(η̂) will have the same asymptotic distribution as

√
TD∞

π
(η̂). The asymp-

totic distribution of the test statistic follows then directly from Theorem 2. Standard-

ization with the estimated consistent Σ̂ instead of the theoretical Σ, has no effect on
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the final χ2-distribution of the LM test statistic. This can be easily seen from similar

considerations as the ones outlined above and below in detail.

Since

sup
η
||
√
TD∞

π
(η)−

√
TDπ(η)|| ≤

1√
T

T∑

t=1

sup
η
||d∞

π,t(η)− dπ,t(η)|| (60)

we establish equation (59) by showing that

1√
T

T∑

t=1

sup
η
||d∞

π,t(η)− dπ,t(η)|| = op(1). (61)

Consider the following decomposition:

2(d∞
π,t(η)− dπ,t(η)) =

(
ε2t
h∞t

− 1

)
r∞t −

(
ε2t
ht

− 1

)
rt

=

(
ε2t
h∞t

− 1

)
r∞t −

(
ε2t
ht

− 1

)
rt +

[(
ε2t
ht

− 1

)
r∞t −

(
ε2t
ht

− 1

)
r∞t

]

=

(
ε2t
h∞t

− ε2t
ht

)
r∞t +

(
ε2t
ht

− 1

)
(r∞t − rt)

= ε2t

(
ht − h∞t
h∞t ht

)
r∞t +

(
ε2t
ht

− 1

)
(r∞t − rt) +

[(
ε2t
h∞t

− 1

)
(r∞t − rt)−

(
ε2t
h∞t

− 1

)
(r∞t − rt)

]

= ε2t

(
ht − h∞t
h∞t ht

)
r∞t + ε2t

(
ht − h∞t
h∞t ht

)
(r∞t − rt) +

(
ε2t
h∞t

− 1

)
(r∞t − rt)

Since ht ≥ ω > 0 and h∞t ≥ ω > 0 we have

||d∞
π,t(θ)− dπ,t(θ)|| ≤ c

{
|ε2t + ω| ||r∞t − rt||+ ε2t ||r∞t ||

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣+ ε2t ||r∞t − rt||
∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣
}

with c = 1/ω.

First, note that

r∞t − rt = −α 1

h∞t

∞∑

j=t

βjε2t−1−jxt−1−j . (62)
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Next, consider a typical element:

(
Esup

η
|r∞k,t − rk,t|2

)1/2
=


Esup

η

∣∣∣∣∣α
1

h∞t

∞∑

j=t

βjε2t−1−jxt−1−k−j

∣∣∣∣∣

2



1/2

≤
∞∑

j=t


Esup

η

∣∣∣∣∣
αβjε2t−1−j

ω + αβjε2t−1−k−j

xt−1−k−j

∣∣∣∣∣

2



1/2

≤
∞∑

j=t


Esup

η

∣∣∣∣∣

(
αβj

ω
ε2t−1−j

)s/4

xt−1−k−j

∣∣∣∣∣

2



1/2

≤
(
E[|εt−1−j |2s]

)1/4 (
E[|xt−1−k−j|4]

)1/4

sup
η

(α
ω

)s/4 ∞∑

j=t

βjs/4

=
(
E[|εt−1−j |2s]

)1/4 (
E[|xt−1−k−j|4]

)1/4

sup
η

(α
ω

)s/4 (βs/4)t

1− βs/4
(63)

which shows that Esup
η
||r∞k,t − rk,t||2 = O(βts/2).

Hence,

Esup
η
|ε2t | ||r∞t − rt|| ≤

√
Esup

η
|ε4t |Esupη

||r∞t − rt||2 = O(ρts/4)

by Assumption 1 and equation (63). Therefore, 1√
T

∑T
t=1Esupη

|ε2t | ||r∞t −rt|| = o(1) and,

hence, by Markov’s inequality 1√
T

∑T
t=1 supη

|ε2t | ||r∞t − rt|| = oP (1).

For the treatment of the second term we employ that
∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣ ≤
αs

ωs

∞∑

j=t

(βs)jε2st−j (64)

where again we use that w/(1 + w) ≤ ws for all w > 0 and any s ∈ (0, 1). Then,

Esup
η
ε2t ||r∞t ||

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣ ≤ Esup
η
||ε2t r∞t ε2st−j || supη

αs

ωs

∞∑

j=t

(βs)j

≤
√
Esup

η
||r∞t ||2E|ε4t ε4st−j| supη

αs

ωs
(βs)t

∞∑

j=0

(βs)j

=
√
Esup

η
||r∞t ||2E|ε4t ε4st−j| supη

αs

ωs(1− βs)
(βs)t

= O((βs)t) (65)

The last line follows because it can by shown by similar arguments as in the proof of

Theorem 1 that Esup
η
||r∞t ||2 < ∞ and because Hölder’s inequality and Assumption 4
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imply that E|ε4tε4st−j| ≤
(
E|ε4(1+s)

t |
)1/(1+s) (

E|ε4(1+s)
t−j |

)s/(1+s)

< ∞. Equation (65) implies

that
1√
T

T∑

t=1

Esup
η
ε2t ||r∞t ||

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣ = o(1), (66)

and, again, by Markov’s inequality 1√
T

∑T
t=1 supη

ε2t ||r∞t || |(h∞t − ht)/h
∞
t | = oP (1).

The third term can be treated as follows:

1√
T

T∑

t=1

sup
η
ε2t ||r∞t − rt||

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣ ≤

√√√√ 1

T

T∑

t=1

sup
η
ε4t ||r∞t − rt||2

T∑

t=1

sup
η

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣
2

≤
{

1√
T

T∑

t=1

sup
η
ε2t ||r∞t − rt||

}{
T∑

t=1

sup
η

∣∣∣∣
h∞t − ht
h∞t

∣∣∣∣

}
.

because
∑T

t=1w
2
t ≤

{∑T
t=1 zt

}
when wt ≥ 0 for all t. Above, we have already shown that

∑T
t=1 Esupη

ε2t ||r∞t − rt|| = O(1) and Esup
η

∣∣∣h
∞

t −ht

h∞

t

∣∣∣ = O(βts).
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