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Misspecification Testing in GARCH-MIDAS Models

March 1, 2015

Abstract

We develop a misspecification test for the multiplicative two-component GARCH-
MIDAS model suggested in Engle et al. (2013). In the GARCH-MIDAS model a
short-term unit variance GARCH component fluctuates around a smoothly time-
varying long-term component which is driven by the dynamics of a macroeconomic
explanatory variable. We suggest a Lagrange Multiplier statistic for testing the
null hypothesis that the macroeconomic variable has no explanatory power. Hence,
under the null hypothesis the long-term component is constant and the GARCH-
MIDAS reduces to the simple GARCH model. We provide asymptotic theory for our
test statistic and investigate its finite sample properties by Monte Carlo simulation.
Our test statistic can be considered as an extension of the Lundbergh and Terésvirta
(2002) ‘ARCH nested in GARCH’ test for evaluating GARCH models. We illustrate

the usefulness of our procedure by an empirical application to S&P 500 return data.

Keywords: Volatility Component Models, LM test, Long-term Volatility.
JEL Classification: C53, C58, E32, G12



1 Introduction

During the recent financial crisis, macroeconomic determinants have been rediscovered
as relevant factors for accurate prediction of stock market volatility. In particular, an
increasing amount of empirical studies has employed the GARCH-MIDAS framework in-
troduced by Engle et al. (2013) and identified economic variables that anticipate changes
in long-term volatility (see, e.g., Asgharian et al., 2013, Conrad and Loch, 2014, Do-
rion, 2014, Opschoor et al., 2014). In a GARCH-MIDAS specification, the conditional
variance consists of two multiplicative components, whereby macroeconomic conditions
enter through the smooth long-term component around which a short-term unit variance
GARCH component fluctuates. Besides the predictive evidence, however, it is still an
open question if these macroeconomic effects are indeed significant. But standard test
procedures for GARCH type specifications do not cover the case of macroeconomic ex-
planatory variables. As most of them also require additive separability of the additional
component under the alternative, they are also not straightforward to adapt to a general
GARCH-MIDAS structure.

We develop a misspecification test for the multiplicative two-component GARCH-
MIDAS model. In particular, we propose a Lagrange Multiplier (LM) statistic for testing
the null hypothesis that the macroeconomic long-term component has no significant effect.
Thus, under the null hypothesis, the long-term component is constant and the GARCH-
MIDAS model reduces to the simple GARCH. Note that a simple t- or F-test cannot be
employed in this context, as there exists no asymptotic theory yet for the general case
of macroeconomic effects in the GARCH-MIDAS model. The most recent theoretical
results available so far by Wang and Ghysels (2013), are specific to long-term components
of realized volatility type and only hold in a restrictive parameter space which does not
admit our null hypothesis. We derive the asymptotic properties for our test statistic.
In a Monte Carlo simulation, we find good size and power properties in finite samples.
Moreover, we illustrate the usefulness of our procedure by an empirical application to
S&P 500 return data.

Our test statistic is closely related to the LM-test for evaluating GARCH models by
Lundbergh and Terdsvirta (2002). In their ‘ARCH nested in GARCH’ setting, however,
squared log-returns in the GARCH component are not rescaled by the the second mul-
tiplicative component which causes our test statistic to differ. In contrast to our set-up,

log-returns standardized by the second “long-run” volatility component follow no longer



a GARCH process if the null hypothesis does not hold yielding different power properties
of both tests. Considering general alternatives with exogenous variables, our work also
complements the general GARCH specification tests with non-zero mean by Halunga and
Orme (2009) and with multiplicative components by Amado and Terésvirta (2014).

The plan of the paper is as follows. In Section 2, the GARCH-MIDAS model is intro-
duced and the LM-test statistic is derived. In particular, we highlight how our statistic
compares to existing GARCH-type specification tests of Lundbergh and Terasvirta (2002)
and Halunga and Orme (2009). Moreover, this section also contains the main asymptotic
results. Section 3 provides some finite sample evidence in a Monte Carlo study. In Section
4, we illustrate how the test can contribute to modelling S&P 500 return data. Section 5

concludes. All proofs are contained in the Appendix.

2 Model and Test Statistic

In this section we first introduce the GARCH-MIDAS specification of Engle et al. (2013)
and then discuss the null hypothesis of our test. The actual test statistic is closely related
to the ‘ARCH nested in GARCH’ Lagrange multiplier (LM) test originally proposed in
Lundbergh and Terdsvirta (2002). Moreover, Halunga and Orme (2009) suggest general
misspecification tests for GARCH models. In particular, they focus on estimation effects
from the correct specification of the conditional mean. While we simply assume that
returns have mean zero and, therefore, do not deal with estimation effects from the mean,

the proofs of our main results in Section 2.4 follow along similar lines as the proof of

Theorem 2 in Halunga and Orme (2009).

2.1 The GARCH-MIDAS Model

We define the log-returns as given by
Et = O'OtZta (1)

where Z; is IID with mean zero and variance equal to one. o2, is measurable with respect
to the information set F;_; and denotes the conditional variance of the returns. We
consider the following multiplicative decomposition of ¢, into a short-term and a long-
term component:

O%)t = ﬁOt%Ot (2)



The short-term component is specified as a unit variance GARCH(1,1):

2

~ £ - -
hoe = (1—ag—By) + o= + Bhos (3)
To,t—1

On the other hand, the long-term (MIDAS) component depends on the K lagged values

of a (non-negative) explanatory variable z;:

K

Foo = 0+ Z Yop(Wor, Wo2) Tk (4)
=1

with MIDAS weights ¢, (wo1,woe2) > 0 summing to one. A popular choice for determin-
ing the 1, () is the Beta weighting scheme. The sign of the effect of x; on long-term
volatility can be inferred from the parameter 7. Note that in equation (4) we consider a
specification in which the explanatory variable and the returns are observed at the same
frequency. Alternatively, one might also assume that the explanatory variable is observed
at a lower frequency than the returns (see, e.g., Conrad and Loch, 2014). Nevertheless,
our long-term component can be considered as a MIDAS specification in the sense that
it parsimoniously models the dependence of 7(; on (possibly) many lags of z; in terms of
only two parameters wg; and wpy via the flexible weighting scheme ), (-).

Following Conrad and Loch (2014), we denote the model with (exogenous) explanatory
variables as GARCH-MIDAS-X. Engle et al. (2013) and Wang and Ghysels (2014) also

N=1e2 of the last N days

consider a specification with the realized volatility, RV, = > im0 Ei-js

as the explanatory variable. In this case the long-term component can be rewritten as

N+K-1
To = 0p+ o Z Co1E}
=1
with ST e = NS o (wor, wo2) = N (see Wang and Ghysels, 2014)." In other
words, in this alternative representation the squared returns can be considered as the
explanatory variables.

For the specific case of a GARCH-MIDAS-RV model, Wang and Ghysels (2014) pro-
vide conditions for the strict stationarity of £; and establish consistency and asymptotic
normality of the QMLE. However, the proof of the asymptotic normality of the QMLE
rests on the assumption that ¢, > 0 for £ =1, ..., K and, hence, their framework does

not directly allow to test the null that all 1, are equal to zero (see Assumption 4.3 in

Let vy = V/ EOtZt. Then e; = /TotV+ can be interpreted as a semi-strong ARCH process with
multiplicative GARCH error (see Wang and Ghysels, 2014).



Wang and Ghysels, 2014). In addition, there is no asymptotic theory for the general
GARCH-MIDAS-X model yet. We will circumvent this problem by deriving an LM test
for the hypothesis that z; does not affect the long-term component, i.e. the long-term
component is constant and the GARCH-MIDAS-X reduces to the simple GARCH(1,1).
The LM test will require only the estimation of the model under the null. For deriving
our test statistic we re-parameterize equation (2) as follows:

~ ~ T _
2 ~ 2 ot
Oy = hOtTOt = (O‘Oh()t) (—0_2> = hOtTOt
0

The short-term component can then be expressed as

2

_ es _
hot = wo + ap——— + Bhot—1 (5)
To,t—1

with wo = 03(1 — g — B,). We denote the vector of true parameters in the short-term

component as 1, = (wo, v, By)’. Similarly, the long-term component can be rewritten as

K
TOt:1+Z7Tkatfk:1+7TE)Xt (6)
k=1
Wlth Tok — 0'6277('01/}(%(&101, UJOQ), Ty = (7T01, e 77T0K), and Xt = (l’t,h e ,l’t,K)/.

Using this notation, we are interested in testing Hy : 7y = 0 against H; : w9 # O.
Under Hj the long-term component is equal one and the GARCH-MIDAS-X reduces to
the nested GARCH(1,1) with unconditional variance 03 = wo/(1 — ag — f3,) (provided
that ag + B, < 1). Note that equation (5) is specified such that we can write

hot = wo + (aOfol + 50)50,1‘/71

which means that ,/\/To; = \ hotZ; follows a GARCH(1,1) both under the null and
under the alternative.

We make the following assumptions about the true data generating process.

Assumption 1. n, € O where the parameter space is given by © = {n = (v, q, ) €
R>*N0O<w<w,0<a,0<f,a+B<1}.

Assumption 2. Z? has a nondegenerate distribution, E[Z?] =1 and k7 = E[Z}] < co.

Assumptions 1 and 2 imply that \/hoZ; is a covariance-stationary process with uncon-
ditional variance o2. Further, by Jensen’s inequality, they imply that E[ln(cgZ2+3,)] < 0
which ensures that under the null ¢; is strictly stationary and ergodic (see, e.g., Francq
and Zakoian, 2004). Finally, the assumption on the existence of a fourth-order moment

of Z; will be necessary to ensure that the variance of the score vector exists.



2.2 Relation to Lundbergh and Terasvirta (2002) LM Test

The LM test suggested by Lundbergh and Terésvirta (2002) is based on the following
specification €, = vV ho&y, = VhotTotZi, where

hot = wo + 0405?_1 + Bohot-1 (7)

and the long-term component 7¢; in equation (6) is based on the specific choice for the
explanatory variable: x, = £, = £2/ho,. Because under this assumption &5, = N
follows an ARCH(K), Lundbergh and Terdsvirta (2002) refer to this specification as
‘ARCH nested in GARCH’ and test the null hypothesis Hy : w9 = 0. The LM test
statistic in Lundbergh and Terdsvirta (2002) is based on

2
€t LT

= — S, 8
(ht ) ; (8)

where 7 is the QMLE of 1 estimated under the null, hy =&+ ae? |+ Bhi_y and T =
(2 /hi—1,€2 o /hy_a, ... €2 4 /hu_k). Intuitively, equation (8) is used to test whether
the standardized returns are still correlated.

The above specification is remarkably similar to the GARCH-MIDAS-X. However,
there is also an important difference. In the specification of ho; the €2 ; is not divided by
Tor- Because of this, v/ho:Z; is a GARCH(1,1) process under the null but not under the
alternative.? As a consequence, our test statistic — which is based on hg, — will rely on an

appropriately modified version of equation (8).

2.3 Likelihood Function and Partial Derivatives

We denote the processes that can be constructed from the parameter vectors n = (w, «, 5)’
and w = (m,...,7g) given initial observations for ¢, and x; by h; and 7,. We dis-
tinguish between the unobserved log-likelihood function based on A = Z;io B (w +
ozsf_l_j /Ti—1—;) which depends on the infinite history of all past observations and the
observed likelihood which is based on h, = Z;;B F(w+ae?y_;/Ti1-j)+ B ho. We write

the unobserved log-likelihood function as

T
LT (n, wler, v, er—1,r-1,...) = Zlfo (9)
t=1

2The observation that hg; does not follow a GARCH process under the alternative is closely related
to the argument in Halunga and Orme (2009) that the alternative models considered in Lundbergh and

Terésvirta (2002) are not “recursive” in nature.



with

1 = In(f(e,|n, 7)) = —% (A% + In(r;) — hf } . (10)

t Tt

Conditional on initial values (go, ho = 0, X) the observed log-likelihood can be written as

Ly(n,mler, v, er—1,Tr-1,...,€1,%1) = th (11)
with
1 _ g2
li =In(f(g¢|m, 7)) = —= |In(hy) +In(7y) — =] . (12)
2 hyTy

2.3.1 First derivatives

In the following, we consider the unobserved log-likelihood function. We define the average

score vector evaluated under the null and at the true GARCH parameters as

- D) | _ L~ g [ damo)
D>(me) = | 7 U] =) A no—f e
D (n,) t=1 t=1 d?t(no)
where d;¥,(n,) = 9l;°/ 87)’%7”:0 and d37,(n,) = 9l°/ 871" . Next, we derive expres-

sions for d°,(ny) and d3°(n). First, consider the partial derlvatlve of the log-likelihood
with respect to n:

ol 1[ & 1 Ohe 107,
- |- —1| [ = - 13

with 01,/0n = (0x;/0n)'w. Under the null hypothesis, the long-term component reduces
to 7, = 1 and the short term component simplifies to h9® = h$°, i.e. the expression in

equation (7). We then distinguish between

ol 1
d=,(n) = =| =-|-L 1|y 14
=50 =5l (14)
with B
1 Ok
0o __ _ E i 1
yt h/?o an e hoo B St i) ( 5)

where s2° = (1,2 ,,h$°,), and the corresponding quantity which is evaluated at 7:

dyi(10) = so Ll you (16)
ho t

o0

0o __ 2 00 0o __ oo \—1 1 00
where hg% = wo + e} + Bohgs_y and y§5 = (h§S) ™" 222 Bosi—i-



The partial derivative with respect to 7 leads to:

o 1 f:? . ;3B?+l@, (a7
o 2 | h{oTy he Om T O
whereby the partial derivative of A2 is given by
671?0 . ’ g?flfj OTi_1-
= — : 1
on QZB 2. . Om (18)

Since O1,/0m = x; + (0%, /0m) 7, we have O1,/0T|r—o = X, and, hence,

o0 2
axin =G5 = gl (19)
with -
=X — hio Y e xeay (20)
0
Similarly as before, the corresponding exprésswn evaluated at m, is given by:
2
azim) = 5|t -1 (21)
with |
ro, =Xt — 040h8<;f ]Zoﬁogt 1—jXt—1—j- (22)

Remark 1. Recall that in Lundbergh and Terdsvirta (2002) the log-likelihood function is
not based on h2° but on h2°. Since Oh/Om = 0, in their setting equation (22) reduces
to rg5, = x¢. Finally, for the specific choice of x; suggested in Lundbergh and Terdsvirta
(2002), we obtain the version of r§5, employed in equation (8). However, the form of
equation (22) suggests that the properties of the two resulting test statistics might be

similar if ag is small.

In summary, we have

T oo, o
oo oo E_t o Yo
t=1 L0t Tot
Using that E[e}/hg5] = [Z2] =1, it follows that E[d{°(n,)|F:-1] = 0 and
Qo Qe

Var[d®(n,)] =Q =
Co Uy U

(23)



In the proof of Theorem 1 we will show that €2 is finite and positive definite. This will allow

us to apply a central limit theorem for martingale difference sequences to % Zthl de(n,).

2.3.2 Second derivatives

In the subsequent analysis we also make use of the following second derivatives:

T Al 0 1 = S X 24
and
W - e[ )
We then define o )
I = B[ E0]  Tmis ) (20
and o _
o = 8| TEA] Ll 553 @

Note that d7°,(n,) corresponds to the score of observation ¢ in a standard GARCH(1,1)
model and 9d;y;(n,)/0n’ to the respective second derivative. It then directly follows from
the results for the pure GARCH model in Francq and Zakoian (2004) that J,, is finite
and positive definite. Finally, note that Q,, = 2(rkz — 1)Jp, and Qe = 3(kz — 1) Iy
If Z; is normally distributed, then xk; = 3 and Q,,,, = J,,, and Qr, = J,, respectively.

2.4 The LM Test Statistic

If Assumptions 1 and 2 hold and the model is estimated under the null, the QMLE of the
GARCH(1,1) parameters will be consistent and asymptotically normal (see Francq and
Zakoian, 2004). More precisely, if Assumptions 1 and 2 hold and the model is estimated

under the null:

VT(# —n) —2 N(0, (57 — 1), ). (28)

In the following theorem we derive the asymptotic distribution of the average score
evaluated at m,. In order to ensure the finiteness of the covariance matrix of the average

score we assume that x; has finite fourth moment.

Assumption 3. x; > 0 is strictly stationary and ergodic with E|z|!] < oc.



For simplicity, we also assume that the explanatory variable takes only nonnegative
values. This assumption is line with the GARCH-MIDAS-RV model with x; = &7 or
the specification of Lundbergh and Terasvirta (2002) with z; = &2/hg;. For testing the
GARCH-MIDAS-RV against the simple GARCH model, Assumtion 3 requires that the
observed process has finite eighth moment: E[|¢;|®] < co. The corresponding constraints
on the parameters of the GARCH(1,1) are provided in Francq and Zakoian (2010), equa-
tion (2.54). In general, nonnegative explanatory variables could be the unemployment
rate, interest rates, the VIX, disagreement among forecasters or measures of political un-

certainty. However, our results can be generalized for the case that 7, = exp (1 + 7'xy).

Theorem 1. If Assumptions 1-3 hold, then
VTD>(n,) -4 N(0, ). (29)

Next, we consider the asymptotic distribution of the relevant lower part of the score
vector evaluated at 7). As an intermediate step, we show that J., can be consistently

estimated by
8d°° q

__Z ’

where 7 = m, + op(1). The result is presented in Proposition 1 in the Appendix. For

doing so the following Assumption 4 is required.
Assumption 4. E[|g,/|*1*9)] < 0o for some s > 0.

Note that in general e? = h3¥7¢;Z2, i.e. depends on 1, and 7. Under the null,
€2 = hgf;th depends on 1, only. In the proof of Proposition 1 we will use this insight to

argue that E[sup,|e,[*1T9] = E[|g,[*0F9)].
Theorem 2. If Assumptions 1-4 hold, then

VTDX (7)) -4 N (0, %), (30)
where

Y = Qe — Jpnd, o

nn*°mwn
1

= S0z — 1) (B 055)] - B (vay)] (Blyis (i) By 1) - ()

The covariance matrix ¥ in equation (31) takes the same form as in Lundbergh and

Terasvirta (2002).

10



The actual test statistic will be based on the observed quantity D, (7). The following
theorem states the test statistic and its asymptotic distribution. For the proof of the

theorem, we show that v/TD, () and vTD2° () have the same asymptotic distribution.

Theorem 3. If Assumptions 1-4 hold, then
LM = TDg(7)E 'Da(f)
1 [ e / T Te2
t 5 -1 t - a 9
= ~ — r: by |:T - :| r: ~X (K) (32)
(L) = (1)
where n = (W, &, B)’ 15 the vector of parameter estimates from the model under the null,
hy = d}—i—ézef_l—kﬁﬁt_l, r, = Xt—@/ilt Zz;t Bjsf_l_ Xi_1—; and 3 is a consistent estimator

J
of 3.

Following Lundbergh and Terésvirta (2002), we also consider a regression version of
the test. The corresponding test statistic is given by

SSRy— SSRy

LM =T
SSR,

(33)

where SSRy = ZtT:l(sf /hy —1)? and SSRy is the sum of squared residuals from a regres-
sion of (e2/hy — 1) on t} and y. Hence, LM is simply T times the uncentered R2 of the

regression.

Remark 2. [t is interesting to consider two special cases of our test. If there are no
GARCH effects, i.e. « = B =0, then hy = w. In this case, the model under Hy : wy = 0

has constant conditional and unconditional variance equal to 02 = wq. Under the alterative

there is multiplicative conditional heteroskedasticity, i.e. Varle,|F;_1| = o’y Without
GARCH effects the partial derivative of the log-likelithood under Hy simplifies to
olge 1 [e? Xy
— —|= -1 =. 34
or | __, 2 [ag ol (34)

The regression based test would be to regress (¢2/a2 — 1) on a constant and x;/c% and
to compute TR? which is x*(K). Thus, if there is a conditional mean function with
explanatory variables x;, our LM test reduces to the Godfrey (1978) test for multiplicative
heteroskedasticity. Finally, if we choose x;_j, = €2, our test coincides with the Engle

(1982) test for ARCH effects.

11



3 Simulation

In this section, we examine the finite sample behavior of the proposed test in a Monte Carlo
experiment. We simulate return series with 7" = 1000 observations and use M = 1000
Monte Carlo replications. Four alternative GARCH(1,1) specifications are considered.
The first and second one can be described by medium (M1/M2) persistence (ag + 3, =
0.95), the third and fourth by high (H1/H2) persistence (oo + 5, = 0.99). The first and
third specifications are also used in Halunga and Orme (2009). In order to illustrate the
effect of a being low /high while holding the degree of persistence fixed, we additionally
employ the second and fourth specification. wy is always chosen such that under the null
o2 = 1. The innovation Z; is assumed to be either normally distributed or ¢-distributed
with 5 degrees of freedom.
2

M1:  h, = 0.05+0.052=L + 0.90h, ,

Tt—1
5? 1 7
M2: h; = 0.05+0.10— 4+ 0.85h;_;

Ti—1
g2 _
H1: &k = 0.01+0.09=L +0.90h,_,

Tt—1

2
H2: B, = 001401521 +0.84%, ,

Tt—1
We first consider the size properties of the test. Under null, we test for remaining ARCH
effects by choosing z; = €2 /h;. In Table 1 we report the empirical size of the LM test given
in equation (32), the regression version of the test, LM , and the Lundbergh and Terasvirta
(2002) test statistic LM . As the table shows, the empirical size of all three versions of
the test statistic is very close to the nominal size when 7, is normally distributed. Also,

the size properties do not depend on the choice of K.
Under the alternative we consider the following ‘ARCH(1) nested in GARCH’ speci-

fication:

Tox =1+ To1

with 7o, € {0.1,0.2}. In the test statistic we correctly specify z; = €?/h;. As Table 2
shows, all three versions of the test statistic lead to almost identical results for a given
GARCH specification. However, the simulated power is much higher for GARCH specifi-
cations with high persistence than for GARCH specifications with low persistence. Also,
the power of the tests strongly increases with the deviation from the null hypothesis. For

example, for the process H1 and at the nominal size of 5% the simulated power of the LM

12



Table 1: Empirical size.

K=1 K=
Ml M2 HI H2 M1 M2 HI H2
LM 1% [ 09 09 13 1.1 13 16 12 17
5% | 46 50 54 52 51 50 53 54
10% | 9.2 105 101 107 92 94 9.7 95
LM 1% [ 09 09 13 1.1 13 15 12 17
5% | 46 50 55 52 51 50 53 54
10% | 9.2 105 101 107 92 94 98 95
LMpgr 1% | 09 10 14 12 16 15 1.8 1.9
5% | 50 53 53 54 51 43 50 5.5
10% | 102 10.3 11.1 11.2 94 88 88 9.1

Notes: Entries are rejection rates in percent over the 1000 repli-

cations at the 1%, 5% and 10% nominal level.

statistic is 66.9 when 7y ; = 0.1 but increases to 94.0 when my; = 0.2. Table 2 also shows
that the power deteriorates if the lag length K is chosen too large in comparison to the
true data generating process. Again, the loss in power is more severe if the underlying
GARCH process is less persistent. Interestingly, when the persistence is low, the power
is much higher for the process with high «g (M2) than for the process with low aq (M1).
A comparison of the power of the LM and LM test with the Lundbergh and Terasvirta
(2002) version, LM 7, of the test shows that the correct specification of &, leads to a
modest increase in power when the data generating process is an ‘ARCH(1) nested in
GARCH".

Next, we consider two more realistic examples in which the long-term component is
based actual data. We use continuously compounded daily stock returns on the S&P
500 for the period January 2000 to August 2014. Using five-minute intra-day data, we
construct daily realized volatility, RV;, as the sum of the squared five-minute returns
over the day. In addition, we construct monthly and quarterly realized volatilities as
RVt(N) = Z;y:_ol RV,_; with N = 22 and N = 65. As a second explanatory variable we
use the daily VIX index. As for the realized volatility, we also construct monthly and
quarterly rolling window versions of the VIX as VIXt(N) = i\;?)l VIX;, with N = 22
and N = 65. Figure 1 shows the evolution of the VIX and the realized volatility over the

13



Table 2: Size-adjusted power.
K=1 K =
M1 M2 H1 H2 M1 M2 H1l H2

mo,1 = 0.1

LM 1% | 16.0 275 46.0 442 7.6 132 243 225
5% | 31.0 49.0 669 69.2 172 274 41.8 40.9
10% | 423 625 772 77.7 26.0 389 533 51.3

LM 1% | 16.0 276 459 442 75 132 244 225
5% 1309 49.2 669 69.1 173 273 41.8 40.9
10% | 42.2 625 772 777 259 39.1 53.3 515

LMpr 1% | 16.0 264 439 41.7 6.8 11.8 226 20.7
5% | 30.7 47.0 65.0 62.8 17.3 26.0 41.6 39.6
10% | 41.0 59.0 74.6 74.0 26.5 37.8 51.7 50.9

mo,1 = 0.2

LM 1% | 19.0 51.8 86.9 926 11.5 29.3 684 71.2
5% 1299 69.6 94.0 97.5 222 50.5 84.7 87.6
10% | 38.7 782 96.1 98.6 31.5 628 889 929

LM 1% | 19.0 51.8 87.0 92.7 11.5 29.3 684 714
5% 1299 69.7 94.0 97.5 223 50.4 84.7 87.6
10% | 38.7 782 96.1 98.6 315 628 89.0 93.0

LMpr 1% | 186 46.1 845 873 114 30.7 640 66.3
5% 1293 64.2 91.6 949 226 49.8 81.1 83.8
10% | 374 73,5 93.6 97.2 324 62.0 88.6 91.8

Notes: Entries are rejection rates in percent over the 1000 replications

at the 1%, 5% and 10% nominal level.

sample period.
Using the rolling window versions of the realized volatility and the VIX we can create

smooth long-term components. We specify the long-term component as
Tog = 1 +0.62,—1 +0.32,_9 + 0.072,_3 + 0.0324_4. (35)

As Table 3 shows, for the smooth long-term components that are based on actual data
the difference in the power of the tests based on r; and the Lundbergh and Terasvirta

(2002) version based on #7" becomes much more pronounced.
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Figure 1: The upper and lower panel show the evolution of the VIX and the realized
volatility (and the rolling window versions) over the period October 2010 to October
2014.

4 Conclusions

We develop a Lagrange-Multiplier test for the null hypothesis of a GARCH volatility
against the alternative of a GARCH-MIDAS specification. The test provides a first so-
lution to statistically evaluate if there is a separate long-term varying volatility compo-
nent driven by a macroeconomic explanatory variable, besides the standard short-term
GARCH part. We derive the asymptotic properties of our test and study its finite sample
performance. In an application to S&P 500 returns, we find that the test provides useful

guidance in model specification.
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Table 3: Rejection rates for long-term components based on actual data.

K=1
v | VIXS) vix® vix,., RV Rv® Ry,

LM 1% | 38.2 73.2 88.8 62.5 964  99.7
5% | 64.7 89.9 96.1 84.0  99.0  99.9

10% | 78.2 94.8 97.7 9.2  99.6  99.9

LM 1% | 38.2 73.0 88.6 62.1 963  99.7
5% | 64.4 89.8 96.1 83.8  99.0  99.9

10% | 78.0 94.7 97.7 9.2  99.6  99.9

LM 1% 19.1 34.3 65.5 29.1 57.5 100
5% | 45.1 62.2 85.8 56.2 842 100

10% | 62.5 75.3 92.7 706 92.6 100

Notes: See Table 1. In the GARCH component we choose specification H1.

Table 4: Rejection rates for long-term components based on actual data.

K=4
v | VIXS vix® vix,., RV Rv* Ry,

LM 1% | 25.0 54.7 83.0 432 861  99.9
5% | 478 777 93.6 66.7  96.7 100

10% | 615 85.8 96.6 784 983 100

LM 1% | 247 54.3 82.8 425 854 999
5% | 475 77.6 93.4 664  96.6 100

10% | 60.8 85.8 96.4 778 983 100

LM 1% | 289 54.5 63.8 463 796  99.5
5% | 51.0 77.8 82.3 67.2 920  99.9

10% | 63.6 85.7 88.5 783 962 100

Notes: See Table 1. In the GARCH component we choose specification H1.
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A  Proofs

Proof of Theorem 1. First, we show that €2 is finite and positive definite. From Francq
and Zakioan (2004) it follows that €2,,, is finite and positive definite. What remains to be
shown is that €, is finite and positive definite. If this is true then, by Cauchy-Schwarz,
also the “off-diagonal matrices” will be finite and positive definite.

Finiteness of 2, :

Recall from equation (23) that Qnr = E[d}(no)d,(n,)] = ;(kz — DE[(rg)]-
It follows from Assumption 2 that 0 < kz — 1 < oo. Hence, ||E[r§(r53)]|| is finite if

E[|[r5(r53) |[] < oo. A typical element of the K x 1 vector r§5 is given by

1 o0
co J 2
Tokt = Ttk — Q0pes E BoEi-1-jTt-1-k—j- (36)

First, E[|z;_|*] < oo by Assumption 3. Second,

ZOO Bj 2 2\ /2 00 ﬁj 2 2\ '/?
o« E8 L i Tp_1—i « Ey 1_s
D E A < |ED. —0 | | (37)
hs =0 (WO +a0ﬁ05t—1—j)
o o\ 1/2
00 J
g .
iz0 (wo + O‘Oﬁogtflf])
. ﬁ] 5/ oy 1/2
QoPy 2
< ];O E ( w0 5t—1—j> Tt—1—k—j (39)
allt 1/4 1/4
0 2s 4
< () (8 eal)
0
S g <oo
§=0

The arguments used above are similar to the ones in Francq and Zakioan (2004, Eq. (4.19),
p.619). In particular, in equation (37) we use that hg5 > w0+(xoﬁégf_1_j. In equation (38)
we use Minkowski’s inequality. Next, in equation (39) we use the fact that w/(14+w) < w*
for all w > 0 and any s € (0,1). Finally, Assumption 1 implies that there exists some
s > 0 such that E [5fi1_j] < o0 (see Proposition 1 in Francq and Zakioan, 2004, p.607).
By Assumption 3, E Uxt,l,k,jﬂ < o0.

This implies E[|r§5,]*] < oo and E[|r§%,r6%:/] < oo by Cauchy-Schwarz inequality
which means that €, is finite.

Positive definiteness of 2, :
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As Kz —1 >0, it remains to show that ¢'E[rg5,(rg5)']c > 0 for any non-zero ¢ € R**!.

Assume the contrary, i.e., there exists a ¢ # 0 such that ¢'E[rg5(rg3)’]c = 0. This implies

E[(c'ts%)?] = 0 and thus ¢'rf5 = 0 a.s.. Hence, there exists a linear combination of
Toat - -+ Toace Which equals zero a.s., i.e.,
K o 00
— 0 J -2
0= g S g Boi—1—jTt—1-k—j a.s. (40)
k=1 UL

With rearranging, this requires
o _ | @0 -1 2./
cxy = [hTo(l — BoL) L} (eic'xy) a.s. (41)
0.t

According to Assumption 1, 8, < 1, i.e. the operator in square brackets cannot have
an eigenvalue 1. Moreover, Assumption 2 imposes Z? and therefore also 2 to be non-
degenerate. Hence the only way to fulfill the above equation is by ¢’x; = 0 a.s.. As the
x; are positive, this implies that ¢; = ... = cx = 0 which is a contradiction to the initial
assumption. Thus 2., must be invertible and hence positive definite.

Next, E[d°(n,)|Fi-1] = 0. From Francq and Zakoian (2004) and Assumptions 1-3 it
then follows that d°(m,) is a stationary and ergodic martingale difference sequence with
finite second moment. Applying Billingsley’s (1961) central limit theorem for martingale
differences gives the result.

The following proposition will be used in the proof of Theorem 2.

Proposition 1. Under Assumptions 1-4, we have that

T -
1 3d?t(77) p 301%(%)

— d = — d 42
T oy { on' } 42)

where n =ny + op(1)

Proof of Proposition 1. We obtain (42) in two steps. a) In a first step, we show that

Jen(n) = —E [8(12'0;;,(”)} is finite with a uniform bound for all n € ©. Then a uniform

weak law of large numbers (see, e.g., Theorem 3.1. in Ling and McAleer (2003)) implies

-y e

Equation (42) then follows from the triangle inequality and the fact that ) = ny+ op(1).

8d°°

sup,,

,m<n>H ~ op(1).
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Using equation (25) we obtain

5] = 5 (5

< Cletuf (Hr?’H~II(y§°)’II+'

o0
or;

el 1)1+

5t
hOO

)
) (43)

The last inequality follows with a generic constant 0 < C' < co and h® > w > 0.

First, consider the three elements of ||(y°)||. To simplify the notation note that

ag—'go w=0 — agn ahw - 1/(1 - )a we have |hoo ahf°| < ]-/( ( B)) < o0. Then
aagzo = ijo Oéﬁjgf—l—j < hg® and, therefore, hioo o < 1l/a < oo. Finally, 2 =

P G Hw + ag} ;). We then obtain

1 OhyF li (W + et )
h%)o B =0 +ﬁj w+a€t 1— j)
- ﬁwszyws wtash, ), (44)

where we again use the fact that w/(1 4+ w) < w® for all w > 0 and any s € (0,1). It

follows that [|(y;°)|| < K(1+> 7247 |37 (w + ae?_,_;)*|) for some constant K > 0.
Hence, by Cauchy-Schwarz inequality, the first summand in equation (43), i.e

E [sup,, |e7 +w| - |[e5°]] - [|(y2°)']]], can be bounded from above by the terms

V Elsup, |27 + w2 Efsup, 172 (45)

and

suanJﬁ” [sup, (w + agi_y;)°lef + w| [[r§°]]] <

Sup, > jA°\Elsup, (w + act,_)[e} + w2 Elsup, ||| (46)
=0

The finiteness of (45) follows from Assumption 4 and similar arguments as in the proof

of Theorem 1. The finiteness of (46) follows by applying Hélder’s inequality, since for the

elements in the sum which involve expectations of the squared observations we have

E[sup, (w+ ag;_,_;)*|ef +wl’] <

o7y 8/(1+9) o7\ 1/0+9)
(E[sup,, (w + 0453_1_]-)2(1* ) (E[sup,|e] + w2+ (47)

and again Assumption 4.

20



Using the Cauchy-Schwarz-Inequality for the two factors in the second term in (43),

we are left with showing that E [supn H%I;’;O/o

o 0 B, 1 o~ o

8,,7/ o 87’/Xt 87’/ (hgo j;ooéﬁ gfljxfl])
0 1 [ , 0

= e (Z RETe e

0
(hmzaﬂetljxtu><yt> ,joo xois (pgadet e, ) (49
=0

The first two terms vanish in the GARCH-MIDAS-X with exogenous explanatory variable
Tt =0 or in the GARCH-MIDAS-RV with z; = €7 ;.

HQ} is finite. This follows from

Xt

2
Remark 3. Note that in the case of X, with elements X = =

B
for E [supn Harf

8th — Et—k ahtoik
on'— (hiZy)? Om’

}. Here in the last two terms in (48) we have

and explicit bounds for terms of this type apply as before.

Boundedness of the norm of the third term follows for all  in expectation with a
combination of the argument right above and the considerations in the proof of Theorem 1.

The fourth term can be written as:

. i
0 Z;’ioﬂjgilﬂ'%,tﬂ—j OZZ?‘;OJBJ 5?,1,]-5101,1&—1—]‘

1 0 Z;‘io Bj’ff—l—jxlt—l—j « Z?io jﬁj_letz—l—jx?:t—l—j
L (49)
¢
0 Z;io ﬁjf’f?—l—ij,tflfj 0‘2;10 jﬂjilggflfjxf(vtflfj
Hence, for typical elements of the second and third column it follows that

1 [o.¢]
J -2 .
f00 E &) €1 jTkt—1—j
t .
j=0

2

Esup,, < 00

and
2

Esup,, < 00

1 o0
il ij—1.2 )
hoan Jp 11— jTKt—1—j
t

J=0

by similar arguments as used before.

Proof of Theorem 2. First, consider a mean value expansion of v/T fo('ﬁ) around the

true value 1,

0 — VTD: (i) — VIDE (1 Zadm D T mo) (50)
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with 1) = my+o0p(1). Under Assumptions 1 and 2, Francq and Zakoian (2004) have shown
that

adoo L odz (o)
T Z Jnn =-E lL} (51)
=1 on’
and, hence, equation (50) can be written as
V(1) = ng) = I D5 (106) + 0,(1)- (52)

Similarly, a mean value expansion of v/TD2 (%) around the true value 1, leads to

VIDZ () = VI () + 3.3~ T - ) (53)

Combining equation (52) and Proposition 1 leads to

VIDZ (%) = VIDZ(ng) — JanIppVTD (ng) + op(1) (54)
_ D“(no)

= [~Jagdpw c VT [ " op(1 55

[ ] D= () +op(1) (55)

= [~Jpd, s o IVTD™(ng) + op(1) (56)

Applying Theorem 1 gives the asymptotic distribution
coray d _ _
VTDX () == N(0, [ Tapd )t - 10T, I 0 2 1)) (57)

which has the form of AQA’ in Halunga and Orme (2009, p.372/373). The covariance

matrix can be written as

Y o= [Jamds  O0Q-Jayd o 1)
= Qur + Jngdn QI I — T J o Qe — Q3,0 T

nn-Tn nnvY wn

Finally, using equations (23), (26) and (27) the expression for 3 simplifies to:
S = s — 1) (Bl 2) ]~ Blsvss)] (Blves(ven)) " Ebasts)]) . (69)
|
Proof of Theorem 3. First, we show that
VTD,(7) = VID () + 0,(1). (59)

Hence, vVTD,(7) will have the same asymptotic distribution as v/7D2(%). The asymp-
totic distribution of the test statistic follows then directly from Theorem 2. Standard-

ization with the estimated consistent 3 instead of the theoretical 3., has no effect on
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the final y2-distribution of the LM test statistic. This can be easily seen from similar

considerations as the ones outlined above and below in detail.

Since

sup, ||VIDE (1) — VID(n)|| < % Z sup, |1d, (1) — dp ()]

we establish equation (59) by showing that

% ZSUand:-O,t(n) —dr:(m)|| = 0,(1).

Consider the following decomposition:

2(dy(n) — dxi(n))

hy — h$° o
= 5?( th,?ohtt )I‘t +¢e

Since hy > w > 0 and hy® > w > 0 we have

dl

hehy

hy — he°

(60)

(61)

) -

- - son | P5S — e - he —h
145206) = dng®)] < {162+l i =+ el | "5+ 2l -l |22
t t
with ¢ = 1/w.
First, note that
1 =
r° —r; = —0 s Z ﬁjgf_l_jxt_l_j. (62)
—
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Next, consider a typical element:

o\ 1/2
1 o0
0 n1/2 )
(Esup,?|7"k7t — Tkl ) = | Esup, ¥ E Bei1_jti-1-k-;
i
Jj=t
. i o\ 1/2
aei
< Esup , Ti1—k—j
— n Bj 2 t—1 k‘ J
= w+ €l 1—k—j
1/2
0 j s/4 2 /
af
< Esup,, ( - € J) Tt1-k—j
Jj=t

< (Blle )" (B] |:ct1,”\ )

) Zﬂjsm
= (Elleery[*]) " (BI |17t T
)"

S

g1e

sup,, <

s/ s/4

€1R

sup,, < 58/4 (63)

which shows that Esup,|[rp% — r3.|[> = O(B™/?).

Hence,

ESUpn|5t| |[r5® — 1] < \/Esupn|gt|Esupn||rt ]2 = O(pts/4)

by Assumption 1 and equation (63). Therefore, — 7 ST Esup, |7 | |[r° —r¢|| = o(1) and,
hence, by Markov’s inequality — Nis ST sup, 7| [|re® — || = op(1).

For the treatment of the second term we employ that

SN (60)

he — by
hi®

where again we use that w/(1 + w) < w® for all w > 0 and any s € (0,1). Then,

s oo

ht

00 28 a s\J
Esup, e [r;° < Boup, |lefriel | supy 2 3 (5
< \fBsup [ Rl | sup, S (5) (5
7=0
= \/Bswp, |Ire|Elel=, | sup L(ﬂﬁ)t
n t—j ﬂws(l _ﬁs)
= 0((8")") (65)

The last line follows because it can by shown by similar arguments as in the proof of

Theorem 1 that Esup,||r{°||* < co and because Hélder’s inequality and Assumption 4
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1/(1+s) s/(1+s)
imply that Blefei®;| < (E\gf(Hs)\) (E gfﬁlfs)o < oco. Equation (65) implies
that
hi®

— hy
hi®

=o(1), (66)

T
1 (o0}
ﬁ Z ESUPn5?| bl
t=1

and, again, by Markov’s inequality % ST sup, 7| [t5°]| [(he® — hy)/hi°] = op(1).

The third term can be treated as follows:
T T
1 h® — hy
<7 > ~sup,ei|[ri — ]2 ) sup, s
t=1 t=1 t

T T
|
< —Zsupn€?llr?°—rt\\}{zsupn
{VTtl pa

because Zthl w? < {Zthl zt} when w; > 0 for all ¢. Above, we have already shown that

e = 0(8).

hge

2

he — b,
hee

T
1 (ee]
ﬁ ZSUPn&‘fHTt — 1ry|
t=1

hee — b,
hie

} |

ST Esup,e7||ry° — r¢|| = O(1) and Esup,,
|
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