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Abstract

The fixed-b asymptotic framework provides refinements in the use of heteroskedasticity and
autocorrelation consistent variance estimators. We show however that the fixed-b limiting
distributions of t-statistics are not pivotal when the variance of the underlying data gener-
ating process changes over time. To regain pivotal fixed-b inference under such time het-
eroskedasticity, we discuss three alternative approaches. We employ (1) the wild bootstrap
(Cavaliere and Taylor, 2008, ET), (2) resort to time transformations (Cavaliere and Taylor,
2008, JTSA) and (3) suggest to pick suitable the asymptotics according to the outcome of
a heteroskedasticity test, since small-b asymptotics deliver standard limiting distributions
irrespective of the so-called variance profile of the series. We quantify the degree of size
distortions from using the standard fixed-b approach and compare the effectiveness of the
corrections via simulations. We also provide an empirical application to excess returns.
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1 Introduction

Most macroeconomic and financial variables are observed over time. When conducting statistical
inference using such data, it is therefore crucial to allow for serial dependence in the series. For
weakly stationary series, the seminal contribution of Newey and West (1987) (see also Andrews,
1991) allows to asymptotically robustify the class of GMM (Hansen, 1982) hypothesis tests to
the potential presence of serial correlation. Relying on a heteroskedasticity- and autocorrelation
consistent [HAC] estimator of the variance of the estimators, this framework allows for normal
or χ2 asymptotics. The asymptotic distributions turned out, however, to be fairly poor approx-
imations to the actual finite-sample distributions, often leading to substantial size distortions in
applied work. As a consequence, test results are often sensitive to the choice of bandwidth B

and kernel k employed for estimating the variance. Also, the asymptotics require that a van-
ishing fraction b := B/T → 0 of the number of time series observations T is used. In actual
applications, b must of course be positive.

To tackle these finite-sample issues with HAC variance estimation, a series of contributions, in-
cluding Kiefer et al. (2000) and Kiefer and Vogelsang (2002a,b, 2005), proposes a new asymptotic
framework, labelled fixed-b asymptotics, in which it is not required that b → 0. This leads to
new asymptotically heteroskedasticity- and autocorrelation robust [HAR] distributions (reviewed
in more detail below) for the standard t and Wald-type test statistics in the GMM framework.
Conveniently, the distributions reflect the choice of bandwidth and kernel even in the limit.
The above-cited papers convincingly demonstrate that the asymptotic distributions may pro-
vide substantially better approximations to actual finite-sample distributions. The usefulness of
such procedures has spawned a very active literature. An incomplete list of recent contributions
includes Yang and Vogelsang (2011), Vogelsang and Wagner (2013) or Sun (2014a,b).

Our first contribution is to show in 3 that fixed-b asymptotics unfortunately do not automatically
lead to finite-sample improvements in all empirically relevant settings and should hence only be
used with additional care. In particular, variances—as a measure of volatility—varying in time
(i.e. time heteroskedasticity) affect limiting distributions in the fixed-b framework and thus lead
to a loss of asymptotic pivotality. Time-varying variances are present in many financial (see
among others Guidolin and Timmermann, 2006; Amado and Teräsvirta, 2014; Teräsvirta and
Zhao, 2011; Amado and Teräsvirta, 2013) and macroeconomic (see e.g. Stock and Watson, 2002;
Sensier and van Dijk, 2004; Clark, 2009, 2011; Justiniano and Primiceri, 2008) time series such as
excess returns, economic growth or inflation. Time-varying variances include, but are not limited
to, permanent breaks or trends in the variance properties of (the innovations of) the series.1

Correspondingly, consequences of and remedies for time heteroskedasticity for inference with
dependent data have received substantial attention in recent years.2 Yet, if one lets b→ 0 as in

1In the macroeconomic literature, a particular such phase of declining volatility at the end of the millennium
is known as the “Great Moderation.”

2For stationary autoregressions see e.g. Phillips and Xu (2006) or Xu (2008); for unit root autoregressions, see
Cavaliere and Taylor (2008b) or Cavaliere and Taylor (2009). The effects of time-varying volatility are amplified
in panels of (nonstationary) series, making corrections all the more necessary; see e.g. Demetrescu and Hanck
(2012) or Westerlund (2014).

2



Newey and West (1987) time-varying variance does not have an asymptotic effect (see Cavaliere,
2004). Practitioners thus face a trade-off in the precision of the critical values provided by the
fixed-b approach, a trade-off which is determined by the strength of the time heteroskedasticity
in the data generating process [DGP].

Therefore, the second contribution of the paper is to discuss methods for correctly sized fixed-b
inference in the presence of time-varying variances, thus making the trade-off irrelevant. To
achieve this, we make use of suitably modified techniques from the unit root testing literature
(Section 4). More specifically, we build on the work of Cavaliere and Taylor (2008a) that suggests
to employ a wild bootstrap scheme. Alternatively, we propose to time-transform heteroskedastic
series as in Cavaliere and Taylor (2008b) so as to recover homoskedasticity prior to conducting
the test. Since Cavaliere and Taylor work with integrated series directly, while our setup assumes
integration of order zero, a modification of the transformation algorithm is needed. Third, we
demonstrate that a pretest for time-varying variance can also be used for robustification: depend-
ing on the outcome of the test, one either uses small-b methods valid under heteroskedasticity or
fixed-b methods requiring homoskedasticity.

Simulation results presented in Section 5 confirm our main analytical predictions: First and as is
well-known, the standard HAC tests are size distorted in finite samples when there is serial cor-
relation, a distortion which can be remedied using fixed-b methods under homoskedasticity. The
latter are however size distorted under heteroskedasticity. Second, the corrections suggested here
yield better finite-sample size under heteroskedasticity. They also show good performance under
homoscedasticity. The time-transformation is somewhat conservative, while the wild bootstrap
is sometimes slightly upward size distorted. Third and as one would expect, the pre-test has an
intermediate position. Fourth, the wild bootstrap turns out to be more powerful than the time
transformation.

Section 6 provides an empirical application to excess returns of US stocks and 10-year bonds over
30-day US treasury bills, illustrating the potential empirical effect of using testing procedures
which are and are not robust to time-varying variances. Section 7 concludes. The appendices
collect proofs and other derivations.

2 Fixed-b HAR testing

In this paper, we focus on the simple and prototypical case of tests for the mean of a series yt,
E (yt) = µ. That is, we test H0: µ = µ0. The findings to be presented however generalize readily
to other testing problems, e.g. to the case of testing moment restrictions. Our goal is to provide
tests which are robust to the potential presence of both heteroskedasticity and autocorrelation.

The classical t-test for µ relies on the normalized sample mean,

√
T

(
ȳ − µ0
ω

)
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with ȳ = 1
T

∑T
t=1 yt the sample average of yt and ω2 = limT→∞Var

(√
T (ȳ − µ)

)
, the so-called

long-run variance of yt. We thus restrict ourselves to the case of
√
T -consistent sample averages,

which are given for independent, both identically and heterogeneously distributed random vari-
ables, as well as serially correlated short memory series. The long-run variance—as opposed to
the variance of yt—captures the effect of possible serial correlation or heteroskedasticity on the
sample average, hence the acronym HAC for its estimate.

Should yt be weakly stationary with absolutely summable autocovariances γj = Cov (yt, yt−j), it
holds that ω2 =

∑∞
j=−∞ γj . Regularity conditions assumed,3 a central limit theorem applies for

ȳ and
√
T

(
ȳ − µ0
ω

)
d→ N (0, 1)

under the null.

In practice, the long-run variance ω2 is unknown and has to be estimated, leading to the feasible
t-ratio

T =
√
T

(
ȳ − µ0
ω̂

)
. (1)

The most popular HAC estimators ω̂2 rely on suitably weighted sums of sample autocovariances;
see Newey and West (1987) and Andrews (1991).4 Thus,

ω̂2 =
T−1∑

j=−T+1

k

(
j

B

)
γ̂j

where k is the employed kernel function, B denotes the so-called bandwidth and γ̂j is the jth-
order sample autocovariance, γ̂j = 1

T

∑T
t=j+1 (yt − ȳ) (yt−j − ȳ). Under additional regularity

conditions (see e.g. Andrews, 1991), and in particular b = B/T → 0 at suitable rates, consistency
follows, ω̂ p→ ω, and

T d→ N (0, 1).

under H0. Although the asymptotics are the same for any suitable kernel and bandwidth choice,
the finite-sample behavior of T does depend on the kernel and bandwidth chosen in the test
situation at hand. The quality of the asymptotic approximation thus depends on user input.
To make this dependence explicit, Kiefer and Vogelsang (2005) let B/T = b ∈ (0, 1] for the
asymptotic analysis. While the resulting limiting distribution is free of nuisance parameters, it
is nonstandard. But, more interestingly, it depends directly on the kernel k and indirectly (via
b) on the bandwidth B, thus offering second-order refinements to the usual, small-b asymptotics
where b→ 0; see Sun (2014b). Concretely,

T d→ B (k, b)

3See e.g. Davidson (1994, Chapter 24) for sets of suitable assumptions.
4Semiparametric estimates based on AR approximations (e.g. Berk, 1974) or on so-called steep origin kernels

(Phillips et al., 2006) are also available in the literature.
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where, assuming for simplicity that we work with kernels with smooth derivatives (of which
Andrews’ quadratic spectral (QS) kernel is an example),

B (k, b) =
W (1)√

−
∫ 1
0

∫ 1
0

1
b2
k′′
(
r−s
b

)
(W (r)− rW (1)) (W (s)− sW (1)) drds

(2)

with W (s) a standard Wiener process. The corresponding critical values for T are tabulated as
a function of k and b in Kiefer and Vogelsang (2005). For b→ 0, B (k, b)

d→ N (0, 1) and small-b
asymptotics are, in a sense, a particular case of the fixed-b approach.

Note that the functional B (k, b) depends on the entire path of the Wiener process and not only
on W (1), as is the case with the small-b approach. This has consequences when the volatility of
yt varies in time, as we shall see in the following section.

3 Failure of fixed-b HAR tests under time-varying variance

In order to analyze fixed-b asymptotics of T under time-varying variance, we assume a multi-
plicative component structure of the series to be tested.

Assumption 1 Let the observed series yt be generated as

yt = htυt + µ, t = 1, . . . , T,

where the stochastic component υt is zero-mean stationary as specified by below, and the time
heteroskedasticity is induced by the function h, also specified below.

This multiplicative structure is common in the literature; see e.g. Cavaliere (2004). This makes
yt a uniformly modulated process (Priestley, 1988, p. 165).5 To conduct the asymptotic analysis,
we assume the stochastic component to have short memory in the following sense.

Assumption 2 Let υt be a zero-mean strictly stationary series with unity long-run variance,
L2+δ-bounded for some δ > 0, and strong mixing with coefficients α (j) for which∑

j≥0
α (j)1/p−1/(2+δ) <∞

for some 2 < p < 2 + δ.

Strong mixing with coefficients α satisfying some summability condition is a standard way of
imposing short memory onto υt (and thus yt); cf. e.g. Phillips and Durlauf (1986). Restricting
the long-run variance to equal unity is not leading to any loss of generality, and allows one to

5Other contributions model υt explicitly as a linear process with modulated innovations; see e.g. Cavaliere and
Taylor (2008a,b). Demetrescu and Sibbertsen (2014) argue that the two DGPs are essentially equivalent.
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interpret h2t as the long-run variance of the series yt. The assumption yields (see e.g. Davidson,
1994, Chapter 29) weak convergence of the partial sums of υt to a standard Wiener process,

1√
T

[sT ]∑
t=1

υt ⇒W (s) ,

so υt is integrated of order 0. While yt, being a modulated version of υt, is also strong mixing,
its partial sums exhibit a limiting behavior depending on the modulating function ht.

Assumption 3 Let ht = h (t/T) with h (·) a deterministic, piecewise Lipschitz function, positive
at all s ∈ [0, 1].

This allows for general patterns of smoothly or abruptly changing variance, as long as the abrupt
changes are not too frequent.6

Under the conditions spelled out by the above assumptions, we have (for details see Cavaliere,
2004, Lemma 3)

1√
T

[sT ]∑
t=1

(yt − µ)⇒
∫ s

0
h (v) dW (v) ≡ Bh (s) .

The process Bh (s) is a Gaussian process, but not a Brownian motion: the covariance kernel of
Bh is given by

Cov (Bh (s) , Bh (r)) =

∫ min{s,r}

0
h2 (v) dv

which is not proportional to min {s, r}, the covariance kernel of the standard Wiener process.

It is precisely the fact that the normalized partial sums of the centered yt do not converge weakly
to a Brownian motion that affects the fixed-b asymptotics of T . Under a time-heteroskedastic
DGP, the limiting distribution given by fixed-b asymptotics is stated in the following proposition.

Proposition 1 Under H0 and Assumptions 1-3, it holds for kernels with smooth derivatives and
b ∈ (0, 1] that

T d→ B (h, k, b) ≡ Bh (1)√
Qh,k,b

as T →∞, where

Qh,k,b = −
∫ 1

0

∫ 1

0

1

b2
k′′
(
r − s
b

)
(Bh (r)− rBh (1)) (Bh (s)− sBh (1)) drds.

Proof: See the Appendix.
6Seasonally varying variances are excluded, for instance. This is not critical, however, since the work of

Burridge and Taylor (2001) suggests that seasonally varying variances actually average out and do not affect
convergence to Wiener process.
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Proposition 1 demonstrates that HAR testing is not robust to time heteroskedasticity for fixed
b. Although Bh (1) is normal with mean zero and variance ω̄2 =

∫ 1
0 h

2 (s) ds, the distribution of
B (h, k, b) is different from that of B (k, b) whenever h is not constant almost everywhere. This is
because Qh,k,b is essentially different from the denominator of (2) under time-varying volatility.

Figure 1 illustrates this lack of pivotality, showing quantile-quantile (QQ) plots for the distribu-
tions B (h, k, b) for b = {0.1, 0.5, 0.9} and four different h. We take T = 1000 and simulate the
B (h, k, b) with 50,000 replications. The kernel k is taken to be the Quadratic spectral kernel.
Under DGP1, volatility is constant over time. This case is reported as a benchmark, where we
compare the quantiles of B(k, b) with themselves. The first row of graphs in Figure 1 show the
results for a small, medium and large value of b. The negligible deviations are due to small Monte
Carlo error. An early downward break in volatility is present in DGP2. Here, we compare the
quantiles of B(h, k, b) on the y-axis with the corresponding quantiles of B(k, b) on the x-axis.
The results shown in the second row of Figure 1 clearly demonstrate differences between the two
distributions. The larger b, the more pronounced is the discrepancy. For the third DGP (exhibit-
ing a late upward break), differences are present but less visible, except for extreme quantiles.
As indicated by the vertical bars representing the 5% critical values, this non-pivotality might be
overlooked by a test at that level. The results for the linear upward trend in volatility in DGP4
nicely illustrates the difference between the distributions as well as the role of b.

For b = 0, however, robustness to time-varying volatility is recovered. In a nutshell, Bh (1) follows
a normal distribution with mean zero and variance ω̄2, which can be interpreted as the average
long-run variance of the series. Moreover, Cavaliere (2004) shows that, under mild conditions on
the rate at which b vanishes, the HAC variance estimator is consistent precisely for this variance,
plim ω̂2 = ω̄2. Hence,

T d→ N (0, 1) for b→ 0.

In other words, small-b methods asymptotically lead to pivotality under time-varying volatility as
it does under weak stationarity. Recall however that the finite-sample quality of the asymptotic
approximation in the small-b framework is meager, so practitioners essentially have to choose
between the devil and the deep blue sea when not knowing the properties of the DGP.

Section 5 quantifies the size distortions resulting from ignoring time-varying variance when using
fixed-b asymptotic approximations. It will also recall that, despite asymptotic robustness, the
small-b approach will often exhibit fairly strong size distortions in small samples under both
homo- and heteroskedasticity. Hence, corrections are required.

4 Robust inference under time-varying volatility

The critical issue about the failing asymptotics is that the partial sums of yt do not converge to
a Brownian motion anymore. In the following, three different corrections are discussed.

First, we build on Cavaliere and Taylor (2008a) who propose the wild bootstrap as a way to
deal with the heteroskedasticity issue in a unit root testing context. Heuristically, we therefore
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Figure 1: Quantile-quantile plots to compare B(k, b) (x-axis) to the distributions B(h, k, b) under
various variance profiles h and for different b. DGP1: constant volatility; DGP2: early down-
ward break in volatility; DGP3: late upward break in volatility; DGP4: linear upward trend in
volatility. The quadratic spectral kernel is employed. The dashed vertical line is the 95% critical
value from the B(k, b) distribution.
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exploit the bootstrap to mimic the actual null distribution of T under heteroskedasticity.7 While
Cavaliere and Taylor (2008a) bootstrap residuals from a fitted autoregression, it suffices here to
wild bootstrap yt directly. The algorithm is as follows.

1. Generate T iid standard normal random variables r∗t .

2. Generate the wild bootstrap sample as y∗t = r∗t (yt − ȳ).

3. Compute the bootstrap test statistic T ∗ based on the resampled series y∗t .

4. Repeat steps 1-3 to obtain a set of M resampled statistics T ∗m, m = 1, . . . ,M .

5. Use the 1− α-quantile of {T ∗m}m=1,...,M , say q∗1−α, as critical value for the test.

The following proposition shows that the wild bootstrap procedure gives size control in the limit.

Proposition 2 Under H0 and Assumptions 1-3, it holds as T →∞ and B/T → b ∈ (0, 1] that

Pr
(
T > q∗1−α

)
→ α.

Proof: See the Appendix.

Alternatively to step 5, one could of course use bootstrap p-values for a test decision; it can be
seen from the proof of the proposition that the wild bootstrap p-values converge weakly to a
uniform distribution U [0, 1].

But the wild bootstrap is computationally demanding, even in the above simplified version.
Our second correction therefore elaborates on the approach provided by Cavaliere and Taylor
(2008b) which modifies the data in such a way that the series are in a sense transformed back
to homoskedasticity. Hence, it will be valid to apply fixed-b methods applied to the transformed
series. Their time transformation approach needs to be adapted to our setup, though, since
Cavaliere and Taylor (2008b) deal with I(1) processes under the null when testing for a unit
root, whereas we deal with I(0) processes. The procedure is as follows.

1. Subtract the mean of yt under the null and build the cumulated sums

xt =
t∑

j=1

(yj − µ0) .

2. Estimate the variance profile of xt, η̂ (s) =
∑[sT ]

t=1 (yj−µ0)
2∑T

t=1(yj−µ0)
2 , and build its inverse g (s).

3. Time-transform xt via
x̃t = x[Tg(t/T )]

7Cavaliere and Taylor (2009) show the wild bootstrap to cope with stochastic volatility as well. The multivariate
case has been dealt with in a series of papers starting with Cavaliere et al. (2010).
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4. Base the test on the differenced series, ỹt = ∆x̃t, i.e. compute

T̃ =
√
T

¯̃y

ω̃

where ω̃2 is an estimator of the long-run variance of ỹt using a bandwidth B = bT .

The following proposition shows that fixed-b asymptotics are recovered.

Proposition 3 Under H0 and Assumptions 1-3, it holds as T →∞ and B/T → b ∈ (0, 1] that

T̃ d→ B (k, b) .

Proof: See the Appendix.

Although autocorrelated errors do not enter the asymptotic distribution, they may impact the
empirical size in small samples. In the following, we follow Andrews and Monahan (1992) and
use a simple procedure for reducing the effect of short-memory dynamics while maintaining the
same limiting distribution for the test statistic. It involves estimating a low-order ARMA model
and filtering the series using the estimated coefficients. We need not assume that the true DGP
is in fact an ARMA process, but rather use it as a reasonable approximation. Lag orders are
selected via an information criterion. The time-transformation is applied to the series ût − µ0,
where ût denotes the residual from the regression Θ(L)yt = Φ(L)ut; Θ(L) and Φ(L) are MA-
and AR-polynomials, respectively.

The third correction for time-varying volatility we propose is closely related to what practitioners
often do: only correct for a problem you have detected in the data. Essentially, we propose to first
test for heteroskedasticity, and then work with either fixed-b or small-b asymptotics according to
the outcome of the test. The intuition is that if a test for time-varying variance does not reject,
then the departures from constant variances cannot be strong enough to seriously distort the
fixed-b asymptotics of T . If on the other hand the test rejects, then the small bandwidth-choice
procedures may be preferable, or alternatively either of the two robust versions discussed above.
The success of such a testing strategy obviously depends on the properties of the pre-test.

To this end, we resort to the test proposed by Deng and Perron (2008). In a recent simulation
study, Bertram and Grote (2014) demonstrate that the test has decent size and power properties,
see also Xu (2013). It is based on the series zt = y2t . The test statistic is given by

Q = sup
1≤t≤T

1√
T

|Dt|
ω̂z

where Dt =
∑t

j=1 zj −
t
T

∑T
j=1 zj and ω̂z is a HAC estimator of the long-run variance of zt. The

test rejects for large values of Q.
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5 Simulation evidence

This section studies the finite-sample behavior for the various statistics discussed above in dif-
ferent settings.

We consider one-sided tests of H0 : µ = 0 against H1 : µ > 0. The DGP is given by

yt = µ+ vt (3)

(1− φL)vt = (1− θL)htεt (4)

with εt ∼ i.i.d.N(0, 1). We consider an AR(1)-process with (φ, θ) = (0.85, 0) as well as an
ARMA(1, 1)-process with (φ, θ) = (0.5,−0.45) and ht as before. The following deterministic
volatility DGPs for ht are studied

DGP1: Constant volatility (ht = 1);

DGP2: Downward break in volatility at t = [0.2T ] from σ0 = 5 to σ1 = 1;

DGP3: Upward break in volatility at t = [0.8T ] from σ0 = 1 to σ1 = 5;

DGP4: Linear upward trend in volatility: ht = σ0+(σ1−σ0)(t/T ) with σ0 = 1 and σ1 = 5.

For power results, we take µT = c(V̄ /T )1/2 with V̄ being the average variance depending on the
particular DGP1-4. By doing so, we achieve comparable results among different DGPs. Under
homoskedasticity (DGP1), we have V̄ = σ2, while V̄ = T−1

∑T
t=1(σ

2
0 + 1(t > [τT ])σ21) under

DGPs 2 and 3 for instance. The parameter c > 0 is a localizing constant and takes the values 5
and 10.

Critical values for the fixed-b approach are taken from Kiefer and Vogelsang (2005), Table 1.
The nominal significance level is 5%. We use the QS kernel and values of b ranging from 0.1 to
1 in increments of 0.1. The number of wild bootstrap replications equals M = 399, while the
number of Monte Carlo replications is 5,000. The sample sizes are T = 100 and T = 500. For
the time-transformation, an AR(1) finite-sample correction is applied for all DGPs.

First, we present size results. Our leading case is the one with an AR(1) component; the
ARMA(1,1) results are discussed afterwards. Under the AR(1) DGP, the procedure applies
the correct parametric pre-whitening correction to the series.

Under homoskedasticity (DGP1), the top-left entry of Table 1 reveals that, as is well-known,
NW based on a Bartlett kernel with automatic bandwidth selection (see Andrews, 1991) faces
substantial size distortions for T as large as T = 100. Confirming the results of Kiefer and Vo-
gelsang (2005), the remainder of the first row shows that fixed-b asymptotics provide a very good
approximation to the finite-sample distribution of the t-ratio given in equation (1), all but elimi-
nating the size distortions of NW. Unsurprisingly, the size of the pretest is intermediate between
that of NW and the fixed-b approaches. Similarly, the corrections based on time transformations
and the wild bootstrap provide accurate tests under homoskedasticity.

11



DGPs 2 and 4 confirm our analytical prediction from Section 3 that, in general, fixed-b asymp-
totics are not pivotal under heteroskedasticity. In particular, the tests seem to be conservative
and increasingly so in b. That fixed-b asymptotics work relatively well for small b is not unex-
pected, as they then operate very similarly to the standard NW approach which would be valid
asymptotically (see above and Cavaliere, 2004). Our suggested corrections are generally effective
in removing the size distortions, although the wild bootstrap has some upward size distortions
for small b. Again, the pretest strikes a useful compromise between fixed-b and NW.

Table 2 highlights the finite-sample character of the size distortions of NW, which are largely
removed for T = 500. Similarly, the upward size distortions of the wild bootstrap have all but
disappeared for T = 500. Table 2 moreover confirms that the distortions for fixed-b are not of a
finite-sample nature.

The results for ARMA errors (Table 3) are qualitatively similar, although, unsurprisingly, the
empirical sizes generally become somewhat less accurate when the prewhitening procedure does
not soak up errors that follow the same parametric model as that applied in the procedure.

Tables 4 and 5 report power results. As expected, power increases in c. The particular type of
variance break yields some variation in power, which may however be partly be explained by size
distortions. Typically, power increases with decreasing values of b. This is plausible, as critical
values increase in b. Tests applied to the original series (i.e. Y) and the wild bootstrap analogues
(YB) yield relatively high power. The pre-testing strategy performs similarly well. When the
time-transformation is applied, power is generally lower than for competing statistics.

This finding may be motivated as follows: under the alternative, the mean of the time-transformed
series ỹt is non-zero but not constant in general. Hence usual demeaning of the series ỹt to com-
pute a long run variance estimate does not eliminate its non-zero mean implying an inflated
variance estimator due to the neglected deterministic component; see Appendix B for details.

In view of the size distortions observed for the wild bootstrap for small values of b as well as
decreasing power in b, the present simulations would therefore suggest to use the wild bootstrap
with an intermediate value of b (say, b = 0.4) in practice. The pretest would be a useful
alternative.

6 Excess returns

We illustrate the robustified procedures by an empirical application to financial excess returns zt.
These are defined as the difference between speculative portfolio returns and risk-free returns.
A primary research question in financial econometrics involves testing against positive excess
returns (on average) for speculative investments. Typically, monthly excess returns show a
mild degree of autocorrelation and strong heteroskedasticity. Thus, when testing the null that
E (yt) = 0 one needs to account for both features, such that the procedures discussed in this
paper may be valuable.

12
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We use data from the Center for Research in Security Prices (CRSP) which have been analyzed
in Guidolin and Timmermann (2006). The authors use multiple regime autoregressive Markov
switching models to study the joint dynamics of stock and bond returns. They find strong
evidence for time-varying volatility during different regimes. See also Amado and Laakkonen
(2014) for evidence on time-varying volatility in bond markets. Three time series of continuously
compounded excess returns are analyzed here (cf. Figure 2): (1) returns for small caps (first and
second size-sorted CRSP decile portfolios) (2) returns for large caps (deciles 9 and 10 size-sorted
CRSP decile portfolios) and (3) returns of a portfolio consisting of 10-year bonds. The 30-day
T-bill rate is taken to be the risk-free rate. The sample period ranges from January 1954 to
December 1999, resulting in T = 552 observations.

The sample averages z̄ of the three series are (1) 0.822% for small caps, (2) 0.657% for large
caps and (3) 0.081% for the bond portfolio. The Deng and Perron (2008) pre-test against a
structural change in volatility provides evidence against homoskedasticity. The test statistic is
significant at the nominal ten percent level for small and large caps, while its p-value is below one
percent for the bond portfolio series. Small and large caps show some degree of autocorrelation.
Estimated first-order autocorrelation coefficients equal 0.190 and 0.078, respectively. Our test
results for the null hypothesis of zero excess returns against its positiveness, i.e. H0 : E (yt) = 0

against H1 : E (yt) > 0, are reported in Table 6. The finite-sample correction for autocorrelation
is applied. For all three series, an AR(1) model is fitted. We use M = 2000 wild bootstrap
replications.

Our findings for the portfolio consisting of small firms suggest a clear and economically meaning-
ful pattern: All statistics are significant at least at the nominal ten percent level, while most of
them are significant at the five percent as well. When using small-b asymptotics, we find highly
significant statistics pointing towards positive excess returns. For the fixed-b approach, while
we also find evidence against the null, the results are in line with those of the simulations: for
larger values of b (i.e. b > 0.4), we find weaker evidence against H0. Another finding is that
the time-transformation procedure leads to smaller statistics at least for some values of b, which
may be related to its lower power. As the pre-test does not reject at the five percent level, a
practitioner would follow the decisions of the fixed-b approach.

The results for large firms are quite similar, although the evidence is weaker for choices of b > 0.2.
The test statistics are highly significant only for a relatively small value of b = 0.1 and with Newey
and West (1987) standard errors. Test decisions are very similar across methods and differ with
b. Finally, no single statistic is significant for the 10-years bond portfolio, yielding no evidence
against the null hypothesis. This is not too surprising given the relatively small sample average
of 0.081% resulting from the numerous instances of inverted yield curves.

7 Concluding remarks

Fixed-b asymptotics are a tremendously useful device to enable more accurate finite-sample
inference when dealing with serially correlated data. Serial correlation is however not the only

18



(1) Small caps

Time

1960 1970 1980 1990 2000

−
0.

3
−

0.
1

0.
1

0.
3

(2) Large caps

Time

1960 1970 1980 1990 2000

−
0.

2
−

0.
1

0.
0

0.
1

(3) 10−year bonds

1960 1970 1980 1990 2000

−
0.

05
0.

00
0.

05
0.

10

Figure 2: US Monthly excess returns (Jan 1954–Dec 1999, CRSP)
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Table 6: Empirical test results for E(yt) = 0 against H1 : E(yt) > 0.

(1) Small caps fixed-b values
NW 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y 2.684a 3.260a 5.311a 7.385a 7.553a 7.812b 8.498b 9.414b 10.448b 11.542b 12.685b

X 2.349a 2.432b 2.239c 2.868b 3.460b 4.120b 4.948b 5.930b 7.027b 8.208b 9.467b

YB 2.684a 3.260a 5.311a 7.385a 7.553a 7.812a 8.498b 9.414b 10.448b 11.542b 12.685b

PT 3.260a 5.311a 7.385a 7.553a 7.812b 8.498b 9.414b 10.448b 11.542b 12.685b

(2) Large caps fixed-b values
NW 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y 3.695a 3.514a 2.933b 2.700c 2.779c 3.170c 3.751c 4.461c 5.262c 6.132c 7.071c

X 3.132a 3.095a 2.866b 2.838c 2.918c 3.311c 3.893c 4.595c 5.378c 6.215c 7.107c

YB 3.695a 3.514a 2.933b 2.700c 2.779c 3.170c 3.751c 4.461c 5.262c 6.132c 7.071c

PT 3.514a 2.933b 2.700c 2.779c 3.170c 3.751c 4.461c 5.262c 6.132c 7.071c

(3) 10Y bonds fixed-b values
NW 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y 0.824 0.872 0.861 0.811 0.815 0.860 0.931 1.018 1.114 1.216 1.324
X 0.736 0.811 0.741 0.663 0.634 0.644 0.680 0.731 0.791 0.857 0.927
YB 0.824 0.872 0.861 0.811 0.815 0.860 0.931 1.018 1.114 1.216 1.324
PT 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824

Note: NW stands for Newey and West (1987) standard errors; values ranging from b = 0.1 to b = 1 are
fixed-bandwidth parameters. Y indicates that the test is carried for the untransformed series. X means that a

time-transformation is applied. YB stands for wild bootstrap versions. PT is a practitioner’s pre-testing
strategy (α = 5%). Superscripts ’a’, ’b’ and ’c’ refer to significance at the one-, five- and ten-percent level,

respectively. For further details see the text.
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nuisance practitioners need to pay attention to when aiming to conduct reliable hypothesis tests:
many important macroeconomic and financial time series are subject to time-varying variances
such as variance breaks. We show that the standard fixed-b approach no longer yields pivotal
tests under such heteroskedasticity. Based on wild bootstrap schemes (Cavaliere and Taylor,
2008a), on time transformations (Cavaliere and Taylor, 2008b) or on a pre-test procedure, we
provide corrections that restore size control of fixed-b methods even under heteroskedasticity.
Simulations illustrate the useful size and power properties of the corrections, in particular of the
wild bootstrap approach. An empirical application to excess returns reveals the importance of
properly accounting for time-varying variances in practice.

Appendix

A Proofs

Proof of Proposition 1

Note that the arguments in the proof of Theorem 2 in Kiefer and Vogelsang (2005) can be used
without further modification to conclude that

T =

1√
T

∑T
t=1 (yt − µ0)√

− 1
T 2

∑T−1
i=1

∑T−1
j=1

T 2

B2k′′
(
i−j
B

)
1√
T

∑i
t=1 (yt − ȳ) 1√

T

∑j
t=1 (yt − ȳ)

+ op (1) .

The weak convergence

1√
T

[sT ]∑
t=1

(yt − µ0)⇒ Bh (s)

then suffices for establishing the desired null distribution.

Proof of Proposition 2

Let S∗T (s) denote the normalized partial sums of the bootstrapped centered sample,

S∗T (s) =
1√
T

[sT ]∑
t=1

(yt − ȳ) r∗t

To guarantee size control in the limit, it suffices to show that the bootstrap partial sums converge
weakly in probability to Var (yt)Bh (s), since Var (yt) would cancel out in the bootstrapped t-
ratio. Note that, conditional on the sample yt, t = 1, . . . , T , S∗T (s) is a Gaussian process with
independent increments. Its covariance kernel is given by

Cov (S∗T (s) , S∗T (r)) =
1

T

[min{s,r}T ]∑
t=1

(yt − ȳ)2E
(

(r∗t )
2
)

=
1

T

[min{s,r}T ]∑
t=1

(yt − ȳ)2 .
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Then, following the proof of Lemma A.5 in Cavaliere et al. (2010), it suffices to establish the
weak convergence

1

T

[sT ]∑
j=1

(yj − ȳ)2 ⇒ Var (yt)

∫ s

0
h2 (r) dr

i.e. that the wild bootstrap correctly replicates the variance profile of the sample yt in the
limit. Assumption 2 guarantees pointwise convergence of 1

T

∑[sT ]
j=1 (yj − ȳ)2 via a Law of Large

Numbers for strong mixing processes (see Davidson, 1994, Section 20.6), and the monotonicity
of the quadratic variation function leads to uniformity of the convergence, as required for the
result.

Proof of Proposition 3

Cavaliere and Taylor (2008b, proof of Theorem 1) show that

1√
T

[sT ]∑
t=1

ỹt ⇒ ω̃W (s) .

The result then follows like in the proof of Proposition 1.

B Effect of time transformation under the alternative

To understand the mechanism, write

xt =
t∑

j=1

(yj − µ0) =
t∑

j=1

hjvj + t (µ1 − µ0) .

Let µ1 − µ0 = δ; estimating the variance profile under the null implies that

η̂ (s) =

∑[sT ]
t=1 (yj − µ0)2∑T
t=1 (yj − µ0)2

⇒
Var (yt)

∫ s
0 h

2 (s) ds+ sδ2

Var (yt)
∫ 1
0 h

2 (s) ds+ δ2
,

hence the estimate is asymptotically biased. This bias could be eliminated by demeaning yt when
estimating the variance profile, but this is, strictly speaking, not necessary from a robustness
point of view since the estimator is not asymptotically biased under the null and size properties
are not affected. Now, the transformation is

x̃t = x[Tg(t/T )]

with g the inverse of η̂, which means that

x̃t =

[Tg(t/T )]∑
j=1

hjvj +

[
Tg

(
t

T

)]
δ.
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The numerator of the test statistic is based on the time-transformed x̃T = xT having expectation
Tδ (even with the biased variance profile estimate η̂, given that η̂ (1) = 1), so the power problem
rests with the denominator of the test statistic. The HAC variance estimator is based on usual
demeaning, while the mean of ∆x̃t is not constant in general,

E (∆x̃t) = δ

([
T g

(
t

T

)]
−
[
T g

(
t− 1

T

)])
≈ δg̃′

(
t

T

)
with g̃ the weak limit of g.
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