Burda, Michael Christopher; Genadek, Katie; Hamermesh, Daniel

Conference Paper
Not Working at Work: Loafing, Unemployment and Labor Productivity

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2015: Ökonomische Entwicklung - Theorie und Politik - Session: Labor 1, No. A17-V3

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: Burda, Michael Christopher; Genadek, Katie; Hamermesh, Daniel (2015) : Not Working at Work: Loafing, Unemployment and Labor Productivity, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2015: Ökonomische Entwicklung - Theorie und Politik - Session: Labor 1, No. A17-V3

This Version is available at:
http://hdl.handle.net/10419/112905

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Abstract: Using the American Time Use Survey (ATUS) 2003-12, we estimate time spent by workers in non-work while on the job. Non-work time is substantial and co-varies positively with the local unemployment rate. While the fraction of workers who spend some time in non-work varies pro-cyclically, the average time spent by workers in non-work conditional on any positive non-work varies counter-cyclically. These results are consistent with a model in which heterogeneous workers are paid efficiency wages to refrain from loafing on the job. That model also predicts relationships of the incidence and conditional amounts of non-work with wage rates and unemployment benefits that are observed in links of the ATUS to data characterizing states’ unemployment insurance schemes.

JEL Codes: J22, E24

Keywords: time use, non-work, loafing, shirking, efficiency wage, labor productivity

*University of Minnesota—Twin Cities; Humboldt University Berlin, CEPR and IZA; Royal Holloway University of London, IZA and NBER. We thank Matthew Notowidigdo for providing the files on states’ unemployment insurance programs.
I. Introduction

The relationship between labor-market slack and worker effort is a hoary topic in the sub-fields of macroeconomics and labor economics. The notion of labor hoarding—retaining workers during times of low product demand even though their labor input is reduced—goes back at least 50 years and has been adduced as an explanation for pro-cyclical changes in labor productivity. (See Biddle, 2014, for a thought-historical discussion of this concept.) The notion that unemployment provides workers an incentive to expend extra effort to avoid firing—the idea of efficiency wages—was described formally in the now-classic study by Shapiro and Stiglitz (1984). More generally it goes back to work by Mathewson (1931) and even to the reserve army of the unemployed described by Marx (1867) in Chapter 23 of Das Kapital.¹

Both of these strands in economic thought describe the relationship between unemployment in a labor market and worker effort (and presumably labor productivity). Yet their implications are contradictory. If employers hoard labor when product demand is low (and, at least in the aggregate, unemployment is high), higher unemployment should coincide with less effort. Yet efficiency-wage theory suggests that we will observe that higher unemployment spurs workers to exert additional effort, since by doing so they can reduce their chance of being fired (and of being thrown into a large pool of workers searching for relatively few available job openings).

A large empirical literature has inferred from lags in employment adjustment behind shocks to output that labor hoarding is important (Hamermesh, 1993, Chapter 7). A much smaller literature has used the theory of efficiency wages to examine how wages respond to workers’ opportunities (e.g., Cappelli and Chauvin, 1991). While Hamermesh (1990) related wages to the allocation of workers’ time on the job among different activities, no study has examined directly how effort at work responds to differences or changes in unemployment. Indeed, we are aware of no representative empirical study that examines this question. The reason is simple: until very recently no large-scale data set has been available detailing what workers do on the job and providing such information as unemployment varies.

¹A recent sociological study, Paulsen (2015), presents cases illustrating the role and reasons for people loafing on the job.
II. Data and Descriptive Statistics

Since 2003, the American Time Use Survey (ATUS) offers time diaries of large monthly samples of individuals showing what they are doing and where they are located. (See Hamermesh et al., 2005, for a description of these data, and Aguiar et al (2013) for use of them to examine some cyclical aspects of time use.) It thus allows the first examination of how workers spend time on the job, its relationship to their demographic and job characteristics, and its variation with differences and changes in unemployment. In Section II we introduce the data, and in Section III we discuss the stylized facts which flow from this unique data set, which despite its limited temporal availability allows for temporal and spatial variation. In Section IV we present a theoretical model which can rationalize the facts uncovered in our empirical work, while Section V explores further implications of the theory.

Throughout this study we use various sub-samples from the American Time Use Survey (ATUS), which over the period 2003-2012 collected 136,960 monthly diaries of former Current Population Survey (CPS) respondents’ activities on one particular day between two to five months after their final rotation in the CPS. Because we are concentrating on activities while the respondent was at work, the only diaries included are those for days when a respondent performed some market work. Since half the diary days in the ATUS are weekend days and few respondents work on weekend days, this restriction cuts the sample greatly, leaving us with 41,111 usable diaries. Moreover, since our focus is on employee productivity, we exclude the self-employed. That exclusion, plus the need to delete a few diaries on which an employed person did not report information on usual weekly hours of work, reduces the sample to 35,548 usable observations. Thus for a typical month in the sample period after 2003 we have around 250 observations.2

Obtaining responses about what the respondent was doing at each moment of the diary day, the ATUS then codes them into over 400 separate activities. Respondents also note where they were while performing each activity, with one of the possible locations being “at the workplace.” We focus on primary activities performed at that location, defining total time at work as all time spent at the workplace.

2In its first year the ATUS collected more diaries than later, so that we have about 450 usable diaries each month in 2003.
We then divide the time at the workplace into time spent working and time spent not working. The latter is divided into time spent eating, at leisure and exercising, cleaning, and in other non-work activities. In the ATUS eating at work can be done as a primary activity, a secondary activity to working or as a part of the job. The non-work time at work included as eating consists of eating as a primary activity at the workplace. The four primary activity categories, including eating, constitute self-reported non-work time on the job, the focus of our study. They thus include activities that might be viewed as investment in future productivity but that are not currently productive, such as cleaning and perhaps exercising, while including others, such as gossiping, web-surfing and chatting, that are less likely to be productive.

Table 1 presents sample means and standard deviations of the proportions of time spent at the workplace in these four activities and in actual work, along with the time spent at work and other variables that are central to our analysis. All the statistics here are calculated using the ATUS sampling weights, thus accounting for disproportionate sampling across days of the week, for standard CPS weighting and for differential non-response to the ATUS by former CPS participants. The first thing to note is that the typical day at work lasts about eight hours and twenty minutes, a statistic that yields a five-day workweek of 41.74 hours, which is consistent with the mean usual weekly hours of 41.38 hours reported by employees in the sample.

Sample respondents report spending nearly seven percent of time at the workplace not working, amounting to thirty-four minutes per day. Of this time about half is spent eating at the workplace, the other half is spent in leisure, exercise, cleaning and other non-work activities. These three latter activities are so

3 Time spent working includes time spent in “Work Related Activities” or ATUS codes 50000-50299. Work-related activities include socializing and eating as a part of the job.
4 In the original data, non-work time on the job is divided into the following broad primary activities: Personal care; household production; care-giving; educational activities; shopping; services; eating, leisure, exercising and sport, and volunteering and religious activities. Several of these are observed so infrequently as to prevent them from being analyzed separately, so that we combine them into the fifth (other) category of non-work time on the job. Household production is not considered an act at work.
5 This near-equality differs from the result in the literature that recall weekly hours exceed diary hours (Juster and Stafford, 1991; Frazis and Stewart, 2004). The difference may arise because we restrict the workday to the time respondents spend at the workplace in any activity.
rare that henceforth we concentrate on the twofold division between eating and non-work non-eating time at work. While thirty-four minutes per day at the workplace not working seems low, most eating reported during the work day as a primary activity probably occurs away from the workplace and thus is not specifically assignable to the job in these data. To the extent that eating away from the workplace during work hours varies cyclically, it will be reflected in cyclical variations in the length of the day at the workplace.

In Table 1 we report these unconditional means of the variables which are central to our study, but also the mean amounts of non-work time of various types conditional on a positive value. Nearly one-third of the sample reports no non-work time as a primary activity in the time diary, and the fractions reporting zero time spent eating at work or in other non-work time are even higher. The conditional mean amount of positive non-work time is slightly over 50 minutes per day.

Throughout the study the central forcing variable is the local unemployment rate, measured as the jobless rate in the state where the worker resides. The average unemployment rate in the sample is 6.6 percent, but it varies over a wide range—from barely two to over fourteen percent. Mostly because of the Great Recession, there is substantial variation in unemployment, which allows us to examine how non-work responds to changing local labor-market conditions.

III. **Non-work and its Relationship with Unemployment over Time and Space**

Before presenting evidence on the cyclical behavior of non-work time at work, it is important to remember that economic theory is ambiguous about the sign of the relationship between non-work and business cycle conditions proxied by, say, the local unemployment rate. This is because workers and their employers have different interests in non-work. If initiated by the worker, non-work might be interpreted as “loafing,” “shirking” or “goofing off on the job.” A raft of theories predicts a negative relationship between local labor market conditions and shirking. The most prominent of these are Calvo (1981), Akerlof (1982), Shapiro and Stiglitz (1984) and Bowles (1985). In this vein, high unemployment signals a lower

6Experiments with the one-month unemployment rate in the subsequent analyses consistently yielded weaker fits, so we limit the reported results to those based on the three-month average.
value of utility in the state of unemployment, either because the incidence or duration (or both) of joblessness is high. To avoid landing in the state, workers exert higher effort when employed, in order to curry favor with their employers, to increase their productivity, or to reduce the probability of detection when they do shirk. Because effort is unobservable and/or monitoring is costly, firms accept this outcome passively, with few or no layoffs of shirkers occurring in equilibrium.

Alternatively, firms may find non-work by workers in certain states of the world to be desirable. Firms face variable and imperfectly forecastable demand for their products, while producing with workers who represent substantial investments in human capital and other considerable resources. In a downturn which is perceived as temporary, it is easy to show that a layoff, even if temporary, is an inferior choice to maintaining employment, possibly even at standard hours. This behavior is often referred to as labor hoarding. In this case, firms delegate workers to “unproductive” tasks such as cleaning, maintenance, painting, etc. or even tolerate more non-work initiated by their workers (see Fay and Medoff, 1985).

In Table 2 we present preliminary evidence on the cyclical behavior of non-work in the United States based on the ATUS. This cyclical behavior is measured by the response of non-work time at the workplace to variations in local labor-market conditions. We assume that workers take those conditions as given, and we note that they vary across both time and space. In the data most of the variation in unemployment is across time: Temporal movements account for two-thirds of the variance. Only twelve percent of the variance in unemployment rates is idiosyncratic at the state and month level.

1 Burda and Hunt (2011) showed that while firms in Germany retained workers during the Great Recession, hours worked declined by less than would be expected given the decline in output, so that hourly productivity fell in a recession for the first time since 1970. In the U.S. Gordon (1981) documented a decline in labor productivity in every postwar recession up to that point in time; Gali and van Rens (2014) find that since 1990 the correlation between the business cycle and productivity has turned negative.

2 We cannot rule out that workers might self-select via migration, effectively choosing regions in which unemployment is lower and thus affecting the conditions under which they work. The same argument applies to employers and capital mobility. This possibility would bias the estimated impact of unemployment toward zero.

3 1.3 percent of the sample reported goofing off during the entire work day. We cannot exclude these observations from the basic results, since that would involve truncating on the dependent variable. In unreported estimates, however, none of the conclusions changes qualitatively if this group is excluded.
The initial least-squares estimates, with the results in Column (1), simply relate the proportion of non-work time at work to the state unemployment rate in the particular year.10 There is a highly significant positive association of unemployment with non-work time on the job. Over the entire range of unemployment observed in the data, the estimate suggests that the proportion of non-work time will vary by 0.013 (on a mean of 0.069).

The estimates in Column (1) fail to account for the possible covariation of time spent in non-work with the amount of work performed and with workers' demographic characteristics. The equation underlying the estimates in Column (2) includes quadratic terms in usual weekly hours and time at work on the diary day; indicators of race and ethnicity; a vector of indicators of educational attainment; a quadratic in potential experience (age – education – 6), indicators of gender and marital status and their interaction, and an indicator of metropolitan residence.11

A longer usual workweek significantly increases the fraction of work time not working up to 42 usual weekly hours, with decreases thereafter. Conditional on usual hours, however, spending more time at work decreases the proportion of time spent in non-work activities, but only up to 5.8 hours of work time per day. Beyond that length of workday, and thus for 85 percent of the sample included in this regression, additional time on the job increases the share of time spent not working.12 Whether because of boredom, fatigue or something else, the marginal effect of additional work time on non-work activities is increasing for most employees as the workday lengthens.13

10All the results in this section remain qualitatively identical if we use minutes of the various types of non-work time rather than their proportions of the workday as the dependent variables. Similarly, using more flexible representations of usual weekly hours and time spent at work does not alter the results. Also, deleting the quadratic in time at work from the estimates in Columns (2) and (3) does not change the central conclusions.

11In the Table we only report those estimates that are economically interesting. One should also note that, unsurprisingly, the estimates vary negligibly if we use a quadratic in age instead of potential experience. The estimates with the latter do, however, describe variations in time not working slightly better than do those including age.

12Interestingly, this minimum point of non-work is almost identical to the daily hours at which output per hour in a plant of munitions workers nearly a century ago was shown to reach its peak (Pencavel, 2014, Table 9).

13This finding is consistent with older evidence from the scientific management literature charting workers' productivity over the work day (Florence, 1958).
African-Americans and Hispanics report spending higher fractions of their time at work non-working than do other workers with otherwise identical demographic characteristics and workdays and workweeks of the same length. Not only are these effects highly significant statistically, they are also large, implying increases in the proportion of non-work time of 15 to 20 percent above the average. Additional schooling attainment monotonically decreases the reported proportion of work time spent not working. Here too the differences are substantial, with the proportion among employees with graduate degrees being about 30 percent lower than that among high-school dropouts.14

The most important point to note in the results in Column (2) is that adding these covariates hardly altered the estimated effect of changes in unemployment on time not working at work. While the estimated impact does vary with their addition, their unsurprisingly very weak correlation with state unemployment rates guarantees that their inclusion does not alter the estimated effect of unemployment on non-work time.15 The inference may understate the magnitude of this effect: As unemployment rises, even holding demographic characteristics constant, workers who retain their jobs may be those least likely to “goof off” at work, creating a compositional effect that negatively biases the estimated impact of unemployment on non-work time.

In Column (3) we add vectors of fixed effects for occupation, industry, state and month to the estimating equation in Column (2). Each of the four vectors of indicators is jointly statistically significant: There are substantial differences across occupations, industries and states in the (conditional) proportion of time at work spent not working. These differences are correlated with occupational differences in the incidence of unemployment, since including this set of vectors of fixed effects reduces the estimated impact

14A variety of explanations might be offered for this racial/ethnic difference. A particularly appealing one links to the effects of education in these equations. If predominantly minority schools are of lower quality for the same reported years of education, and, as the estimates show, lower education is associated with more non-work on the job, then we would expect to see positive effects of race and ethnicity indicators in the estimates.

15The covariates included in Column (2) describe 0.92 percent of the variation in state unemployment rates over time.
of changes in unemployment. Even with these additions, however, over half of the estimated positive effect of unemployment on time not worked remains.16

These estimates have aggregated all non-work time at work; yet one might expect different responses to changing unemployment of the partly biological activity, eating at work, and the broader category, other non-work time. We thus re-estimate the basic model, first using the proportion of time at work spent eating as the dependent variable, then using the proportion of time at work spent in other non-work time. In each case we first include the vectors of work time and demographic measures that were added to the estimates shown in Column (2), then add the same four vectors of fixed effects included in the estimates shown in Column (3).

The results, presented in Columns (4)-(7) of Table 2, are striking. The overwhelming majority of the effect of changing unemployment on non-work time at work operates through its impact on other non-work time—i.e., on leisure on the job. Eating at the workplace is affected much less.17 Moreover, the effects of differences in workers’ demographic characteristics on non-work time also operate mainly through other non-work time, not through eating at work.

Of the 35,548 workers included as observations in the regressions above, 33.7 percent reported no non-work on the job; 30.8 percent reported eating but no other non-work time, while 14.6 percent reported other non-work but no eating on the job, and 20.9 percent reported both eating and other non-work time at work. As Table 1 showed, there are a lot of zeros in these data. That fact might suggest estimating these models using tobit, but that is problematic for two reasons: 1) There is no reason to assume that the impacts of unemployment (or of any of the other regressors included in Table 2) on the probability of non-work and

16Almost the entire drop in the estimated impact arises from the inclusion of the state fixed effects. If we re-estimate the model including industry, occupation and month fixed effects, but excluding state effects, the estimated impact of unemployment is essentially unchanged from that in Column (2).

17One might be concerned that employees change the amount of non-work multi-tasking that they do as unemployment changes. The ATUS does not provide information on secondary activities in most months; but for 2006 and 2007, as part of the Eating and Health Module, it collected information on secondary eating, including at work. Of the employees in our sample in those years, 41 percent report some secondary eating and/or drinking at work. Among those who do, the average amount of time spent in these secondary activities is almost exactly two hours per day. Although this activity is important, re-estimates of the models in Table 2 show that variations in secondary eating are independent of differences in unemployment rates across states and over these two years.
its conditional mean work in the same direction. That difficulty suggests using a more free-form technique, either the all-in-one approach suggested by Cragg (1971), or separate treatment of the probability of non-work and its mean conditional on its occurrence; 2) The zeros may result partly from the limitation of the diaries to a single day (Stewart, 2013), who argues that estimating a probit on the incidence of non-work and a regression on the amount of non-work among those non-zero observations circumvents this difficulty. Since that approach handles both problems, we follow it here.

Table 3 presents the probit derivatives on the probability of non-work on the job, and then the regression coefficients describing the amount of non-work for the two-thirds of the sample respondents who report positive non-work. The independent variables are the same as those included in the regressions in Table 2. The probit and the conditional regression results both exclude and include vectors of fixed effects describing occupations, industries, states and months of the year. The differences between these results and those in Columns (2) and (3) from the unconditional regressions are remarkable. While higher unemployment is positively associated with the proportion of time at work reported non-working, these results show that it reduces the probability that a worker spends any time not working. This reduction is more than offset by the increased proportion of time not working by those who state that they spent some time not working as the unemployment rate rises.

Unlike in the unconditional regressions, the negative impact on the probability of not-working and the positive impact on the conditional mean are robust to the inclusion of all the vectors of fixed effects. Moreover, the effects are economically important: Over the range of unemployment in the sample, the probability of not working falls by 0.061 on a mean of 0.337, while the fraction of time not working rises by 0.020 on a mean of 0.100.\(^{18}\) Our results also show that the demographic differences observed in Table 2 stem mostly from demographic effects on the probability of reporting non-work time as opposed to the amount of time spent by those reporting non-work. That is especially the case for differences in educational

\(^{18}\)If we delete the roughly 1/6 of the respondents who are public employees, the coefficients on the unemployment rate in the regressions in column (3) of Table 2 and column (4) of Table 3 rise substantially in absolute value, as one might expect. The probit derivative in column (2) of Table 3 rises too, but only slightly.
attainment; but even the racial/ethnic effects, while significant on both the probability and the conditional mean, are much stronger on the former.

The results displayed in Table 2 showed that the positive effect of higher unemployment on time spent not working was mainly on other non-work time rather than on time spent eating at work. Table 4 presents estimates of effects on the probabilities of eating at work and engaging in other non-work, and on their conditional means. In all cases we present only the specifications expanded to include all the vectors of fixed effects. The negative impacts of unemployment on the probabilities of eating at work and engaging in other non-work are essentially identical. The differences observed in Table 2 result from the greater responsiveness of other non-work time to differences in statewide unemployment among those who report other non-work than from the responses of time spent eating. The impact on other non-work time is three times as large as that on time spent eating at work.19

The central finding in this study is that higher unemployment is robustly associated with a greater fraction of time at work spent not working, with most of the effect operating through greater time at work in leisure, cleaning up, etc. Since higher unemployment, other things equal, is also associated with less time at work (in this sample each extra percentage point of unemployment reduces the workday by 2.4 minutes per day), this finding suggests that employers are allowing workers to spend smaller fractions of the workday actually working. A surprising pair of subsidiary findings is that higher unemployment reduces the likelihood of non-work, while increasing the conditional amount of non-work sufficiently to generate the net positive relationship between unemployment and non-work on the job.

IV. A Suggestive Model of Non-Work (Loafing)

Our results imply contradictory and offsetting motives for non-work on the job over the business cycle or at different states of the labor market. Workers engage in non-work less frequently in bad times (when the rate of unemployment is higher), but given that they do so, they tend to do more of it. A simple

19The demographic effects are generally in the same directions on both the incidence and intensity of the two types of non-work, but there are some changes from the overall patterns observed in Table 3. That is especially true for the racial/ethnic indicators. African-Americans’ greater amounts of both types of non-work arise entirely from their greater likelihood of eating at work and doing other non-work; among Hispanics the effect arises from their greater likelihood of eating at work and a higher conditional mean amount of other non-work in which they engage.
efficiency wage model with heterogeneous preferences is consistent with these apparently contradictory findings. Later, we show how our model is also consistent with an interpretation involving labor hoarding.

A. Preliminaries

We envision an environment in which workers’ effort cannot be monitored perfectly, but their aggregate productivity is an observable outcome of the state of the business cycle or the local labor market as well as of the fraction of their time spent in non-work activities. In our model, workers are heterogeneous and, in the spirit of Shapiro and Stiglitz (1984), can choose to spend a fraction of working time in non-work. Individual workers are risk-neutral and receive utility from consumption goods purchased with their wages, as well as from leisure on the job (non-work). Each worker is endowed with one unit of time and, if employed, receives a wage w plus the monetary equivalent of time spent in leisure on the job (non-work). Each worker is endowed with one unit of time and, if employed, receives a wage w plus the monetary equivalent of time spent in leisure on the job (non-work or “loafing”), denoted as ℓ. 20 Workers are indexed by $i \in [0,1]$ in increasing order of ℓ, so $i > j$ implies $\ell_i > \ell_j$ for all i and j. Without loss of generality, the index could stand for the percentile of the worker in the distribution of preferred loafing times; in our example, the index is the “name” of the individual worker in question and equals the preferred loafing time (as a fraction of total available labor effort). If undetected, worker i is assumed to prefer enjoying this fixed amount of non-work ℓ_i and exerting work effort $e_i = 1 - \ell_i$ to exerting full effort $e_i = 1$. The worker retains her value of ℓ_i for the duration of the job.

In each period, a worker i chooses between loafing and receiving income equivalent $w + \ell_i$, or not loafing at all and receiving w. With exogenous probability θ management monitors workers; if they are found loafing, they are fired. Employment relationships can also end exogenously with probability δ. Unemployed workers receive income equivalent in value to b and are indistinguishable from other workers on the basis of employment or non-work history. They find jobs at rate f, which, given the stock of employment, a separation rate, and an exogenous labor force, is determined endogenously by a steady-state condition to be described below.

20In the interest of simplicity we ignore leisure off the job.
B. To Loaf or Not to Loaf: That is the Question

For an arbitrary worker $i \in (0,1)$ earning wage w_i, it is straightforward to compute steady-state valuations of the three possible labor-force states/strategies: employment and non-work (V^S_i), employment without any non-work (V^N_i), and unemployment (V^U_i):

\[
V^N_i = \frac{w_i}{1+r} + \frac{\delta}{1+r} V^U_i + \frac{1-\delta}{1+r} V^N_i \quad (1)
\]

\[
V^S_i = \frac{w_i + \ell_i}{1+r} + \frac{\theta + \delta}{1+r} V^U_i + \frac{1-\theta - \delta}{1+r} V^S_i \quad (2)
\]

\[
V^U_i = \frac{b}{1+r} + \frac{f}{1+r} V^E_i + \frac{1-f}{1+r} V^U_i \quad , \quad (3)
\]

where

\[
V^E_i = \mathbb{E}\left[\max_{\ell_i, w_i(\ell_i)} \left\{ V^S_i, V^N_i \right\} \right] \quad (4)
\]

represents the expected value of employment from the perspective of an unemployed person who does not know her future value of ℓ_i, but knows that she will choose the strategy that maximizes expected utility going forward.

Given this set of behavioral assumptions, each worker i is characterized by a “no-loafing wage.” If paid above this wage, the worker’s valuation of not loafing at all dominates that of loafing:

\[
V^N_i \geq V^S_i . \quad (5)
\]

As in Shapiro and Stiglitz (1984), this “no-loafing condition” (NLC), defines the cutoff or minimal threshold wage \bar{w}_i at which worker i is indifferent between loafing and not loafing, i.e., $V^N_i = V^S_i$. In the Appendix, the “NLC wage” for worker i is shown to be:

\[
\bar{w}_i = b + \frac{(r+\delta+f)}{\theta} E\ell_i + \frac{(r+\delta)}{\theta} \ell_i - E\ell_i \quad (6)
\]

The NLC wage depends positively on income in unemployment b, the interest rate r, job turnover $\delta+f$, the flow rate out of unemployment ℓ_i, and the worker’s expected valuation of loafing $E\ell_i$ as well as the
deviation of her current value from the mean, \(\ell_i - E\ell_i \). It depends negatively on \(\theta \), the probability of detection.

C. Aggregate Loafing and the Steady-State Flow Equilibrium

The NLC wage represents a threshold above which a worker \(i \) will not loaf at all. Inverting (6) yields the identity of the “marginal loafer” for whom \(\overline{w}_i = w \), i.e., who is indifferent between loafing her preferred amount and not loafing at all:

\[
\ell = \frac{\theta(w-b) - fE\ell_i}{r + \delta}.
\]

(7)

At wage \(w \), all workers for whom \(\overline{w}_i > w \) (or, equivalently, \(\ell_i > \overline{\ell} \)) will spend time \(\ell_i \) in non-work on the job. Let \(g(\ell_i) \) be the density of workers on the support of preferred loafing time \([0, 1]\) and \(G \) be the associated c.d.f. Using (6), we can now derive the following:

1) **The fraction of workers \(\gamma \) loafing at wage \(w \).** The fraction of workers who are loafing, or the mass of workers whose NLC wage exceeds the wage:

\[
\gamma = \int_{\ell}^{1} g(\ell_i) d\ell_i = 1 - G(\overline{\ell})\,.
\]

2) **The aggregate volume of loafing \(\ell(w) \) at wage \(w \):**

\[
\ell(w) = \int_{\ell}^{1} \ell_i g(\ell_i) d\ell_i
\]

3) **Aggregate effort \(e(w) \) at wage \(w \):**

\[
e(w) = 1 - \int_{\ell}^{1} \ell_i g(\ell_i) d\ell_i
\]

4) **Mean amount of loafing conditional for those loafing at wage \(w \):**

\[
E[\ell_i | \ell_i > 0] = \frac{\int_{\ell}^{1} \ell_i g(\ell_i) d\ell_i}{1 - G(\overline{\ell})}.
\]

In the steady state, the outflow rate \(f \), which is expressed as a fraction of the unemployed, equates exits from to inflows into unemployment. Exits are given by the product of \(f \) and \((\overline{L} - L)\), where \(\overline{L} \) and \(L \) stand for the exogenous labor force and employment respectively. The mass of those workers who flow into unemployment equals that of workers who lose their jobs through exogenous separation (\(\delta L \)) plus those workers who are monitored and were loafing (for whom \(\overline{w}_i > w \)), with mass of \(\theta \delta L = \theta(1 - G(\overline{\ell}))L \). The flow rate out of unemployment \(f \) is therefore given by:
\[f = \frac{(\delta + \theta \gamma)L}{L - L} = (\delta + \theta \gamma)(u^{-1} - 1) \] \hspace{1cm} (8)

By inspection, an increase in unemployment has two effects on the outflow rate. First, it decreases it directly via the steady-state unemployment condition; but a lower \(f \) increases the expected duration of unemployment and cost of loafing. This effect acts to reduce the fraction of loafers (\(\gamma \)) and lower the inflow into unemployment due to shirkers who are caught. A rise in unemployment, by lowering \(f \), therefore mitigates the first-order decrease in \(f \). The overall effect is, strictly speaking, ambiguous. Without further restricting the model at the point, we will make the following plausible assumption:

Assumption: The outflow rate is decreasing in the unemployment rate: \(\frac{df}{du} < 0 \).

In the Appendix, we show that this assumption will hold if and only if the elasticity of loafing with respect to the outflow rate in general equilibrium is not too large, i.e.,

\[\frac{d\gamma}{df} \left(\frac{f}{\gamma} \right) < 1 + \frac{\delta}{\theta \gamma}. \]

D. Predictions

Armed with these results and assuming \(\frac{df}{du} \leq 0 \), we can prove the following propositions which will help interpret our findings and point to further empirical implications for loafing:

Proposition 1: Loafing and unemployment. Holding the wage constant, the fraction of workers who loaf depends negatively on the unemployment rate: \(\frac{d\gamma}{du} < 0 \).

Proof: This and subsequent proofs are in the Appendix.

Proposition 1 is a partial equilibrium relationship which holds all other factors constant including the wage. A rise in unemployment acts to lower the outflow rate out of unemployment, thereby raising the no-shirking wage and reducing the fraction of workers for whom shirking is the more attractive option.

Proposition 2: Loafing, wages, and unemployment income. Holding the rate of outflow constant, the fraction of workers who loaf depends negatively on the wage (\(w \)) and positively on income in unemployment (\(b \)).

\[21 \text{We assume that separations occur exogenously before monitoring.} \]
Proposition 2 holds that an increase in the wage will, *ceteris paribus*, deter some workers who were previously enjoying non-work from doing so. Similarly an increase in unemployment income will increase the mass of workers who enjoy positive non-work.

Proposition 3: *Conditional mean loafing and unemployment.* Holding the wage constant, the conditional mean of non-work on the job by those with positive non-work is increasing in the unemployment rate.

Proposition 4: *Conditional mean loafing, wages and unemployment income.* Holding the outflow rate constant, the conditional mean of non-work on the job by those with positive non-work is increasing in the wage and decreasing in income in unemployment.

E. An Example

For the purpose of illustration, consider the case of a uniformly(11,14),(989,988) distributed preferred level of loafing, i.e., \(g(\ell) = 1 \). Then \(E\ell_i = \frac{1}{2}, \ G(\ell) = \ell \), and the fraction of workers who are loafing is given by

\[
\gamma = 1 - \ell = 1 - \frac{\theta(w-b) - \frac{1}{2}f}{r + \delta}, \quad \text{where } (r+\delta+\frac{1}{2}f)/\theta > (w-b) > 0 \text{ is imposed to ensure meaningful values.}
\]

Total loafing at a wage \(w \) is

\[
\ell(w) = \int_{\ell}^{1} \ell_i d\ell_i = \frac{1}{2} \left[1 - \left(\frac{\theta(w-b) - \frac{1}{2}f}{r + \delta} \right)^2 \right],
\]

depicted as the unshaded area in Figure 1. Since total available labor is 1 and non-work is the trapezoid ABCD, the total amount of effort is given by \(e(w) = \frac{1}{2} \left[1 + \left(\frac{\theta(w-b) - \frac{1}{2}f}{r + \delta} \right)^2 \right], \) so \(e'(w) > 0 \). The average loafing of a worker conditional on any loafing is

\[
\frac{1}{2} \int_{\ell}^{1} \ell_i d\ell_i = \frac{1}{2} \left[1 + \left(\frac{\theta(w-b) - \frac{1}{2}f}{r + \delta} \right)^2 \right].
\]

Holding the wage constant, higher unemployment in this example leads to lower outflows, which means fewer workers are loafing; but among those who are loafing, the average amount of loafing is higher.
F. Closing the Model: Efficiency Wages versus Competitive Labor Markets

The model was set up in partial-equilibrium terms, focusing on the worker’s decision to supply effort while taking the wage as given. Closing the model requires specifying the wage determination process. One possibility is that firms set or post wages as in the efficiency wage or search literature. In that class of models, the representative firm chooses its wage offer and level of employment to maximize profits subject to the perceived dependence of effort on pay. Let the representative firm’s production function be given by \(Y = \Theta F(e(w)L) \), where \(F \) is a concave, continuous function of labor input, with \(F'>0 \) and \(F''<0 \) and \(\Theta>0 \) is an exogenous productivity shift term. Labor input, defined as the product of employees, \(L \), and average effort per worker, is given by \(e(w) = 1 - \frac{\int_1^t \ell \cdot g(\ell) \, d\ell}{r + \delta} \); note that:

\[
e'(w) = \frac{\Theta e'F'(e(w)L)}{r + \delta} > 0.
\]

The price of output is set to one. First-order conditions are:

\[
e\Theta F' = w, \quad \text{and} \quad \Theta e'F'(e(w)L) = 1.
\]

Combining the two yields the familiar “Solow condition” (Solow, 1979), \(we'/e = 1 \):

22 The notion that firms post or set wages has a diverse literature: Bewley (1999) adduces strong evidence that firms set wages and are reluctant to reduce them; Burdett and Mortensen (1998) model wage posting and turnover as sources of labor market frictions which gives rise to an equilibrium distribution of wages. Manning (2003) provides a summary of these arguments as deriving from both monopsony power and search frictions.

23 To ensure uniqueness of the efficiency wage, we would need to require \(e(w) = 0 \) for some \(w>0 \) and for \(e(w) \) to be concave: \(e''<0 \). In the present model, the first condition is always met; the second is met if the density of preferred loafing times is declining at the optimum and \(\tilde{\ell} \) is decreasing in the wage in general equilibrium.
\[w = \frac{(r + \delta)e(w)}{\theta g(\ell)} = \frac{(r + \delta)\left(1 - \int_{\ell}^{\ell_f} g(\ell_i) d\ell_i\right)}{\theta g(\ell)}. \] (9)

where \(\ell = \frac{\theta(w - b) - fE\ell_i}{r + \delta} \). From the firm’s perspective, the wage set is independent of the marginal product of labor, equating it rather to the ratio of average effort and marginal effort in response to the wage. The model is closed by the optimality condition for employment \(L \) after substituting for \(e \) and \(\ell \):

\[\Theta \left[1 - \int_{\ell}^{\ell_f} g(\ell_i) d\ell_i\right] F \left(1 - \int_{\ell}^{\ell_f} g(\ell_i) d\ell_i\right) L = w, \] (10)

and the flow equilibrium condition for \(f \):

\[f = \frac{(\delta + \theta(1 - G(\ell)))L}{L - L}, \] (11)

yielding, after substituting for \(\ell \), a system of three equations in \(w, L \) and \(f \).

Alternatively, the wage may be determined endogenously as the competitive interaction of the marginal product of labor, taking effort as given, and the monetary disutility of work at some level of employment. The representative firm’s profit is as before, but profit maximization is now characterized by the single first-order condition \(e\Theta F'(eL) = w \). At the same time, we let the wage also represent the marginal disutility of work, so \(w = L^{1/\varepsilon} \), and we assume an iso-elastic production function \(Y = \Theta F(L) = \Theta L^{1-1/\eta} \), where \(\varepsilon \) and \(\eta \) are strictly positive elasticities of labor supply and competitive labor demand, respectively. Substituting, the equilibrium level of employment solves:

\[\left[1 - \int_{\ell}^{\ell_f} g(\ell_i) d\ell_i\right] \frac{\eta - 1}{\eta} \Theta L^{-1/\eta} = L^{1/\varepsilon}, \] (12)

yielding one equation in \(L \), after substitution expressions for \(\gamma, f, \ell \), and \(w = e(L^{1/\varepsilon})\Theta F'(L) \). Below we examine the implications of this competitive labor-market equilibrium when labor productivity is endogenous and the outcome of numerous and potentially offsetting forces.
V. Applications

The model in Section IV suggests several testable implications that we can examine using the ATUS data. Also, the results in Section III have implications for the ongoing debate over the cyclicality of labor productivity (see, e.g., Hagedorn and Manovskii, 2011; Gali and van Rens, 2014). We deal with these two issues in turn in this Section.

A. Unemployment Insurance and Goofing Off

Both Propositions 2 and 4 in Section IV can be tested by expanding the equations presented in Tables 2 and 3 to include proxies for the wage rate and unemployment income. Rather than adding the wage rate itself, which would generate errors due to division bias, we add weekly earnings. Since a quadratic in weekly hours is already included, weekly earnings in this context become a measure of the worker’s wage rate.

The relevant measure of unemployment insurance (UI) income for each worker depends on complicated formulas typically linking her most recent year’s pattern of earnings and employment to state-specific regulations that are revised annually. The ATUS lacks worker-specific earnings histories; faute de mieux we therefore experiment with two measures of the UI income that might represent the average income available to workers in unemployment. The first, the annual state-specific maximum weekly benefit amount ($maxWBA$) is set legislatively. Given the relatively low benefit ceilings that characterize most states’ programs, roughly half of UI recipients receive maximum benefits, so that this measure could be a good proxy for the incentives described in the model of Section IV. An alternative measure is the average weekly benefit amount ($averageWBA$) paid in each state each year.\footnote{These data represent an extension of the sample used by Kroft and Notowidigdo (2011).} We experiment with this too, although it is not as clean a measure as $maxWBA$, since it depends partly on state-specific variation in unemployment.

We re-estimate the models in Column (3) of Table 2 and Columns (2) and (4) of Table 3, adding each worker’s usual weekly earnings and sequentially the $maxWBA$ and $averageWBA$ in the state of residence in the particular year to the fully-specified equations describing non-work time that include all...
four vectors of fixed-effect terms. For both maxWBA and averageWBA we present estimates of the
determinants of the unconditional mean of the percentage of non-work time, the incidence of non-work (the
extensive margin) and its conditional mean (the intensive margin). We measure these and weekly earnings
in thousands of dollars for ease of presenting the parameter estimates, noting that their means are $384, $281 and $858 respectively. While the results are very similar for both measures of UI benefits, the
explanatory power is slightly higher when we include maxWBA.

Section IV generated no predictions about the determinants of the unconditional mean of non-work
time; and we see in Columns (1) and (4) of Table 5 that the inclusion of neither maxWBA nor averageWBA
has a significant impact on this outcome. Even with all the demographic controls, however, conditional on
hours of work those with higher weekly earnings (implicitly a higher wage rate) spend a smaller fraction of
their time at the workplace in non-work.25 (Those whose earnings are above a regression line are more
likely to be high-effort workers, although causation in this bivariate relationship is difficult to determine.)

Proposition 2 suggested that the incidence of non-work will fall with increases in the wage rate and
rise with increases in income when unemployed. The estimates in Columns (2) and (5) of Table 5 represent
strong evidence in support of this Proposition. Controlling for education and other characteristics, workers
with higher wage rates are less likely to engage in any goofing off on the diary day in the ATUS. Remarkably, workers in states and at times where the maximum (average) UI benefit is higher conditional
on their earnings and hours are more likely to spend part of their day at work in non-work. This seems to
be a strong confirmation of the model in Section IV and, more generally, of the role of incentives to shirk
in determining workers’ and firms’ behavior.

Proposition 4 implied that the amount of non-work, conditional on it being positive, would increase
in unemployment income and decrease in the wage rate. The former implication is supported by the results
in Columns (3) and (6) of Table 5: Other things equal, including a large vector of demographic, industry
and occupational characteristics, the conditional fraction of non-work is lower among workers with higher

25The inclusion of weekly earnings and the UI variables does not qualitatively alter any of the inferences about the
effects of the demographic and other variables on the amount and incidence of non-work time that were based on the
estimates in Tables 2 and 3.
hourly wages. The only part of Propositions 1-4 that is not supported by the data is the relationship between unemployment income and conditional non-work time: As Table 5 shows, unemployment income exhibits no correlation with conditional non-work time, only with its incidence.

B. Cyclical Movements in Labor Productivity Since 2000

The nature of cyclical changes in labor productivity has been a focus of macroeconomic controversy for over half a century (e.g., Okun, 1962). Labor-hoarding motives suggest that output per worker-hour paid will fall in recessions, while the shirking motive coupled with diminishing marginal productivity suggests it will rise when workers are laid off. Our model implies the outcome will be ambiguous, depending on the relative sizes of the impacts at the extensive margin (a prediction of counter-cyclical productivity per hour at work) and the intensive margin (a prediction of pro-cyclical productivity per hour at work).

In the model presented in Section IV, there are four distinct effects of an exogenous increase in Θ. First, it raises labor productivity directly, leading to more hiring. Second, competitive firms will expand production and hire more labor in response, thereby reducing labor productivity by virtue of the law of diminishing marginal productivity. The third and fourth effects arise in a general equilibrium context. As employment rises unambiguously, wages rise unambiguously, enhancing effort and acting as a fillip to higher productivity. Fourth, unemployment falls, increasing labor turnover and reducing the cost of shirking, with the increase in loafing putting a damper on productivity. The net result of these effects is ambiguous.

Our estimates demonstrate that the impact at the intensive margin dominates that at the extensive margin, so that we would expect pro-cyclical labor productivity if we measure it as output divided by total hours on the job. To examine how our finding might alter measures of productivity change over the cycle,

\[\text{In a world with nonconvexities and fixed labor inputs, average productivity might still rise.} \]

\[\text{This is readily shown using the case with iso-elastic functional forms considered in (12), after division by } L \text{ and imposing the side conditions. In the Appendix, we show that the sign of } \frac{\partial (Y/L)}{\partial \Theta} \text{ is ambiguous for the reasons cited in the text.} \]
we extend the measures of labor productivity generated by Burda et al (2013) to account for cyclical variation in non-work at work. Most crucially, in our adjustment we measure labor productivity as output per hour at work and working. We concentrate on labor productivity in 2006:IV, when the U. S. unemployment rate in our data reached its cyclical low, and 2010:I, when it reached its high.28

The first row of Table 6 presents the BLS index of labor productivity in the business sector (using a base of 1961:I = 100) for these two quarters and its peak-trough percentage change. The second row lists a calculation based on a number of changes by Cociuba et al (2012) using detailed modifications of the BLS series that account carefully for hours actually at work among civilian workers. The third row shows calculations that adjust the measures in the second row to account for time at work as reported by ATUS respondents in their diaries, which we view as more reliable than one-week retrospective reports of time on the job. All of these measures show counter-cyclical labor productivity during the Great Recession.

Amending these calculation to account for non-work time at work, the purpose of this exercise, will clearly increase the estimated counter-cyclicality of labor productivity (since we showed that the net impact of higher unemployment is to raise non-work time at work), but the question is: By how much? Taking the change in unemployment over this cycle, and using the estimates in Column (1) of Table 2 as indicating the maximum possible cyclicality of non-work time at work, the fourth row of Table 6 shows the adjusted indexes of labor productivity.29 As the final column of Table 6 shows, accounting for the counter-cyclicality of non-work time at work sharply increases the estimated counter-cyclicality of labor productivity. Indeed, it nearly doubles its variation during the Great Recession compared to the Cociuba et al (2012) measure, and increases it by 25 percent compared to the BLS measure. Even with much less counter-cyclicality of non-work (based on the estimates in Column (3) of Table 2), accounting for this phenomenon still has

28Aggregate unemployment reached its cyclical minimum of 4.4 percent in a number of months between October 2006 and May 2007. Its cyclical maximum was reached in October 2009. We use the minimum and maximum in the ATUS sample for convenience, although the use of these dates hardly alters the inferences qualitatively.

29These are calculated so that they equal the measure in Row 3 at the average unemployment rate during this period. Changing the basis does not change the estimated cyclical change in this adjusted index.
substantial effects on the estimated change in labor productivity over the cycle, as the bottom row of Table 6 shows.

C. Labor Hoarding and the Changing Cyclical Behavior of Labor Productivity

Interpreting these results in light of our model, the increase in labor productivity in the wake of the Great Recession is consistent with counter-cyclical productivity the United States since 1990, but stands in contradiction to an earlier, conventional wisdom that labor productivity and total factor productivity in general are pro-cyclical (e.g., Cooley and Prescott, 1995, Gordon, 2003, Ch. 8). Our estimates hint that this reversal in the correlation could be due to changing strengths of behavior at the intensive and extensive margins – in the pre-1990 period, the intensive margin may have dominated the extensive margin. Our model points to parameters such as worker turnover (δ or f) as well as the monitoring intensity (θ) or income in unemployment as causal in this regard.

Suppose there is an exogenous increase in productivity: $d\Theta>0$ in either of the equilibrium models sketched in Section 4.F. Labor demand (employees) shifts out at any wage, reducing the unemployment rate and increasing the outflow rate. At a given wage workers will loaf more, and the endogenous component of productivity declines, partially offsetting the exogenous increase. The wage will rise, however, inducing workers to loaf less. The net effect will depend on the monitoring probability, interest rates and exogenous turnover. Presumably the higher the monitoring probability, the less likely that workers will loaf ($G(.)\to1$) and the smaller the mass of loafers ($\gamma\to1$).
VI. Concluding Remarks

In this study we have focused on measuring changes in the amount of effort exerted by workers as the labor market loosens or tightens. This would appear to be a simple measurement issue, one that would have been reflected in official aggregate data for many years. It has not been. With the now twelve-year-old large-scale study of time use, the American Time Use Survey, we can begin to examine this issue in a way that was heretofore impossible, since that survey provides information on time use on the job. In particular, these new data allow us to measure the cyclical variability of time not working while at the workplace.

There is some weak evidence that non-work time at work is counter-cyclical, consistent with the dominance of labor hoarding over the role of workers’ incentives to reduce shirking at times when its cost rises due to reduced external opportunities. Within this net result, however, lie highly significant but opposite-signed impacts of higher unemployment. The role of shirking is reflected strongly in the pro-cyclical variation in the incidence of non-work time; but among those who shirk at all, the intensity of their non-work is strongly counter-cyclical. These empirical results can be rationalized by a model of interactions between employers and workers in which higher unemployment reduces the incentive for heterogeneous workers to shirk, so that those who choose to continue shirking as unemployment rises are those whose preferences for shirking are strongest.

The model also generates predictions about how additional external opportunities, in the form of prospective unemployment benefits, affect the incidence and intensity of non-work on the job. In general they suggest that higher unemployment benefits lead unsurprisingly to more non-work on the job, but they also lead those who do shirk to do less of it. These predictions are mostly supported when we match the time-use data to various parameterizations of states’ unemployment insurance systems. Other models might be constructed that explain all of the phenomena we have documented and still others, and that would be a worthwhile additional development.

We use the estimates to develop a new measure of labor productivity, relating it to changing unemployment and showing that, at least during the period encompassing the Great Recession, labor
productivity was even more counter-cyclical than suggested by previous estimates. No doubt there are many other applications of this new approach to measuring effort on the job that might be carried out. For example, we have shown striking demographic differences in the share of work time devoted to non-work. These might be used to re-estimate hourly wage differentials among different races/ethnicities; they might be employed to adjust measures of the returns to education; or they could be used to re-examine the returns to on-the-job training. We leave this large set of potential extensions and applications, along with the derivation of additional predictions from our model, to others.
REFERENCES

Karl Marx, Das Kapital (Band 1) 1867. Berlin: Dietz Verlag, 1982.

APPENDIX

A1. Necessary and sufficient conditions for the assumption $\frac{df}{du} < 0$ to hold.

Remark. The assumption holds if and only if the elasticity of loafing with respect to the outflow rate in general equilibrium is not larger than $1 + \frac{\delta}{\theta \gamma}$; i.e. $\frac{dy}{df}\left(\frac{f}{\gamma}\right) < 1 + \frac{\delta}{\theta \gamma}$.

Proof. Differentiate equation (7) defining f:

$$\frac{df}{du} = -(\delta + \theta \gamma)u^{-2} + \theta(u^{-1} - 1) \frac{dy}{df} \frac{df}{du} = -\frac{(\delta + \theta \gamma)u^{-2}}{1 - \theta(u^{-1} - 1) \frac{dy}{df}}.$$

The necessary and sufficient condition for $df/du < 0$ is that $\frac{dy}{df} < \frac{1}{\theta(u^{-1} - 1)}$. But steady-state unemployment is given by $u = \frac{\delta + \theta \gamma}{\delta + \theta \gamma + f}$; substitution yields then:

$$\frac{dy}{df} < \frac{1}{\theta(\frac{\delta + \theta \gamma + f}{\delta + \theta \gamma} - 1)} = \frac{\delta + \theta \gamma}{\theta f} = \frac{\gamma (\frac{\delta}{\theta \gamma} + 1)}{f (\frac{\delta}{\theta \gamma} + 1)} ,$$

which can be rewritten in elasticity form as:

$$\frac{dy}{df}\left(\frac{f}{\gamma}\right) < \frac{\delta}{\theta \gamma} + 1 .^{30}$$

Proposition 1: Loafing and unemployment. Holding the wage constant, the fraction of workers who loaf depends negatively on the unemployment rate: $dy/du < 0$.

Proof: Differentiate $\gamma = 1 - G(\bar{t})$ with respect to u to obtain, using $\bar{t} = \frac{\theta(w-b) - FE\ell}{r + \delta}$.

30A decrease in the outflow rate, ceteris paribus, unambiguously reduces the fraction of workers loafing:

$$\frac{dy}{df} = \frac{g(\bar{t})\theta(w-b)}{(r + \delta + f)} > 0 .$$
\[
\frac{d\gamma}{du} = -g(\tilde{\ell}) \frac{d\tilde{\ell}}{du} = g(\tilde{\ell}) \frac{\theta(w-b) df}{(r + \delta)^2 \ du},
\]
which shares the sign of \(\frac{df}{du} \) (negative).

Proposition 2: Loafing, wages, and unemployment income. Holding the rate of outflow constant, the fraction of workers who loaf depends negatively on the wage and positively on income in unemployment.

Proof: Differentiate \(\gamma = 1 - G(\tilde{\ell}) \) with respect to \(w \) to obtain, using \(\tilde{\ell} = \frac{\theta(w-b) - fE\ell_i}{r + \delta} \):
\[
\frac{d\gamma}{dw} = -\frac{\theta g(\tilde{\ell})}{r + \delta} < 0; \text{ similarly, } \frac{d\gamma}{db} = \frac{\theta g(\tilde{\ell})}{r + \delta} > 0.
\]

Proposition 3: Conditional mean loafing and unemployment. Holding the wage constant, the conditional mean of non-work on the job for those with positive non-work is increasing in the unemployment rate.

Proof. Differentiate \(E[\ell_i | \ell_i > 0] \) with respect to \(u \) using Leibniz’s Rule:
\[
\frac{d}{du} E[\ell_i | \ell_i > 0] = \frac{-g(\tilde{\ell}) \frac{d\tilde{\ell}}{du} \frac{df}{du}}{1 - G(\tilde{\ell})} - \frac{\ell_i g(\tilde{\ell}) \ell_i df}{1 - G(\tilde{\ell})} \frac{d\gamma}{du}
\]
We have already established that \(\frac{d\tilde{\ell}}{du} > 0 \). As long as \(\frac{df}{du} < 0 \), the first term is positive. We have also established above that \(\frac{d\gamma}{du} = \frac{d\gamma}{df} \frac{df}{du} < 0 \), so the second term is also positive. □

Proposition 4: Conditional mean loafing, wages and unemployment income. Holding the outflow rate constant, the conditional mean of non-work on the job for those with positive non-work is increasing in the wage and decreasing in income in unemployment.

Proof. As with the proof of Proposition 3, differentiate \(E[\ell_i | \ell_i > 0] \) with respect to \(w \) or \(b \):
\[
\frac{d}{d\ell} E[\ell_i | \bar{\ell}_i > 0] = -\frac{g(\bar{\ell}) \frac{d\bar{\ell}}{d\ell}}{1 - G(\bar{\ell})} \left(\epsilon_i \sum g(\ell_i) d\ell_i \right) d\gamma > 0
\]

\[
\frac{d}{db} E[\ell_i | \bar{\ell}_i > 0] = -\frac{g(\bar{\ell}) \frac{d\bar{\ell}}{db}}{1 - G(\bar{\ell})} \left(\epsilon_i \sum g(\ell_i) d\ell_i \right) d\gamma < 0
\]

The signs of these derivatives follow from the fact that \(\frac{d\bar{\ell}}{d\ell} < 0 \), \(\frac{d\gamma}{d\ell} < 0 \), \(\frac{d\bar{\ell}}{db} > 0 \) and \(\frac{d\gamma}{db} > 0 \).
Table 1. Descriptive Statistics, ATUS Employees' Workdays, 2003-12, N=35,548, Means and their Standard Errors (and Ranges for Several Variables)

<table>
<thead>
<tr>
<th></th>
<th>Unconditional Mean/ Incidence</th>
<th>Conditional Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily hours at work</td>
<td>8.35 (0.014) [0.02, 24]</td>
<td></td>
</tr>
<tr>
<td>Proportion of time at work Not Working:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0688 (0.00062)</td>
<td>0.1003 (0.00084)</td>
</tr>
<tr>
<td>Of which:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eating</td>
<td>0.0372 (0.00028)</td>
<td>0.0682 (0.00041)</td>
</tr>
<tr>
<td></td>
<td>0.518</td>
<td>0.0869 (0.00145)</td>
</tr>
<tr>
<td>Non-work not eating</td>
<td>0.0316 (0.00057)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0355</td>
<td>0.0869 (0.00145)</td>
</tr>
<tr>
<td>Of which:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leisure and exercise</td>
<td>0.0221 (0.00038)</td>
<td></td>
</tr>
<tr>
<td>Cleaning</td>
<td>0.0046 (0.00031)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.005 (0.00028)</td>
<td></td>
</tr>
<tr>
<td>Usual weekly work hours</td>
<td>41.38 (0.063) [1, 160]</td>
<td></td>
</tr>
<tr>
<td>State unemployment rate</td>
<td>6.65 (0.012) [2.1,14.4]</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Basic Estimates of the Fraction of Time at Work Not Working, ATUS 2003-12, N=35,548
(Parameter Estimates and Their Standard Errors)*

<table>
<thead>
<tr>
<th>Ind. Var.</th>
<th>Non-Work</th>
<th>Eating at Work</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>State unemployment rate</td>
<td>0.00104</td>
<td>0.00089</td>
<td>0.00057</td>
</tr>
<tr>
<td>(3-month average)</td>
<td>(0.00037)</td>
<td>(0.00036)</td>
<td>(0.00041)</td>
</tr>
<tr>
<td>Usual weekly hours</td>
<td>0.0029</td>
<td>0.0027</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0004)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>(Usual weekly hours)^2/100</td>
<td>-0.0034</td>
<td>-0.0031</td>
<td>-0.0010</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0004)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>Hours at work</td>
<td>-0.0368</td>
<td>-0.0374</td>
<td>0.0046</td>
</tr>
<tr>
<td></td>
<td>(0.0028)</td>
<td>(0.0028)</td>
<td>(0.0012)</td>
</tr>
<tr>
<td>(Hours at work)^2/100</td>
<td>0.0032</td>
<td>0.0032</td>
<td>-0.0002</td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
<td>(0.0002)</td>
<td>(0.0009)</td>
</tr>
<tr>
<td>African-American</td>
<td>0.0109</td>
<td>0.0101</td>
<td>0.0028</td>
</tr>
<tr>
<td></td>
<td>(0.0022)</td>
<td>(0.0024)</td>
<td>(0.0010)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.0134</td>
<td>0.0107</td>
<td>0.0097</td>
</tr>
<tr>
<td></td>
<td>(0.0022)</td>
<td>(0.0025)</td>
<td>(0.0010)</td>
</tr>
<tr>
<td>Schooling=12</td>
<td>-0.0049</td>
<td>-0.0040</td>
<td>-0.0001</td>
</tr>
<tr>
<td></td>
<td>(0.0029)</td>
<td>(0.0029)</td>
<td>(0.0012)</td>
</tr>
<tr>
<td>Schooling=13-15</td>
<td>-0.0093</td>
<td>-0.0064</td>
<td>-0.0016</td>
</tr>
<tr>
<td></td>
<td>(0.0033)</td>
<td>(0.0034)</td>
<td>(0.0015)</td>
</tr>
<tr>
<td>Schooling = 16</td>
<td>-0.0176</td>
<td>-0.0128</td>
<td>-0.0032</td>
</tr>
<tr>
<td></td>
<td>(0.0031)</td>
<td>(0.0033)</td>
<td>(0.0012)</td>
</tr>
<tr>
<td>Schooling >16</td>
<td>-0.0194</td>
<td>-0.0164</td>
<td>-0.0029</td>
</tr>
<tr>
<td></td>
<td>(0.0031)</td>
<td>(0.0035)</td>
<td>(0.0013)</td>
</tr>
<tr>
<td>Occupation fixed effects (22)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Industry fixed effects (51)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>State fixed effects (51)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Month fixed effects</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.0004</td>
<td>0.074</td>
<td>0.086</td>
</tr>
</tbody>
</table>

*x denotes the variable or vector is also included. Each equation also includes a quadratic in potential experience; indicators of gender, marital status and their interaction, and metropolitan residence.
Table 3. Probit Derivatives and Conditional Regression Estimates of the Fraction of Time at Work Not Working, ATUS 2003-12 (Parameter Estimates and Their Standard Errors)*

<table>
<thead>
<tr>
<th>Ind. Var.</th>
<th>Probit Derivatives</th>
<th>Conditional Regressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>State unemployment rate</td>
<td>-0.00312 (0.00152)</td>
<td>0.00161 (0.00042)</td>
</tr>
<tr>
<td>(3-month average)</td>
<td>-0.00493 (0.00172)</td>
<td>0.00164 (0.00048)</td>
</tr>
<tr>
<td>African-American</td>
<td>0.0765 (0.0089)</td>
<td>0.0045 (0.0024)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.0713 (0.0091)</td>
<td>0.0104 (0.0025)</td>
</tr>
<tr>
<td>Schooling=12</td>
<td>-0.0279 (0.0124)</td>
<td>0.0009 (0.0032)</td>
</tr>
<tr>
<td>Schooling=13-15</td>
<td>-0.0642 (0.0131)</td>
<td>0.0003 (0.0035)</td>
</tr>
<tr>
<td>Schooling = 16</td>
<td>-0.1080 (0.01436)</td>
<td>-0.0046 (0.0034)</td>
</tr>
<tr>
<td>Schooling >16</td>
<td>-0.1136 (0.0144)</td>
<td>-0.0047 (0.0034)</td>
</tr>
<tr>
<td>Occupation fixed effects (22)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Industry fixed effects (51)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>State fixed effects (51)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Month fixed effects</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pseudo- or Adjusted R²</td>
<td>0.094 0.127</td>
<td>0.365 0.374</td>
</tr>
<tr>
<td>N = 35,548</td>
<td>35,548 35,548</td>
<td>23,578 23,578</td>
</tr>
</tbody>
</table>

*x denotes the variable or vector is also included. Each equation also includes quadratics in usual weekly hours, time at the workplace, and potential experience; indicators of gender, marital status and their interaction, and metropolitan residence.
Table 4. Probit Derivatives and Conditional Regression Estimates of the Fraction of Time Eating at Work and Other Non-Work, ATUS 2003-12 (Parameter Estimates and Their Standard Errors)*

<table>
<thead>
<tr>
<th>Ind. Var.</th>
<th>Probit Derivatives</th>
<th>Conditional Regressions</th>
<th>Probit Derivatives</th>
<th>Conditional Regressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>State unemployment rate (3-month average)</td>
<td>-0.00557 (0.00196)</td>
<td>0.00081 (0.00031)</td>
<td>-0.00523 (0.00180)</td>
<td>0.00231 (0.00072)</td>
</tr>
<tr>
<td>African-American</td>
<td>0.0446 (0.0115)</td>
<td>0.0013 (0.0014)</td>
<td>0.1003 (0.0111)</td>
<td>-0.0022 (0.0038)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.0898 (0.0120)</td>
<td>0.0038 (0.0018)</td>
<td>0.0005 (0.0111)</td>
<td>0.0116 (0.0043)</td>
</tr>
<tr>
<td>Schooling=12</td>
<td>-0.0183 (0.0140)</td>
<td>0.0031 (0.0016)</td>
<td>-0.0056 (0.0123)</td>
<td>-0.0035 (0.0044)</td>
</tr>
<tr>
<td>Schooling=13-15</td>
<td>-0.0303 (0.0151)</td>
<td>0.0029 (0.0025)</td>
<td>-0.0352 (0.0130)</td>
<td>-0.0028 (0.0050)</td>
</tr>
<tr>
<td>Schooling = 16</td>
<td>-0.0367 (0.0165)</td>
<td>0.0028 (0.0021)</td>
<td>-0.0909 (0.0140)</td>
<td>-0.0086 (0.0056)</td>
</tr>
<tr>
<td>Schooling >16</td>
<td>-0.0343 (0.0175)</td>
<td>0.0013 (0.0023)</td>
<td>-0.1242 (0.0144)</td>
<td>-0.0057 (0.0061)</td>
</tr>
<tr>
<td>Occupation fixed effects (22)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Industry fixed effects (51)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>State fixed effects (51)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Month fixed effects</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pseudo- or Adjusted R^2</td>
<td>0.153</td>
<td>0.150</td>
<td>0.058</td>
<td>0.503</td>
</tr>
<tr>
<td>N =</td>
<td>35,548</td>
<td>18,401</td>
<td>35,548</td>
<td>12,612</td>
</tr>
</tbody>
</table>

* denotes the variable or vector is also included. Each equation also includes quadratics in usual weekly hours. Time at the workplace, and potential experience; indicators of gender, marital status and their interaction, and metropolitan residence.
Table 5. Estimates of the Earnings and Unemployment Benefits on the Incidence and Intensity of Non-work, ATUS 2003-12 (Parameter Estimates and Their Standard Errors)*

<table>
<thead>
<tr>
<th></th>
<th>Maximum Benefit</th>
<th>Average Weekly Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unconditional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Incidence</td>
</tr>
<tr>
<td>State unemployment rate</td>
<td>0.00050</td>
<td>-0.00630</td>
</tr>
<tr>
<td>(3-month average)</td>
<td>(0.00045)</td>
<td>(0.00187)</td>
</tr>
<tr>
<td>Weekly earnings ($000)</td>
<td>-0.0036</td>
<td>-0.0266</td>
</tr>
<tr>
<td></td>
<td>(0.0011)</td>
<td>(0.0054)</td>
</tr>
<tr>
<td>UI benefits ($000)</td>
<td>0.0189</td>
<td>0.2688</td>
</tr>
<tr>
<td></td>
<td>(0.0231)</td>
<td>(0.1035)</td>
</tr>
<tr>
<td>Pseudo- or Adjusted R²</td>
<td>0.088</td>
<td>0.128</td>
</tr>
</tbody>
</table>

*Each equation also includes all the variables included in the estimates shown in Table 2, as well as all four vectors of fixed effects.

<table>
<thead>
<tr>
<th>Row</th>
<th>Productivity Measure</th>
<th>Peak Quarter 2006:IV</th>
<th>Trough Quarter 2010:I</th>
<th>Percentage Change Peak to Trough</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Business Productivity</td>
<td>281.52</td>
<td>304.35</td>
<td>8.11</td>
</tr>
<tr>
<td>2</td>
<td>Cociuba et al Adjustment</td>
<td>224.19</td>
<td>235.84</td>
<td>5.20</td>
</tr>
<tr>
<td>3</td>
<td>Burda et al Adjustment of (2)</td>
<td>221.95</td>
<td>235.84</td>
<td>6.26</td>
</tr>
<tr>
<td>4a</td>
<td>(3) Adjusted for Maximum Non-work</td>
<td>218.51</td>
<td>241.42</td>
<td>10.49</td>
</tr>
<tr>
<td>4b</td>
<td>(3) Adjusted for Minimum Non-work</td>
<td>220.05</td>
<td>238.87</td>
<td>8.55</td>
</tr>
</tbody>
</table>

Unemployment Rate

| 4.21 | 10.23 |