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Theory for a Multivariate Markov–switching GARCH
Model with an Application to Stock Markets



Abstract

We consider a multivariate Markov–switching GARCH model which allows for

regime–specific volatility dynamics, leverage effects, and correlation structures.

Stationarity conditions are derived, and consistency of the maximum likelihood

estimator (MLE) is established under the assumption of Gaussian innovations. A

Lagrange Multiplier (LM) test for correct specification of the correlation dynam-

ics is devised, and a simple recursion for computing multi–step–ahead conditional

covariance matrices is provided. The theory is illustrated with an application to

global stock market and real estate equity returns. The empirical analysis high-

lights the importance of the conditional distribution in Markov–switching time

series models. Specifications with Student’s t innovations dominate their Gaussian

counterparts both in– and out–of–sample. The dominating specification appears

to be a two–regime Student’s t process with correlations which are higher in the

turbulent (high–volatility) regime.

JEL classification: C32; C51; C58

Keywords—conditional volatility, covariance forecasts, Markov–switching, multi-

variate GARCH



1 Introduction

Asset return distributions are typically characterized by fat tails, conditional heteroskedastic-

ity, and nonlinear dependence. Regarding the latter, a frequent concern is that the depen-

dence between assets increases in periods of market turbulence. This has serious implications

for portfolio and risk management, because it means that “the benefits of diversification are

partly eroded when they are needed most” (Campbell et al., 2002). An overview over the ex-

tensive literature studying this phenomenon and further evidence is provided, e.g., by Kasch

and Caporin (2013) and Mittnik (2014). For example, Kasch and Caporin (2013) develop a

multivariate GARCH model with dynamic correlations being allowed to depend on conditional

volatility and, for major stock markets, find that “turbulent periods coincide with an increase

in cross–market comovement.”

Markov–switching models (MSMs) are able to capture all of the aforementioned stylized

facts of asset return distributions, and their use is very popular in financial modeling because,

in addition to their flexibility, “the idea of regime changes is natural and intuitive” (Ang

and Timmermann, 2012). For example, in bearish markets, expected returns, conditional

volatilities and their dynamics, and correlations can differ from their respective counterparts

in more normal or bullish market periods. Regime–specific dynamics may also be related to

various types of trading patterns, as represented by “information” and “feedback” traders

(Dean and Faff, 2008). See Guidolin (2011) and Ang and Timmermann (2012) for an overview

over the many applications of MSMs.

In this paper, we investigate the properties of a multivariate extension of the Markov–

switching (MS) GARCH model of Haas et al. (2004), allowing for regime–specific volatility

dynamics, leverage effects, and correlation structures. Stationarity conditions are derived, and

consistency of the maximum likelihood estimator (MLE) is established under the assumption

of Gaussian innovations. The latter result has been unknown so far even for the univariate

version of this model and is thus of more general interest. The model we consider assumes con-

stant conditional within–regime correlations. Among other convenient features, this property

allows us to derive a simple recursion for multi–step–ahead conditional covariance matrices

for mean–variance portfolio allocation. However, one will want to test whether this assump-

tion is also justified empirically. Thus a test against within–regime correlation dynamics is

proposed, adopting Hamilton’s (1996) Lagrange Multiplier (LM) framework along with Tse’s

(2000) test for constant conditional correlations in a single–regime GARCH model. The the-

ory is illustrated with an application to global stock market and real estate equity returns.
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The empirical analysis highlights the importance of the conditional distribution in MS time

series models. Namely, since the conditional distribution in MSMs with Gaussian regimes is a

discrete mixture of normals and thus already thick–tailed, one might guess that use of a more

flexible within–regime distribution is unnecessary in this framework. Indeed, as observed by

Guidolin (2011), “it seems that most authors are still finding that traditional Gaussian mixture

models are generally sufficient to the task assigned to MSMs.” However, in our application,

specifications with Student’s t innovations dominate their Gaussian counterparts both in– and

out–of–sample. In particular, as discussed in Section 4, the Gaussian specification turns out

to suffer from its inability to correctly track the regime–switching process. The dominating

specification appears to be a two–regime Student’s t process with correlations which are higher

in the turbulent (high–volatility) regime.

The structure of the paper is as follows. In Section 2, we define the model and discuss

its relation to the literature. The statistical properties are presented in Section 3. Section 4

provides an application to financial data, and Section 5 concludes. Proofs of theorems and

technical details of the LM test against misspecification of conditional correlations are gathered

in Appendices A and B, respectively.

2 Definition of the process

The multivariate Markov–switching (MS) GARCH process introduced in this section general-

izes the univariate model proposed in Haas et al. (2004). For alternative approaches to MS

GARCH processes, see, e.g., Gray (1996), Dueker (1997), Klaassen (2002), and Augustyniak

(2014), as well as the review in Haas and Paolella (2012). Liu (2007) extended the model of

Haas et al. (2004) to allow for an asymmetric response of volatility to positive and negative

shocks, which is also incorporated in the model discussed herein.

Let the M–dimensional time series {ǫt} satisfy

ǫt = D∆t,t · zt, (1)

where {∆t} is a Markov chain with finite state space E = {1, . . . , k} and irreducible and

aperiodic transition matrix P ,

P =




p11 · · · pk1
... · · ·

...

pk1 · · · pkk


 , (2)
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where the transition probabilities pij = p(∆t = j|∆t−1 = i), i, j ∈ E , and the stationary distri-

bution of the chain is denoted by π∞ = (π1,∞, π2,∞, . . . , πk,∞)′. Matrix D∆t,t = diag(σ∆t,t),

where σjt = (σ1jt, . . . , σMjt)
′ ∈ R

M , j ∈ E , contains the regime–specific conditional standard

deviations of the elements of ǫt. Moreover,

zt = R
1/2
∆t

ξt, (3)

where Rj = (ρℓm,j)ℓ,m=1,...,M , j = 1, . . . , k, is a (regime–specific) correlation matrix, and {ξt}

is a sequence of iid random vectors with zero mean and identity covariance matrix. In the

applications below, we assume that ξt has a Student’s t distribution with ν > 2 degrees of

freedom, with density given by (B.5) in Appendix B, i.e.,

ξt
iid
∼ t(0, IM , ν), (4)

which includes normality as a limiting case (ν → ∞). {∆t} and {ξt} are assumed to be

independent.

The regime–specific conditional standard deviations follow simultaneous asymmetric abso-

lute value GARCH(1,1) (AGARCH) processes, i.e., in the most general form,

σjt = ωj +Aj|ǫt−1| − (Aj ⊙ Γj)ǫt−1 +Bjσj,t−1 (5)

= ωj + (Aj|Zt| − (Aj ⊙ Γj)Zt)σ∆t−1,t−1 +Bjσj,t−1 j ∈ E , (6)

where Zt = diag(zt), a matrix in absolute value bars means that the absolute value of each

element is taken, ωj = (ω1j , . . . , ωMj)
′, and

Aj = [aℓm,j ]ℓ,m=1,...,M , Γj = [γℓm,j ]ℓ,m=1,...,M , Bj = [bℓm,j ]ℓ,m=1,...,M , j ∈ E . (7)

Parameters γℓm,j ∈ (−1, 1), ℓ,m = 1, . . . ,M , j ∈ E , allow the conditional standard deviations

to react asymmetrically to positive and negative news of the same magnitude as in Ding et al.

(1993).

The model defined by (1)–(7), which will be referred to as a k–component Markov–

switching Constant Conditional Correlation GARCH process, or, in short, MS(k) CCC–

GARCH, is an asymmetric multi–regime version of the extended CCC (ECCC) model stud-

ied by Jeantheau (1998), which itself generalizes the CCC of Bollerslev (1990) by allowing

for volatility interactions, which are often of interest in finance and macroeconomics (e.g.,

Nakatani and Teräsvirta, 2009; and Conrad and Karanasos, 2010). In most applications the

diagonal model, with all Aj, Bj, and Γj being diagonal matrices, will be preferred for reasons
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of parsimony; an ARCH version of such a model was used by Ramchand and Susmel (1998).

Extensions of the ECCC to allow for (possibly cross) leverage effects along the lines of Glosten

et al. (1993) are explored in McAleer et al. (2009) and Francq and Zaköıan (2012).

The specification of the volatility dynamics (5)–(6) in terms of the conditional standard

deviation instead of the conditional variance, as originally proposed by Taylor (1986), serves

two purposes: First, empirically, it appears that it typically improves the fit as compared to the

formulation in terms of the conditional variance, and is very often close to the MLE when the

“power parameter” (as in Ding et al., 1993) ist freely estimated from the data (e.g., Giot and

Laurent, 2003; Lejeune, 2009; and Broda et al., 2013). Second, as noted by Pelletier (2006),

this specification allows for closed-form calculation of multi–step–ahead conditional covariance

matrices, as required, e.g., for mean–variance portfolio optimization over horizons longer than

one period. The model suggested by Pelletier (2006), referred to as the regime–switching

dynamic correlation (RSDC) model, is nested in (1)–(7) when only the conditional correlation

matrices are subject to regime–switching, i.e., in (5)–(6), ω1 = · · · = ωk, A1 = · · · = Ak,

and B1 = · · · = Bk. Covariance matrix forecasts for this restricted model are considered

in Pelletier (2006) und Haas (2010), whereas a convenient scheme for forecasting the general

model (1)–(7) will be developed in Section 3.3.

In (5)–(6), conditions have to be imposed to make sure that all elements of σjt remain

positive with probability 1, j = 1, . . . , k. As observed by He and Teräsvirta (2004), an obvious

sufficient condition is that ωj > 0 and Aj,Bj ≥ 0 elementwise, but this is not necessary

with nondiagonal Aj (Nakatani and Teräsvirta, 2008; Conrad and Karanasos, 2010). For the

diagonal model, which is of particular importance in the applications, ωj > 0 and Aj,Bj ≥ 0,

j = 1, . . . , k, are necessary, however. In the discussion of the MLE in Section 3.4, we will also

introduce an identifiability condition in Assumption 1.

Regarding the distribution of the innovations {ξt}, note that (4) includes Gaussian inno-

vations as a limiting case, when ν → ∞. Though normality is still the dominant distributional

assumption in regime–switching models (cf. Guidolin, 2011), allowing for fat–tailed innovations

can improve both in–sample fit and out–of–sample forecasting performance of MS GARCH

models, as pointed out, e.g., by Klaassen (2002), and Ardia (2009); see Section 4 for a detailed

discussion and illustration.1

1 Time series models of independently switching Student’s t components for financial data are considered,
e.g., in Giacomini et al. (2008), Wong et al. (2009), and Nikolaev et al. (2013).
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3 Properties of the model

In this section, we investigate the statistical properties of the MS(k) CCC–GARCH process.

In particular, we present conditions for strict stationarity and the existence of unconditional

moments in Section 3.1. Explicit formulas for moments of frequent interest are provided in 3.2,

namely the unconditional covariance matrix and the autocorrelations of the absolute values,

which can be used to characterize the joint volatility dynamics. Moreover, a simple recursive

scheme for obtaining multi–step–ahead covariance matrices is derived in Section 3.3, fostering

applications to mean–variance portfolio selection in environments with changing volatilities

and correlations. Finally, in Section 3.4, we discuss the maximum likelihood estimator and

establish its consistency for the case of normally distributed {ξt} in (3).

To set out the properties of the MS(k) CCC–GARCH process, we define the matrices

Xt =




σ1t

...

σkt


 , ω =




ω1

...

ωk


 , A =




A1

...

Ak


 , Ã =




A1 ⊙ Γ1

...

Ak ⊙ Γk


 ,

and B = blockdiag(B1, . . . ,Bk) =
⊕k

j=1Bj . This gives rise to the representation

X t = ω +C∆t−1,t−1X t−1, (8)

where

C∆t,t = (A|Zt| − ÃZt)(e
′
∆t

⊗ IM ) +B, (9)

and ej is the jth unit vector in R
k, j = 1, . . . , k.

3.1 Stationarity and existence of moments

We first provide a necessary and sufficient condition for the existence of a strictly stationary

solution of the MS(k) CCC–GARCH process. Theorem 1 generalizes results for the associated

univariate MS GARCH process in Liu (2006, 2007).2

Theorem 1. The MS(k) CCC-GARCH(1,1) process defined by (1)–(7) has a unique strictly

stationary and ergodic solution if and only if the top Lyapunov exponent γC associated to the

2 Francq et al. (2001) and Francq and Zaköıan (2005, 2008) consider stationarity and moment properties of
an alternative univariate MS GARCH process; see also Abramson and Cohen (2007).
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random matrices (C∆t,t) is strictly negative. Moreover, this stationary solution is explicitly

expressed as

ǫt =

[
diag

(
(e′∆t

⊗ IM )

(
ω +

∞∑

n=1

C∆t−1,t−1C∆t−2,t−2 . . .C∆t−n+1,t−n+1ω

))]1/2
R

1/2
∆t

ξt.

The condition in Theorem 1 may be inconvenient to check in practice. Theorem 2 offers

an alternative criterion which is easier to handle and provides additional information about

the moment structure of the process. To state this criterion, we define the matrices

C1(j) = E(Cjt|∆t = j), C2(j) = E(Cjt ⊗Cjt|∆t = j), . . . ,

C l(j) = E(C⊗l
jt |∆t = j), j ∈ E , l ∈ N. (10)

Furthermore, we adopt the following notation from Francq and Zaköıan (2005): For any

function f : E 7→ Mn×n′(R), where Mn×n′(R) is the space of real n × n′ matrices, and E =

{1, . . . , k} is the state space of {∆t}, define the matrix

Pf =




p11f(1) · · · pk1f(1)
... · · ·

...

p1kf(k) · · · pkkf(k)


 . (11)

Theorem 2. Suppose that the l-th moments of (ξt) are finite and

̺(PCl
) < 1,

where ̺(PCl
) denotes the spectral radius of PCl

defined in (11), and l is a strictly positive

integer. Then (1)–(7) has a unique strictly stationary and ergodic solution (ǫt), and the l-th

absolute moments of (ǫt) are finite.

For example, the matrices required by Theorem 2 to check for the first moment are given

by

C1(j) = κ1A(e′j ⊗ IM ) +B,

where

κ1 = E(|zit|) =





√
2
π if zit ∼ N(0, 1)

√
ν−2Γ( ν−1

2 )√
πΓ(ν/2)

if zit ∼ tν(0, 1).

To check the condition for covariance stationarity, we need the (regime–specific) second mo-

ment matrices of the absolute innovations, i.e.,

R̃j := E(|ztz
′
t||∆t = j), j ∈ E ,

6



the elements of which are provided by the result of Nabeya (1951) that, for bivariate standard

normal x and y with correlation ρ, we have

E(|xy|) =
2

π
(
√

1− ρ2 + ρ arcsin ρ). (12)

Equation (12) continues to hold for a unit–variance bivariate Student’s t distribution, as de-

tailed in the Appendix of Haas (2010). Moreover, let

Ω(j) = E(Zt ⊗Zt|∆t = j) = diag(vec(Rj)),

Ω̃(j) = E(|Zt| ⊗ |Zt||∆t = j) = diag(vec(R̃j)), j ∈ E .

Then matrices C2(j), j ∈ E , are given by

C2(j) =
(
(A⊗A)Ω̃(j) + (Ã⊗ Ã)Ω(j)

)
(e′j ⊗ IM ⊗ e′j ⊗ IM )

+κ1
(
e′j ⊗A⊗B +B ⊗ e′j ⊗A

)
+B ⊗B.

For later reference, we also define, for j ∈ E ,

Υ(j) = E (Ik ⊗Zt ⊗ Ik ⊗Zt|∆t = j) = diag[vec((1k1
′
k)⊗Rj)], (13)

Υ̃(j) = E (Ik ⊗ |Zt| ⊗ Ik ⊗ |Zt||∆t = j) = diag[vec((1k1
′
k)⊗ R̃j)], (14)

where 1k is a k–dimensional column of ones.

3.2 Calculation of the moments

It may be of interest to calculate the moments of a specific MS CCC–GARCH process. In

particular, we are interested in the overall and the regime–specific unconditional covariance

and correlation matrices as well as in the dynamic correlation structure of the absolute values

of the process. We use the following basic result.

Lemma 1. (Francq and Zaköıan, 2005, Lemma 3) For ℓ ≥ 1, if the variable Y t−ℓ belongs to

the information set generated by {ǫs : s ≤ t− ℓ}, then

πj,∞E(Y t−ℓ|∆t = j) =

k∑

i=1

πi,∞p
(ℓ)
ij E(Y t−ℓ|∆t−ℓ = i),

where the p
(ℓ)
ij := p(∆t = j|∆t−ℓ = i), i, j ∈ E , denote the ℓ–step transition probabilities, as

given by the elements of P ℓ.
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Using Lemma 1, we have

πj,∞E(Xt|∆t−1 = j) = πj,∞ω + πj,∞C1(j) E(X t−1|∆t−1 = j) (15)

= πj,∞ω +

k∑

i=1

pijC1(j)πi,∞ E(Xt−1|∆t−2 = i), j = 1, . . . , k.

Equation (15) implies

V 1 = π∞ ⊗ω + PC1
V 1,

where

V 1 =




π1,∞E(X t|∆t−1 = 1)

π2,∞E(X t|∆t−1 = 2)
...

πk,∞E(Xt|∆t−1 = k)



. (16)

Thus the first absolute moments are

E(|ǫt|) =

k∑

j=1

πj,∞E(|ǫt||∆t = j)

= κ1

k∑

j=1

k∑

i=1

πj,∞p(∆t−1 = i|∆t = j) E(σjt|∆t−1 = i)

= κ1

k∑

j=1

k∑

i=1

pijπi,∞E(σjt|∆t−1 = i)

= κ1(vec(P )′ ⊗ IM )V 1.

For the covariance matrix, proceeding similarly,

πj,∞E[vec(XtX
′
t)|∆t−1 = j] = πj,∞(ω ⊗ ω) +

k∑

i=1

pijC21(j) E(X t−1|∆t−2 = i)

+

k∑

i=1

pijC2(j) E[vec(X t−1X
′
t−1)|∆t−2 = i], (17)

where C21(j) = ω ⊗C1(j) +C1(j)⊗ ω, j = 1, . . . , k. Equation (17) implies

V 2 = π∞ ⊗ ω ⊗ ω + PC21
V 1 + PC2

V 2,

where V 2 is as V 1 in (16) but with πj,∞E(X t|∆t−1 = j) replaced by πj,∞E[vec(X tX
′
t)|∆t−1 =

8



j], j = 1, . . . , k. Thus the unconditional covariance matrix of {ǫt} is

E[vec(ǫtǫ
′
t)] =

k∑

j=1

πj,∞E[vec(ǫtǫ
′
t)|∆t = j]

=
k∑

j=1

πj,∞E
{
vec[(ej ⊗ IM )′(Ik ⊗Zt)X tX

′
t(Ik ⊗Zt)(ej ⊗ IM )|∆t = j]

}

=

k∑

j=1

(ej ⊗ IM ⊗ ej ⊗ IM )′
k∑

i=1

pijΥ(j)πi,∞ E[vec(XtX
′
t)|∆t−1 = i]

=

k∑

j=1

e′j ⊗ (ej ⊗ IM ⊗ ej ⊗ IM )′PΥV 2, (18)

where definitions (11) and (13) were used. The regime–specific unconditional covariance ma-

trices are also of interest and given by

E[vec(ǫtǫ
′
t)|∆t = j] = π−1

j,∞e′j ⊗ (ej ⊗ IM ⊗ ej ⊗ IM )′PΥV 2, j = 1, . . . , k.

To calculate the autocorrelation function of the absolute process, E[vec(|ǫt||ǫt|
′)] is required,

which directly follows from (14) and (18) as

E[vec(|ǫt||ǫt|
′)] =

k∑

j=1

e′j ⊗ (ej ⊗ IM ⊗ ej ⊗ IM )′PΥ̃V 2.

The cross moment matrices are obtained via

E(|ǫt||ǫt−τ |
′) = E

{
(e∆t ⊗ IM )′(Ik ⊗ |Zt|)X tX

′
t−τ (Ik ⊗ |Zt−τ |)(e∆t−τ ⊗ IM )

}

= κ1

k∑

i=1

k∑

j=1

(ej ⊗ IM )′p(∆t−τ = i ∩∆t = j)

×E
{
XtX

′
t−τ (Ik ⊗ |Zt−τ |)|∆t−τ = i ∩∆t = j

}
(ei ⊗ IM )

= κ1

k∑

i=1

k∑

j=1

(ej ⊗ IM )′Sij(τ)(ei ⊗ IM ), (19)

9



where, for i, j = 1, . . . , k, and with p(∆t−τ = i ∩∆t = j) = πi,∞p
(τ)
ij ,

Sij(τ) = πi,∞p
(τ)
ij E

{
XtX

′
t−τ (Ik ⊗ |Zt−τ |)|∆t−τ = i ∩∆t = j

}

= πi,∞p
(τ)
ij E

{
(ω +C∆t−1,t−1Xt−1)X

′
t−τ (Ik ⊗ |Zt−τ |)|∆t−τ = i ∩∆t = j

}

= πi,∞p
(τ)
ij ωκ1 E(X

′
t−τ |∆t−τ = i)

+πi,∞p
(τ)
ij E

{
C∆t−1,t−1Xt−1X

′
t−τ (Ik ⊗ |Zt−τ |)|∆t−τ = i ∩∆t = j

}

= πi,∞p
(τ)
ij ωκ1 E(X

′
t−τ |∆t−τ = i)

+
k∑

ℓ=1

πi,∞p
(τ−1)
iℓ pℓj

×E
{
C∆t−1,t−1Xt−1X

′
t−τ (Ik ⊗ |Zt−τ |)|∆t−τ = i ∩∆t−1 = ℓ ∩∆t = j

}

= πi,∞p
(τ)
ij ωκ1 E(X

′
t−τ |∆t−τ = i)

+
k∑

ℓ=1

πi,∞p
(τ−1)
iℓ pℓjC1(ℓ) E

{
Xt−1X

′
t−τ (Ik ⊗ |Zt−τ |)|∆t−τ = i ∩∆t−1 = ℓ

}

= πi,∞p
(τ)
ij ωκ1 E(X

′
t−τ |∆t−τ = i) +

k∑

ℓ=1

pℓjC1(ℓ)Siℓ(τ − 1), τ ≥ 2,

that is,

S(τ) = κ1(P
(τ) ⊗ ω)Ṽ 1 + P̃C1

S(τ − 1), τ ≥ 2.

where

S(τ) =




S11(τ) · · · Sk1(τ)
...

. . .
...

S1k(τ) · · · Skk(τ)


 , Ṽ 1 =




π1,∞ E(X ′
t|∆t = 1) · · · 01×kM

...
. . .

...

01×kM · · · πk,∞E(X ′
t|∆t = k)


 ,

the diagonal blocks of Ṽ 1 can be extracted from the vector (P ⊗ IkM )V 1 = (π1,∞ E(Xt|∆t =

1)′, . . . , πk,∞ E(X ′
t|∆t = k)′)′, and, similar to (11),

P̃C1
=




p11C1(1) · · · pk1C1(k)
...

. . .
...

p1kC1(1) · · · pkkC1(k)


 . (20)

For τ = 1, we compute

Sij(1) = πi,∞pij E[X tX
′
t−1(Ik ⊗ |Zt−1|)|∆t−1 = i ∩∆t = j]

= πi,∞pij E[(ω +C∆t−1,t−1Xt−1)X
′
t−1(Ik ⊗ |Zt−1|)|∆t−1 = i]

= κ1pijωπi,∞E(X ′
t|∆t = i) + pijπi,∞E[C∆t−1,t−1X t−1X

′
t−1(Ik ⊗ |Zt−1|)|∆t−1 = i].
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Hence

S(1) = κ1(P ⊗ ω)Ṽ 1 + P̃C̆ ,

where P̃C̆ is as in (20) with

C̆(i) = πi,∞E[C∆t−1,t−1Xt−1X
′
t−1(Ik ⊗ |Zt−1|)|∆t−1 = i], i = 1, . . . , k. (21)

The expectation in (21) is

E(vec(C∆t−1,t−1Xt−1X
′
t−1(IM ⊗ |Zt−1|))|∆t−1 = i)

= πi,∞E((IM ⊗ |Zt−1| ⊗C∆t−1,t−1)vec(X t−1X
′
t−1)|∆t−1 = i)

= E(IM ⊗ |Zt−1| ⊗C∆t−1,t−1)|∆t−1 = i)πi,∞ E(vec(XtX
′
t)|∆t = i),

where πi,∞E(vec(XtX
′
t)|∆t = i), i = 1, . . . , k, can be extracted from (P ⊗ Ik2M2)V 2 =

(π1,∞ E(vec(X tX
′
t)|∆t = 1)′, . . . , πk,∞E(vec(XtX

′
t)|∆t = k)′)′, and

E(Ik ⊗ |Zt−1| ⊗C∆t−1,t−1)|∆t−1 = i)

= E(Ik ⊗ |Zt−1| ⊗ [(A|Zt−1| − ÃZt−1)(e
′
∆t−1

⊗ IM ) +B]|∆t−1 = i)

= E(Ik ⊗ |Zt−1| ⊗ (A|Zt−1|(e
′
∆t−1

⊗ IM ) +B)|∆t−1 = i)

= (IkM ⊗ e′i ⊗A) E(Ik ⊗ |Zt−1| ⊗ Ik ⊗ |Zt−1||∆t−1 = i) + κ1(IkM ⊗B)

= (IkM ⊗ e′i ⊗A)Υ̃(i) + κ1(IkM ⊗B).

Finally,

E(|ǫt||ǫt−τ |
′) = κ1(vec(Ik)

′ ⊗ IM )S(τ)(vec(Ik)⊗ IM ),

and the autocorrelation function can be computed.

3.3 Covariance matrix forecasts

Suppose we are given a current probability distribution of the chain πt and an initial vector

Xt+1 (which is known at time t). Define

Y t =


 Xt

vec(X tX
′
t)


 , ω̃ =


 ω

ω ⊗ ω


 ,

C̃∆t,t =


 C∆t,t 0kM×k2M2

C∆t,t ⊗ ω + ω ⊗C∆t,t C∆t,t ⊗C∆t,t


 ,

so that

Y t = ω̃ + C̃∆t−1,t−1Y t−1. (22)
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Upon repeated substitution in (22), we can write

Y t+d =

d−1∑

ℓ=1

{
ℓ−1∏

i=1

C̃∆t+d−i,t+d−i

}
ω̃ +

{
d−1∏

i=1

C̃∆t+d−i,t+d−i

}
Y t+1.

Let ∆t = {∆s : s ≤ t}. Then we have, taking expectations with respect to {ξt},

Et(Y t+d|∆t+d−1) =

d−1∑

ℓ=1

{
ℓ−1∏

i=1

C̃(∆t+d−i)

}
ω̃ +

{
d−1∏

i=1

C̃(∆t+d−i)

}
Y t+1,

where, as in (10), C̃(j) = E(C̃jt|∆t = j). From Lemma 1 in Francq and Zaköıan (2005), we

have

Ỹ t(d) :=




pt(∆t+d−1 = 1)Et(Y t+d|∆t+d−1 = 1)

pt(∆t+d−1 = 2)Et(Y t+d|∆t+d−1 = 2)
...

pt(∆t+d−1 = k) Et(Y t+d|∆t+d−1 = k)




=

d−1∑

ℓ=1

P
ℓ−1
C̃

(πt+d−ℓ ⊗ ω̃) + P
d−1
C̃

(πt ⊗ Y t+1),

where πt+d−ℓ = P d−ℓπt. Define the matrix

I = Ik ⊗ (0k2M2×kM , Ik2M2).

Then the d–step–ahead covariance matrix forecast is given by

Et

(
vec
(
ǫt+dǫ

′
t+d

))
=

k∑

j=1

pt(∆t+d = j) Et(vec(ǫt+dǫ
′
t+d)|∆t+d = j)

=
k∑

j=1

pt(∆t+d = j)

× Et

{
vec
[
(ej ⊗ IM )′(Ik ⊗Zt+d)X t+dX

′
t+d(Ik ⊗Zt+d)(ej ⊗ IM )

]
|∆t+d = j

}

=

k∑

j=1

pt(∆t+d = j) (ej ⊗ IM ⊗ ej ⊗ IM )′

× E (Ik ⊗Zt+d ⊗ Ik ⊗Zt+d|∆t+d = j) Et[vec(Xt+dX
′
t+d)|∆t+d = j]

=
k∑

j=1

(ej ⊗ IM ⊗ ej ⊗ IM )′

×

k∑

i=1

pijΥ(j)pt(∆t+d−1 = i) Et[vec(X t+dX
′
t+d)|∆t+d−1 = i]

=





k∑

j=1

[e′j ⊗ (ej ⊗ IM ⊗ ej ⊗ IM )′]



PΥIỸ t(d). (23)
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Vector Ỹ t(d) in (23) can be calculated recursively, with starting value Ỹ t(1) = πt ⊗ Y t+1:

Namely, for d ≥ 2,

Ỹ t(d) =
d−1∑

ℓ=1

P
ℓ−1
C̃

(πt+d−ℓ ⊗ ω̃) + P
d−1
C̃

(πt ⊗ Y t+1)

= πt+d−1 ⊗ ω̃ + PC̃

{
d−2∑

ℓ=1

P
ℓ−1
C̃

(πt+(d−1)−ℓ ⊗ ω̃) + P
d−2
C̃

(πt ⊗ Y t+1)

}

= πt+d−1 ⊗ ω̃ + PC̃Ỹ t(d− 1). (24)

Equations (23) and (24) provide a convenient scheme for calculation of covariance matrix

forecasts.

3.4 Maximum likelihood estimator

In this section, suppose that {ξt} is normally distributed with mean zero and unit variance

matrix. The unknown parameter vector is denoted by θ and consists of the elements of the

transition matrix (2), the regime–specific pairwise correlations ρℓm,j, ℓ,m = 1, . . . ,M (ℓ 6= m),

j ∈ E , and the parameters of the regime–specific GARCH equations (5); see also Appendix B.

Let θ0 be the true parameter. We assume that the parameter space Θ is a compact subspace

of the Euclidean space, such that θ0 is an interior point in Θ and ̺(PC1
) < 1 for any θ ∈ Θ.

The matrix norm is defined by ‖A‖ =
∑

i,j |A(i, j)|, where A(i, j) denotes the generic element

of matrix A.

Suppose we have a sample of size n, (ǫ1, . . . , ǫn). The estimator of the parameters in model

(1)–(7) is obtained by maximizing, conditional on (ǭ0, σ̄10, . . . , σ̄k0),

Ln(θ) = Ln(θ, ǫ1, . . . , ǫn) =
∑

(e1,...,en)∈E n

πe1,∞

{
n∏

t=2

pet−1,et

}{
n∏

t=1

fet(ǫ1, . . . , ǫt)

}
,

where

fet(ǫ1, . . . , ǫt) =
1

(2π)M/2|Det,tRetDet,t|
1/2

exp

{
−
1

2
ǫ′t(Det,tRetDet,t)

−1ǫt

}
,

and the σet,t = (σ1,et,t, . . . , σM,et,t)
′, are defined recursively by (5)–(6), i.e.,

σℓ,et,t = ωℓ,et +

M∑

m=1

aℓm,et(|ǫm,t−1| − γℓm,etǫm,t−1) +

M∑

m=1

bℓm,etσm,et,t−1, ℓ = 1, . . . ,M,

for t = 2, . . . , n, and

σℓ,e1,1 = ωℓ,e1 +

M∑

m=1

aℓm,e1(|ǭm0| − γℓm,e1 ǭm0) +

M∑

m=1

bℓm,e1σ̄m,e1,0, ℓ = 1, . . . ,M.
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Write 1k = (1, . . . , 1)′ ∈ R
k, h(ǫ1) = (π1,∞f1(ǫ1), . . . , πk,∞fk(ǫ1))

′, and

Mθ(ǫ1, . . . , ǫt) =




p11f1(ǫ1, . . . , ǫt) p21f1(ǫ1, . . . , ǫt) · · · pk1f1(ǫ1, . . . , ǫt)

p12f2(ǫ1, . . . , ǫt) p22f2(ǫ1, . . . , ǫt) · · · pk2f2(ǫ1, . . . , ǫt)
...

...
. . .

...

p1kfk(ǫ1, . . . , ǫt) p2kfk(ǫ1, . . . , ǫt) · · · pkkfk(ǫ1, . . . , ǫt)



.

Then Ln(θ) can be rewritten as

Ln(θ) = 1′k

{
n∏

t=2

Mθ(ǫ1, . . . , ǫn−t+2)

}
h(ǫ1).

Next, the unobserved likelihood function conditional on (ǫ0, ǫ−1, . . .) is

L̃n(θ) = L̃n(θ, ǫ1, . . . , ǫn) =
∑

(e1,...,en)∈E n

π̃1(e1)

{
n∏

t=2

pet−1,et

}{
n∏

t=1

f̃et(ǫ1, . . . , ǫt)

}

=

n∏

t=1

gθ(ǫt|ǫt−1, ǫt−2, . . .),

where

f̃et(ǫ1, . . . , ǫt) =
1

(2π)M/2|D̃et,tRetD̃et,t|
1/2

exp

{
−
1

2
ǫ′t(D̃et,tRetD̃et,t)

−1ǫt

}
,

the σ̃et,t = (σ̃1,et,t, . . . , σ̃M,et,t)
′ are given by

σ̃et,t =

∞∑

i=0

Bi
et [ωet +Aet |ǫt−1−i| − (Aet ⊙ Γet)ǫt−1−i] ,

π̃t(et) = Pθ(∆t = et|ǫt−1, ǫt−2, . . .), and gθ(ǫt|ǫt−1, ǫt−2, . . .) denotes the conditional density of

ǫt given the σ-field generated by ǫt−1, ǫt−2, . . ..

Because the indices of the states of the Markov chain can be permuted without changing

the law of the model, the parameters are not strictly identifiable up to permutation. Moreover,

conditions have to be assumed which guarantee that there is no θ ∈ Θ, θ 6= θ0, which gives

rise, in any of the regimes, to the same sequence of conditional covariance matrices as does θ0;

conditions to assure this are discussed in Jeantheau (1998) and Francq and Zaköıan (2012).

We introduce the following assumption of identifiability.

Assumption 1. For any θ ∈ Θ, if gθ(ǫt|ǫt−1, ǫt−2, . . .) = gθ0(ǫt|ǫt−1, ǫt−2, . . .), Pθ0-a.s., then

θ = θ0.

Theorem 3. Denote (θ̂n) as the solution to supθ∈Θ Ln(θ). Under Assumption 1, θ̂n →a.s. θ0.
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Table 1: Properties of weekly global stock market and real estate equity returns
covariance/

mean correlation matrix skewness kurtosis JB ARCH(10)

MSCI 0.064 5.077 0.795 −0.762 7.49 1062.7∗∗∗ 175.6∗∗∗

EPRA/NAREIT 0.044 4.639 6.714 −1.034 10.81 3091.6∗∗∗ 290.0∗∗∗

The top right entry of the “covariance/correlation matrix” is the correlation coefficient, and the bottom

left entry is the covariance. The return vector at time t is rt = (r1t, r2t)
′, where r1t and r2t are the

MSCI and FTSE EPRA/NAREIT returns, respectively, i.e., the first asset is the MSCI world stock

index. JB is the Jarque–Bera test for normality, and ARCH(10) is the LM test for ARCH effects with

10 lags (cf. Engle, 1982). Asterisks ∗∗∗ indicate significance at the 1% level.

4 Application to financial data

To illustrate the theory developed in the previous sections, we consider volatility and correla-

tion dynamics of global stock market and real estate equity returns, using dollar–denominated

weekly (Wednesday-to-Wednesday) returns of the MSCI world and the FTSE EPRA/NAREIT

global indices from January 1990 to October 2011 (T = 1137 observations), with the latter

index representing the evolution of real estate equities.3 The analysis is based on continuously

compounded percentage returns, i.e., rit = 100× log(Iit/Ii,t−1), i = 1, 2, where I1t and I2t are

the MSCI and the FTSE EPRA/NAREIT index levels, respectively.4 Both the index levels

and the returns are shown in the top and middle panels of Figure 1, reflecting the turbulent

development of markets particularly since the beginning of the current millennium. Sam-

ple moments of the returns are reported in Table 1, along with the Jarque–Bera (JB) test for

normality and Engle’s (1982) Lagrange Multiplier (LM) test for conditional heteroskedasticity.

From Table 1, we note that the return series exhibit a considerable correlation of 0.795,

which reflects the common finding that real estate equities display much more similarity to the

general stock market than direct real estate investments (e.g., Morawski et al, 2008; Heaney and

Sriananthakumar, 2012). Moreover, the bottom panel of Figure 1 shows conditional correla-

tions implied by an exponentially weighted moving average (EWMA) estimator (cf. Alexander,

2008, Ch. 3.8), which hints at time–varying conditional correlations with a particularly strong

degree of comovement both at the beginning and the end of the sample, with the latter being

also characterized by an outburst of unprecedented volatility.5 Results for versions of Tse’s

3 Over a slightly shorter time span, these indices were analyzed in Haas (2010) who shows that Pelletier’s
(2006) model improves global minimum variance portfolios relative to the standard CCC model.

4 Data and Matlab code for all computations in this section are available from the authors.

5 Strong evidence for time–varying conditional correlations between these markets has recently been reported
by Lee (2014).
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Figure 1: The top panel shows the weekly index levels (left plot) and percentage log returns
(right plot) of the MSCI world stock market index from January 1990 to October 2011. The
middle panel is similar, but for the FTSE EPRA/NAREIT global index reflecting the evolu-
ation of real estate equities. The bottom panel shows conditional correlations implied by
an exponentially weighted moving average (EWMA) covariance matrix estimator H t with
smoothing constant λ = 0.95, i.e., H t = (1 − λ)rt−1r

′
t−1 + λH t−1, where the initial matrix

H1 is set equal to the sample covariance matrix.
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Table 2: Tse’s (2000) test for constant conditional correlations

Gaussian innovations Student’s t innovations

test statistic 7.16∗∗∗ 9.84∗∗∗

Reported are the results of Tse’s (2000) Lagrange Multiplier (LM) test

for constant conditional correlations und the assumption of both Gaus-

sian (left column) and Student’s t (right column) innovations. Under

the null hypothesis, returns are generated by a CCC–AGARCH process

as in (B.1), with k = 1 and (B.3) imposed in (B.2). Under the null,

the LM test statistic given by (B.18) has a limiting χ2(1) distribution.

Asterisks ∗∗∗ indicate significance at the 1% level.

(2000) Lagrange Multiplier (LM) test for constant conditional correlations in a multivariate

GARCH model are reported in Table 2 and also provide support for time–varying conditional

correlations.

4.1 Fitting MS CCC–GARCH(1,1) processes

The evidence for time–varying correlations coupled with periods of low and high volatility

makes the MS CCC–GARCH model defined in Section 2 a candidate for modeling these series.

We fit the model with k = 1, 2, and 3 regimes,6 where we confine ourselves to the diagonal

model with Aj, Bj , and Γj in (5) being diagonal matrices, j = 1, . . . , k. In addition, we

restrict the asymmetry parameters to be regime–independent, i.e.,

Γ1 = Γ2 = · · · = Γk =: Γ. (25)

There are no clear–cut signs of conditional mean dynamics in the data, and thus we specify

the model for return vector rt as

rt = µ+ ǫt, (26)

where µ is the constant conditional mean and ǫt is generated by a MS(k) CCC–GARCH

process as described in Section 2. We compare the fit of models with different k by means

of the Bayesian information criterion (BIC) of Schwarz (1978), which, from results of Keribin

(2000) and Francq et al. (2001), can be expected to have favorable properties for this purpose.

Results are reported in Table 3 for both Gaussian and Student’s t innovations {ξt} in (3). In

both cases, models with two components are preferred, as is a conditional t distribution. Thus

we focus on two–component models in the following discussion. Both normal and Student’s t

innovations are considered in order to highlight the role of the conditional distribution.

6 The model with one regime is just the AGARCH version of the single–component CCC.
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Table 3: Likelihood–based goodness–of–fit of MS(k) CCC–GARCH models

Gaussian innovations Student’s t innovations

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

K 11 20 31 12 21 32

logL −4371.5 −4288.0 −4261.0 −4323.7 −4260.0 −4247.6

BIC 8820.4 8716.6 8740.1 8731.7 8667.7 8720.3
Reported are likelihood–based goodness–of–fit measures for diagonal MS(k)

CCC–GARCH models fitted to the MSCI world and FTSE EPRA/NAREIT

global returns. The number of regimes is denoted by k, and k = 1 corresponds

to the single–regime CCC of Bollerslev (1990). In all models, the asymmetry pa-

rameters are restricted to be constant across regimes, i.e., in (5), Γ1 = · · · = Γk.

K is number of parameters of a model, logL is the value of the maximized log–

likelihood, and BIC is the Bayesian information criterion of Schwarz (1978), i.e.,

BIC = −2× logL +K log T , where T is the sample size. Smaller values of BIC

are preferred.

The diagonal MS(k) CCC–GARCH model without further restrictions is rather flexible in

that it allows the variances as well as the correlations being regime–dependent. The contribu-

tion of both of these features to the overall improvement over the single–regime specification

documented in Table 3 is not clear a priori. It is thus of interest to test various restricted

models against the unrestricted specification. Specifically, we consider Pelletier’s (2006) RSDC

model where the switching applies to the conditional correlation matrix only, i.e., conditional

volatilities are constant across regimes. The second constrained specification represents the

opposite of Pelletier’s (2006) model, namely the case where volatility can switch but R1 = R2

in (3). The results reported in Table 4 show that, although both restrictions are rejected

against the full model by means of likelihood ratio tests, allowance for regime–specific correla-

tions appears to me more important than switching in the univariate GARCH dynamics, and

particularly so for the (generally preferred) models with Student’s t innovations.

Several characteristics of the estimated MS(2) CCC–GARCH models with Gaussian and

Student’s t innovations are reported in Table 5, where the single regime CCC–GARCH models

have been included for comparison purposes. In Table 5, the regimes have been ordered such

that π1,∞ > π2,∞. Both two regime–models have in common that Regime 1 is a low–volatility

regime with moderate correlation (as related to the unconditional correlation) and Regime

2 is a high–volatility regime with rather high correlation, i.e., the diversification potential

deteriorates in turbulent market periods. As reported in the bottom part of Table 5, the

unconditional moments implied by the single–regime models are close to those of the two–

regime specifications and are in between their regime–specific counterparts documented in the
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Table 4: Likelihood ratio tests (LRT) of restricted MS(2) CCC–GARCH specifications against

the full (diagonal) model

Gaussian innovations Student’s t innovations

full Pelletier R1 = R2 full Pelletier R1 = R2

(RSDC) (RSDC)

K 20 14 19 21 15 20

logL −4288.0 −4311.7 −4313.0 −4260.0 −4272.6 −4310.9

LRT − 47.5∗∗∗ 50.1∗∗∗ − 25.2∗∗∗ 101.9∗∗∗

The table reports likelihood ratio tests (LRT) for restricted versions of the two–

component diagonal MS(2) CCC–GARCH model. The unrestricted specification,

denoted as “full”, is the model introduced in Section 2 with k = 2, and where

the matrices Aj , Bj , j = 1, 2, and Γ1 = Γ2 in (5) are diagonal. “Pelletier” refers

to Pelletier’s (2006) regime–switching dynamic correlation (RSDC) model where

only the correlation matrix is subject to regime–switching, i.e., the additional

restrictions ω1 = ω2, A1 = A2, and B1 = B2 are imposed in (5). The third

model restricts the correlation to be the same in both regimes, i.e., R1 = R2 in

(3). logL is the value of the maximized log–likelihood, and K is the number of

parameters of a model. The associated likelihood ratio test statistics, denoted

as LRT, have 6 and 1 degrees of freedom, respectively. Asterisks ∗∗∗ indicate

significance at the 1% level.

top and middle parts of the table for Regimes 1 and 2, respectively. All estimated models are

covariance stationary, i.e., ̺(PC2
) < 1 for all estimated specifications (cf. Theorem 2).

Comparing the regime–switching models with Gaussian and Student’s t innovations, we

observe that both models are characterized by fairly persistent regimes, but the persistence is

more pronounced with Student’s t innovations, where both ”staying probabilities” p11 and p22

are rather close to unity. To illustrate the differences in estimated persistence, expected regime

durations as implied by estimated parameters, given by (1− p̂jj)
−1, j = 1, 2, are also reported

in Table 5. With Gaussian regimes, expected duration of the low (high)–volatility regime is

slightly longer (shorter) than one year, whereas it is almost five (four) years with Student’s t

regimes.7 This pattern, which is also discussed in Bulla (2011), Haas (2009, 2010), and Haas

and Paolella (2012), is due to the tendency of a model with Gaussian regime densities to signal

a regime shift whenever an untypically large (small) observation occurs within an otherwise

calm (turbulent) regime.8 Such untypical observations are easier accommodated when the

regime densities are leptokurtic, i.e., display fatter tails and higher peaks than the normal.

7 But note that expected regime durations may be subject to considerable estimation error; see the legend of
Table 5.

8 The effect of “outliers” on parameter estimates in Gaussian Markov–switching models has also already been
reported in the important contribution by Ryden et al. (1998).
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Table 5: Characteristics of estimated MS CCC–GARCH(1,1) models

estimated Gaussian innovations Student’s t innovations

characteristic k = 1 k = 2 k = 1 k = 2

ρ12,1 0.766
(0.013)

0.636
(0.025)

0.769
(0.014)

0.655
(0.024)

E(ǫ21t|∆ = 1) 4.265 3.691 3.847 3.161

E(ǫ22t|∆ = 1) 5.528 3.540 4.713 3.318

Corr(ǫ1t, ǫ2t|∆t = 1) 0.754 0.617 0.756 0.636

p11 1 0.985
(0.007)

1 0.996
(0.003)

π1,∞ 1 0.610
(0.151)

1 0.563
(0.109)

(1 − p11)
−1 ∞ 66.54a ∞ 233.8a

ρ12,2 – 0.929
(0.009)

– 0.921
(0.009)

E(ǫ21t|∆ = 2) – 6.080 – 5.846

E(ǫ22t|∆ = 2) – 7.867 – 7.785

Corr(ǫ1t, ǫ2t|∆t = 2) – 0.916 – 0.912

p22 0 0.976
(0.012)

0 0.994
(0.005)

π2,∞ 0 0.390
(0.151)

0 0.437
(0.109)

(1 − p22)
−1 – 42.49a – 181.8a

E(ǫ21t) 4.265 4.622 3.847 4.336

E(ǫ22t) 5.528 5.226 4.713 5.272

Corr(ǫ1t, ǫ2t) 0.754 0.779 0.756 0.805

δ = p11 + p22 − 1 – 0.961
(0.017)

– 0.990
(0.006)

ν – – 7.368
(1.025)

8.584
(1.370)

γ11 0.680
(0.157)

0.738
(0.168)

0.575
(0.181)

0.627
(0.180)

γ22 0.401
(0.105)

0.635
(0.147)

0.273
(0.116)

0.472
(0.152)

̺(PC2
) 0.903 0.933 0.921 0.953

Standard errors are given in parentheses. ρ12,j is the constant conditional correlation in

Regime j; the πj,∞ are the stationary regime probabilities; and (1−pjj)
−1 is the expected

duration of the jth regime, j = 1, 2. δ = p11+p22−1 is a measure for the persistence in the

regime process; γ11 and γ22 are the asymmetry parameters in the volatility equation (5)

for the MSCI and the FTSE/NAREIT, respectively, and ̺(PC2
) is the largest eigenvalue

of matrix PC2
defined in (10) and (11) with l = 2, and with ̺(PC2

) < 1 being the condition

for covariance stationarity (cf. Theorem 2).
a Asymptotic standard errors for the expected duration of regime j, (1− pjj)

−1, j = 1, 2,

could, at least in principle, also be calculated via the delta method. However, with p̂jj

rather close to unity, as in the case under consideration, the normal approximation would

be basically useless and thus we abstain from reporting them. For example, with the

estimates in the table above, the asymptotic standard error of (1− p̂11)
−1 in the Student’s

t switching model would be estimated as

√
V̂ar(p̂11)/(1− p̂11)

2 = 0.0028/(1 − 0.9957)2 =

151.4.
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The same logic applies to Pelletier’s model where only the correlations are subject to regime–

switching, since, for fixed correlation, simultaneous extreme realizations of both variables are

more likely with Student’s t innovations.

The upper panel of Figure 2 illustrates the models’ inferred switching activity by means of

the smoothed regime probabilities of the high–volatility/correlation regime under both types

of innovation distributions. Both models indicate a switch to the high–correlation regime at

the end of the sample beginning with the financial turmoil in the wake of the burst of the

housing bubble. Implications for forecasting are depicted in the lower panel of Figure 2: The

left plot of the lower panel of Figure 2 shows conditional correlations as implied by a Gaussian

regime–switching model for the two situations where we know for certain that at the forecast

origin we are either in the first or second regime.9 As a function of the forecast horizon, the

conditional correlation of the Gaussian model rapidly converges to its unconditional value,

whereas forecasts are much more persistently affected by the current state of the world in the

Student’s t model, as shown in the bottom right graph of Figure 2.

4.2 Testing for within–regime correlation dynamics and comparison with

other models

One of the most popular approaches to time–varying conditional correlations is the dynamic

conditional correlation (DCC) model of Engle (2002). In the DCC, conditional correlations

are driven by standardized shocks rather than by discrete regime shifts as in the Markov–

switching processes studied herein. Both models can be combined to produce an even more

flexible structure which allows the conditional correlations in each regime to be driven by

DCC–type dynamics (e.g., Billio and Caporin, 2005; Otranto, 2010). However, the MS CCC–

GARCH model has several advantages over its DCC–type generalization, since it is easier to

estimate and admits the computation of multi–step–ahead conditional covariance matrices. In

view of these advantages, it is desirable to have at one’s disposal a simple test of the regime–

switching CCC against the alternative of within–regime correlation dynamics. To this end, we

extend Tse’s (2000) Lagrange Multiplier (LM) test for constant conditional correlations to the

multi–regime framework and allowing for fat–tailed (Student’s t) innovations.10 The details of

this test, which fits into the general framework described by Hamilton (1996), are developed in

9 The conditional standard deviations have been initialized by appropriate unconditional expectations, i.e., if
πℓt = 1, then we set σij,t+1 = E(σij,t|∆t−1 = ℓ), i, j, ℓ = 1, 2.

10 Silvennoinen and Teräsvirta (2009a) follow a similar approach by deriving LM tests for a CCC against a
smooth transition conditional correlation model.
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Figure 2: The upper panel shows the smoothed probabilities of Regime 2 (high–
volatility/correlation) implied by the MS(2) CCC–GARCH process for Gaussian (left plot)
and Student’s t innovations (right plot). The lower panel shows conditional correlations under
the assumption that we either start in the low– or high–volatility/correlation regime, as repre-
sented by the solid and dash–dotted lines, respectively. Conditional standard deviations have
been initialized with appropriate unconditional expectations (cf. Footnote 9). As in the upper
panel, the left and right graphs are for Gaussian and Student’s t innovations, respectively.
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Table 6: Lagrange Multiplier (LM) tests for constant within–regime correlations

Gaussian regime densities

specification of alternative hypothesis

case (a) case (b)

Pelletier (RSDC) 4.73∗ 0.32

MS CCC 0.46 0.33

Student’s t regime densities

specification of alternative hypothesis

case (a) case (b)

Pelletier (RSDC) 1.46 0.12

MS CCC 4.48 0.00

Reported are Lagrange Multiplier (LM) tests for constant conditional within–regime

correlations in two–regime (k) MS CCC–GARCH models, as described in Appendix B.

“Pelletier” is Pelletier’s (2006) regime–switching dynamic correlation (RSDC) model

where only the correlation is subject to regime–switching. Note that the tests reported

here are based on symmetric volatility processes, i.e., Γ1 = Γ1 = 0 in (5) Cases (a) and

(b) are distinguished by means of the alternative hypothesis as described in Appendix

B: � Case (a) refers to the situation where, under the alternative, the correlation

dynamics may be different in both regimes, i.e., in (B.2), both δ12,j , j = 1, 2,,

may be nonzero and different.� In case (b), it is assumed under the alternative that correlation dynamics are

regime–independent, i.e., δ12,1 = δ12,2 in (B.2).

Under the null hypothesis of constant conditional correlations in both regimes, the

test statistic for case (a) is asymptotically distributed as χ2(2), whereas in case (b)

the limiting distribution is χ2(1). Asterisk ∗ denotes significance at the 10% level (the

p–value is 0.094).

Appendix B. Results are reported in Table 6 for two conditional volatility specifications under

the null hypothesis, that is, both the “full” model from Table 4 as well as Pelletier’s model,

and both specifications are considered with Gaussian and Student’s t innovations. Under the

alternative, within–regime correlation dynamics are either regime–dependent (case (a) in Table

6) or regime–independent (case (b)). Overall, the results in Table 6 show no clear–cut sign

of within–regime correlation dynamics, i.e., the switching between low– and high–correlation

periods appears to capture most of the time–variation in conditional correlations.

In view of these results, we compare conditional correlations implied by the MS CCC

and the DCC model of Engle (2002).11 These correlations are shown in Figure 3 for both

Gaussian (top panel) and Student’s t innovations (bottom panel). Comparing the upper

11 For purpose of comparison with the other models discussed herein, the DCC is likewise coupled with asym-
metric absolute value GARCH for the volatilities.
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Table 7: Parameter estimates for correlation dynamics in DCC models
innovations â b̂ â+ b̂

Gaussian 0.044
(0.014)

0.942
(0.022)

0.986
(0.009)

Student’s t 0.047
(0.015)

0.941
(0.021)

0.988
(0.008)

Shown are estimates of the parameters driving the correlation dynamics in Gaus-

sian and Student’s t DCC models à la Engle (2002), with standard errors given in

parentheses. The evolution of the conditional correlation matrix Rt is described

by

Qt = (1− a− b)S + azt−1z
′

t−1 + bQt−1

Rt = (I ⊙Qt)
−1/2

Qt(I ⊙Qt)
−1/2,

where the zt are the standardized (“degarched”) residuals, and S is estimated

via their sample correlation matrix.

with the lower panel of Figure 3, MS CCC-implied correlations are smoother with Student’s

t then with Gaussian innovations. The DCC–implied correlations depend much less on the

innovation distribution and, as already observed by Pelletier (2006), are less smooth than

their regime–switching CCC counterparts.12 Roughly, however, both types of models contain

similar information about low– and high–correlation periods in the data. In particular, they

agree with regard the jump in correlation at the onset of the recent financial crisis.

Multi–step ahead conditional correlations for both types of models are illustrated in Figure

4 which resembles the lower part of Figure 2 but additionally includes conditional correlations

implied by the Student’s t DCC model, as calculated by simulation.13 Initial values for the

conditional correlation matrix and the conditional standard deviations in the DCC were se-

lected such that they match those of the Student’s t MS CCC in the respective regimes. The

long–run correlation of the DCC model is a bit lower than those implied by estimated MS

CCC processes. However, with regard to the persistence of multi–step correlations, the DCC

is more like the Student’s t rather than the Gaussian MS CCC–GARCH. This is in line with

DCC parameter estimates, as reported in Table 7. Interpreting â + b̂ as an estimate of the

persistence of conditional correlations, i.e., the equivalent of δ in Table 5, then the persistence

in conditional correlations implied by estimated DCC models is close to the value of δ̂ = 0.99

of the Student’s t MS CCC model.

12 As argued by Pelletier (2006), “[o]ne interesting implication of smoother patterns for the correlations is for
the computation of VaR and portfolio allocation. If the time–varying correlations are smoother, then the
gain from portfolio diversification will also be smoother which might imply a smoother pattern for the VaR
and portfolio weights.”

13 Those for the Gaussian DCC are quite similar and not shown.

24



1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conditional correlations for models with Gaussian innovations

 

 

MS CCC
DCC

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conditional correlations for models with Student´s t innovations

 

 

MS CCC
DCC

Figure 3: The upper panel show conditional correlations as implied by the MS CCC–GARCH
model and the DCC process with Gaussian innovations. The lower panel repeats this, but for
models with Student’s t innovations.
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Figure 4: Shown are conditional correlations similar to the lower part of and as explained
in the legend of Figure 3. The curves for the MS CCC–GARCH models reproduce those
in the bottom part of Figure 3. Initial values for the conditional correlation matrix and the
conditional standard deviations in the DCC model were determined such that they match those
of the Student’s t MS CCC in the respective (low– and high correlation/variance) regimes.

4.3 Application to portfolio selection

We finally compare the models’ performance in an out–of–sample portfolio application. To do

so, we first reestimate all models using roughly the first ten years of data (i.e., the first 500

observations) and then update the estimates every four weeks, using an expanding window of

observations. Estimated models are used to construct ex–ante global minimum variance port-

folios (GMVP) over holding periods up to 24 weeks (ca. 6 months).14 Using non–overlapping

holding periods, we thus have, e.g., 637 and 318 out–of–sample realized GMVP returns for

the one– and two–week holding periods, respectively. Closed–form conditional covariances

as developed in Section 3.3 are used for all CCC–type models, whereas the DCC–implied

14 The GMVP has the advantage that it allows to focus on the covariance matrix without “having to specify
the vector of conditional expected returns, which is more a task for the portfolio manager than a statistical
problem” (Ledoit et al. 2003).
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conditional covariance matrices are estimated from 10,000 simulated sample paths.

Results are reported in Table 8. For the most basic model, i.e., the single–regime Gaussian

CCC, we report the standard deviation of the realized returns, whereas for all other models

their respective standard deviation divided by that of the Gaussian CCC is shown. The re-

sults in Table 8 show that using a Student’s t rather than a Gaussian distribution improves

the results somewhat for all models and forecast horizons. However, the improvements tend

to be minor except for the MS CCC–GARCH for which they are quite substantial, and even

more so for longer forecast horizons. At first, it may appear surprising that the MS CCC

with Studnet’s t innovations displays the best results for all forecast horizons, whereas the

performance of its Gaussian cousin is rather disappointing. However, this becomes plausible

in view of the discussion in Section 4.1. Namely, in the Gaussian model, with volatilities

being allowed to switch, the high–volatility regime will tend to latch onto a few “outliers”,

which hampers the ability of the model to identify the smooth and long–lived low– and high–

correlation regimes. Pelletier’s RSDC model, with switching correlations only, does not suffer

from this problem, and thus its performance is more even across distributional assumptions.

Still, however, the results for the MS CCC with t errors in Table 8 suggest that there may be

additional benefits from allowing both correlations and volatilities being regime–dependent,

provided the conditional distribution is flexible enough to cope with isolated untypical obser-

vations within a given regime. We finally note that also RSDC consistently outperforms DCC

at longer forecast horizons, which may indicate that the regime–switching models are better

suited to capture relatively long–lived persistent correlation regimes.

5 Conclusion

We want to conclude with two remarks. The first relates to the properties of the MLE consid-

ered in Section 3.4. Its consistency was established for Gaussian innovations. In view of the

empirical relevance of nonnormal regimes demonstarted in Section 4, it would be interesting

to extend the results of Section 3.4 to such less restrictive settings. However, we believe that

the result given in Section 3.4 is of some interest since to our knowledge no such results even

for the univariate model of Haas et al. (2004) have been available so far.

The second remark refers to the frequently contemplated “curse of dimensionality” prob-

lem. An advantage of the (diagonal) CCC, DCC, and Pelletier’s (2006) RSDC models is that,

via two–step estimation, application to high–dimensional time series is feasible. This property

is not shared by the model studied herein with both regime–specific correlations and variance

27



Table 8: Realized standard deviations of out–of–sample global minimum variance portfolio

(GMVP) returns

Models with Gaussian innovations

horizon (D) 1 2 3 4 8 12 16 20 24

# returns 637 318 212 159 79 53 39 31 26

CCC 2.425 3.324 4.472 4.926 7.192 9.823 10.791 15.506 17.439

DCC 0.954 0.986 0.960 0.979 0.970 0.961 0.992 0.986 0.978

RSDC 0.971 0.973 0.965 0.962 0.952 0.941 0.966 0.942 0.926

MS CCC 0.982 0.989 0.986 0.995 1.010 0.984 1.046 1.040 1.001

Models with Student’s t innovations

horizon (D) 1 2 3 4 8 12 16 20 24

# returns 637 318 212 159 79 53 39 31 26

CCC 0.996 0.995 0.993 0.991 0.991 0.979 0.992 0.990 0.981

DCC 0.946 0.981 0.945 0.968 0.956 0.928 0.978 0.963 0.947

RSDC 0.961 0.968 0.951 0.953 0.935 0.901 0.952 0.924 0.895

MS CCC 0.936 0.965 0.924 0.938 0.902 0.862 0.894 0.843 0.821
Reported are the results of constructing ex–ante global minimum variance portfolios (GMVP)

implied by different GARCH models and for different forecast horizons, D (weeks). Calculations

refer to multi–period cumulative returns, i.e., if rt+d is the single–period return vector at time

(week) t + d, then the D–period ahead cumulative return vector at forecast origin t is
∑D

d=1
rt+d,

and the multi–period ahead covariance matrices are calculated accordingly (assuming returns are

not autocorrelated in the current application). The row labeled “# returns” reports the number of

(non–overlapping) holding periods used to produce the results for each respective forecast horizon.

CCC and DCC are Bollerslev’s (1990) constant and Engle’s (2002) dynamic conditional correlation

models, respectively. RSDC is Pelletier’s (2006) model, and MS DCC is the Markov–switching

GARCH process defined in Section 2. In all models, volatilities are driven by absolute value

asymmetric GARCH processes, cf. Equation (5).

For the CCC with normal innovations, the table reports the standard deviation of the ex–post

(realized) portfolio returns of the ex–ante GMVP for each forecast horizon, D. For all other

models, their respective standard deviation divided by that of the Gaussian CCC is shown.
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dynamics. We do not deem this to be a disadvantage, since there are many applications where

the advantage of a more flexible dynamic structure may very well outweigh the benefits of

parsimony as long as the dimensionality of the problem is low to moderate. Studies of the dy-

namics of broadly defined asset classes, as illustrated in Section 4, are a typical example, where

a richer specification can lead to a better understanding and potentially improved forecasts

of the joint process under study. As another recent example from the literature somewhat

related to the application in Section 4, Case et al. (2014), using monthly data from 1972 to

2009, find that even a four–regime MS model is required to appropriately describe the evolu-

tion of the joint conditional distribution of REIT, stock, and bond returns, since in particular

the bond market regimes fail to be synchronized with those of the other two markets. For

higher–dimensional systems, Pelletier’s (2006) model, which is nested in the general specifica-

tion of this paper, appears to provide a reasonable balance between flexibility on the one hand

and parsimony and tractability on the other. This is suggested in particular sice the results

in Section 4 (cf. Table 4) revealed that allowing for regime–switching correlations is of greater

value than doing the same for the dynamics of individual volatilities.

Appendix

A Proofs of the theorems

Proof of Theorem 1. The ‘if’ part follows from Brandt (1986) or Bougerol and Picard

(1992).

Conversely, assume that there exists a strictly stationary solution (ǫt) of the MS(k)-CCC-

GARCH process defined by (1)–(7). Iterating (8), we have, for any m > 0, that

X0 = ω +

m∑

n=1

C∆−1,−1C∆−2,−2 . . .C∆−n,−nω +C∆−1,−1C∆−2,−2 . . .C∆−m−1,−m−1X−m−1.

From all entries of Xt, C∆t,t, and ω being nonnegative, we know, for any m > 0,

m∑

n=1

C∆−1,−1C∆−2,−2 . . .C∆−n,−nω ≤ X0, a.s.

Therefore,
∑m

n=1C∆−1,−1C∆−2,−2 . . .C∆−n,−nω converges a.s. Thus, we have that

lim
n→∞

C∆−1,−1C∆−2,−2 . . .C∆−n,−nω = 0, a.s.
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By ω > 0, we have

lim
n→∞

C∆−1,−1C∆−2,−2 . . .C∆−n,−ne
∗
i = 0, a.s.

where (e∗i ) is the canonical basis of RkM . Therefore,

lim
n→∞

∥∥C∆−1,−1C∆−2,−2 . . .C∆−n,−n

∥∥ = 0, a.s.

Hence, by Lemma 3.4 in Bougerol and Picard (1992), we know that the top Lyapunov exponent

associated with the matrices (C∆t,t) is strictly negative. This completes the proof of the

theorem.

Proof of Theorem 2. Write

Xt,m = C∆t−1,t−1C∆t−2,t−2 . . .C∆t−m,t−mω, m ≥ 1,

and X t,0 = ω. For any vector X such that AX is well defined, we have (AX)⊗l = A⊗lX⊗l.

It follows that

X⊗l
t,m = C⊗l

∆t−1,t−1C
⊗l
∆t−2,t−2 . . .C

⊗l
∆t−m,t−mω⊗l.

By Lemma 1 in Francq and Zaköıan (2005), we have

E(X⊗l
t,m) = E{E(C⊗l

∆t−1,t−1C
⊗l
∆t−2,t−2 . . .C

⊗l
∆t−m,t−mω⊗l|∆t−1, . . . ,∆t−m)}

= E(Cl(∆t−1)Cl(∆t−2) . . . Cl(∆t−m))ω⊗l

= I(PCl
)mπ

ω⊗l ,

where I = (I(kM)l , . . . , I(kM)l) is a (kM)l × k(kM)l matrix and π
ω⊗l = (π∞ ⊗ 1kl−1M l)⊙ω⊗l.

Thus, by ‖A‖‖B‖ = ‖A⊗B‖ = ‖B ⊗A‖, we have

(E‖X t,m‖l)1/l = (‖E(X⊗l
t,m)‖)1/l = ‖I(PCl

)mπ
ω⊗l‖1/l ≤ ‖I‖1/l‖(PCl

)m‖1/l‖π
ω⊗l‖1/l → 0

at an exponential rate as m→ ∞, because ̺(PCl
) < 1. This shows that

lim
n→∞

n∑

m=0

Xt,m = X∗
t = ω +

∞∑

n=1

C∆t−1,t−1C∆t−2,t−2 . . .C∆t−n,t−nω,

both in Ll and almost surely. It is obvious that X∗
t satisfies (8) and is strictly stationary and

ergodic. This completes the proof of the theorem.
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The proof of Theorem 3 adopts some elements of the method of Francq et al. (2001). The

argument is developed along a set of intermediate results which are presented in the following

lemmas.

Lemma 2. For all i ∈ E and θ ∈ Θ, we have

π̃t(i) = Pθ(∆t = i|ǫt−1, ǫt−2, . . .) > 0 Pθ0 − a.s.

Proof. The irreductibility and aperiodicity assumptions imply that (∆t) is primitive (see

Seneta, 1981, p. 21), i.e. there exists a strictly positive integer m such that

Pθ(∆t = i|∆t−m = j) > 0,

for any (i, j) ∈ E
2. Moreover, note that the conditional densities gθ(ǫt−1, . . . , ǫt−m|∆t−m = j)

and gθ(ǫt−1, . . . , ǫt−m|∆t = i,∆t−m = j) are almost surely strictly positive. Hence, for all

i ∈ E , we have

Pθ(∆t = i|ǫt−1, ǫt−2, . . .)

=

k∑

j=1

Pθ(∆t = i|∆t−m = j, ǫt−1, . . . , ǫt−m)Pθ(∆t−m = j|ǫt−1, ǫt−2, . . .)

≥ min
j∈E

Pθ(∆t = i|∆t−m = j, ǫt−1, . . . , ǫt−m)

= min
j∈E

gθ(ǫt−1, . . . , ǫt−m|∆t = i,∆t−m = j)Pθ(∆t = i|∆t−m = j)

gθ(ǫt−1, . . . , ǫt−m|∆t−m = j)
> 0.

This completes the proof of the lemma.

Lemma 3. For all θ ∈ Θ,

lim
n→∞

1

n
logLn(θ) = lim

n→∞

1

n
log L̃n(θ) = Eθ0gθ(ǫt|ǫt−1, . . .).

Proof. Let h̃(ǫ1) = (π̃1(1)f̃1(ǫ1), . . . , π̃1(k)f̃k(ǫ1))
′ and

M̃θ(ǫ1, . . . , ǫt) =




p11f̃1(ǫ1, . . . , ǫt) p21f̃1(ǫ1, . . . , ǫt) · · · pk1f̃1(ǫ1, . . . , ǫt)

p12f̃2(ǫ1, . . . , ǫt) p22f̃2(ǫ1, . . . , ǫt) · · · pk2f̃2(ǫ1, . . . , ǫt)
...

...
. . .

...

p1kf̃k(ǫ1, . . . , ǫt) p2kf̃k(ǫ1, . . . , ǫt) · · · pkkf̃k(ǫ1, . . . , ǫt)



.

Then L̃n(θ) can be rewritten as

L̃n(θ) = 1′k

{
n∏

t=2

M̃θ(ǫ1, . . . , ǫn−t+2)

}
h̃(ǫ1).
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Moreover, we have

min
j
π̃1(j)f̃j(ǫ1)

∥∥∥∥∥

n∏

t=2

M̃θ(ǫ1, . . . , ǫn−t+2)

∥∥∥∥∥

≤ L̃n(θ) ≤ max
j
π̃1(j)f̃j(ǫ1)

∥∥∥∥∥

n∏

t=2

M̃θ(ǫ1, . . . , ǫn−t+2)

∥∥∥∥∥ .

By ̺(PC1
) < 1, it is easy to prove that Eθ0 | log gθ(ǫt|ǫt−1, ǫt−2, . . .)| < ∞. Therefore, by

Lemma 2, the ergodic theorem implies that

lim
n→∞

1

n
log

∥∥∥∥∥

n∏

t=2

M̃θ(ǫ1, . . . , ǫn−t+2)

∥∥∥∥∥

= lim
n→∞

1

n
log L̃n(θ)

= Eθ0 log gθ(ǫt|ǫt−1, ǫt−2, . . .).

For convenience, let the initial values be ǭ0 = 0, σ̄j0 = ωj, j ∈ E . Then, for j ∈ E , we have

‖σ̃j,t − σj,t‖ ≤ O(ct)Q1t :=

∞∑

i=t

ci [c1 + c2‖|ǫt−i|‖] = ct
∞∑

i=0

ci [c1 + c2‖|ǫ−i|‖] ,

where 0 < c < 1 and c1 and c2 are constants independent of the parameter θ.

Hence, for j ∈ E ,

| log |D̃jtRjD̃jt| − log |DjtRjDjt|| =

∣∣∣∣∣

M∑

ℓ=1

log

(
σ̃2ℓjt
σ2ℓjt

)∣∣∣∣∣

≤ 2

M∑

ℓ=1

∣∣∣∣
σ̃ℓjt − σℓjt

σℓjt

∣∣∣∣ = O(1)

M∑

ℓ=1

|σ̃ℓjt − σℓjt| ≤ O(ct)Q1t

and

|ǫ′t(D̃jtRjD̃jt)
−1ǫt − ǫ′t(DjtRjDjt)

−1ǫt|

= |ǫ′tD̃
−1
jt R

−1
j (D̃

−1
jt ǫt −D−1

jt ǫt)− ǫ′tD
−1
j,tR

−1
j (D−1

jt ǫt − D̃
−1
jt ǫt)|

≤ O(1)‖ǫt‖
M∑

ℓ=1

∣∣∣∣
ǫℓt
σ̃ℓjt

−
ǫℓt
σℓjt

∣∣∣∣+O(1)‖ǫt‖
M∑

ℓ=1

∣∣∣∣
ǫℓt
σℓjt

−
ǫℓt
σ̃ℓjt

∣∣∣∣

= O(1)‖ǫt‖

M∑

ℓ=1

|ǫℓt|

∣∣∣∣
σ̃ℓjt − σℓjt
σ̃ℓjtσℓjt

∣∣∣∣

≤ O(1)‖ǫt‖
2

M∑

ℓ=1

|σ̃ℓjt − σℓjt| ≤ O(ct)Q2t,
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where Q2t = ‖ǫt‖
2Q1t. This shows that, for j ∈ E ,

| log fj(ǫ1, . . . , ǫt)− log f̃j(ǫ1, . . . , ǫt)| ≤ O(ct)Qt,

where Qt = Q1t + Q2t is stationary and ergodic. By the above inequality, we may get that,

for j ∈ E ,

log fj(ǫ1, . . . , ǫt) ≤ log f̃j(ǫ1, . . . , ǫt) +O(ct)Qt,

that is,

fj(ǫ1, . . . , ǫt) ≤ eO(ct)Qt f̃j(ǫ1, . . . , ǫt).

Then ∥∥∥∥∥

n∏

t=2

Mθ(ǫ1, . . . , ǫn−t+2)

∥∥∥∥∥ ≤ e

n∑

t=2

O(ct)Qt

∥∥∥∥∥

n∏

t=2

M̃θ(ǫ1, . . . , ǫn−t+2)

∥∥∥∥∥ .

It follows that

lim sup
n→∞

1

n
log

∥∥∥∥∥

n∏

t=2

Mθ(ǫ1, . . . , ǫn−t+2)

∥∥∥∥∥

≤ lim
n→∞

1

n
log

∥∥∥∥∥

n∏

t=2

M̃θ(ǫ1, . . . , ǫn−t+2)

∥∥∥∥∥+ lim
n→∞

1

n

n∑

t=2

O(ct)Qt

= lim
n→∞

1

n
log L̃n(θ) = Eθ0 log gθ(ǫt|ǫt−1, ǫt−2, . . .).

Similarly, we also have that

lim inf
n→∞

1

n
log

∥∥∥∥∥

n∏

t=2

Mθ(ǫ1, . . . , ǫn−t+2)

∥∥∥∥∥ ≥ Eθ0 log gθ(ǫt|ǫt−1, ǫt−2, . . .).

This completes the proof of the lemma.

Define

On(θ) =
1

n
log

Ln(θ)

Ln(θ0)
.

Lemma 4. For all θ ∈ Θ, almost surely

lim
n→∞

On(θ) ≤ 0

and the limit is almost surely equal to zero if and only if θ = θ0.

Proof. By Lemma 3 and Jensen’s inequality, we have

lim
n→∞

On(θ) = Eθ0 log
gθ(ǫt|ǫt−1, ǫt−2, . . .)

gθ0(ǫt|ǫt−1, ǫt−2, . . .)
≤ logEθ0

gθ(ǫt|ǫt−1, ǫt−2, . . .)

gθ0(ǫt|ǫt−1, ǫt−2, . . .)
= 0.
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By Assumption 1, this limit equals to zero if and only if θ = θ0. This completes the proof of

the lemma.

Lemma 5. For any θ1 ∈ Θ, θ1 6= θ0, there exists a neighborhood V (θ1) of θ1 such that

lim sup
n→∞

sup
θ∈V (θ1)

On(θ) < 0 a.s.

Proof. Let Vr(θ1) be the open sphere with center θ1 and radius 1/r and define

Sr
2n = sup

θ∈Vr(θ1)

∥∥∥∥∥

n∏

t=2

Mθ(ǫ1, . . . , ǫn−t+2)

∥∥∥∥∥ .

Because this matrix norm is multiplicative, we have

Sr
2,n+m ≤ Sr

2n · Sr
n+1,n+m,

that is

log Sr
2,n+m ≤ logSr

2n + logSr
n+1,n+m

for any positive integers n,m and r. From the Kingman (1973) ergodic theorem for subadditive

processes we can obtain

lim
n→∞

1

n
log Sr

2n = λr(θ1) := inf
n>1

1

n
Eθ0 logS

r
2n, Pθ0 − a.s.

Recall that

λ(θ0) := lim
n→∞

1

n
log

∥∥∥∥∥

n∏

t=2

Mθ0(ǫ1, . . . , ǫn−t+2)

∥∥∥∥∥ = inf
n>1

1

n
Eθ0 log

∥∥∥∥∥

n∏

t=2

Mθ0(ǫ1, . . . , ǫn−t+2)

∥∥∥∥∥ .

Thus, by Lemma 3 and 4, there exists ε > 0 and nε ∈ N such that

1

nε
Eθ0 log

∥∥∥∥∥

nε∏

t=2

Mθ1(ǫ1, . . . , ǫn−t+2)

∥∥∥∥∥ < λ(θ0)− ε.

The dominated convergence theorem shows that, for r large enough,

λr(θ1) ≤
1

nε
Eθ0 logS

r
2nε

< λ(θ0)−
ε

2
.

This completes the proof of the lemma.

Proof of Theorem 3. Assume that θ̂n didn’t tend to θ0 as n → ∞, i.e., for arbitrarily

large integer M , there exists a δ∗ > 0 and at least one n∗ ≥ M such that |θ̂n∗ − θ0| > δ∗

with positive probability. By Lemma 5, it follows that Lθ̂n∗
(ǫ1, . . . , ǫn∗) is strictly less than

Lθ0(ǫ1, . . . , ǫn∗) with positive probability. However, with probability one, we have

Lθ̂n
(ǫ1, . . . , ǫn) = sup

θ∈Θ
Lθ(ǫ1, . . . , ǫn) ≥ Lθ0(ǫ1, . . . , ǫn)

for all n. The contradiction gives our result. This completes the proof of the theorem.
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B Lagrange Multiplier (LM) test for constant within–regime

correlations

The MS–GARCH model with constant within–regime correlations is attractive since it is an-

alytically tractable. E.g., straightforward–to–check conditions for stationarity have been ob-

tained, as well as a simple recursion for calculating multi–step conditional covariance matrices,

which is crucial for mean–variance portfolio optimization. Moreover, in some simple cases, such

as Pelletier’s (2006) model with regime–independent GARCH dynamics, estimation in high

dimensions is feasible via a two–step procedure with an embedded EM algorithm. Despite

its convenience, it is still desirable to test whether the assumption of constant within–regime

correlation matrices is tenable, since otherwise further improvement of out–of–sample portfolio

selection might be feasible by extending the model to allow for within–regime correlation dy-

namics as in Billio and Caporin (2005) and Otranto (2010). Using results of Hamilton (1996),

we extend the Lagrange Multiplier (LM) test devised by Tse (2000) for constant conditional

correlations in multivariate GARCH models. In Tse (2000) the LM test is derived under nor-

mality of the innovations, but he reports simulations indicating it being quite robust against

nonnormality. However, in view of the discussion in Section 4.1, this cannot be expected to

hold for MS–GARCH processes, and thus we derive the test allowing for Student’s t errors.

The test under normality is then straightforwardly obtained if the degrees of freedom ν → ∞.

For the volatility dynamics, we assume that the conditional standard deviation of asset i

in regime j, σijt, is described by a standard (symmetric) AGARCH(1,1) process, i.e.,15

σijt = ωij + aij|ǫi,t−1|+ bijσij,t−1, i = 1, . . . ,M, j = 1, . . . , k. (B.1)

The conditional correlation matrix in regime j is

Rjt = (ρiℓ,jt)i,ℓ=1,...,M , j = 1, . . . , k.

where, as in Tse (2000), correlations evolve according to16

ρiℓ,jt = ρiℓ,j + δiℓ,jǫi,t−1ǫℓ,t−1, i = 1, . . . ,M − 1, ℓ = i+ 1, . . . ,M, j = 1, . . . , k. (B.2)

15 The extension to allow for asymmetric response of volatility is straightforward.

16 As noted by Silvennoinen and Teräsvirta (2009b), (B.2) does not represent a specific alternative to the CCC
as positive definite correlation matrices are not guaranteed for every t: “For this reason we interpret the test
as a general misspecification test”. Smith (2008) reports simulation results in favor of Hamilton’s (1996)
LM specification tests for Markov–switching models..
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The null hypothesis of constant conditional within–regime correlations corresponds to

H0 : δiℓ,j = 0, i = 1, . . . ,M − 1, ℓ = i+ 1, . . . ,M, j = 1, . . . , k. (B.3)

We distinguish between the following cases, which differ in the specification of the alternative

hypothesis:

(a) The conditional correlation dynamics are unrestricted across regimes. In this case, under

(B.3), the LM test statistic is asymptotically distributed as χ2 with kM(M−1)/2 degrees

of freedom.

(b) The conditional correlation dynamics are the same across regimes, i.e., δiℓ,1 = δiℓ,2 =

· · · = δiℓ,k, i = 1, . . . ,M − 1, ℓ = i + 1, . . . ,M . In this case, under (B.3), the LM test

statistic is asymptotically distributed as χ2 with M(M − 1)/2 degrees of freedom.

For the purpose of the current section, it is convenient to decompose the parameter vector

of the model as θ = (vec(P )′,ϑ′)′,17 where ϑ consists of the parameters of the conditional

regime densities, i.e., ϑ = (ϑ′
1, . . . ,ϑ

′
k, ν)

′, where ν is the (common) shape parameter of the

t distribution and ϑj = (ϑ′
1j, . . . ,ϑ

′
Mj ,ρ

′
j, δ

′
j)

′, j = 1, . . . , k, where ϑij = (ωij, aij , bij)
′, and

ρj and δj are the M(M − 1)/2 vectors which stack, respectively, parameters ρiℓ,j and δiℓ,j in

Equation (B.2), i.e.,

ρj = (ρ12,j , ρ13,j , . . . , ρ1M,j, ρ23,j , . . . , ρ2M,j , . . . , ρM−1,M,j)
′,

δj = (δ12,j , δ13,j , . . . , δ1M,j , δ23,j , . . . , δ2M,j , . . . , δM−1,M,j)
′.

The log–likelihood of the model for a sample of size T is given by

logL(θ) =

T∑

t=1

log f(ǫt|Ωt−1;θ)

=
T∑

t=1

log





k∑

j=1

p(∆t = j|Ωt−1;θ)f(ǫt|Ωt−1,∆t = j;ϑj , ν)



 , (B.4)

where Ωt = {ǫt, ǫt−1, . . . , ǫ0}, p(∆t = j|Ωt−1;θ) are the one–step predicted regime inferences

(cf. Hamilton, 1994, Ch. 22), and the conditional regime densities are

f(ǫt|Ωt−1,∆t = j;ϑj, ν) =
Γ
(
ν+M

2

)

Γ(ν/2)(π(ν − 2))M/2|Rjt|1/2
∏M

i=1 σijt

{
1 +

d2jt
ν − 2

}−(ν+M)/2

=: fjt(ϑj, ν), (B.5)

17 Of course the last row of P is redundant.
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where the squared Mahalanobis distance

d2jt = ǫ′tD
−1
jt R

−1
jt D

−1
jt ǫt = ǫ⋆

′

jtR
−1
jt ǫ

⋆
jt = ǫ⋆

′

jtǫ̃jt, (B.6)

with

ǫ⋆jt = D−1
jt ǫt, ǫ̃jt = R−1

jt ǫ
⋆
jt, j = 1, . . . , k. (B.7)

The regime–specific log–density for observation t is

log fjt(ϑj, ν) = −
M

2
(log π + log(ν − 2)) + log Γ

(
ν +M

2

)
− log Γ

(ν
2

)
−

1

2
log |Rjt|

−

M∑

i=1

log σijt +
ν +M

2
log

(
1 +

d2jt
ν − 2

)

= −
M

2
log π + log Γ

(
ν +M

2

)
− log Γ

(ν
2

)
+
ν

2
log(ν − 2) −

1

2
log |Rjt|

−

M∑

i=1

log σijt −
ν +M

2
log(ν − 2 + d2jt), j = 1, . . . , k. (B.8)

The partial derivatives of (B.8) are obtained as

∂ log fjt(ϑj , ν)

∂ν
=

1

2

[
ψ

(
ν +M

2

)
− ψ

(ν
2

)]
−

1

2
log

(
1 +

d2jt
ν − 2

)

+
1

2

[
ν

ν − 2
−

ν +M

ν − 2 + d2jt

]
, (B.9)

∂ log fjt(ϑj , ν)

∂ϑij
=

∂σijt
∂νij

1

σijt

(
ǫ⋆ijtǫ̃ijt(ν +M)

ν − 2 + d2jt
− 1

)
, i = 1, . . . ,M, (B.10)

∂ log fjt(ϑj , ν)

∂ρj

=
1

2
U

(
ν +M

ν − 2 + d2jt
(ǫ̃jt ⊗ ǫ̃jt)− vecR−1

jt

)
, (B.11)

∂ log fjt(ϑj , ν)

∂δj
=

1

2
U

{(
ν +M

ν − 2 + d2jt
(ǫ̃jt ⊗ ǫ̃jt)− vecR−1

jt

)
⊙ (ǫt−1 ⊗ ǫt−1)

}
,(B.12)

where ψ(x) = d log Γ(x)/dx is the logarithmic derivative of the gamma function (the digamma

function); ǫ⋆ijt and ǫ̃ijt are, respectively, the ith elements of vectors ǫ⋆jt and ǫ̃jt defined in (B.7)

i = 1, . . . ,M ; and theM(M−1)/2×M2 matrix U is defined as in Silvennoinen and Teräsvirta

(2009a), i.e., with its [(i− 1)M − i(i+ 1)/2 + ℓ]th row given by

vec(ẽiẽ
′
ℓ + ẽℓẽ

′
i)
′, i = 1, . . . ,M − 1, ℓ = i+ 1, . . . ,M,

where ẽi is the ith column of the M–dimensional identity matrix. The derivative in (B.10) is

∂σijt
∂ϑij

= ηij,t−1 + bij
∂σij,t−1

∂ϑij
, t = 2, . . . , T, (B.13)
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where ηijt = (1, |ǫit|, σijt)
′, and the starting value in recursion (B.13) is

∂σij,t=1

∂ϑij
= (1, |ǫi0|, σij0)

′, (B.14)

where we initialize all regime–specific conditional standard deviations with the sample standard

deviation, i.e., in (B.14),

σij0 =

√√√√ 1

T − 1

T∑

t=1

ǫ2it, i = 1, . . . ,M, j = 1, . . . , k.

The score of the tth observation is given by the derivative of the conditional log–density

of ǫt as given in (B.4) and (B.5),

∂ log f(ǫt|Ωt−1;θ)

∂θ
=
∂ log

{∑k
j=1 p(∆t = j|Ωt−1;θ)fjt(ϑj , ν)

}

∂θ
. (B.15)

Hamilton (1996) has shown that the derivatives in (B.15) involving elements of ϑ can be

evaluated as

∂ log f(ǫt|Ωt−1;θ)

∂ϑ
=

k∑

j=1

∂ log fjt(ϑj , ν)

∂ϑ
p(∆t = j|Ωt;θ)

+

t−1∑

τ=1

k∑

j=1

∂fjτ (ϑj , ν)

∂ϑ
[p(∆τ = j|Ωt;θ)− p(∆τ = j|Ωt−1;θ)] ,

t = 1, . . . , T, (B.16)

where the second line in (B.16) is set to zero for t = 1. For τ = t and τ < t, the regime

probabilities p(∆τ = j|Ωt;θ) in (B.16) are known as filtered and smoothed regime inferences,

respectively; see, e.g., Hamilton (1994, Ch. 22) and Kim (1994) for their recursive calculation.

We initialize these recursions by assuming that ∆1 is drawn from the stationary distribution

of the chain, i.e.,

p(∆1 = 1|θ) = π1,∞ =
1− p22

2− p11 − p22
, (B.17)

p(∆1 = 2|θ) = π2,∞ =
1− p11

2− p11 − p22
.

Note that, in (B.16), many terms are zero for parameters that appear in only one regime; e.g.,

if all parameters except ν are regime–specific, then

∂ log f(ǫt|Ωt−1;θ)

∂ϑj
=

∂ log fjt(ϑj , ν)

∂ϑj
p(∆t = j|Ωt;θ)

+

t−1∑

τ=1

∂fjτ (ϑj , ν)

∂ϑj
[p(∆τ = j|Ωt;θ)− p(∆τ = j|Ωt−1;θ)]

t = 1, . . . , T, j = 1, . . . , k.

38



For the score with respect to the parameters of P , see Hamilton (1996).18

Now let S be the T × N matrix (where N is the dimension of θ) the tth row of which

is given by (the transpose of) the score (B.15), t = 1, . . . , T , and let Ŝ be S evaluated at

θ̂
c
the constrained MLE of θ under (B.3). Then the LM test statistic for H0 given by (B.3)

can be calculated as (in the outer gradient product (OPG) form, cf. Godfrey, 1988, p. 15; and

Hamilton, 1996)

LM = 1′T Ŝ(Ŝ
′
Ŝ)−1Ŝ

′
1T

d
→ χ2(c0), (B.18)

where 1T is a T–dimensional column of ones, and c0 is the number of parameter constraints

under H0, see the discussion following Equation (B.3). Note the elements of 1′T Ŝ corresponding

to unrestricted parameters are zero, so that a slight simplification of the LM statistic (B.18)

can be obtained (cf. Engle, 1984, p. 783).
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Francq, C., Roussignol, M., and Zaköıan, J.-M. (2001). Conditional Heteroskedasticity Driven
by Hidden Markov Chains. Journal of Time Series Analysis, 22:197–220.
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Francq, C. and Zaköıan, J.-M. (2008). Deriving the Autocovariances of Powers of Markov–
switching GARCH Models, with Applications to Statistical Inference. Computational
Statistics & Data Analysis, 52:3027–3046.
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