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Abstract

In light of the recent large swings in stock and housing prices accompanied by am-

ple global liquidity, the role of monetary policy in the build-up of asset price bubbles

has been questioned. This paper will contribute to the debate whether central banks

can and should stronger “lean against the wind” of emerging bubbles. Against this

background, the paper will reevaluate if new advances in real-time bubble detection,

as brought forward by Phillips et al. (2011), can timely detect bubble emergences and

collapses. Here, the paper suggests a combination approach of different bubble indica-

tors to account for the uncertainty around start and end dates of asset price bubbles.

Additionally, the paper will then investigate if these indicators carry predictive content

for inflation, output growth and recession events when the real-time availability of all

variables is considered. It finds that a combination approach of asset price bubbles

is well suited to detect the most common stock and house price bubbles in the U.S.

and shows that this indicator can improve output forecasts, however, only when the

real-time availability of real variables is respected.

Keywords: Asset price bubbles, financial stability, leaning-against-the-wind, monetary

policy, real-time forecasting, recession forecasting, unit root monitoring test.
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1 Introduction

Following the ‘dot-com’ crisis of the late 1990’s and particularly the recent global financial

crisis, the importance of asset price cycles for macroeconomic stability has pushed strongly

onto the agenda of academic research and policy makers alike. Furthermore, the fact that

recent asset price booms had been accompanied by ample levels of liquidity, has raised ques-

tions about the role of monetary policy in the propagation of asset price bubbles. Exemplary,

former ECB president Jean-Claude Trichet has considered this “[...] to be one of the most

challenging issues facing a modern central bank at the beginning of the 21st century” (Trichet,

2005). The responses of central banks to the recent global financial crisis cutting interest

rates to the zero lower bound and providing additional lines of liquidity have raised these

concerns even further.

Against this background, a more active role of monetary policy in combating asset

price bubbles early in their development (coined as “leaning against the wind”) has been

called for by many observers. That is, in contrary to the current policy of only lowering

interest rates immediately after a crash, central banks should respond symmetrically and

cautiously increase rates as soon as an asset price bubble is identified. However, for such a

policy to be implementable, it is foremost required that policy makers are able to identify

emerging asset price bubbles in real-time. Second, asset price bubbles should also provide

reliable signals for central banks’ ultimate primary and secondary targets of price stability

and output and/or employment near potential levels. If asset price bubbles do not signal

stress in the real economy, there is no incentive to raise the policy rate and cut-off down real

economic growth.1

This paper will therefore connect existing yet separate lines research on these two open

issues. In specific, the goals of this paper are, first, to assess if recently suggested monitoring

indicators can detect price bubbles in the S&P 500 and the U.S. housing market in real-time,

and second, if these have additional value for predicting U.S. output growth and inflation

in a real-time setting. Adding to the methodology of detecting bubbles, a new combination

approach is suggested to account for the large uncertainty around the bubble emergence and

collapse dates.

So far policy makers have mostly argued that the two requirements are likely not met

as the detection of asset price bubbles has been considered to be impossible, not only ex-

post but even more so in real-time (cf. Trichet, 2005 and Kohn, 2006). However, this view

has recently been questioned following the seminal paper by Phillips et al. (2011) (PWY11,

henceforth). Building on recursive right-side unit root tests on price and dividend series,

1Additionally, asset price bubbles must also be sensitive to changes in the interest rate and the long-term
expected benefits of pricking a bubble should exceed the immediate costs of lower output growth. This is
however not within the scope of this paper.
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the authors show that real-time monitoring approaches are capable of detecting periods

that display patterns typical for asset price bubbles. This work has been developed further

by Homm & Breitung (2012) (HB12, henceforth) and by Phillips et al. (2013) (PSY13,

henceforth) who generalize the initial work of PWY11 and develop a monitoring procedure

that is robust to multiple periodically collapsing bubbles. Yet, as PWY13 show, all tests

differ in their detection ability depending on the number and timing of the bubble in the

sample under considerations. This paper will further highlight that the detection abilities

of the individual tests are sensitive to their exact specifications. Hence, all tests a-priori

may provide some complementary value. Thus, this paper follows a recent suggestion by

Harvey et al. (2015) and evaluates combinations building on the union set of these indicators

along varying thresholds to account for uncertainty around the timing of bubbles. As Harvey

et al. (2015) show for two ex-post tests suggested by PWY11 and HB12, this procedure can

improve the detection power compared to employing individual indicators.

The first findings of this paper highlight that the choice of the indicator and its exact

specification is not crucial. First, it matters if individual price and dividend series or the

price-to-dividend ratio are tested for explosive roots. Second, the detection depends on the

timing of the bubble. Against these limitations, plausible results are obtained for both stock

and house prices only by the PWY13 and a rolling-window variant of the PWY11 indicator.

Common bubble episodes detected by the majority of indicators describe the build-up of a

stock price bubble prior to the 1987 crash, the dot-com bubble starting around 1996 and

the recent house price bubble beginning in the early 2000’s. Given the uncertainty around

bubble indicators and their precise beginning and end points, indicator combinations are a

promising way to aggregate information.

The only study so far investigating the predictive content of asset price bubble indicators

for real economic variables is Assenmacher-Wesche & Gerlach (2010) (AWG10, henceforth).

Yet, asset (and in particular stock) prices have long been considered to be valuable predictors

for real economic variables as they are inherently forward-looking. Empirical evidence by

Stock & Watson (2001), however, strongly questions their usefulness.2 Yet, in addition to

their forward-looking character, asset price developments can have immediate causal effects

on real economic outcomes that are particularly relevant when considering the importance of

bubble periods. Two transmission channels prominently discussed in the literature are the

balance sheet (or collateral), and the lending channel (as introduced by Holmstrom & Tirole,

1997). Both channels suggest that rising asset prices can alleviate credit constraints for firms

and households, and by this stimulate investment or consumption and ultimately output.3

2The authors find that stock prices provide only little predictive ability for output growth and none for inflation
compared to simple autoregressive forecasts. House prices have been studied to a far lesser extend, mostly
because of data limitations. Nonetheless, the available studies suggest little predictive use, too.

3The balance sheet channel theorizes that rising asset prices increase the value of collateral that firms and
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During a bubble, prices are, however, predominantly driven by speculative motives. This

may increase investment in the respective asset class more than fundamentally justified, and

imply an inefficient allocation of resources compared to other sectors. When prices eventually

crash the feedback loop described above reverses, and additionally, the physical capital stock

and/or employment in the bubble sector is likely to be inefficiently high, binding valuable

resources. Bubble periods can thus intensify regular business cycle movements up to a degree

that the economy overheats and severe and long-lasting recessions follow. Therefore, one can

expect that information about emerging asset price bubbles can contain predictive content

for forecasting output and inflation.

Against these theoretical considerations, and questioning the scope for an activist mon-

etary policy, AWG10 do not find that bubble indicators provide valuable information for

forecasting output, inflation and recession events in addition to information that is already

contained in other standard predictor variables. Yet, the study suffers from two main short-

comings. First, it does not make use of the new indicators introduced above, but only

considers indicators based on price deviations from a one-sided HP-filtered trend. Second,

the paper does not consider the real-time dimension of all variables included in the forecast-

ing exercise. As stock prices are available in real-time, they might contain information not

included in real variables that are available with a lag only and are subject to revisions.

Therefore, the second contribution of this paper will be to reevaluate the predictive

content of asset price bubbles for inflation and industrial production when including the

state-of-the-art indicators and their combinations introduced above. Furthermore, this pa-

per will be particularly considerate of the real-time availability of all predictors. Following

AWG10, the forecast accuracy of a benchmark model including useful predictors as identified

by Stock & Watson (2001) will be evaluated first. Going beyond AWG10, this benchmark

will additionally be allowed to include autoregressive terms of all variables.

This paper finds that several asset price bubble indicators carry significant additional

predictive content for output growth and inflation. Foremost, these are the indicator proposed

by PWY13 and a combination indicator suggested in this paper. By this, the paper questions

the findings of AWG10. The findings paper also indicate that considering the real-time

dimension of all variables is crucial. Since stock prices and dividends are available in real-

time, their predictive content is understated when ignoring publication lags and revisions.

In contrast, the predictive content of house price bubble indicators is exacerbated, as these

variables are available with a lag of two months only. Stock prices are particularly useful for

horizons of up to 24 months, while house prices add to forecasts for even longer horizons.

Furthermore, the findings on recession forecasts suggest that stock price bubble indicators

households can put up to borrow new funds. The lending channel refers to the role of financial intermediaries
in credit supply. Rising asset prices boost banks’ equity, thus making it easier for them to provide credit.
Naturally, the reverse holds for falling prices.
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are also helpful in predicting severe economic downturns in the short-run.

The paper is structured as follows. Section 2 introduces the indicators used for detecting

asset price bubbles. Different specifications considered in the literature and their advantages

are discussed and the results of individual indicators for stock and house prices in the U.S. are

presented. Subsequently, the combinations of indicators are introduced and applied to the

data. Section 3 then introduces the forecast models used for predicting inflation, industrial

production and recession events and presents the real-time data set. Results of the forecast

exercise are then presented and discussed in Section 4. Section 5 concludes.

2 Asset price bubbles: Real-time detection

2.1 Definition and testability of asset price bubbles

An asset price bubble is commonly defined as a situation in which an asset’s price deviates

from (and typically exceeds) its fundamental value (FV) due to unjustified beliefs about the

asset’s market price in the future. The key question in detecting a bubble is thus to determine

the asset’s unobservable underlying FV. The most prominent formulation and starting point

for testing for the existence of (rational) bubbles is derived from the present value theory of

finance and begins with the asset pricing equation

Pt =
1

1 + r
Et [Pt+1 +Dt+1] (1)

where Pt, Dt are the asset’s market price in and dividend accrued over period t, respectively,

and r is the (here time-constant) discount rate.4 Note that this equation assumes risk-neutral

agents.5 Applying forward substitution one can show that (1) allows for the inclusion of a

bubble component Bt that measures the deviation of the market price from the FV

Pt =
∞∑
i=1

(
1

1 + r

)i
Et [Dt+i] + lim

i→∞

(
1

1 + r

)i
Et [Pt+i]

= P f
t +Bt, (2)

where Bt > 0, if the usual transversality condition lim
i→∞

(
1

1+r

)i
Et [Pt+i] → 0 does not hold.6

Importantly, this implies that the bubble component Bt must grow exponentially with r

4As Himmelberg et al. (2005) show, the fundamental determinants of house prices depend on several additional
factors, including (among others) property taxes, tax deductibility of mortgage interest and maintenance or
depreciation costs, that are assumed to be constant here.

5See Gürkaynak (2008) for a thorough derivation and discussion of the model’s underlying assumption.
6For this general setting, it has been documented extensively that bubbles can emerge, even if only some of the
strict assumptions of infinitely-lived, rational and risk-neutral agents as well as complete markets are loosened.
See Camerer (1989) and Stiglitz (1990) for surveys on the early theoretical work on the existence of rational
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for (1) to hold and for the bubble not to shrink to zero in present value or to outgrow the

economy, i.e. Bt = 1
1+r

Et[Bt+1]. Under the standard assumption that dividends follow a

random walk (with drift), this has direct testable implications. When dividends follow a unit

root process but a bubble is present, i.e. Bt > 0, the price series must contain an explosive

root that can only come from the bubble process. In this sense, a bubble is detected if the

price process decouples from the dividend process. If dividends grow exponentially, too, no

inference on the existence of a bubble component is possible in this setting.

Nonetheless, there are important limitations to bubble testing. Most importantly, as

Flood & Hodrick (1990) highlight, every test for the existence of rational bubbles per se

relies on a correct specification of the FV. Thus, empirical tests in fact address the joint

null hypothesis of the absence of bubbles and a correctly specified economic model. Hence,

the rejection of the hypothesis cannot answer the question if a bubble is present indeed,

or if simply a poor economic model has been employed. Still, empirical tests for bubbles

can serve as specification tests for an economic model. Furthermore, for policy makers it is

potentially of interest to detect common characteristics of “speculative bubbles” or “periods

of exuberance” that can possibly indicate instabilities in the financial system based on past

evidence (cf. Trichet, 2005). For this, however, the real-time detectability of asset price

bubbles is crucial. Here, monitoring approaches can provide valuable insights.7

2.2 Real-time detection of explosive behavior

The literature on testing for bubbles has long focused on ex-post tests for the existence of

bubbles over an entire historical dataset. A survey on this literature including variance-

bound, two-step specification and unit-root tests can be found both in Flood & Hodrick

(1990) and Gürkaynak (2008).8 While the first two approaches have suffered mostly from

practical issues in their implementation and have lately not been pursued further, integration

tests that build on the insights developed in the previous section, have recently seen a revival

triggered by the seminal paper of PWY11. In this paper, the authors show that the original

unit root tests of Diba & Grossman (1988) can be adapted to detect periodically collapsing

bubbles (the central criticism of Evans (1991)) by running ADF tests based on forward

recursive regressions. More recently, PSY13 have generalized this approach by allowing for

bubbles which focused predominantly on overlapping-generations models, the introduction of asymmetric
information and/or incomplete markets restricting the opportunities for arbitrageurs. More recently, the
role of agents’ incentives, non-standard preferences (e.g. herding) and (partly) irrational behavior as well as
market rigidities for initializing bubbles have been explored. A survey on this strand of literature can be
found in Scherbina (2013).

7For example, the Federal Reserve Bank of Dallas employs a real-time monitoring test to detect house price
bubbles in its International House Price Database (http://www.dallasfed.org/institute/houseprice/
index.cfm, Grossman et al. (2013)).

8Other tests for bubbles not included in this survey are Black et al. (2003) and Machado & Sousa (2006).
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rolling windows of flexible size for estimation. Both these tests can also be used to date

the emergence and collapse of asset price bubbles in real-time. Along the same lines, HB12

propose a number of flexible tests based on structural breaks in the autoregressive parameters

or on forecast breakdowns, two of which that can also be employed for real-time monitoring

and date-stamping.

The starting point for all tests is a variant of the autoregressive specification

zt = µz + δzt−1 +
J∑
j=1

φj∆zt−j + vt, t = 1, . . . , τ, vt
iid∼ N(0, σ2

v) (3)

where zt = {pt, dt} or zt = {pt − dt}, with pt = ln(Pt) and dt = ln(Dt). All test employed

in this paper are right-tailed ADF-type tests of the null hypothesis H0 : δ = 1 against the

alternative H1 : δ > 1. In specific, forward recursive regressions of (3) are carried out,

providing a sequence of ADF-statistics ADFτ for all margins τ0, τ0 + 1, . . . , T . The first

regression hence includes τ0 = br0T c observations, where r0 denotes the minimum share of

the total sample size T for which (3) is estimated.

As outlined above, a bubble is detected when the price series shows explosive behavior

while the fundamental series does not. The bubble emergence and collapse dates (τe and

τf ) can then be estimated as the first date τ for which the ADF statistic for the price series

exceeds (falls below) the critical value cvadfαT (τ)

τ̂e = inf
τ≥τ0

{
τ : ADFτ > cvadfαT (τ)

}
, τ̂f = inf

τ≥τ̂e

{
τ : ADFτ < cvadfαT (τ)

}
. (4)

If the dividend series is explosive at all dates τ with τ̂e ≤ τ ≤ τ̂f , no bubble is indicated.

If the dividend series turns explosive at τ with τ̂e < τ ≤ τ̂f , the bubble collapse date τ̂f is

reset to τ̂f = τ − 1. This algorithm yields a binary indicator series Bτ , τ = τ0, τ0 + 1, . . . T

with

Bτ =

1 if τ̂e ≤ τ ≤ τ̂f

0 else.

Importantly one can test both series individually (i.e. zt = {pt, dt}), or the ratio of the

two (i.e. zt = {pt − dt}). The literature so far has considered both but has not discussed

that this choice may carry important implications for the findings.9 While dividends are

typically assumed and found to follow a random walk (with drift), the log price-dividend

ratio is assumed to be stationary (see e.g. Campbell & Shiller (1988) and Cochrane (1992)).

9While PWY11 and Harvey et al. (2015) test the series individually, HB12, PWY13 and Grossman et al.
(2013) run tests on the log price-to-dividend ratio.
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Rewriting (2) into the alternative representation proposed by Campbell & Shiller (1987)

given by

Pt −
1

r
Dt =

(
1 + r

r

) ∞∑
i=1

(
1

1 + r

)i
Et [∆Dt+i] +Bt, (5)

shows that the difference Pt − 1
r
Dt is stationary if Dt ∼ I(1) and Bt = 0. Hence, it is

reasonable to expect that the test on the individual series features a larger power against the

null hypothesis than the more conservative test on the ratio. On the one hand, this implies

that testing the series individually can provide a more timely detection of a bubble phase.

On the other hand, this can also imply a more frequent detection of periods with exponential

growth in dividends due to short-lived spikes. In this case, no bubble (or a collapse) would

be signaled. Thus, testing the log price-to-dividend ratio can provide information on the

relative growth rate of the two series. If both grow exponentially, but prices grow at a faster

rate than dividends (indicating increasing imbalances), a unit root test on the ratio would

indicate a bubble period that is missed by a test on the individual series. Therefore, this

paper will evaluate both options.

2.3 Real-time detectors

This section will provide the exact specifications of the test statistics applied in this paper.

An overview of all tests can be found in Table 1.

2.3.1 Forward recursive sup ADF Test (PWY11)

First, the original indicator of Phillips et al. (2011) will be applied by estimating (3) either

recursively or by rolling windows. The lag order J is determined by the Akaike Information

Criterion (AIC) with Jmax = 12. As PWY11, this paper will set r0 = {0.1, 0.2} for recursive

and rolling-windows estimation, respectively. In order to account for over-rejection in the

multiple testing setting, the significance level αT needs to approach zero asymptotically for

an overall significance level of 5% to hold. Correspondingly cvadfαT (τ) must diverge to infinity.

PWY11 thus suggest to use cvadfαT (τ) = ln(ln(τ))/100, yielding significance levels around 4%.

2.3.2 Generalized sup ADF Test (PSY13)

Phillips et al. (2013) extend the work of PWY11 by not only allowing the end point (here

τ2) to move forward for each recursive regression from τ0 = br0T c to T , but by also allowing

the start point τ1 for a given τ2 to vary between all values from 0 to max(τ2 − τ0, 0). Thus,

the test augments the forward recursive regressions by estimating and testing all possible

backward extending windows from the current margin τ2. For a given end point τ2 ∈ [τ0, T ]

7



and the varying start point τ1 ∈ [0, τ2 − τ0], the sequence of ADF test statistics is denoted

by {ADF τ2
τ1
}. Taking the supremum of this sequence then provides the backward sup ADF

statistic for the test margin τ2 denoted by BSADFτ2 = sup
τ1∈[0,τ2−τ0]

{
ADF τ2

τ1

}
.

Similar to PWY11, emergence and collapse dates are then defined as the first date for

which the BSADF statistic exceeds (falls below) the respective right-tailed critical value10

τ̂e = inf
τ2∈[τ0,T ]

{
τ2 : BSADFτ2 > cvbsadfαT

(τ2)
}
,

r̂f = inf
τ2∈[τ̂e,T ]

{
τ2 : BSADFτ2 < cvbsadfαT

(τ2)
}
. (6)

Based on extensive simulations PSY13 suggest an initial sample size of r0 = 0.01 + 1.8√
T

.

Following a suggestion of PSY13, the lag order in (3) is fixed and set to J = 1.

2.3.3 FLUC Test (HB12)

While the FLUC test developed by Homm & Breitung (2012) follows the notion of PWY, it

differs in the regression specifications and also in the simulated critical values.11 Similarly

to PWY11, the ADF-statistic ADFτ is computed for all τ = T0 + 1, T0 + 2, . . . , T and the

null hypothesis of a random walk is rejected if ADFτ > κτ , with κτ =
√
cvflucr0,α + ln(τ/T0).

However, the time series of real prices and dividends are detrended first by running an OLS

estimation of the log series on a constant and a linear time trend prior to estimating the

Dickey-Fuller regression equation, given by

z̃t = δz̃t−1 + vt, t = 1, . . . , τ, vt
iid∼ N(0, σ2

v), (7)

where z̃t denotes the detrended series. To overcome the problem of possibly negative critical

values, standardized ADF statistics (ADFτ−mADF
σADF

, with mADF = −2.1814 and σADF = 0.7499)

are computed. To compare the results of the FLUC test with PWY11, this paper sets

r0 = {0.1, 0.2} and T0 = r0T .

2.3.4 HP-Filter

Prior to the seminal contribution of PWY11, the literature has defined asset price bub-

bles predominantly by evaluating the deviation of the real price series from its one-sided

10Critical values where simulated using the MATLAB code provided by Shu-Ping Shi on her website (https:
//sites.google.com/site/shupingshi/home/research), adapted for the respective sample size T and the
parameter r0.

11HB12 also suggest a CUSUM test based on the detection of forecast breakdowns. As they find this test to
exhibit a lower power and longer delay until detection for all specifications compared to the FLUC test, this
paper will refrain from using it.

8
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HP-filtered trend. This builds on the assumption that the asset’s fundamentals follow a

slow-moving trend. As such, this indicator can potentially capture periods in which large

deviations of prices from their past history occur, regardless of the speed of this accumulation

process. Hence, this paper will also reevaluate the findings of AWG10, and define a bubble

if the real asset price deviates from its trend beyond a threshold κ, with κ = 10% for equity

and κ = 7.5% for house prices. In estimating the trend component of the price series, the

smoothing parameter is set to λ = 100, 000 ∗ 34 and both a recursive and rolling (window

size ω = 96) estimation is used.12 Past estimates of the trend component are not updated as

new observations arrive.

2.4 Stock and house price bubbles in the U.S.

This paper will in the following explore the predictive content of bubble periods in stock and

house prices in the U.S. The U.S. is chosen as it is the only country for which long series

on stock and house prices as well as their fundamentals are readily available on a monthly

frequency. Also, financial cycles are considered to be highly pronounced and particularly

important for the U.S. (cf. Borio, 2012). The data can be obtained from the online data

supplement13 of Shiller (2005) starting in 1871M01 for stock prices and 1953M01 for house

prices. However, the analysis here is restricted to the period from 1975M01 to 2014M07 as

the forecasting exercise of Section 3 is carried out for the post-high inflation period starting

around 1983M01.14 This paper will look at broad, aggregate indices only since it is foremost

bubbles in widely held asset classes that can be expected to carry implications for real

economic development in their emergence or unwinding. Thus, the stock price index of

interest is the S&P 500. House prices are measured by a national index of repeat sales

accounting for quality changes published by the U.S. Office of Housing Enterprise Oversight

for the period from 1975-1987 and by Fiserv CSV, Inc. since 1987. All individual series are

deflated by the U.S. Consumer Price Index for All Urban Consumers provided by FRED,

Federal Reserve Bank of St. Louis.

The choice of the underlying fundamental series for house prices is more controversial

than for stock prices. In principal, this “dividend” can be thought of as the rent that an

owner saves by living in the house (Himmelberg et al., 2005). However, relying on rent series

is problematic as these are generally measured with great error only, or do not account for the

12The setting of thresholds is highly arbitrary as is setting the smoothing parameter. Also, the method can
tend to generate more booms in the later part of the sample as the trend estimates becomes less sensitive to
new information under recursive estimation. Furthermore, for prolonged or strong bubble periods, the trend
component will also capture part of the excessive development, underestimating the bubble.

13Available at http://www.econ.yale.edu/~shiller/data.htm.
14This is particularly relevant from policy maker’s perspective as Stock & Watson (2007) show that inflation

forecasts from an autoregressive model became harder to beat following the Volcker era at the FED.

9
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intrinsic value of owning a house. Additionally, the causality structure between rental and

purchase prices for housing is ambiguous. In case of high market power on the home owners’

side, it is possible that rising purchase prices induce rising rents, thus leading to explosive

growth in both series during a housing bubble. Eventually, this development is likely not to

be sustainable, yet a bubble would not be signaled. Hence, this paper will follow Grossman

et al. (2013) and rely on real disposable income per capita as a measure for the fundamental

determinant of house prices.15 The idea behind this is to measure the affordability of housing.

Assuming that households devote a constant share of their total income to renting, house

prices can only grow sustainably at the rate of per capita real disposable income. This

consideration is in direct spirit of the assessment of financial stability that is the goal of this

paper.

Figure 1 shows the detected bubble periods in the S&P 500. The picture immediately

reveals that detection differs largely across all indicators. Yet, some common findings prevail.

A first bubble period prior to the stock market crash on “Black Monday” on 19 October 1987

is found by three specifications of the PWY11, one specification of the PSY13 and both HP

filters. Second, the “dot-com bubble” from around 1995/96 to 2000 is detected by all but

the FLUC indicators. However, the detection accuracy varies largely with emergence being

signaled from as early as 1995M05 to as late as 1996M11 and collapse dates ranging from

1999M08 to 2000M10, about seven months prior and past the peak. Finally, the FLUC, the

rolling PWY11 and the PSY13 indicate the financial crisis period from around 2008M10 to

2009M04, all when applied to ratios only though. This period is special as the exponential

trend in the price-to-dividend ratio comes from a drastic crash in prices, while dividends

decreased only slightly. In that sense, this episodes describes a “negative bubble”, a situation

that could be controlled for by accounting for the sign of price changes. At the current margin,

only the HP-filters indicate a stock market bubble.

In sum, the indicators by PWY11 and PSY13 appear to signal the most likely bubble

periods, while the FLUC indicators by HB12 fail to detect relevant bubbles. The HP indi-

cators tend to detect too many bubbles to be plausible. It is then reasonable to expect the

PWY11 and PSY13 indicators to be most useful for forecasting, if bubble periods indeed

matter for real economic outcomes.

Figure 2 displays the detected bubble episodes for house prices. Here, the overall picture

is less clear. There is wide consensus about the most recent house price bubble up to around

2006/07. However, the emergence dates vary from 2000M09 as indicated by the recursive

HP-filter to 2003M10 as signaled by the FLUC indicators on the ratios. Similarly, the rolling

PWY11 indicator signals a collapse at the peak of the price-to-income ratio in 2006M04, while

the FLUC indicators on the individual series find the bubble to last until 2007M09. Beyond

15The data is obtained from FRED. Series identifier: A229RX0.
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that, it is difficult to judge which indicators perform well, as the price-to-income ratio has

overall been much more stable with even a small downward trend. It appears though that

the PWY13 indicator on the ratio detects far too many bubble episodes while the recursive

PWY11 indicator detects too few. Overall, the forecast ability of bubble indicators that only

detect the recent housing bubble should be limited also due to practical reasons in estimation.

Overall, there are considerable differences between all indicators and their specifications,

with few providing continuous bubble periods. Instead, collapse and re-emergence dates

alternate frequently. This is a particular problem for the PWY13 indicator which is likely due

to the flexible window specification, allowing for a detection of short-lived explosive trends in

the dividend series. To circumvent this issue, the literature has generally suggested to bridge

bubble periods that are only a few months apart. While this might be feasible employing

hindsight in an ex-post analysis, it is not possible in a real-time forecasting context. Hence,

the lack of continuity will lead forecast models to interpret each determination of a bubble

period as a collapse, potentially decreasing their predictive ability. Testing for an explosive

root in the ratio instead of in the individual series does not seem to matter much for stock

prices. For house prices, however, tests on the ratio find additional bubble periods for the

Phillips tests but less bubble episodes for the FLUC tests. Yet, it cannot be observed that

tests on the ratio provide “more continuous” bubble episodes.

The large differences in the detected bubble episodes are generally in line with the

simulations in Phillips et al. (2013). They find that for the single-bubble case, the PWY11

procedure is superior in detecting bubbles that start early in the sample and are short-lived.

The advantage of employing flexible backward-rolling windows for estimation in PSY13 starts

to pay off from the middle of the sample. Also the length of a bubble matters for it’s detection.

Here, PSY13 show that the PWY11 indicator performs best for longer bubbles of at least

15 periods. However, this superiority does not translate to the case when there are multiple

collapsing bubbles in a sample. Here, the PWY11 procedure frequently fails to detect a

second bubble, which can be seen in the top left panel in 2. The problem is less pronounced

in case the second bubble is of longer duration, as in the case of the dot-com bubble shown

in the top left panel in 1. Employing either rolling window estimation for the PWY11 or

applying the PSY13 indicator clearly helps to circumvent this issue.

2.5 Combination of indicators

Against these limitations of the individual indicators, a promising approach to summarize the

information content on bubble emergence and collapse is to use combinations. By this, one

can potentially make use of the different strengths of all indicators regarding the timing and

lengths of potential bubbles. In specific, this paper will employ the union set of all individual

indicators along different thresholds. A similar approach has recently been proposed by
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Harvey et al. (2015) for two ex-post tests by PWY11 and HB12. In detail, a bubble is

detected if any of the two indicators rejects the null hypothesis of a unit root. To assure that

the asymptotic size of this union of rejections decision rule is equal to the nominal size, the

critical values of each test are rescaled. The necessary rescaling constants are obtained by

simulations.

This paper, however, relies on a much larger set of indicators that all potentially entail

different valuable information on the development of asset price bubbles in real-time. Hence,

an adjustment of critical values by simulations of the limiting distributions of all test statistics

is impossible. A possible sidestep around this problem is to explore the detected bubble

periods resulting from union set combinations along different thresholds. Thus, the combined

indicator BComb
τ,κ will signal a bubble in period τ if at least κ individual indicators detect an

asset price bubble, i.e.

BComb
τ,κ =

1 if
∑
•∈BB

•
τ ≥ κ

0 else,

with B = {PWY 11is, PWY 11rs, PWY 11il, PWY 11rl , FLUC
i
s, FLUC

r
s , FLUC

i
l , FLUC

r
l ,

PSY 13i, PSY 13r, HPrec, HProl}, i: individual series, r: price-dividend ratio and κ = 1, . . . , K

withK ≤ |B|. The smaller κ, the more bubble episodes will be detected, implying an “overde-

tection”. The larger κ, the more indicators need to signal a bubble, eventually implying an

“underdetection”. A priori, the choice of the optimal threshold κ is not clear.

Figure 3 shows the combination indicators for the S&P 500 for κ = 1, . . . , 8. For κ = 1,

several periods that do not feature a prominent increase in the price-to-dividend ratio are

classified as bubbles, suggesting overdetection. Increasing the threshold to κ = 2 alleviates

this issue, yet the dot-com bubble period extends far beyond the crash in 2000M3. Thus

it is questionable if this indicator can provide an accurate measure for asset price bubbles,

especially towards their ending. For κ = 3 and κ = 4, the pre-crash periods are detected

relatively early for the 1987 crash and the 2000 dot-com bubble, and the crisis period in

2008/2009 is identified. Also, the crashes are detected in real-time. Setting κ = 5 still detects

the 1987 and dot-com bubble reasonably early, yet does not indicate the “negative bubble in

2008”. Thus, it will be be particularly interesting to compare the forecasting performance of

the combinations with κ = 3, 4, 5. Increasing κ further deteriorates the emergence detection

in this case, especially with κ > 5, as fewer crises are detected and the end of the bubble is

frequently signaled before the ultimate peak. It might be suspected that, if at all, indicators

with 3 ≤ κ ≤ 5 are most useful for forecasting.

A similar picture is obtained for house prices as shown in Figure 4. Setting κ ≤ 2 seems

to provide too many bubble periods, especially in times when income growth exceeds growth
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in prices. A similar conclusion can be drawn for κ = 3 and κ = 4 with regard to bubbles

being detected around 1993 and 2012. Yet, the number of bubbles is already clearly reduced.

With κ > 4, only the recent housing price bubble starting in late 2001/early 2002 is detected.

A priori it is not clear which measure, if any, will be most useful for forecasting which is also

due to the practical problems for estimation arising from lack of bubble episodes.

3 Forecasts using asset price bubble indicators

The previous section has shown that there are promising new measures to detect asset price

bubbles in real-time and early before their collapse, especially when their information con-

tent is aggregated. Hence, it is not entirely clear that an active, leaning-against-the-wind

monetary policy is doomed to fail due to the impossibility to identify bubbles. Following the

argumentation of Kohn (2006) and AWG10 it is now of interest to evaluate if these indicators

also carry predictive content for central banks’ target variables. Analyzing the U.S., those

target variables are, most importantly, inflation and a measure for real economic activity

(Mishkin, 2007) such as employment and output. This paper will foremost follow AWG10

as closely as possible and investigate the predictive content of bubble indicators for inflation

and an output measure, here industrial production.16 Also, the importance of asset price

cycles for severe recession periods has been stressed frequently. Hence, the predictive content

of asset price bubbles for recession periods will be analyzed in probit model.

Employing the indicator based on a one-sided, recursive HP filter only, AWG10 do

not find any predictive content of stock and house price bubble indicators for predicting

inflation, the output gap or output growth.17 Yet, this finding, potentially suffers from

limitations on two dimensions that this paper addresses. First, this paper will extend the

set of bubble indicators by the ones discussed above. Second, AWG10 do not take into

account the real-time dimension of the predictor variables. Most real economic variables

such as industrial production (IP) and employment data are subject to publication lags and

revisions. Stock prices, however, are available in real-time and are not revised.18 The next

subsections will outline the real-time forecasting models employed here, and discusses data

issues. The recession forecasts will be evaluated following Bussiere & Fratzscher (2006) by

16The Federal Reserve Act of 1977 calls on the Federal Reserve to use its policy instruments “to promote
effectively the goals of maximum employment, stable prices, and moderate long-term interest rates” (95th
United States Congress, 1977). While inflation is the primary target variable for all developed economies’
central banks, the mandate of targeting employment is less common and often also addresses related variables
such as output (as in the standard Taylor rule).

17In contrast to the finding of Stock & Watson (2001), AWG10 do find some predictive content of asset prices
for output growth when using quarterly growth rates of prices as predictors.

18The importance of this issue has been well documented since the argumentation outlined in Croushore &
Stark (2003) and Orphanides (2003).
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different criteria including the RMSPE, the percentage of correct signals to total observations,

the number of recessions to total recessions and the number of correct alarms to total alarms.

3.1 Forecasting output and inflation

First, output (as proxied by IP) and inflation will be predicted by single-equation models

including predictors that are certainly included in the information (and target) set of the

central bank and have been documented to frequently show significant predictive content

as in Stock & Watson (2001). Hence, the benchmark model against which the marginal

predictive content of all bubble indicators is measured, contains includes IP (when inflation

is the target), inflation (when output growth is the target), the unemployment rate, the

effective funds rate as measure for the policy rate and the term spread between 10-year

and 3-months government bond yields. This paper hence differs from AWG10 by adding

unemployment and the term spread as key predictors.

Regarding the different real-time availability of the predictors, it is helpful to introduce

some notation following Clark & McCracken (2009). Here, yτ (t) denotes the vintage t obser-

vation of y at time τ , where it must hold that t ≥ τ . Hence, for variable y published with a

lag of q months, the observations available at time t are {yτ (t)}t−qτ=1. The full sample then in-

cludes observations for the target variable y and the vector of predictors {[yτ (t), x′τ (t)]tτ=1}Tt=R,

where xk-specific publication lags and number of revisions are considered (see Table 2). The

forecast evaluation is carried out against the final revised values yτ+h(T ) and the evaluation

criterion for forecast accuracy is the root mean square prediction error (RMSPE). Direct

h-step forecasts for y are obtained for each margin t = R, . . . , T − h − q. The evaluation

sample is thus of size P = T − h− q −R + 1. Given this notation, the forecast equation for

model m can then be written as

yτ+h(t) = x′m,τ (t)βm + εm,τ+h(t), εtau
iid∼ N(0, σ2

ε) (8)

where the parameter vector βm is obtained from recursive least-squares estimation. The

benchmark model only includes the “classical” predictors discussed above. This benchmark

model is then augmented by all indicators introduced in Section 2, first for stock and house

prices separately, and second for a joint indicator taking the value 1 if there is a bubble in

either stock or house prices to circumvent the issue of lack of bubble episodes.19 When an

indicator does not signal a single bubble episode in the estimation window τ = 0, . . . , t−h−q
for forecasting margin t, the model cannot be estimated. Instead, the benchmark forecast is

19Note that the publication lag of house price bubbles is respected. Also, the models were evaluated using
an indicator that adds both stock and house price bubbles. As a joint occurrence of bubbles in both asset
classes is rare, this left the results almost unaltered. Finally, the models where evaluated including both
bubble indicators separately. Again, the results do not change notably.

14



applied at that margin. That is, the benchmark and the augmented model are identical until

the first time that at least one bubble period is detected.

Direct forecasts are applied since an iterative forecasting procedure would require pre-

dictions up to h− 1 for all variables in x. While this might be feasible for the benchmark

model, forecasting the path of the bubble is not.20 AWG10 argue that the target horizon

of central banks, especially when a leaning-against-the-wind policy should be conducted,

includes horizons beyond 2 years. Therefore, monthly forecast are carried out for horizons

h = 1, 3, 6, 9, 12, 18, 24, 36, 48, 60.

Adding to AWG10, this paper will also allow for additional lags in the forecasting

equation, as it is not obvious that last available data will provide the best forecasts.21 In

specific, this paper will employ a specific-to-general lag length selection following the proce-

dure described by Herwartz (2010). That is, for all lags up to p = 1, . . . , pmax, with pmax = 3,

in-sample significant regressors are iteratively added from a minimum set including only a

constant until the marginal explanatory content of the variables added is not significantly

different from zero. This allows for studying the robustness of the findings to the choice of the

benchmark. If benchmark forecasts can be improved more by a flexible lag length selection

than by the inclusion of bubble indicators, there is less evidence suggesting a potential for

an activist monetary policy.

3.2 Forecasting recession periods

Considering that monetary policy makers could be most concerned about macroeconomic

crises, it is also interesting to see if asset price bubble indicators can improve upon recession

forecasts. Furthermore, the literature on asset price cycles as brought forward by Borio

(2012) has stressed the importance of asset price bubbles and crashes on the business cycle.

It has been postulated that following asset price crashes, recessions are likely to occur and are

typically larger than regular recessions of the business cycle. Therefore, AWG10 estimate a

panel probit model with fixed effects to predict adverse macroeconomic conditions.22 Again,

the authors do not find any additional predictive content of the HP-filter bubble indicator.

In addition to the limitations of the study discussed above, a particular problem of the panel

probit model is that the effects of asset price bubbles on the crisis likelihood can differ across

20In addition, a large literature documents that direct forecasts are more robust to model misspecification (cf.
Marcellino et al., 2006).

21Also, a fixed lag length estimation procedure for all variables in x was carried out with p = 0, 1, . . . , pmax,
with pmax = 3. The results in Section 4 are for p = 0 only, as this parsimonious model provided the best
forecasts for all forecast horizons. For p > 0, the benchmark forecast and the bubble indicator augmented
forecasts deteriorate, leaving the model with p = 0 to be the toughest benchmark.

22These are defined as states where the average output gap for the current and next 3 quarters is less than
−1% or where the annual inflation rate is negative or falls by more than two percentage points over the next
three quarters.
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countries, shedding doubt on the forecasting capability of the model.

Employing data at the monthly frequency, it is possible to estimate the model on a

single country level. Similarly to the previous section, this paper hence estimates a probit

model accounting for the real-time dimension. The model can be written as

rτ+h(t) = Φ(x′m,τ (t)βm) (9)

where rτ+h(t) denotes the time t expectation of the binary recession variable rτ , taking the

value 1 in case of a recession at the horizon h. Φ(.) denotes the standard normal cumulative

distribution function. As for the direct OLS forecast models, x′m,τ (t) contain the predictors

of model m, vintage t. Given the large computational burden to estimate this model, the lag

order here is fixed to p = 0.23

From model m, recession probabilities pr(rτ+h = 1) = Φ(x′m,τ (t)βm) are obtained.

These are contrasted to the realized recession values rτ+h. The forecast error from which

the RMSPE is computed is hence defined as the difference between the predicted recession

probability and the realized value of the binary recession indicator. To further evaluate the

model forecast, it is interesting to analyze if the model provides accurate signals for future

recessions. For this, a threshold level must be chosen above which the predicted probability

sends a reasonably strong signal for a recession. This choice obviously involves a trade-off

between type I and II errors. The larger the threshold is, the fewer recessions are signaled

and more recession periods might be missed (type I error). The lower the threshold is, the

more recessions are signaled, hence the number of wrong signals is likely to be high (type

II error) (see Table 4). As there is no guidance on what an optimal threshold level is, this

paper suggests using a level of 30%. Further, this paper follows Bussiere & Fratzscher (2006)

and defines that a recession is correctly signaled if the recession actually occurs within the

12 months following the signaled horizon. This is due to the fact that predicting the exact

timing of recessions is highly complicated. From this, it is possible to evaluate the forecasts

along several dimensions, namely by the ratio of observations correctly signaled to the total

number of observations
(

A+D
A+B+C+D

)
, the ratio of detected recessions to total recession periods(

A
A+C

)
and the ratio of correct alarms to total alarms

(
A

A+B

)
.

In order to avoid the need to estimate an output gap, the recession indicator is con-

structed following Harding & Pagan (2002). This indicator is based on the turning points of

a business cycle reference series. Here, industrial production smoothed by a moving average

(MA(3)) process will be employed as the reference series and the vintages of recession dates

23In the future, a dynamic probit model including lags of the dependent binary recession variable rτ (t) will
be evaluated. Adding lags of the predictors complicates the likelihood-optimization such that the estimator
often does not converge.
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will be constructed according to the real-time data of IP.24 Peaks and troughs are identified

as peak = {Yt−k < Yt > Yt+k, k = 1, . . . , 5} and trough = {Yt−k > Yt < Yt+k, k = 1, . . . , 5}.
kmax = 5 hence denotes the recession recognition lag, which is similar to the average publi-

cation lag of official NBER recession dates. The recession indicator rt takes the value 1 for

all t from peak to trough if the size of the potential recession j, Sj > 0.005. Sj is given by

Sj = 0.5 × Deepnessj × Durationj where Deepnessj = |ypeak,j − ytrough,j|/ypeak,j. Figure 5

displays the recessions as defined by this algorithm when applied to revised data in 2014M2.

The recession dates largely agree with the NBER dates for the recessions in the early 1990’s,

the early 2000’s and the recent crisis. In addition, three small recessions are detected; two

between 1985 and 1990 and one prior to 2005.

3.3 Real-time data description

As outlined above, the target and predictor variables include monthly observations of indus-

trial production, inflation, the unemployment rate, the effective funds rate and the spread

between 10-year to 3-month government bond yields. Details on the variables, especially on

the publication and revision lags can be found in Table 2. All real-time data is obtained from

the Real-Time Data Set for Macroeconomists of the Federal Reserve Bank of Philadelphia.25

Non-revised data is obtained from Federal Reserve Economic Data (FRED) of the Federal

Reserve Bank of St. Louis.26

All data are transformed to be stationary, if necessary. This implies that industrial

production and the consumer price index (CPI) are log-differenced. The stationarity as-

sumption on the remaining variables cannot be rejected consistently by standard tests (ADF

and KPSS), hence no transformations are applied.27 Real-time data on the unemployment

rate are available for monthly observations yet in quarterly vintages, only. As unemployment

numbers were always published in the first week of a month for the sample and revisions are

small, a set of monthly vintages is generated. For this, interim monthly vintages are con-

structed to contain all information from the previous quarterly vintage (that is, assuming no

past revisions) and new observations up to publication date from the next quarterly vintage

(that is, assuming no future revisions). See Table 3 for an illustration. Similarly, monthly

24Relying on official recession dates as published by NBER complicates the real-time forecasting procedure as
the publication lag varies over time. In the future, also the Chicago Fed National Activity Index (CFNAI)
could be employed, yet the real-time database reaches back only until vintage 2001M1 so far (https://www.
chicagofed.org/research/data/cfnai/historical-data).

25https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/
26http://research.stlouisfed.org/fred2/
27The unemployment series does not exhibit a trend over the full sample and all variants of the ADF and KPSS

tests accounting for an intercept, suggest stationarity. The real interest rate is found to be trend stationary
over the full sample. Due to changing trend estimates depending on the forecast margin, no transformation
is applied. The term spread is found to be stationary.
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vintages for CPI become available in 1998M11 only. Since 1994Q3, quarterly vintages with

monthly observations are published on the Fed Philadelphia website. Those datasets are

merged in the same fashion to obtain monthly vintages from the start of the forecasting

exercise.

Accounting for the change in inflationary regimes around the end of the first term of

Paul Volcker as Chairman of the U.S. Fed in 1983, the forecasting exercise will rely only on

data starting in 1983M1 with pre-sample data used for variable transformations. Following

the period of high inflation, the monetary policy setting is likely to have changed. First

evidence that this structural change in monetary policy setting matters also for forecasting

was provided by Giacomini & Rossi (2009), who find that an inflation forecast model building

on the Phillips curve suffered from a breakdown from around 1980-1983 when the U.S. Fed

drastically increased policy rates to combat high levels of inflation.

The initial training sample includes R = 180 observations, and runs until 1997M12 (the

first forecast margin). Hence, the evaluation period includes the dot-com and the housing

price bubble, and the crisis period around 2008-2009.

4 Results

In this section, the predictive performance of all bubble indicators discussed in section 2

will be presented. First, the forecast accuracy of the benchmark and the bubble indicator

augmented models will be discussed for inflation and output forecasts. The predictive content

will be evaluated separately for stock and house prices, and for the joint indicator that signals

a bubble whenever there is a bubble in stock or house prices. Subsequently, the findings will

be compared for forecasts that consider the real-time availability of the data and forecasts

that do not account for this issue. Finally, the predictive ability for recession forecasts will

be assessed.

4.1 Predictive content for industrial production

Table 5 displays the predictive accuracy of the benchmark model for IP (first row) and

the relative gains and losses of the indicator-augmented models subsequently. The FLUC

indicators by HB12 have been suppressed from the table as they do not find any bubble

periods until late 2008. Overall, the findings are ambiguous. First it should be noted, that

this conclusion holds in particular for the recursive HP-filter as applied by AWG10. For

short-run forecast up to h = 6, the findings of AWG10 are contradicted with small yet

significant forecast gains of the bubble augmented model. For larger horizons, however, their

findings seem to be supported as the benchmark model performs better. Nonetheless, there

are a non-neglectable number of models that perform significantly better for both short- and
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long-run forecasts. Most interestingly, this applies foremost to the PSY13 indicator applied

to individual series that finds both the 1987 crash and the dot-com bubble, yet signals some

intermediate collapse during the course of the second bubble. The best short-run forecast

up to h = 9 are obtained by the PWY11 indicator with rolling estimation applied to the

individual series and by the combination indicator with κ = 5 that detect the 1987 pre-crash

and the dot-com bubble period. Both indicators are extremely accurate in detecting the

collapse date, hence the gains potentially stem from the period of lower output growth in

the succession of the crisis. Importantly, one can conclude, that these indicators do not only

detect plausible bubble periods, but also help significantly in forecasting output growth for all

forecast horizons. For indicators that detect either too few or too many bubble periods (such

as the combinations with κ ≤ 2 and the HP indicators) the predictive ability deteriorates

significantly compared to the benchmark model.

Table 6 displays the results for house price bubble indicators. Here, the forecasts are

overall more similar to the benchmark model and often slightly worse, in particular, for the

short-run. Only in the very long-run (h ≥ 6), significant gains can be obtained. As for stock

price bubbles, the PWY13 indicator applied to individual series is particularly successful.

In general, the indicators that detect the prominent house price bubble and only few other

bubble periods, also provide superior medium- to long-run forecasts. The poor short-run

forecast performance of the augmented models can be due to several issues. First, it is

important to emphasize that house prices, in contrast to stock prices, are only available with

a lag of two periods and are thus lagging even the real variables. Second, the inferior forecast

performance can be due to the nature of house price bubbles which might disinflate slower

than fast crashing stock price bubbles. Also, the rare occurrence of house price bubbles poses

difficulties for a proper estimation of the model.

In case stock and house price bubbles share some common feature, it might be suitable

to combine both asset classes and explore the predictive content of an indicator that signals a

bubble as soon as either a stock or house price bubble is detected. These results are displayed

in Table 7. Compared to the results in tables 5, the forecasts up to h = 12 are often improved

further, especially for the combination indicator with κ = 5 and the rolling-window PWY11

indicator applied to individual series. Regarding the longer forecast horizons, the results are

ambiguous but indicate a poorer forecast performance for most joint indicators compared to

individual asset price bubble indicators. This might in part be due to different long-run effects

of stock and house price bubbles. Here, it has been suggested that recessions following house

price bubbles are deeper and longer lasting than recessions following stock market crashes,

as housing represents an asset class of higher importance to a large share of households.

In order to assess whether the real-time dimension of stock and house price bubble

indicators and real variables matters and to compare the findings of this paper to the ones
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of AWG10, the forecast exercise is carried out for revised data. The results are depicted in

Table 8 for stock price bubbles and Table 9 for house prices. For both asset classes, the

changes from real-time to revised data leave the pattern of forecast gains largely unchanged.

Overall, stock price bubbles improve short-run prediction more than house price bubbles,

and vice versa. Also the same indicators remain superior. However, the forecast gains for

stock prices are now smaller as the overall forecast performance of the benchmark model also

improves. For house prices, the opposite holds. As these are published with a longer lag,

their predictive power is now improved relative to the benchmark. In summary, it is decisive

that the real-time dimension is considered in evaluating the forecast performance of asset

price bubble indicators.

Finally, the sensitivity of the results with regard to the benchmark model shall be

assessed. For this, a specific-to-general (SPEC) model selection approach has been applied

to each forecast model, allowing for a flexible selection of predictors and their lags up to

pmax = 3. The results for forecasting IP growth with stock price bubbles are displayed in

Table 10. The first thing to notice is that SPEC modeling improves the forecast performance

of the benchmark for short horizons up to h = 9. For these periods, the forecast gains of

bubble augmented models decrease, yet largely the same indicators perform better than the

benchmark model. However, for h = 3 and h = 6, no gains can be achieved. For medium

horizons 9 ≤ h ≤ 18, the relative forecast gains remain largely in the same range. Beyond

that, forecast gains even increase. Similar results hold for SPEC modeling with house price

bubbles and the joint indicator of stock and house price bubbles. Hence, it can be concluded,

that bubble indicators add predictive content even to models that allow for autoregressive

components and additional lags of standard predictors.

4.2 Predictive content for inflation

Analogous to the previous section, Table 11 displays the predictive accuracy of stock price

bubbles for CPI inflation. In contrast to IP growth, the results here seem to support the

finding of AWG10 that bubble indicators do not help to predict inflation. Again, this holds

for the recursive HP-filter indicator that has been employed by AWG10 and that provides sig-

nificantly worse forecasts especially in the long-run (h ≥ 12). However, there are again some

indicators that feature significant predictive content in the short and medium term. These

include the PSY13 indicator when applied to the price-to-dividend ratio and the combination

indicators when setting a low threshold of κ = 1 or κ = 2. Interestingly, these indicators dif-

fer with respect to the identified bubble periods, such that consistent conclusions are difficult

to draw from inspecting the RMSPE onlys.

Table 12 provides the results for house price indicators. Here, the forecasts are overall

very similar to the benchmark model and slightly worse for most indicators for the short
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and medium prediction horizon. Again, the recursive HP-filter applied by AWG10 does not

perform well. The best forecasts are frequently obtained by combination indicators, especially

with medium thresholds of κ = 3 and κ = 4. Here it seems that house price bubbles particular

matter for forecasting in the medium- and long-term. Raising the threshold leaves only the

most recent housing price bubble, which impedes estimation and forecast evaluation. Yet,

those indicators and the rolling window PWY11 indicator for the individual series provide

relatively large and partially significant gains for the very long-run of h = 48 and h = 60.28

The results for the joint indicator of stock and house price bubbles are displayed in

Table 13. Against what could be expected, the forecasts generally deteriorate significantly.

This might argue for an offsetting between the predictive content in stock and house prices,

possibly due to different short- and long-run effects.

Regarding the implications of considering real-time information when forecasting, the

same holds true as for IP forecasts. Evaluating forecasts obtained from revised data of

real variables improves the benchmark and cuts down on the predictive gains obtained by

including stock price bubble indicators when being cognizant about the real-time dimension.

Similarly, the predictive content of housing price indicators is exacerbated when revised

data is employed. The results described above are also not sensitive to the choice of the

benchmark as evaluated by the SPEC modeling approach. This is due to the fact, that the

benchmark with SPEC modeling performs worse than the benchmark with fixed lag length

for all horizons. Hence there are larger gains possible by including bubble indicators than by

a flexible variable and lag length selection without bubble indicators.

4.3 Predictive content for recession periods

The last section has provided evidence for potential gains for practitioners to improve upon

forecasts for output and inflation by including asset price bubble indicators. To investigate

the predictive content of asset price bubble indicators on recession events, this section presents

the results of the probit model forecasts. Here, the focus will rest solely on the indicators that

have shown the largest predictive content for IP growth, namely the combination indicator

with κ = 5 for stock, and stock and house prices jointly, as well as the PSY13 indicator

applied to the S&P 500 and house prices.

Table 14 presents the RMSPE for the benchmark probit and the augmented models.

First, it should be noted that the benchmark model performs relatively poorly with RM-

SPE’s around 0.4 to 0.45. Second, two of the indicators (the combination indicator applied

28The indicator based on the rolling HP-filter also appears to provide good forecasts in the long-run. However,
these are most likely due to different parameter estimates only, as the indicator does not detect a bubble in
the out-of-sample-forecasting window except for the very last periods. Hence, no additional information is
employed for forecasting.
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to both stock and house prices and the PSY13 indicator on stock prices) offer substantial

improvements for horizons up h = 12. In contrast to the findings for OLS forecasts, the

joint indicator of stock and house prices performs best for very short horizons. This might,

however, also be due to the few recession and bubble events in the sample and accounting

for the last house price bubble improves the model’s forecasts. The PSY13 indicator applied

to house prices only performs worse than the benchmark, which might also be due to the

infrequent occurence of house price bubbles and recessions. In contrast to the findings for

OLS forecasts, the augmented models do not predict recessions more accurately at longer

horizons. Yet, the differences are generally not substantial.

To see if bubble indicators can help to provide more accurate recession alarms, Table 15

evaluates the signal quality when a cut-off threshold of 30% is used. The top panel confirms

the finding on the accuracy measure and shows that the joint combination indicator with

κ = 5 provides more correct signals than the benchmark for short forecast horizons up to

h = 12. The other indicators do not improve the overall signal quality. This also holds

for all indicators in the longer run, where all models perform almost equally poorly. The

encouraging findings for short horizons could, however, reflect that recession events are rare

and that the augmented models generally signal fewer recessions than the benchmark. Hence,

the second panel displays the number of correctly signaled recessions to the total number of

recession periods. Again, it can be seen that the combination indicator on both stock and

house price bubbles signals more recession events correctly than the benchmark model for

short horizons. For the nowcast and the one month horizon, the detection frequency can be

more than doubled. Also, the PSY13 indicator on stock prices outperforms the benchmark.

Nonetheless, all models perform very poorly beyond the six month horizon. For horizons

longer than two years, none of the models signals a recession. Related to the above criticism,

these findings might, however, also reflect that models including bubble indicators issue too

many signals and hence also too many false alarms. Therefore, the bottom panel displays

the number of correct recession alarms to total alarms. Again, the positive findings above

are confirmed and the indicator accounting for stock and house price bubbles provides the

best signals for h ≤ 12.

Overall, the results indicate that bubble indicators can improve recession forecasts

especially in the short-run. These results should, however, be taken with a grain of caution

as the forecast accuracy of all models is rather poor and there might be other options of

improving recession forecasts than relying on asset price bubble indicators. The poor results

potentially also reflect the rare occurrence of recessions and asset price bubbles.

22



5 Conclusion

This paper contributes to the discussion around the role of monetary policy in influencing

asset price cycles. In particular, there is an ongoing debate on whether central banks should

stronger “lean against the wind” of emerging bubbles. For this to be feasible, asset price

bubbles need to be detected in real-time, and they should carry predictive content for real

variables of interest to central banks.

This paper shows that, following the seminal contribution of Phillips et al. (2011), there

is now a promising battery of monitoring tests for detecting asset price bubbles. However, the

detection and precise dating of asset price bubbles is highly sensitive to the exact specification

of the tests. Frequently, tests fail to detect commonly accepted bubble episodes or indicate

bubbles when there is no strong narrative evidence for such events. Also, these indicators

often miss the collapse date of bubbles or signal an end of the bubble prior to the ultimate

peak. To account for the uncertainty around those dates, this paper suggests to employ

combinations of a large set of available indicators. Conducting a first-step sensitivity analysis,

it is found that meaningful stock and house price bubbles can be detected when relying on

tests that can detect multiple bubbles such as the newly suggested combinations or the

generalized test by Phillips et al. (2013).

In a second step, this paper then shows that several of these asset price bubble indicators

are also useful for forecasting output growth, inflation and recession events. Indicators that

perform well in predicting output and inflation are foremost the most recently proposed

indicator by Phillips et al. (2013) and the combinations suggested in this paper. By this, the

paper highlights that previous results obtained by Assenmacher-Wesche & Gerlach (2010) are

sensitive to several important changes. First, the choice of the bubble indicator is decisive.

Second, considering the real-time dimension of all variables is crucial. As stock prices and

dividends are available in real-time, they may particularly add to the information set of

central banks. House price bubble indicators that are available with a lag of two months

only, suffer from that limitation. Nonetheless, this paper finds that indicators for both asset

classes can significantly improve the forecasts obtained from a standard forecast model. Stock

prices are particularly useful in horizons of up to 24 months, while house prices are useful for

even longer horizons. Forecasts for industrial production can benefit more from the inclusion

of asset price bubble information than predictions of inflation. Finally, the paper tentatively

indicates that also recession forecasts can be improved, particularly for horizon of up to one

year.

In sum, these findings suggest that central banks should closely monitor asset price

developments for patterns commonly found during bubble episodes. This can then also

enrich the information set of central banks and other practitioners for forecasting. The paper

does not answer the question whether central banks can and should pursue an active, leaning-
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against-the-wind policy as it remains unclear if monetary policy with it’s standard tools can

effectively contain bubbles without hampering real economic growth in the short-run.
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A Figures

Figure 1: Bubbles in the S&P 500.
The top five panels show the bubble periods (grey areas) detected by unit root tests. The left panel
shows the indicators applied to the price and dividend series individually. The right panel shows
the indicators applied to the price-dividend (PtD) ratio. The bottom panel shows the indicators
based on the HP-filter (left: recursive, right: rolling). The solid line plots the PtD ratio.
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Figure 2: Bubbles in the U.S. housing market. See figure 1 for further notes. The solid line displays
the ratio of average house prices to disposable income per capita.
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Figure 3: Bubbles in the S&P 500 as detected by the combination indicators for different threshold
levels κ.

30



Figure 4: Bubbles in the U.S. housing market. See figure 3 for further notes.
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Figure 5: Recession events as defined by the business cycle turning point algorithm by Harding &
Pagan (2002) applied to the industrial production series smoothed by a moving average (MA(3))
process.
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B Tables

Table 1: Overview on bubble tests

Notation r0 Estimation windows Specifications
PWY 11s 0.1 recursive Jmax = 12, selection of J by AIC
PWY 11l 0.2 rolling Jmax = 12, selection of J by AIC
FLUCs 0.1 recursive Pre-detrending of time series on constant

and linear trend
FLUCl 0.2 recursive Pre-detrending of time series on constant

and linear trend
PWY 13 0.01 + 1.8

T
forward recursive,
backward rolling

J = 1

HPrec 0 recursive λ = 100, 000 ∗ 34

HProl 0 rolling λ = 100, 000 ∗ 34, ω = 96
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Table 3: Constructing monthly vintages for unemployment data

Vintages
Date M1 Q1 = M2 M3 M4 Q2 = M5 M6 M7 . . .
M1 - UM1(Q1) UM1(Q1) UM1(Q1) UM1(Q2) UM1(Q2) UM1(Q2) . . .
M2 - - UM2(Q2) UM2(Q2) UM2(Q2) UM2(Q2) UM2(Q2) . . .
M3 - - - UM3(Q2) UM3(Q2) UM3(Q2) UM3(Q2) . . .
M4 - - - - UM4(Q2) UM4(Q2) UM4(Q2) . . .
M5 - - - - - UM5(Q3) UM5(Q3) . . .
M6 - - - - - - UM6(Q3) . . .

The subscript denotes the observation date, the term in bracket denotes the vintage.

Table 4: Recession signal evaluation and type I and II errors

Observation
rτ+h = 1 rτ+h = 0

Signal
rτ+h = 1 A B (type II)
rτ+h = 0 C (type I) D
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