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Abstract

Consider a lobby group of exhaustible-resource suppliers, which bargains with the gov-

ernment over the extraction of an exhaustible resource and over contribution payments. We

characterize the equilibrium extraction path and the development of contribution payments in

time. The latter relates to the development of the conflict of interest between monopolistic

profit-maximization and welfare-maximization. Resource extraction preferred by the resource

owners and by the government both converge to zero in the long run because accumulated ex-

traction increases marginal extraction costs. Due to stock-pollution damages, however, the gov-

ernment would not accept as much total extraction. Accordingly, from some moment on firms

pay to be allowed to extract at all, and their payments decline because increasing extraction

costs reduce their profits. By contrast, when accumulated extraction is not yet as large, other

effects may interfere. The monopolistic distortion implies that the profit-maximizing resource

extraction may be too slow to maximize welfare, while flow-pollution damages imply that it

may be too fast. Thus, the influence of the lobby group may work in either way, depending

on the economy’s characteristics. If the monopolistic distortion is strong enough, contribution

payments may develop non-monotonically. As a technical contribution, we demonstrate the

influence of a non-negativity constraint on a choice variable in a dynamic bargaining setting.
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1. Introduction

1 Introduction

Once we accept the assumption that lobbyists can have an influence on policy, and if we addition-

ally assume that there are no sufficient counterforces from other interest groups, this distortion is

true almost by definition. The aim of this paper is to show how this lobbying distortion develops

in a dynamic model of exhaustible resources.

The literature in the tradition of the Grossman and Helpman (1994) common-agency interest-

group model assumes that interest groups offer conditional bribes to the government to induce

political distortions in their preferred direction. While such a depiction may be an acceptable

caricature of lobbies’ political influence for static problems, the political economy of exhaustible

resources raises some specific questions due to its inherently dynamic nature. Firstly, how do

contribution payments develop over time? This question arises because it might be more con-

vincing to think of a repeated bargaining process instead of a one-shot take-it-or-leave-it offer in

a dynamic model. Secondly, how does policy develop over time? And combining the questions,

how do contribution valuation and bargaining power affect payments and distortions?

The current paper characterizes resource extraction in an equilibrium influenced by lobbying.

We assume that the government can choose the extraction path, but we also demonstrate how

this extraction path can be implemented via resource taxes, while the suppliers get the revenues.

As usual in the literature, the government’s utility is a weighted sum of a utilitarian welfare func-

tion and utility from contribution payments. To focus on the relation between the government

and the resource owners’ lobby, we do not consider a common-agency setting with many com-

peting lobbies, but assume that only one lobby group exists. Most interest-group models assume

that lobby groups are first movers and offer contribution schedules that maximize their surplus

given that the government is indifferent about accepting them. In our model, we instead assume

that the government has some influence on the outcome as well, that is, there is a (Nash) bar-

gaining, which determines policy and contribution payments. If the government has this more

active role in shaping policy, the question arises how the threat of ending cooperation in the

future shapes the bargaining outcome. We assume that the parties cannot commit to coopera-

tion. Instead, they bargain in each period about the current values of their variables. We follow

Petrosyan (1997) in assuming that the parties leave the bargaining table forever if negotiations

fail once.

In our model, the government aims at maximizing the economy’s surplus net of environmen-

tal externalities. By contrast, the lobby group’s sole objective is the firms’ intertemporal profit,

i.e., it takes the price elasticity of resource demand into account. It turns out that whether

extraction in the lobbying equilibrium occurs faster or slower than in the social optimum cru-

cially depends on the magnitudes of these environmental damage and monopoly effects. Be-

cause extraction costs are increasing in cumulative extraction and marginal utility of resource

consumption is finite, both welfare maximization and profit maximization lead to well-defined

convergence levels of cumulative extraction. Although the lobby may want too fast or too slow
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1. Introduction

extraction from the social planner’s point of view as long as cumulative extraction is still small,

the lobby’s preferred total extraction is too high compared to welfare maximization due to, i.a.,

stock-pollution damages. We show how these considerations cause the contribution payments to

develop over time.

In particular, we explicitly derive and discuss the lobbying equilibrium with linear-quadratic

functions. Firstly, as long as total extraction has not exceeded the socially optimal level, contri-

bution payments decline if the damage effect outweighs the monopoly effect and stay constant if

these effects offset each other; if the government’s preferred speed of extraction is greater than

that of the lobby, contribution payments increase temporarily. Secondly, in the last case, contri-

bution payments may turn negative for a while. Thirdly, one period before the socially optimal

level is reached, the lobby’s willingness to pay increases sharply. Lastly, when the socially optimal

extraction becomes zero, contribution payments can increase temporarily, but converge to zero

while extraction costs increase towards a prohibitively high level.

Our model of the resource market is fairly general. Given that we assume that there is no

intertemporal behavior on the demand side, the resource might best be thought of as a fuel like

coal or oil. In the model there is flow pollution, like for example soot or dust, and stock pollu-

tion, like for example carbon dioxide or permanent landscape changes. The political model is a

pure lobbying model without elections. Thus, the best application may be smog and permanent

landscape changes in developing or newly industrialized countries with weak institutions. Alter-

natively, the “government” may be thought of as an environmental regulation agency that has

discretion over its policy field.

The main contributions of this article are as follows. Firstly, we analyze the distortive in-

fluence of a resource owners’ lobby on resource extraction and demonstrate that this may lead

to too fast or too slow extraction, depending on how much has already been extracted in the

past. This result can easily be transferred to the welfare effects of monopolistic extraction. Sec-

ondly, we characterize the contribution payments’ development and show how they relate to the

conflict of interest between the government and the resource owners. Thirdly, we show how

a non-negativity constraint on a choice variable shapes the result of dynamic bargaining; in the

time period in which accumulated extraction becomes so high that the government would switch

to zero extraction if no agreement were reached, the bargaining positions – and thus the contri-

bution payments – change drastically. Moreover, there is no dynamic smoothing effect preventing

this drastic change.

Our paper proceeds as follows. In the next section, we discuss the paper’s relation to the

literature. Section 3 introduces the basic resource-economic model and derives the welfare-

maximizing and the monopolistic profit-maximizing extraction path. Section 4 models lobbying

over the extraction path and discusses the results and comparative dynamics. In Section 5, we

demonstrate how the bargained extraction path can be implemented via resource taxes. Section

6 concludes.
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2. Relation to the Literature

2 Relation to the Literature

We apply the idea of distortive lobby influence to the extraction of exhaustible resources. This

relates our paper to different strands of literature, namely lobbying, resource extraction, and

dynamic bargaining.

The idea how the interaction between the lobby and the government takes place and shapes

policy follows the tradition of the Grossman and Helpman (1994, 2001) common-agency lobby-

ing model in so far as the government in our model has a mixed motivation of welfare maximiza-

tion and contributions, and firms pay for a favorable policy. This literature usually assumes that

there are multiple lobby groups that offer competing contribution schedules to the government.

In our context, having many lobby groups would not add much insight, so we focus on the influ-

ence of one lobby group – that of the resource owners. The bargaining process is summarized by

an asymmetric Nash bargaining solution that determines how the surplus of the favorable policy

is shared. This is suggested in Grossman and Helpman (2001, Section 7.5), as a generalization

of the surplus sharing and, as a shortcut to the results of the usual lobbying-game structure, in

Goldberg and Maggi (1999).

There are several applications of this framework to questions of environmental policy. Our

model is most closely related to those that also analyze dynamic problems. Damania and

Fredriksson (2000) model a repeated game of collusion between lobbying firms. The first

resource-dynamics model we know of that is similar to ours is Barbier et al. (2005). Boyce

(2010) models lobbying in the context of renewable resources and common-pool resources. Dif-

ferent from both papers, we explicitly take different price elasticities of demand for the extracted

resource into account. By contrast, Barbier et al. (2005) assume a small open economy with

an exogenous price, and Boyce (2010) assumes that harvesters have a logarithmic utility func-

tion of their resource extraction. Additionally, we explicitly analyze the effects of flow and stock

pollution caused by resource extraction.

In modeling resource extraction, we assume that extraction is not limited by the physical stock

of the resource, but by the fact that extraction costs increase with cumulative past extraction (cf.

Levhari and Liviatan, 1977), which is both convenient to model and realistic. This implies that

there are no Hotelling rents, but Ricardian rents due to increasing costs (Hartwick, 1982). On

top of these, however, there are monopoly rents, and increasing them at the expense of welfare is

the objective of the lobby. There is a large literature analyzing how the governments of resource-

importing countries try to reap the rents of foreign resource suppliers, either Hotelling rents

(see, e.g., Bergstrom, 1982 and Keutiben, 2014) or monopoly rents or both (see, e.g., Wirl,

1994, 1995, Rubio and Escriche, 2001, and Daubanes, 2008). In our model, resource suppliers

are part of the same country as consumers so that a welfare-maximizing government has no

particular interest in distributing rents away from them. However, monopoly rents distort the

market outcome exactly because they are linked to monopolistic supply behavior, and this is

what the government would like to avoid.
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2. Relation to the Literature

In our model, we see the typical effect that a resource monopolist chooses a slower extraction

than competitive, unregulated suppliers in order to increase monopoly rents (cf. Krautkraemer,

1998).1 Compared to this benchmark, however, a welfare-maximizing government would also

prefer slower extraction due to the second distortion which is relevant in the model context: envi-

ronmental damage effects of resource extraction. It has long been known that both a monopoly’s

tendency to restrict supply and an unregulated industry’s ignorance of environmental externali-

ties have to be taken into account for welfare judgments so that a monopoly may be a second-best

solution (see, in the context of static Pigouvian taxation, Buchanan, 1969 and Barnett, 1980).

Such a trade-off in the judgment of market power also exists in the dynamic context; if a mo-

nopolist prefers to restrict supply, this benefits the environment (see Sweeney, 1977). Thus,

governmental welfare maximization does not always mean reducing the speed of extraction,

even if there are environmental externalities. Nevertheless, the accumulation of stock pollution

implies that welfare maximization requires reducing total extraction in the long run and thus a

lower speed of extraction from some moment on (cf. Muzondo, 1993). In our model, in every

moment of time the conflict of interest between the government and the resource lobby is shaped

by whether the welfare-maximizing extraction is higher or lower than what a monopolist would

choose.

The last relevant strand of literature is that of dynamic cooperative games. Modeling the bar-

gaining between the lobby and the government in an intertemporal context requires an assump-

tion about the bargaining parties’ outside options and commitment. We assume that bargaining

takes place every period to determine lobby payments and extraction. If no agreement can be

reached, the bargaining parties leave the table and choose uncooperative strategies for the rest

of infinity, which means that no payments are made any more and the government enforces the

welfare-maximizing amount of extraction. This modeling assumption may represent situations

where after a bargaining failure, trust is destroyed. Additional to this interpretation, we opt

for this assumption concept to ensure analytical solvability. It follows Petrosyan (1997) and is

used by, e.g., Kaitala and Pohjola (1990), Fanokoa et al. (2011) and Jørgensen et al. (2005).

For alternative approaches see Sorger (2006), or Boyce (2010), who applies the truthful Markov

perfect equilibrium of Bergemann and Välimäki (2003); these solution concepts would in our

model context require numerical solutions.

Before discussing the resulting equilibrium in detail, we introduce the economy with bench-

marks for the lobbying model in the following section.

1Situations where a monopolist chooses a faster extraction are possible, but less common. For an overview of the
literature on monopolistic resource supply, see the list of Fischer and Laxminarayan (2005).
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3. The Economy

3 The Economy

3.1 Basics

Our aim is to derive the policy determined by a bargaining process between the government

and a resource owners’ lobby group. In this section, we prepare this analysis by introducing the

model setting and characterizing two benchmarks for the lobbying model: welfare maximization

and monopolistic profit maximization. These are the polar cases that span the bargaining range

of our later political model. First we use general functions to describe the benchmarks, then we

specify linear-quadratic functions to derive explicit solutions. Finally, we discuss the development

of the conflict of interest between the welfare-maximizing government and the profit-maximizing

monopolist.

We analyze the extraction of a non-renewable resource in a partial-equilibrium model.2 The

supply side is a sector of resource owners, who optimize intertemporally. The demand side is

represented by a stationary demand function. Thus, the resource may best be thought of as an

energy resource like coal, which is directly burnt by its buyers so that there are no demand-side

stock effects, and whose share of the economy is small enough so that, for example, the interest

rate can be taken as exogenous.

Let q(t) denote resource extraction in period t and z(t) cumulative extraction of all previous

periods. Then the equation of motion of z is

z+(t) ≡ z(t+ 1) = z(t) + q(t). (3.1)

In the following, we drop t where no ambiguities arise. Gross consumer surplus in each period

is u ≡ u(q), and net consumer surplus is u− pq, where p is the market price of the resource.

Consumers take the price as given, which implies

p ≡ p(q) = ∂u(q)
∂q (3.2)

in equilibrium. Extraction costs c ≡ c(q, z) are increasing and convex in each argument, cur-

rent and cumulative extraction. Cumulative extraction increases the marginal cost of current

extraction, ∂c(0,z)
∂z = 0 and ∂2c(q,z)

∂q∂z > 0. The economy’s instantaneous utilitarian welfare w is

gross consumer surplus minus extraction costs and environmental damages x ≡ x(q, z), which is

caused by current and cumulative resource consumption:

w ≡ w(q, z) = u(q)− c(q, z)− x(q, z). (3.3)

x(q, z) is assumed to be additively separable as well as increasing and convex in each argument,

flow and stock pollution.

2Our model economy is a standard partial-equilibrium resource-economic setting with Ricardian (instead of Hotelling)
rents, as for example in Hartwick (1982).
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3. The Economy

The agents in our model have an infinite planning horizon and a discount rate r, implying

a discount factor β ≡ 1/(1 + r). In t the present value of the discounted welfare stream, in the

following just called intertemporal welfare, thus is

W (t) =
∞∑
s=0

βs · w(q(t+ s), z(t+ s)), (3.4)

where s ∈ N is the summation index. Environmental damages x(q, z) are external to resource

owners, so that their flow profit π is

π ≡ π(p, q, z) = p · q − c(q, z) (3.5)

so that in t the present value of profits, in the following just called intertemporal profit, is

Π(t) =
∞∑
s=0

βs · π(p(t+ s), q(t+ s), z(t+ s)). (3.6)

3.2 Benchmark Solution

In the following, we derive the welfare-maximizing and the profit-maximizing extraction paths

and convergence levels of cumulative extraction. To do this, suppose that extraction from some

moment on is determined by a state-dependent extraction function q = q(z). Taking the equation

of motion (3.1) into account, we can then write intertemporal welfare (3.4) as

W (z) = w(q(z), z) + β ·W (z + q(z)). (3.7)

A social planner chooses q so as to maximize (3.7). Thus, the optimal q(z) is given by the

following Bellman equation:

W ∗∗(z) = max
q

[
u(q)− c(q, z)− x(q, z) + β ·W ∗∗(z+)

]
, (3.8)

where the double-asterisk denotes the planner’s optimal solution. The first-order condition is

∂u(q∗∗)
∂q − ∂c(q∗∗,z)

∂q − ∂x(q∗∗,z)
∂q + β · ∂W

∗∗(z∗∗
+ )

∂z = 0. (3.9)

Differentiating the Bellman equation yields the Envelope Condition:

∂W∗∗(z)
∂z = −∂c(q

∗∗,z)
∂z − ∂x(q∗∗,z)

∂z + β · ∂W
∗∗(z∗∗

+ )
∂z

= −∂c(q
∗∗,z)
∂z − ∂x(q∗∗,z)

∂z − ∂u(q∗∗)
∂q + ∂c(q∗∗,z)

∂q + ∂x(q∗∗,z)
∂q . (3.10)

Shifting this in time and substituting into the first-order condition yields the planner’s Euler

equation, which is the Hotelling rule modified for stock-dependent cost effects as well as flow-
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3. The Economy

and stock-pollution damages:

∂u(q∗∗)
∂q − ∂c(q∗∗,z)

∂q − ∂x(q∗∗,z)
∂q = β ·

[
∂c(q∗∗

+ ,z∗∗
+ )

∂z + ∂x(q∗∗
+ ,z∗∗

+ )
∂z + ∂u(q∗∗

+ )
∂q − ∂c(q∗∗

+ ,z∗∗
+ )

∂q − ∂x(q∗∗
+ ,z∗∗

+ )
∂q

]
.

(3.11)

Thus, the current welfare created by marginal resource extraction, which is its consumer benefit

net of extraction cost and flow externalities, has to equal the discounted welfare that could be

gained from the resource if it were extracted a period later, plus the additional extraction cost

and environmental damages due to the higher cumulative extraction.

Now suppose that a monopolist supplies the resource. Because the monopolist internalizes

the price reaction (3.2), (3.5) can be written as

π(q, z) = p(q) · q − c(q, z) (3.12)

and with a state-dependent extraction function q(z), we have, similar to (3.7):

Π(z) = π(q(z), z) + β ·Π(z + q(z)). (3.13)

Letting a (single-)asterisk denote the monopolist’s optimal solution, the Bellman equation is

Π∗(z) = max
q

[
p(q) · q − c(q, z) + β ·Π∗(z+)

]
. (3.14)

Following the same steps as in the welfare-maximizing case yields the following Euler equation:

p(q∗) + ∂p(q∗)
∂q q∗ − ∂c(q∗,z)

∂q = β ·
[
∂c(q∗

+,z
∗
+)

∂z + p(q∗+) + ∂p(q∗
+)

∂q q∗+ −
∂c(q∗

+,z
∗
+)

∂q

]
. (3.15)

The interpretation is similar to that of the planner’s Euler equation, except that the monopolist

does not care for environmental damages, but for his influence on the price.

The welfare-maximizing extraction path (3.11) and the profit-maximizing extraction path

(3.15) coincide if along the whole path it holds that

−∂p(q
∗∗)

∂q q∗∗ − ∂x(q∗∗,z)
∂q = β ·

[
∂x(q∗∗

+ ,z+)
∂z − ∂x(q∗∗

+ ,z+)
∂q − ∂p(q∗

+)
∂q q∗∗+

]
. (3.16)

This would be fulfilled if there were no stock pollution and the effects of flow pollution and

market power exactly canceled out.

Competitive, unregulated resource owners would neither internalize the environmental dam-

ages nor their influence on the price. Thus, their Euler equation can be derived from (3.15) by

substituting the price derivatives by zero, or from (3.11) by dropping the environmental-damage

derivatives. In what follows, we neglect the competitive, unregulated case and derive explicit

solutions for the planner’s and the monopolist’s optimization problems only.

We assume that all functions are well-behaved in the sense that they result in extraction paths
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3. The Economy

Table 1: Explicit functions.

Functions Explicit forms
u(q) = ρ1q − ρ2

2 q
2

p(q) = ∂u(q)
∂q = ρ1 − ρ2q

c(q, z) =
(
κzz + κ1 + κ2

2 q
)
· q

∂c(q,z)
∂q = κzz + κ1 + κ2q

∂c(q,z)
∂z = κzq

x(q, z) = χzz + χ1q + χ2
2 q

2

∂x(q,z)
∂q = χ1 + χ2q

∂x(q,z)
∂z = χz

The parameter index indicates the power of the variable that the parameter relates to.

q(t) that monotonically converge to q = 0 and a convergence level ẑ of cumulative extraction for

t → ∞. For ẑ, z+ = z by q(ẑ) = 0. Substituting this into (3.11) and (3.15) and rearranging,

we see that the welfare-maximizing and profit-maximizing convergence levels of cumulative

extraction ẑw and ẑπ are defined by

∂w(0,ẑw)
∂q = ∂u(0)

∂q −
∂c(0,ẑw)

∂q − ∂x(0,ẑw)
∂q = ∂x(0,ẑw)

∂z

/
r , (3.17a)

∂π(0,ẑπ)
∂q = p(0)− ∂c(0,ẑπ)

∂q = 0. (3.17b)

Thus, extraction ceases when the net gain due to the first marginal extracted unit exactly matches

the present value of its future effects due to the added cumulative extraction. Because this is

only about a marginal unit, market power is not relevant anymore. The welfare effects include

environmental damages so that the social planner’s convergence level is definitely lower than

that of the monopolist. For the monopolist’s convergence level, stock-dependent cost effects are

irrelevant because ∂c(0,z)
∂z = 0. We assume ∂u(0)

∂q to be finite so that the convergence levels are

well-defined; for instance, ∂u(0)
∂q can be the price of a backstop technology.

3.3 Benchmark Solution: Explicit Example

We now specify the functions to be linear-quadratic so that we can explicitly derive and discuss

the solution. The demand price is a linear function of the quantity q. Marginal extraction costs

in a given period are a linear function of cumulative extraction and of extraction within that

period. Marginal flow-pollution damage is a linear function of extraction in the same period, and

marginal stock-pollution damage is constant so that total stock-pollution damage is proportional

to cumulative extraction. The assumed explicit forms of the functions are summarized in Table

1. Collecting terms, we have
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3. The Economy

w(q, z) = (bw − κzz) · q −
aw
2 q2 +

(
q

r
− z
)
· χz, (3.18a)

π(q, z) = (bπ − κzz) · q −
aπ
2 q2, (3.18b)

where

bw ≡ ρ1 − κ1 − χ1 −
χz
r
, (3.19a)

bπ ≡ ρ1 − κ1, (3.19b)

aw ≡ κ2 + ρ2 + χ2, (3.19c)

aπ ≡ κ2 + 2ρ2. (3.19d)

If not stated otherwise, all coefficients and the summarized coefficients bw, bπ, aw, and aπ are

assumed to be positive in the following. Thus, we also assume bπ > bw and ignore the case of

bπ = bw.

From (3.18a), the present net welfare gain of the first (marginal) unit of extraction is

∂w(0, z)
∂q

= bw − κzz + χz
r
. (3.20)

The direct welfare loss of that unit due to stock pollution from the next period on is χz(1 + r)/r,
which discounted to t is χz/r. Thus, the direct intertemporal welfare effect of the first marginal

unit of extraction is bw − κzz. Likewise, the direct intertemporal effect of the first marginal unit

of extraction on profit is bπ−κzz. The former is smaller than the latter because the social planner

takes present flow-pollution damage (χ1) and future discounted stock-pollution damage (χz/r)

from extracting the first unit into account. For brevity, we refer to bw − κzz and bπ − κzz as

first-unit welfare and first-unit profit in the following, or first-unit gains if we mean both. For

any z, it is worthwhile to extract at the margin if the first-unit gains are positive, that is, if

bw − κzz > 0 or bπ − κzz > 0, respectively. Stated the other way round, extraction would

cease for z = ẑw ≡ bw/κz or z = ẑπ ≡ bπ/κz, respectively. If cumulative extraction is at this

convergence level, the gains from extracting cannot be high enough to cover the costs, which

include the environmental damages in the planner’s case.

aw and aπ are the (absolute) slopes of the intratemporal marginal welfare function and the

intratemporal marginal profit function, respectively. If aw > aπ, then marginal welfare within

a period decreases faster than marginal profit so that a social planner would have a stronger

tendency to shift consumption into the future than a resource monopolist.

For stability of the resulting system of difference equations, we assume

ai > κz for i = w, π. (3.21)
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Then we can derive the welfare-maximizing and the profit-maximizing extraction functions:

Proposition 1 (Explicit Example: Benchmark Extractions). The welfare-maximizing and the
profit-maximizing extraction functions are given by

q∗∗(z) =

ψw · (bw − κzz) if z ≤ ẑw,

0 if z > ẑw,
(3.22a)

q∗(z) =

ψπ · (bπ − κzz) if z ≤ ẑπ,

0 if z > ẑπ,
(3.22b)

where

ψi ≡
2

ai +
√
a2
i + 4

rκz (ai − κz)
≤ 1
ai

for i = w, π. (3.23)

Proof. See Appendix A.

Moreover, we can determine how the state variable z develops:

Proposition 2 (Explicit Example: Benchmark Cumulative Extractions). Along both the
welfare-maximizing and the profit-maximizing extraction paths, cumulative extraction develops as
follows:

z∗∗(t+ s) =

ẑw − (1− ψwκz)s ·
[
ẑw − z(t)

]
if z(t) ≤ ẑw,

z(t) if z(t) > ẑw,
(3.24a)

z∗(t+ s) =

ẑπ − (1− ψπκz)s ·
[
ẑπ − z(t)

]
if z(t) ≤ ẑπ,

z(t) if z(t) > ẑπ,
(3.24b)

where 0 < 1− ψiκz ≤ 1 for i = w, π.

Proof. See Appendix A.

Furthermore, we can state the maximized intertemporal welfare and profit:

Proposition 3 (Explicit Example: Benchmark Intertemporal Welfare and Profit). The maxi-
mized intertemporal welfare and profit are given by

W ∗∗(z) = A∗∗w · q∗∗(z)2 − χzz

1− β , (3.25a)

Π∗(z) = A∗π · q∗(z)2 ≥ 0, (3.25b)
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where

A∗∗w ≡
1
ψw
− aw

2

1− β (1− ψwκz)2 > 0, (3.26a)

A∗π ≡
1
ψπ
− aπ

2

1− β (1− ψπκz)2 > 0. (3.26b)

Proof. See Appendix A.

Remark 1. We can determine the lower bounds of A∗∗w and A∗π as follows. By the definition of

ψw (3.23):

A∗∗w >
1
2aw

1− β (1− ψwκz)2 =
1
2 (κ2 + ρ2 + χ2)

1− β (1− ψwκz)2 > 0. (3.27)

The equality follows from substituting (3.19). A∗π > 0 follows along the same lines.

The extraction paths are mainly described by two characteristics. The first is the level of cumu-

lative extraction that would cause extraction to cease. The second is the amount of extraction

given any level of cumulative extraction.

In Proposition 2, we can see that the convergence levels are only reached asymptotically,

given that the planning horizon starts with a z below ẑw or ẑπ, respectively. Thus, along an

optimal extraction path from Proposition 1, the constraint never actually binds. Because the first

extracted unit has positive flow externalities, χ1 > 0, and because there are stock externalities,

χz > 0, we have bπ > bw, and the monopolist’s convergence level of cumulative extraction is

higher than that of the social planner: The resource owners still find it worthwhile to extract if

z = ẑw because they do not have to pay for the environmental damages.

Now consider the amount of extraction when z is below the convergence level. In Proposition

1, we can see that it is determined by, again, the first-unit gains, but also by the respective ψi.

This term represents the decrease in marginal gains due to effects both within the current period

and in the future. With infinite discounting (r →∞), so that the problem were static, we would

have ψi = 1/ai: Extraction would be limited by increasing marginal environmental damages and

decreasing marginal consumer rents within the extraction period. While the monopolist ignores

environmental damages, he would be more sensible to the consumer-rents effect because of the

monopolistic price distortion. With a lower r, the same effects are at work, but the effect of

today’s extraction on tomorrow’s marginal gains is also taken into account.

Due to the positive extraction, we always have z+ > z so that, by the functions in Proposition

1, extraction decreases in time. A smaller aw, for instance, implies that ψw is larger so that

extraction is increased. But given that the convergence level ẑw is not changed, we can say that

ψw (only) represents the speed of convergence: A larger ψw implies that extraction q∗∗(z) is

higher for a given z, but as z then increases, q∗∗(z) also declines faster.
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Table 2: Benchmark cases.

Case Relation ∆q∗(0) ∆′q∗(z)
1 ψw < ψπ > 0 < 0
2 ψw = ψπ > 0 = 0
3 ψπ

bπ
bw

> ψw > ψπ ≥ 0 > 0
4 ψw > ψπ

bπ
bw

> ψπ < 0 > 0

3.4 Differences in Preferred Extraction: Four Cases

In the following, we characterize the conflict of interest between the welfare-maximizing gov-

ernment and the profit-maximizing monopolist. To do this, suppose that from t on either the

welfare-maximizing or the profit-maximizing extraction path is chosen. Which would lead to

faster extraction? We have

∆q∗(z) ≡ q∗(z)− q∗∗(z) = (ψπ − ψw) (bπ − κzz) + ψw (bπ − bw) . (3.28)

For the discussion of this difference it is useful to keep the following relation in mind:

Remark 2. By (3.23) and (3.19), we see that

ψw R ψπ ⇔ aw Q aπ ⇔ χ2 Q ρ2. (3.29)

For example, if ρ2 is large, the demand price strongly reacts to extraction within any given

period. This decreases both aw and aπ and thus implies slower extraction. The effect on aπ

– and thus on the profit-maximizing extraction – is stronger due to the monopolistic distortion

associated with q∗(z): A monopolist has a suboptimally strong tendency to shift extraction into

the future to smooth out marginal revenues.3 In the welfare-maximization problem, however, the

increasing marginal flow-pollution damage also calls for smoothing out extraction: If χ2 were

large, the social planner would like to postpone extraction because this reduces the marginal

flow-pollution damage. As seen in (3.29), this marginal flow-pollution effect may or may not

outweigh the market-power effect so that a monopolist may extract too fast or too slow from the

planner’s point of view. The relations between the parameters lead to four distinguishable cases

summarized in Table 2.

In Case 1, the marginal flow-pollution effect outweighs the market-power effect, χ2 > ρ2,

so that ψw < ψπ. Because bπ > bw, equation (3.28) is definitely positive: Due to all kinds of

pollution, the social planner would want slower extraction than a monopolist.

Case 2 is defined by χ2 = ρ2 so that ψw = ψπ. Then the marginal flow-pollution effect and

the market-power effect cancel out. We can see in (3.28) that the difference is completely driven

3This is related to the standard result that a monopoly implies slower extraction (Solow, 1974). However, we are
comparing a monopolist with a welfare-maximizer, not with competitive, unregulated firms.
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by bπ−bw. Because of this difference, the planner would still want slower extraction and a lower

convergence level due to flow- and stock-pollution damages that every unit of extraction causes.

Now suppose that χ2 < ρ2 so that ψw > ψπ. Equation (3.28) then is ambiguous

∆q∗(z) = (ψπ − ψw)︸ ︷︷ ︸
<0

(bπ − κzz) + ψw (bπ − bw)︸ ︷︷ ︸
≥0

. (3.30)

We can definitely say, however, that the derivative of this difference with respect to z is positive.

Thus, if the difference is positive for z = 0, then it will remain so as z increases. Substituting

z = 0 and rearranging, we see that this holds for

ψπbπ − ψwbw ≥ 0. (3.31)

(3.31) thus defines Case 3. Even though the market-power effect is stronger than the marginal

flow-pollution effect, the additional pollution effects in bw compensate for this. Therefore, the

social planner would still want less extraction than the monopolist for a given z. Moreover, the

welfare-maximizing convergence level of cumulative extraction would be approached faster than

the profit-maximizing convergence level so that for any z the desired additional extraction of the

social planner shrinks faster than that of the monopolist.

Finally, in Case 4, we have χ2 < ρ2 so that ψw > ψπ, but (3.31) does not hold. Then the

difference is negative for small z, but positive for large z. Substituting ∆q∗(z) = 0 in (3.28) and

rearranging shows that there is a switching-level z = z̃, defined by

z̃ = ẑπ −
ψw

ψw − ψπ
(ẑπ − ẑw)

(
= ẑw −

ψπ
ψw − ψπ

(ẑπ − ẑw)
)
. (3.32)

Consequently, up to z̃ the social planner would extract faster than a monopolist, but once z̃ is

reached, this relation turns around; the reason is that the welfare-maximizing convergence level

is still lower so that at some point the gains from extracting for the social planner decrease faster

in z. Put another way, in total the monopolist would want to extract more than the social planner,

but to smooth marginal revenue, the monopolist has a stronger incentive to stretch extraction

over time.

4 Lobbying and Policy Determination

4.1 Political Agents

We assume that policy is set by a government that interacts with a resource-owner lobby group.

More precisely, we assume that in each period the government and the lobby group bargain the

resource suppliers’ extraction quantity q and a contribution payment m that the lobby pays to

the government. The bargained quantity may, for example, be enforced among the firms by
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announcing it as a maximum extraction for the period and implementing it via an allowance

trading system or by allocating extraction quotas. We assume the individual resource suppliers

to be so small that they individually neither internalize the environmental nor the marginal-

revenue effects of supply (see Section 3.2), and competition policy prevents the lobby organi-

zation from serving as a cartel. Such competitive supply would lead to a faster extraction than

either profit maximization or welfare maximization; the limit would thus be binding as long as

it is somewhere between the two. Alternatively, we demonstrate how the lobby outcome can be

implemented via resource taxes in Section 5.

In each period, the government has the following utility function:

g(q,m, z) = w(q, z) + γm. (4.1)

Thus, the government cares for welfare w, but it also derives utility γm from the lobby’s pay-

ments. Let the present value of payments to the government discounted to period t, or intertem-

poral payments, be denoted by

M(t) =
∞∑
s=0

βs ·m(t+ s). (4.2)

Intertemporal utility of the government is the discounted sum of the utility stream:

G(t) =
∞∑
s=0

βs · g(q(t+ s),m(t+ s), z(t+ s)) = W (t) + γM(t). (4.3)

The (collective) utility function of resource owners is

l(q,m, z) = π(q, z)− λm, (4.4)

consisting of the sector’s profits π and the lobby’s cost of paying contributions λm. In π, the price

reaction is taken into account – see (3.13). The marginal-cost parameter λ may, for example,

reflect the coordination problems within the group. Intertemporal utility of the lobby group is

L(t) =
∞∑
s=0

βs · l(q(t+ s),m(t+ s), z(t+ s)) = Π(t)− λM(t). (4.5)

The assumptions that resource owners have overcome the collective action problem to form

a lobby group and that the government’s utility function (4.1) is additively separable between

contribution utility and utilitarian welfare are usual in the interest-group literature (cf. Grossman

and Helpman, 1994, 2001). A more important feature, which is also typical in the literature, is

the assumption of constant marginal contribution utility, which simplifies the derivation of the

time paths in the following.4

4See Klein et al. (2008) for the complications that can arise when current choices affect future marginal utility from
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In each period, the government and the lobby bargain about a vector consisting of contribu-

tion payments and an extraction quantity for that period. To determine the bargaining result,

it is crucial to define the parties’ outside options. We assume that if no agreement is reached,

cooperation breaks down forever. Then a non-cooperative solution is implemented for the rest

of time: The government unilaterally decides the quantity and the lobby pays no contributions.

The utility in this non-cooperative solution determines how much of the gains from cooperation

each bargaining party can appropriate. The cooperative solution is chosen as the outcome of a

Nash bargaining.

Both bargaining parties always have to be better off with the bargained policy than they

would be with their outside options. Consequently, the bargained policy vector for the current

period and the anticipation that the same kind of cooperation will take place in the future must

always imply a higher intertemporal utility than the non-cooperative alternative; otherwise they

would not agree. Therefore, this solution is time-consistent and does not require commitment

(cf. Jørgensen and Zaccour, 2001).

Commitment exists in one sense, however: The fact that the threat in the bargain is to play

uncooperatively forever may be seen as a commitment not to cooperate (Sorger, 2006). An

alternative interpretation would be that the parties do not trust each other anymore. Given that

party contribution payments in exchange for a favor are hardly enforceable in court, trust may

be crucial.

Moreover, we assume that the government has an active role in the bargain, and its strength

is represented by the respective parameter in the asymmetric Nash bargaining solution. A take-

it-or-leave-it offer by the lobby, which is more typical in the literature, is a special case in this

solution.

4.2 Nash Bargaining Solution

In the following, we formally define the Nash bargaining solution. The bargaining outcome is

marked by ? and the threat outcome by #. We define the Nash bargaining solution as follows:5

Definition 1 (Nash Bargaining Solution). The Nash bargaining solution of our lobbying game
consists of two pairs of stationary Markovian strategies, (q?,m?) and (q#,m#), and two pairs of
value functions, (G?, L?) and (G#, L#), such that the following is true. For all z it holds that

z?+ = z + q?(z), (4.6a)

z#
+ = z + q#(z), (4.6b)

the control variables in settings without commitment.
5The form of the definition is borrowed from Sorger (2006); the assumption about the threat outcome, however,

follows Petrosyan (1997), as pointed out in Section 2.
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G?(z) = g(q?(z),m?(z), z) + β ·G?(z?+), (4.7a)

L?(z) = l(q?(z),m?(z), z) + β · L?(z?+), (4.7b)

G#(z) = g(q#(z),m#(z), z) + β ·G#(z#
+ ), (4.7c)

L#(z) = l(q#(z),m#(z), z) + β · L#(z#
+ ), (4.7d)

q#(z) ∈ arg max
q

[
g(q,m#(z), z) + β ·G#(z+)|q ≥ 0

]
, (4.8a)

m#(z) ∈ arg max
m

[
l(q#(z),m, z) + β · L#(z#

+ )|m ≥ 0
]
, (4.8b)

N(q,m, z) ≡ η · ln
[
g(q,m, z) + β ·G?(z+)−G#(z)

]
+ (1− η) · ln

[
l(q,m, z) + β · L?(z+)− L#(z)

]
, (4.9)(

q?(z),m?(z)
)
∈ arg max

q,m

[
N(q,m, z)|q ≥ 0,m ≥ 0

]
. (4.10)

(4.6a) and (4.6b) are just the definitions of the equation of motion (3.1) along the cooperative

and non-cooperative path, respectively. Accordingly, the present-value equations (4.3) and (4.5)

have a cooperative form, (4.7a) and (4.7b), and a non-cooperative form, (4.7c) and (4.7d). For

the non-cooperative form, (4.8a) and (4.8b) define the choice variables. The objective function of

the cooperative game is the (logarithm of the) Nash product (4.9), where η and (1− η) measure

the bargaining powers of the government and the lobby group, respectively. The maximands

are defined by (4.10). Thus, we assume that the Nash bargaining implements values of the

choice variables so as to maximize the government’s and the lobby’s intertemporal utility under

the (rational) assumption that cooperation is continued. This assumption is justified because

the parties always have a higher intertemporal utility within the cooperative equilibrium than

without it.

We start deriving the solution by discussing the non-cooperative solution. The government

can enforce any desired quantity path if it wants to. If negotiations fail, the government would be

best off by choosing the welfare-maximizing path described by (3.11): q#(z) = q∗∗(z), z#
+ = z∗∗+ .

At the same time, the lobby would be best off paying no contributions, as these are costly in the

present and have no intertemporal effect. The government’s utility would be the maximized

intertemporal welfare as defined in (3.8), and the lobby’s utility would equal the intertemporal
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profit (3.12) for q = q∗∗(z):

G#(z) = W ∗∗(z), (4.11a)

L#(z) = Π∗∗(z) = π(q∗∗(z), z) + β ·Π∗∗(z∗∗+ ). (4.11b)

Now consider the bargaining outcome. From (4.9) and (4.10), we have for q?(z) (after rearrang-

ing):

∂w(q?(z),z)
∂q + β · ∂G

?(z?+)
∂z + 1− η

η

∆G?(z)
∆L?(z) ·

[
∂π(q?(z),z)

∂q + β · ∂L
?(z?+)
∂z

]
= 0, (4.12)

where

∆G?(z) ≡ G?(z)−W ∗∗(z), (4.13a)

∆L?(z) ≡ L?(z)−Π∗∗(z) (4.13b)

are the gains from cooperating for the government and the lobby, respectively. Thus, q is chosen

so as to maximize a weighted sum of, on the one hand, current welfare and discounted gov-

ernment utility, and, on the other hand, current profit and discounted lobby utility. The weight

depends on the bargaining power and the respective gains from cooperating. Likewise, the first-

order condition for the contribution payment m is equivalent to

∂g(q?(z),m?(z),z)
∂m + 1− η

η

∆G?(z)
∆L?(z)

∂l(q?(z),m?(z),z)
∂m = 0, (4.14)

which is simpler than the condition for the extraction quantity (4.12) because m has no stock

effect. By (4.1) and (4.4), utilities are linear in m so that the respective marginal utilities are

constant. Substituting them in (4.14) and rearranging yields:

1− η
η

∆G?(z)
∆L?(z) = µ ≡ γ

λ
(4.15)

so that the lobby’s weight, which is denoted by µ in the following, is constant and defined by

the relative contribution valuation. Thus, due to the bargaining, q = q?(z) is chosen so as to

maximize the weighted sum:

V (t) = G(t) + µ · L(t) = W (t) + µ ·Π(t) + (γ − µ · λ)︸ ︷︷ ︸
=0

·M(t) = W (t) + µ ·Π(t). (4.16)

The q path is thus defined by the following Bellman equation:

V ?(z) = max
q

[
w(q, z) + µ · π(q, z) + β · V ?(z+)

]
, (4.17)
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which, along the lines of Section 3.2, yields the Euler equation:

p(q?)− ∂c(q?,z)
∂q − ∂x(q?,z)

∂q + µ ·
[
p(q?) + ∂p(q?)

∂q q? − ∂c(q?,z)
∂q

]
=β ·

{
∂c(q?+,z+)

∂z + ∂x(q?+,z+)
∂z + p(q?+)− ∂c(q?+,z+)

∂q − ∂x(q?+,z+)
∂q

+ µ ·
[
∂c(q?+,z+)

∂z + p(q?+) + ∂p(q?+)
∂q q?+ −

∂c(q?+,z+)
∂q

]}
. (4.18)

The resource price p in the square brackets stems from the suppliers’ marginal returns, while the

price outside the square brackets just reflects the consumers’ marginal surplus. Thus, (4.18) is a

weighted sum of the planner’s (3.11) and the monopolist’s (3.15) Euler equation. The higher the

government values the contributions, the more the lobby determines the path (and vice versa).

How do we obtain the contribution payment path? Take (4.15) and rearrange to get the

present value of payments that must hold in equilibrium:

M?(z) = η

λ
·
[
Π?(z)−Π∗∗(z)

]
+ 1− η

γ
·
[
W ∗∗(z)−W ?(z)

]
. (4.19)

Here, Π?(z) and W ?(z) are known from (4.17) and Π∗∗(z) and W ∗∗(z) are known from the

welfare-maximizing extraction path. M?(z) must be positive because the lobbying-equilibrium

policy maximizes a weighted average of both bargaining parties’ utility. The present value of

the anticipated payments at least exactly compensates the government for the welfare losses and

at most transfers all additional profits from the lobby to the government. The intertemporal

relation (4.19) must hold every period, so the payments in any period have to fulfill

m?(z) = M?(z)− β ·M?(z?+) (4.20)

and can thus easily be calculated.6 Moreover, substituting (4.19) and simplifying yields:

m?(z) = η

λ
·
[
π?(z)− π∗∗(z)

]
+ 1− η

γ
·
[
w∗∗(z)− w?(z)

]
+ β ·

{
η

λ
·
[
Π∗∗(z?+)−Π∗∗(z∗∗+ )

]
+ 1− η

γ
·
[
W ∗∗(z∗∗+ )−W ∗∗(z?+)

]}
, (4.21)

where π?(z) ≡ π(q?(z), z), π∗∗(z) ≡ π(q∗∗(z), z), w?(z) ≡ w(q?(z), z), w∗∗(z) ≡ w(q∗∗(z), z). If

the bargaining problem were static, we would only have the first line, which would have to be

positive for the same reason that makes (4.19) positive.

The dynamic version (4.21), however, also takes into account how the outside options change

tomorrow due to cooperation today. These outside options are intertemporal welfare and profit

along the welfare-maximizing extraction path. The government’s part of (4.21) is always positive

because it reflects the welfare loss from deviating one period from the welfare-maximizing ex-

traction path. The lobby’s part, however, can temporarily be negative; deviating one period from

6Note that in a full-commitment situation, the lobby could just as well pay M?(z(0)) at the beginning of time, but
without this commitment assumption, a payment that takes place every period is more plausible.
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the government’s preferred extraction path to the bargained one does not necessarily increase

intertemporal profits. Nevertheless, the intertemporal payments (4.19) are always positive even

if they are only determined by the lobby’s willingness to pay (η = 1). In Section 4.4, we discuss

the payments and their development with linear-quadratic functions in detail.

4.3 Nash Bargaining Solution: Explicit Example

For the explicit example, we build on the model from Section 3.3 and thus use the values and

functions from Table 1. Thereby, the planner’s explicit instantaneous welfare (3.18a) and the mo-

nopolist’s explicit flow profit (3.18b) are complemented by utility from and cost of contributions,

respectively. We thus have

g(q, z) = (bw − κzz) · q −
aw
2 q2 + γm+

(
q

r
− z
)
· χz, (4.22a)

l(q, z) = (bπ − κzz) · q −
aπ
2 q2 − λm. (4.22b)

From the discussion in Section 4.2, we know that q#(z) = q∗∗(z) and m#(z) = 0. Then the

threat value functions are given as follows:

Proposition 4 (Explicit Example: Nash Bargaining Threat Values). In the non-cooperative so-
lution, the government’s intertemporal utility is defined by W#(z) = W ∗∗(z) as given in Proposition
3. The lobby’s intertemporal utility is given by

L#(z) = Π∗∗(z) = A∗∗π · q∗∗(z)2 −B∗∗π · q∗∗(z) ≥ 0, (4.23)

where

A∗∗π ≡
1
ψw
− aπ

2

1− β (1− ψwκz)2 > 0, (4.24a)

B∗∗π ≡
bw − bπ

1− β (1− ψwκz)
< 0. (4.24b)

Proof. See Appendix B.

Remark 3. The inequality in (4.24b) follows from bπ > bw. We can determine the lower bound

of A∗∗π along the lines of Remark 1. By the definition of ψw (3.23):

A∗∗π >
aw − 1

2aπ

1− β (1− ψwκz)2 =
1
2κ2 + χ2

1− β (1− ψwκz)2 > 0. (4.25)

The equality follows from substituting (3.19).
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We define

a ≡ aw + µaπ
1 + µ

> κz, (4.26a)

b ≡ bw + µbπ
1 + µ

≥ bw (4.26b)

where a > κz follows from (3.21) and

ψ ≡ 2

a+
√
a2 + 4

rκz (a− κz)
<

1
a
. (4.27)

Then the policy functions are given as follows:

Proposition 5 (Explicit Example: Nash Bargaining Policies). The equilibrium and the threat
extraction functions as well as the equilibrium and the threat contribution payment functions are
given by

q?(z) =

ψ · (b− κzz) if z ≤ ẑ,

0 if z > ẑ,
(4.28a)

q#(z) = q∗∗(z), (4.28b)

m?(z) = η

λ
·
[
(bπ − κzz) ∆q?(z)− aπ

2 ∆q?,2(z)
]
− 1− η

γ
·
[
(bw − κzz) ∆q?(z)− aw

2 ∆q?,2(z)
]

+ β ·
{η
λ
·
[
A∗∗π ·∆+∗∗

q?,2(z)−B∗∗π ·∆+∗∗
q? (z)

]
− 1− η

γ
·A∗∗w ·∆+∗∗

q?,2(z)
}
, (4.28c)

m#(z) = 0, (4.28d)

where (4.28b) is given in Proposition 1 and where

∆q?(z) ≡ q?(z)− q∗∗(z), (4.29a)

∆q?,2(z) ≡ q?(z)2 − q∗∗(z)2, (4.29b)

∆+∗∗
q? (z) ≡ q∗∗(z?+)− q∗∗(z∗∗+ ), (4.29c)

∆+∗∗
q?,2(z) ≡ q∗∗(z?+)2 − q∗∗(z∗∗+ )2. (4.29d)

Proof. See Appendix B.

The state variable z develops as described in the following proposition:

Proposition 6 (Explicit Example: Nash Bargaining Equilibrium Cumulative Extraction).

Along the equilibrium extraction path, cumulative extraction develops as follows:

z?(t+ s) =

ẑ − (1− ψκz)s
[
ẑ − z(t)

]
if z(t) ≤ ẑ,

z(t) if z(t) > ẑ,
(4.30)
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where 0 < 1− ψκz ≤ 1.

Proof. See Appendix B.

Finally, the equilibrium value functions are given as follows:

Proposition 7 (Explicit Example: Nash Bargaining Equilibrium Values). In the cooperative
solution, intertemporal welfare and profit are given by

W ?(z) = A?w · q?(z)2 −B?w · q?(z)−
χzz

1− β , (4.31a)

Π?(z) = A?π · q?(z)2 −B?π · q?(z), (4.31b)

where

A?i ≡
1
ψ −

ai
2

1− β (1− ψκz)2 for i = w, π, (4.32a)

B?i ≡
b− bi

1− β (1− ψκz)
for i = w, π. (4.32b)

Intertemporal payments are given by

M?(z) ≡ η

σ
·
{
A?π · q?(z)2 −B?π · q?(z)−

[
A∗∗π · q∗∗(z)2 −B∗∗π · q∗∗(z)

]}
+ 1− η

ζ
·
{
A∗∗w · q∗∗(z)2 −

[
A?w · q?(z)2 −B?w · q?(z)

]}
. (4.33)

Intertemporal utility of the government and the lobby, G?(z) and L?(z), are then given by the
weighted sums (4.3) and (4.5).

Proof. See Appendix B.

Remark 4. Note that A?i and B?i differ from A∗∗i and B∗∗i in Proposition 4 because the former

use the bargained ψ coefficient and the latter use the governmental ψw coefficient. B?w > 0 and

B?π < 0 because bπ > b > bw. We can determine the lower bounds of A?w and A?π along the lines

of Remark 1. By the definition of ψ (4.27):

A?w >
a− 1

2aw

1− β (1− ψκz)2 =
1
2 (κ2 + ρ2 + χ2) + µ

1+µ (ρ2 − χ2)
1− β (1− ψκz)2 , (4.34a)

A?π >
a− 1

2aπ

1− β (1− ψκz)2 =
1
2κ2 + χ2 + µ

1+µ (ρ2 − χ2)
1− β (1− ψκz)2 > 0. (4.34b)

The equalities follow from substituting (3.19) and (4.26a).

The form of the equilibrium extraction function (4.28a) is the same as that in the benchmark

cases, but its concrete value for any given level of cumulative extraction z shows a distortive
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influence of the lobby because b and ψ are compromise values. By (4.27), a larger value of

a implies a lower ψ and thus, by (4.28a), a lower extraction for a given amount of cumulative

extraction z. a represents the weighted average of the decrease in marginal gains within a period.

As discussed in Section 3.3, the individual slopes are driven by marginal cost and marginal

consumer benefit, which has a stronger influence on aπ than on aw, and aw is also higher if

marginal flow-pollution damage is higher. With the weight µ, a is thus pulled into the lobby’s

direction, which may increase or decrease extraction given z, depending on whether aw > aπ.

Likewise, b−κzz is the weighted average of the direct intertemporal benefits that the bargaining

parties assign to the first marginal unit of extraction. A larger value of b implies higher extraction

given z and higher total extraction. b increases if either bw or bπ increases; due to environmental

damages, bw < bπ so that b also increases with µ. Along the equilibrium extraction path, z

converges to ẑ ≡ b/κz.
Let us now consider the government’s threat and the contribution payments. From Section

4.2 we know that the contribution payments at least compensate the government for two things:

Firstly, for the instantaneous welfare loss and secondly, for the future welfare loss on the welfare-

maximizing path due to the present choice of q?(z) instead of q∗∗(z). In both cases, the “loss” is

defined in comparison to the non-cooperative solution, namely welfare-maximizing extraction,

so we can write (4.28b): q#(z) = q∗∗(z). However, comparing the trajectories of cumulative

extraction in Propositions 2 and 6, we see that due to the lobbying distortion, z at some point of

time exceeds the government’s convergence level, z > ẑw = bw/κz. Afterwards, the government

can only threaten to switch to zero extraction forever.

This change must affect the equilibrium contribution payments. Firstly, as long as z < ẑw ≡
ẑw − q?(z), the welfare-maximizing extraction path starting today and that starting tomorrow

would involve consumption smoothing. Thus, the change of tomorrow’s extraction path due to

the equilibrium extraction today affects the firms’ and the government’s future outside option.

Secondly, for ẑw ≤ z < ẑw, switching to the welfare-maximizing path today by choosing q∗∗(z)
would still imply positive extraction forever, but choosing q?(z) today means that this option will

not be available anymore in the future; the government’s future threat extraction will be zero.

As this is relevant for at most one period, we do not analyze how the equilibrium contribution

payments develop between z = ẑw and z = ẑw, but how this development changes around

z = ẑw and z = ẑw in the following. Finally, for z ≥ ẑw, the government can only change to

zero extraction, which would imply zero profits. Thus, the payments at least have to compensate

the government for the welfare loss today and the direct welfare loss due to additional stock-

pollution damages in the future, but the impact of q?(z) on the welfare-maximizing extraction

path has become irrelevant. Taken together, there are three distinguishable cases concerning

q∗∗(z?) and q∗∗(z?+) in (4.28c): q∗∗(z?), q∗∗(z?+) > 0 for z < ẑw, q∗∗(z?) > 0 and q∗∗(z?+) = 0 for

ẑw ≤ z < ẑw and q∗∗(z?), q∗∗(z?+) = 0 for z ≥ ẑw.7

7For the intertemporal payments (4.33), there are just two distinguishable cases because q∗∗(z?
+) does not appear.
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As discussed in Section 4.2, the lobby’s threat is always paying no contributions at all, so we

can write (4.28d): m#(z) = 0.

In the following section, we illustrate the development of extraction quantities and contri-

bution payments over time. Thereby, we use specific parameter values that cover four relevant

cases similar to those discussed in Section 3.4.

4.4 Illustration of the Lobbying Equilibrium

For the benchmark solution, we discussed the conflict of interest between a welfare-maximizing

government and a monopolist and the development of this conflict in Section 3.4, and we char-

acterized them by the marginal flow-pollution effect χ2, the market-power effect ρ2, and the re-

spective first-unit gains bw and bπ; their relations constitute four cases. In the following, we char-

acterize the conflict of interest of the lobbying-equilibrium solution in a similar manner, using

the difference between the equilibrium extraction quantity q?(z) and the extraction that would

be chosen if the government changed to the welfare-maximizing extraction path q#(z) = q∗∗(z)
(see Proposition 5). From Proposition 5 and similar to (3.28), we have

∆q?(z) ≡ q?(z)− q∗∗(z) =

(ψ − ψw) (b− κzz) + ψw (b− bw) if z ≤ ẑw,

ψ (b− κzz) if z > ẑw.
(4.35)

For the discussion of this difference, it is useful to keep an adapted version of Remark 2 in mind:

Remark 5. By (3.23), (4.27), (3.19), and (4.26), we see that

ψw R ψ R ψπ ⇔ aw Q a Q aπ ⇔ χ2 Q ρ2. (4.36)

The second line of (4.35) is positive: For z > ẑw, the welfare-maximizing extraction is zero, while

the resource owners still want positive extraction. The first line leads to four distinguishable

cases in which the equilibrium contribution payments develop in a qualitatively different manner,

namely χ2 > ρ2 ⇔ ψ > ψw (Case I), χ2 = ρ2 ⇔ ψ = ψw (Case II), and for χ2 < ρ2 first

ψwb/bw > ψw > ψ (Case III) and finally ψw > ψb/bw > ψ (Case IV). These are similar to Cases

1–4 of the benchmark relations laid out in Section 3.4, but not exactly equal. If we are in Case

1 or 2, then we are also in Case I or II, respectively, because ψπ R ψw ⇔ ψ R ψw. For the other

cases, this equivalence is not given. In all of them ψπ < ψ < ψw; but while Case 4 always implies

Case IV, Case 3 can also imply Case IV if the lobby’s weight µ is small (see Lemma C.1 in Appendix

C). The benchmark cases are summarized in Table 2 (on page 13) and the lobbying-equilibrium

cases and their relations to the benchmark cases can be found in Table 3.

In the following, we describe the development of resource extraction and contribution pay-

ments in Cases I-IV. For illustration, we use diagrams for specific parameter values for the func-

tions in Table 1 (on page 9). The parameters used in the figures are β = 15/16, ρ1 = 100,

κz = 1/10, κ1 = 0, κ2 = 0, χz = 2, and χ1 = 0 so that bπ = 100 and bw = 80. At the beginning of
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Table 3: Lobbying-equilibrium cases.

z < ẑw z ≥ ẑw
Case Relation ∆q?(0) ∆′q?(z) ∆q?(z) ∆′q?(z) Implied by

I ψw < ψ > 0 < 0 > 0 < 0 Case 1
II ψw = ψ > 0 = 0 > 0 < 0 Case 2
III ψ b

bw
> ψw > ψ ≥ 0 > 0 > 0 < 0 Case 3 and µ large

IV ψw > ψ b
bw

> ψ < 0 > 0 > 0 < 0 Case 3 and µ small or Case 4

Figure 1: Extraction path and cumulative extraction path for χ2 > ρ2 (Case I).

time (t = 0), cumulative extraction is assumed to be zero, z = 0. We assume λ = γ = 1, so that

the lobby’s policy weight is µ = 1 and b = 90, and the bargaining power is symmetric, η = 1/2.

The relation of the remaining economic parameters, ρ2 and χ2, constitutes the four cases.

Case I: χ2 > ρ2.

The first case is defined by χ2 > ρ2 and thus ψw < ψ < ψπ. This case is what most would

intuitively expect, so we treat it in some detail. As discussed for the benchmarks, the first case

implies that the marginal flow-pollution effect outweighs the market-power effect (cf. Section

3.4). Figure 1 shows the extraction paths (left-hand side figure) and cumulative extraction paths

(right-hand side figure) for χ2 = 5, ρ2 = 2. The dashed gray curve is the profit-maximizing path

and the dotted gray curve is the welfare-maximizing path, each starting from z(t = 0) = 0. As dis-

cussed in Section 3.4, a monopolist would prefer a higher extraction than a welfare-maximizing

planner for any given level of z and is also willing to reach a higher level of cumulative extrac-

tion. Using Propositions 1 and 2, we can write the q and z differences for the paths starting from
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z(t = 0) = 0:

z∗(t)− z∗∗(t) =
[
1− (1− ψπκz)t

]
· ẑπ −

[
1− (1− ψwκz)t

]
· ẑw, (4.37a)

q∗(t)− q∗∗(t) = (1− ψπκz)t ψπbπ − (1− ψwκz)t ψwbw. (4.37b)

By ẑπ = bπ/κz > ẑw = bw/κz, we can see that cumulative extraction along the monopolist’s

extraction path, z∗(t), will always be higher than what a social planner would reach in the same

time, z∗∗(t); the monopolist’s extraction will at some point be below the extraction of a social

planner at the same time, exactly because of the higher accumulated extraction, which increases

costs.

The equilibrium extraction path is a compromise between these extremes, shown as the black

curve in Figure 1. Cumulative extraction converges towards ẑ = b/κz, which is a weighted

average between the welfare-maximizing and profit-maximizing convergence levels ẑπ and ẑw.8

From the point of view of this lobbying equilibrium, q∗(t) and q∗∗(t) are only hypothetical

reference paths once that q?(z) has been chosen for a while. By contrast, the dash-dotted black

curve represents government’s threat extraction q#(z?) = q∗∗(z?) in the corresponding period,

given that z up to that period has been determined by the bargained policy. Each point along that

curve represents extraction in the first period of deviation from the lobbying equilibrium to the

welfare-maximizing path, so that each point is the beginning of an extraction path converging

to ẑw. Each term of equation (4.35) is positive, so that ∆q?(z) > 0; the government would

always switch to lower extraction. At the same time, the size of this change declines in z, both

in the periods in which the non-negativity constraint is binding for the government and in those

in which it is not; the derivative of equation (4.35) with respect to z is negative. This relation

can also be seen in Figure 1 as the vertical difference between the solid black curve and the

dash-dotted curve.

Figure 2 shows the contribution payment path in Case I. It is easiest to consider first the

development once that the constraint has become binding, z ≥ ẑw. By Proposition 5, m?(z) then

is

m?(z) = η

λ
·
[
(bπ − κzz) q?(z)−

aπ
2 q?(z)2]︸ ︷︷ ︸

>0

−1− η
γ
·
[
(bw − κzz) q?(z)−

aw
2 q?(z)2]︸ ︷︷ ︸

<0

. (4.38)

In every period, the payments are at least as high as the welfare loss for that period due to the

choice of q?(z) instead of q∗∗(z) – including the additional stock-pollution damages which are

part of bw – and at most as high as the resource owners’ additional profit. Both terms are positive

so that payments are definitely positive. Effects on tomorrow’s outside options as discussed in

Section 4.2 are irrelevant because the government’s future threat extraction will be zero, no

matter how high z grows.

8In the numerical example, µ = 1 implies that both have equal weight and the equilibrium convergence level is
halfway inbetween.
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Figure 2: Contribution payment path for χ2 > ρ2 (Case I).

The development of payments can be understood by keeping in mind that z always increases,

so differentiating (4.38) helps to understand the qualitative behavior between one period and

another:

∂m?(z)
∂z = η

λ
·
[[
bπ − κzz − aπq?(z)

]︸ ︷︷ ︸
>0

∂q?(z)
∂z︸ ︷︷ ︸
<0

−κzq?(z)︸ ︷︷ ︸
<0

]
− 1− η

γ
·
[[
bw − κzz − awq?(z)

]︸ ︷︷ ︸
<0

∂q?(z)
∂z︸ ︷︷ ︸
<0

−κzq?(z)︸ ︷︷ ︸
<0

]
. (4.39)

Firstly, a higher z implies higher stock-dependent costs of extracting q?(z). This directly changes

the bargaining parties’ gain from implementing q?(z): It reduces the resource owners’ equilib-

rium profits, so that they are less willing to pay for getting q?(z) instead of q∗∗(z), and it increases

the welfare loss this would entail, so that the government would demand more. The former ef-

fect speaks in favor of declining, the latter in favor of increasing payments over time. Secondly, a

higher z reduces the equilibrium extraction quantity, which reduces both profits and the welfare

loss from cooperation. This indirect effect of z speaks in favor of declining payments. Thus,

payments decline over time if the bargaining power of the government is high enough so that

profits determine the compensation.9 By contrast, if the lobby gets all the gains of cooperation

(η = 0) so that the welfare loss determines the compensation, the effects work into opposing

directions. In that case, payments are always declining if the indirect effect outweighs the direct

one concerning the welfare loss.10 Else, if the direct effect outweighs the indirect one and η is

small, payments increase for ẑw and z values not far above, but for some z reach a maximum and

9We demonstrate in Proposition C.1 in Appendix C that η (1 + µ) ≥ 1/2 is sufficient.
10We demonstrate in Proposition C.1 in Appendix C that aw ≥ 1/ψ is necessary and sufficient.
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then converge towards zero because the indirect effect vanishes with the equilibrium extraction

quantities: Additional marginal-cost increases are irrelevant if no extraction takes place. Finally,

because a higher η both implies higher payments and makes it less likely that payments increase

for ẑw, we can state that they can only increase in time if they are small in the first place.

Before the constraint starts binding, z < ẑw, the basic forces determining the payments are

similar, but more complicated. From Proposition 5, m?(z) then is

m?(z) = η

λ
·
[
(bπ − κzz) ∆q?(z)− aπ

2 ∆q?,2(z)
]
− 1− η

γ
·
[
(bw − κzz) ∆q?(z)− aw

2 ∆q?,2(z)
]

+ β ·
{η
λ
·
[
A∗∗π ·∆+∗∗

q?,2(z)−B∗∗π ·∆+∗∗
q? (z)

]
− 1− η

γ
·A∗∗w ·∆+∗∗

q?,2(z)
}
. (4.40)

The first line contains the same effects as discussed before for the time when the constraint is

binding. Now, however, implementing the lobbying equilibrium means choosing q?(z) instead of

some positive q∗∗(z) so that the difference ∆q?(z) ≡ q?(z)−q∗∗(z) determines the payments.11 The

second line reflects the implied deterioration of the respective outside option: If q?(z) is chosen

today instead of q∗∗(z), how does the bargaining parties’ position change tomorrow if welfare-

maximizing policy is chosen from that period on? If only the welfare reduction is relevant (η =
0), payments are always positive because the government is compensated for the welfare loss

that a deviation from the welfare-maximizing extraction path implies. For a higher governmental

bargaining power, the effect on profits is more relevant so that things can be different. In Case

I, q?(z) > q∗∗(z) ⇔ ∆q?(z) > 0 so that choosing q?(z) implies higher z tomorrow, implying

higher cost and reduced extraction: The square-bracketed term in the second line is negative,

reducing payments. Nonetheless, total payments are always positive in Case I because the effect

on current profit dominates (see Proposition C.2 in Appendix C).

As in the time when the constraint is binding, the direct effect of higher stock-dependent costs

is ambiguous. To determine the indirect effect of a changing difference in preferred extraction,

consider (4.35):

∂∆q? (z)
∂z = − (ψ − ψw)κz < 0. (4.41)

Thus, when the non-negativity constraint on the government’s threat extraction is not yet bind-

ing, the difference in desired extraction is already decreasing.12 This effect now also influences

tomorrow’s outside options. In Proposition C.2 in Appendix C, we demonstrate that the forces

that speak for declining payments prevail.

In Figure 2, we can see that the development of payments before and after the constraint

has been hit looks different and seems to be connected by a jump. This “jump”, however, is

constituted by two kink points of the contribution payment function or, equivalently, by two

jumps in its derivative. If η > 0, the derivative jumps up for z → ẑw and it jumps down for

11For the payments after the constraint we had ∆q? (z) = q?(z) by q∗∗(z) = 0.
12Though less so than afterwards when we have ∆′q? (z) = −ψκz .
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Figure 3: Extraction paths and cumulative extraction paths for χ2 = ρ2 (Case II).

z → ẑw; only if η = 0, there are no kink points (see Proposition C.4 in Appendix C). For η = 0,

the contribution payments and their development are only depending on the welfare loss due

to cooperation. The government’s outside option only changes marginally when the constraint

starts binding because extraction smoothing is hardly worth near the preferred convergence

level. Thus, the course of the contribution payments does not change. For η > 0, the contribution

payments and their development are also depending on the profit gain due to cooperation. When

the constraint starts binding, the lobby’s preferred extraction level is not yet reached. Thus, its

outside option deteriorates when the government’s threat does not involve extraction smoothing

anymore so that the lobby’s willingness to pay increases sharply, explaining the changing course

of the contribution payments.

Case II: χ2 = ρ2.

The developments of extraction and cumulative extraction for the second case are depicted in

Figure 3. This case is a knife-edge case: χ2 = ρ2 (=2 in the figure) and thus ψw = ψ = ψπ. The

resulting conflict of interest is in line with that discussed for the benchmark relations (cf. Section

3.4), namely that the marginal flow-pollution effect is equal to the market-power effect. Thus, if

there were no intertemporal effects, then a monopolist would choose the welfare-maximizing ex-

traction quantity anyway. Accordingly, the difference between the welfare-maximizing extraction

quantity and the bargained one is solely driven by the difference in first-unit gains or, equiva-

lently, between the convergence levels, as long as the government and the resource owners want

positive extraction. Each period, q?(z) and q∗∗(z) decrease by the same amount. Only when the

non-negativity constraint starts binding for the government, this cannot go on; q∗∗(z) then is and
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Figure 4: Contribution payment path for χ2 = ρ2 (Case II).

remains zero, while q?(z) continues to shrink. (4.35) simplifies to

∆q?(z) = q?(z)− q∗∗(z) =

ψ (b− bw) if z ≤ ẑw,

ψ (b− κzz) if z > ẑw.
(4.42)

Figure 4 shows the development of contribution payments. Payments remain at a positive,

constant level as long as q∗∗(z?+) > 0. When q∗∗(z?+) = 0, payments sharply increase as in Case I.

Once the non-negativity constraint starts binding for q∗∗(z?), it is possible that payments decrease

monotonously or first increase and then vanish in the long run (see discussion in Appendix C).

Cases III and IV: χ2 < ρ2.

Now suppose that the market-power effect outweighs the marginal flow-pollution effect, χ2 <

ρ2 and thus ψw > ψ > ψπ. For simplicity we focus in the discussion on cases where either

ψwbw < ψb and ψwbw < ψπbπ (Cases 3 and III) or ψwbw > ψb and ψwbw > ψπbπ (Cases 4 and

IV).

In Case III, the welfare-maximizing path would again imply lower extraction than the equilib-

rium extraction path, which in turn is below the profit-maximizing extraction. This can be seen in

the same way as in the previous cases in Figure 5 for χ2 = 2, ρ2 = 5. Comparing the equilibrium

extraction q?(z) with the welfare-maximizing threat extraction q∗∗(z), we see an increasing di-

vergence ∆q?(z): The growth in z always implies reduced extraction, but the government wants

to reduce extraction to a stronger extent than the resource owners. From (4.35):

∂∆q? (z)
∂z = − (ψ − ψw)κz > 0. (4.43)
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Figure 5: Extraction paths and cumulative extraction paths for χ2 < ρ2 and ψwbw < ψb (Case
III).

Accordingly, and in contrast to Cases I and II, payments increase – see Figure 7a. Given that

the bargaining parties can anticipate high payments in the future, they can also be negative and

even declining for small values of z; in Appendix C, it is shown under which conditions this is

the case. Once q∗∗(z?+) = 0, the development of payments is similar to that in Cases I and II.

If, on the other hand, ψwbw > ψb, we have Case IV. In order to demonstrate this case, we set

χ2 = 0. The government’s preferred extraction would exceed the bargained extraction for small

z, in particular for z = 0, but as time goes by, the increase in z has (again) a stronger effect on the

welfare-maximizing extraction than on the lobby’s preferred extraction. Thus, it becomes lower

than the bargained extraction for large z, in particular for z = ẑw. Therefore, the conflict of

interest – the absolute value of ∆q?(z) – first declines until the government’s threat extraction is

equal to the bargained extraction; afterwards, the two would diverge again as ∆q?(z) increases,

until the non-negativity constraint on the government’s threat extraction becomes binding; see

the left-hand side of Figure 6. Furthermore, on the government’s preferred extraction path, the

cumulative extraction would initially exceed that on the bargained extraction path, but fall short

of it at some point after ∆q?(z) becomes positive. Thus, the government would at first like to

extract more than the resource owners, but in the long run, as extraction declines along any

extraction path, the first-unit gains become more and more important. In the end, the lobby

group’s preferred convergence level is higher than that of the government; see right-hand side

of Figure 6.

Figure 7b shows the development of contribution payments. The curve first slopes down-

wards. Payments are zero in the period when ∆q?(z) = 0 and afterwards, they turn negative as

∆q?(z) becomes positive; this behavior is shown to be general for Case IV in Appendix C. After

reaching a minimum, the curve slopes upwards and the payments become positive before q∗∗(z?)
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Figure 6: Extraction paths and cumulative extraction paths for χ2 < ρ2 and ψwbw > ψb (Case
IV).

hits the constraint. For z close to ẑw, the payment could also remain negative and even be declin-

ing. In Appendix C, it is shown under which conditions this is the case. When q∗∗(z?+) = 0, pay-

ments again sharply increase and once the non-negativity constraint starts binding for q∗∗(z?),
the development of payments is similar to that of the other cases.

Discussion.

Comparing the four extraction paths, we can see that the government’s threat extraction is

always below the bargained extraction in Cases I to III, while it initially exceeds the bargained

extraction in Case IV. The period when the non-negativity constraint on the government’s threat

extraction becomes binding is delayed if either the slope of the marginal environmental damage

function, χ2, or the (absolute) slope of the marginal consumer-surplus function, ρ2, increase

(cf. Figure 3 with Figure 1 and Figure 5). If the slope of the marginal environmental damage

function is increased, the government would prefer a lower extraction for a given amount of

cumulative extraction; if the slope of the marginal consumer-surplus function increased, both

bargaining parties would prefer a lower extraction for a given amount of cumulative extraction

(see Proposition 1). Thus, if one of the slopes increased, the compromise path between welfare

maximization and profit maximization would lead to a lower extraction for a given amount of

cumulative extraction and the period when the constraint becomes binding would be delayed.

After the constraint has been hit, payments are never negative and become zero in the limit.

One period before the constraint starts binding for q∗∗(z?), the government’s future threat ex-

traction does not involve extraction smoothing anymore. Then the lobby’s future outside option

deteriorates so that payments increase more than before. In the time before the non-negativity

constraint starts binding for q∗∗(z?+), payments are positive and declining if the government’s
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(a) ψwbw < ψb (b) ψwbw > ψb

Figure 7: Contribution payment paths for χ2 < ρ2 (Cases III and IV).

In Figure 7b, contribution payments are negative around t = 45.

preferred speed of extraction ψw is smaller than that of the lobby ψπ. Then the difference be-

tween the equilibrium and the threat extraction ∆q?(z) gradually declines. If both prefer the

same speed of extraction ψw = ψπ, payments are positive and constant. In this case, ∆q?(z)
does not change over time. Payments can temporarily be negative when the government prefers

a higher speed of extraction than the lobby ψw > ψπ. But as long as the threat exceeds the

equilibrium extraction ∆q?(z) < 0, payments will be positive.

Finally, we concentrate on the two “political” parameter sets, namely the contribution valua-

tions and the bargaining powers. The government’s marginal-utility parameter γ and the lobby’s

marginal-cost parameter λ constitute the lobby’s policy weight µ ≡ γ/λ. If the government cares

more for contribution payments or the lobby has a lower marginal cost of collecting them, the

lobby has a higher weight in the equilibrium extraction choice. Then the convergence level ẑ

increases and the speed of extraction ψ shifts towards the lobby’s preferred one. By contrast, we

do not need the government’s bargaining power η to determine the extraction path; it only influ-

ences the contribution payments. If the government has more bargaining power, the payments

in the periods m usually increase. Only if the contribution payments turn negative for a while,

which they possibly do in Case III and definitely in Case IV, they temporarily decline with the

government’s bargaining power. However, the present value of payments M always increases

with the government’s bargaining power.
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5 Resource Taxes

The lobbying-equilibrium policy has been derived as a direct choice of extraction quantities. To

generalize, we now also show how to establish the extraction path via resource taxes. Consider

the behavior of resource suppliers that are so small that they take the price path as given; only

through their lobby organization’s influence on policy can they internalize the effect of supply

on the price. Then along the lines of (3.15) the Euler equation of a resource supplier is

p(q◦)− τ − ∂c(q◦,z)
∂q = β ·

[
∂c(q◦

+,z
◦
+)

∂z + p(q◦+)− τ+ −
∂c(q◦

+,z+)
∂q

]
, (5.1)

where ◦ denotes optimal extraction of a price-taking supplier and τ is the resource tax of the

current period.

The tax path can be used to implement the extraction path bargained between the lobby and

the government, (4.18). Comparing the two Euler equations, it must hold that

τ? − β · τ?+ = 1
1 + µ

·
{
∂x(q?,z)

∂q − µ · ∂p(q
?)

∂q q? − β ·
[
∂x(q?+,z+)

∂z − ∂x(q?+,z+)
∂q + µ · ∂p(q

?
+)

∂q q?+

]}
.

(5.2)

Because the extraction path q?(t + s) is known, it is straightforward to derive the tax path. For

the explicit example, the tax path is given as follows:

Proposition 8 (Explicit Example: Tax Path). The tax path τ?(t+ s) that implements the extrac-
tion of q?(t+ s) by price-taking resource suppliers is defined by

τ?(t+ s) = bπ − b+
[
a− (aπ − ρ2)

]
(1− ψκz)s ψ

[
b− κzz(t)

]
. (5.3)

Equivalently, as a state-dependent policy rule we have

τ?(z)bπ − b+
[
a− (aπ − ρ2)

]
q?(z). (5.4)

Proof. Using the explicit functions from Table 1 in (5.2) yields:

τ? − β · τ?+ = 1
1 + µ

·
{
χ1 + (χ2 + µρ2) q? − β ·

[
χz − χ1 − (χ2 + µρ2) q?+

]}
. (5.5)

We can substitute the bargaining-equilibrium extraction path from Propositions 5 and 6, which

yields a difference equation for τ(t). Solving it and choosing a start value τ(0) that leads to a

non-explosive path yields (5.3).

The tax path consists of two parts. The first part, bπ − b, corrects for the different convergence

levels due to the pollution effects. The resource taxes converge to this part in the long run, where

they must just keep firms from extracting once that the lobbying-equilibrium convergence level
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of cumulative extraction, z = ẑ, has been reached. The second part is proportional to

a− (aπ − ρ2) = χ2 + µρ2

1 + µ
. (5.6)

If the lobby’s weight µ is very high, (5.6) goes to ρ2 so that the resource suppliers are made to

act like a monopolist. If µ goes to zero, (5.6) goes to χ2 and we get a purely Pigouvian taxation.

Finally, note that implementing the lobbying equilibrium by resource taxation requires that

the tax receipts are distributed to the resource suppliers as a lump-sum payment. While the time

at which this happens is irrelevant in principle, in line of our lobbying model we would expect

that in each period, the tax receipts of the respective period are paid back.

6 Conclusions

In this article, we derived resource extraction determined by the bargaining of a government and

a lobby group. Equilibrium extraction is a compromise path between welfare maximization and

profit maximization. The government would prefer the former and the lobby would prefer the

latter if contribution payments and extraction were independent. Because marginal contribution

utilities are constant, equilibrium extraction does not depend on the Nash bargaining powers:

The weight of the lobby’s influence on the equilibrium path increases in the government’s prefer-

ence for contribution payments and decreases in the lobby’s cost of collecting them. Depending

on flow-pollution damages and the price elasticity of resource demand, this implies that extrac-

tion is either too fast or too slow, compared to welfare maximization. Total extraction is too high

due to first-unit flow-pollution damages and stock-pollution damages.

Along all equilibrium paths, extraction converges to zero as marginal costs increase with

cumulative extraction. Thus, the conflict of interest between welfare maximization and profit

maximization vanishes in the long run and so do the contribution payments after the welfare-

maximizing convergence level is reached. Prior to that, contribution payments decline if the

flow-pollution damage dominates, stay constant if the effects offset each other, and at least

temporarily increase if the monopoly effect dominates. Partially, the development of contribution

payments coincides with the change in the difference of the preferred extraction quantities. If

the monopoly effect dominates, contribution payments may turn negative for a while. Then the

weighted intertemporal profit loss from cooperating one period is higher than the corresponding

welfare loss. In the period before the government’s preferred convergence level is reached,

the lobby’s willingness to pay increases sharply. This is because the government’s future threat

extraction does not involve extraction smoothing anymore so that the lobby’s future outside

option deteriorates.

Finally, we demonstrate how the bargained extraction path can be implemented via resource

taxes. These consist of a constant part, correcting for the difference in preferred convergence

levels, and a part that is linear in equilibrium extraction quantities, correcting for the flow-
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pollution damage and the monopoly effect.

We believe the political-economy analysis of resource extraction to be a promising field of re-

search, given that in this policy area many people seem to be convinced of the resource owners’

distortive influence. In particular, an interesting research topic would be the political determi-

nation of backstop technologies’ development, which would broaden the perspective on political

distortions from resource consumption to investment.

A Derivation of the Benchmark Solution

One way to derive a solution for the optimal (welfare-maximizing or profit-maximizing) extrac-

tion would be to use (3.18) in the Euler equations of Section 3.2. Together with the equation of

motion of cumulative extraction (3.1) this constitutes a solvable system of difference equations.

We instead guess the form of the extraction functions and verify it afterwards, as this is easier

for our linear-quadratic system.

We guess that there exist constants Yw,0, Yw,1, Yπ,0, Yπ,1 such that the following state-

dependent extraction functions exist

q∗∗(z) =

Yw,0 + Yw,1z if Yw,0 + Yw,1z ≥ 0,

0 if Yw,0 + Yw,1z < 0,
(A.1a)

q∗(z) =

Yπ,0 + Yπ,1z if Yπ,0 + Yπ,1z ≥ 0,

0 if Yπ,0 + Yπ,1z < 0.
(A.1b)

Thus, we expect the quadratic utility functions to lead to extraction functions that are linear in

the state z as long as positive extraction is optimal. To solve for these coefficients, we first use

them to state the value functions (3.8) and (3.14) in an explicit form.

Lemma A.1 (Benchmark Intertemporal Welfare and Profit). Assume that13

0 < 1 + Yi,1 ≤ 1 for i = w, π. (A.2)

Then

W ∗∗(z) =
bw + Yw,0

Yw,1
κz

1− β
(
1 + Yw,1

)q∗∗(z)− aw
2 + 1

Yw,1
κz

1− β
(
1 + Yw,1

)2 q∗∗(z)2 − χzz

1− β , (A.3a)

Π∗(z) =
bπ + Yπ,0

Yπ,1
κz

1− β
(
1 + Yπ,1

)q∗(z)− aπ
2 + 1

Yπ,1
κz

1− β
(
1 + Yπ,1

)2 q∗(z)2, (A.3b)

where q∗∗(z) and q∗(z) are defined in (A.1) and bw and bπ are defined in (3.19).

13(A.2) is a stability condition; cf. Gandolfo (1996, Chapter 3).
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Proof. For the proof, we ignore the case of (A.1) in which q(z) is restricted to zero. The first

reason is that due to the stability conditions, the case will not turn out to be relevant if z is not

too high at the start. The second reason is that it can be easily seen that if the constraint becomes

binding, we have

W ∗∗(z) = − χzz

1− β , (A.4a)

Π∗(z) = 0, (A.4b)

which is obviously correct: W ∗∗(z) is then the present value of stock-pollution damage and Π∗(z)
is zero because zero production implies zero profits. Thus, let us now turn to the unconstrained

case. Substituting (A.1a) into (3.1) yields:

z(t+ 1) = z(t) + Yw,0 + Yw,1z(t). (A.5)

Hence,

z(t+ s) = z(t) +
s−1∑
ν=0

q(t+ ν) = z(t) + sYw,0 + Yw,1

s−1∑
ν=0

z(t+ ν), (A.6)

where ν ∈ N is the summation index. After some substitutions and rearrangements, we get

z(t+ s) =
(
1 + Yw,1

)s
z(t) + Yw,0

s−1∑
ν=0

(
1 + Yw,1

)ν =
(
1 + Yw,1

)s [Yw,0
Yw,1

+ z(t)
]
− Yw,0
Yw,1

, (A.7)

where we have to assume (A.2) for stability. Substituting into (A.1a) yields:

q∗∗(t+ s) =
(
1 + Yw,1

)s [
Yw,0 + Yw,1z(t)

]
. (A.8)

From (3.18a), we then have (after some rearrangements)

w(t+ s) =
(
bw + Yw,0

Yw,1
κz

)(
1 + Yw,1

)s [
Yw,0 + Yw,1z(t)

]
−

(
aw
2 + 1

Yw,1
κz

)[(
1 + Yw,1

)s [
Yw,0 + Yw,1z(t)

]]2
+

Yw,0
Yw,1

+
(

β

1− β −
1

Yw,1

)(
1 + Yw,1

)s [
Yw,0 + Yw,1z(t)

]χz. (A.9)
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Using this in (3.4) yields:

W ∗∗(t) =
(
bw + Yw,0

Yw,1
κz

) ∞∑
s=0

βs
(
1 + Yw,1

)s [
Yw,0 + Yw,1z(t)

]
−

(
aw
2 + 1

Yw,1
κz

) ∞∑
s=0

βs
[(

1 + Yw,1
)s [

Yw,0 + Yw,1z(t)
]]2

+

Yw,0
Yw,1

∞∑
s=0

βs +
(

β

1− β −
1

Yw,1

) ∞∑
s=0

βs
(
1 + Yw,1

)s [
Yw,0 + Yw,1z(t)

]χz. (A.10)

Evaluating the infinite sums yields (A.3a). (A.3b) can be obtained in the same manner using

(A.1b) instead of (A.1a), (3.18b) instead of (3.18a), and substituting the results into (3.6).

Using these value functions, we can explicitly derive the respective coefficients:

Lemma A.2 (Benchmark Extractions). In the social planner’s extraction function (A.1a), we
have the following coefficients:

Yw,0 = ψw · bw, (A.11a)

Yw,1 = −ψw · κz, (A.11b)

implying q∗∗(z) = ψw · (bw − κzz) where ψw is defined as stated in (3.23). For the monopolist’s
extraction function (A.1b), w has to be replaced by π in (A.11) so that we get q∗(z) = ψπ ·(bπ − κzz).

Proof. q∗∗(z) must maximize (A.3a), which we can split into instantaneous welfare of the current

period and discounted welfare of all periods afterwards

W ∗∗(z) = (bw − κzz) q(z)−
aw
2 q(z)2 +

[
q(z)
r
− z
]
χz + β

{
bw + Yw,0

Yw,1
κz

1− β
(
1 + Yw,1

) (Yw,0 + Yw,1z+
)

−
aw
2 + 1

Yw,1
κz

1− β
(
1 + Yw,1

)2 (Yw,0 + Yw,1z+
)2 − χzz+

1− β

}
. (A.12)

Substituting the equation of motion (3.1), differentiating with respect to q(z), and substituting

(A.1a), we get the following first-order condition:

bw − κzz − aw
(
Yw,0 + Yw,1z

)
+ β

{
Yw,1bw + Yw,0κz

1− β
(
1 + Yw,1

)
− Yw,1aw + 2κz

1− β
(
1 + Yw,1

)2 [Yw,0 + Yw,1

[
Yw,0 +

(
1 + Yw,1

)
z
]]}

= 0. (A.13)

We can state (A.13) for z+ = z+q∗∗(z) and again substitute (A.1a). This generates two equations

in two unknowns. These contain quadratic terms, but taking (A.2) into account, we can select

Achim Voss and Mark Schopf 38/48



B. Derivation of the Nash Bargaining Solution

the solution (A.11). q∗(z) is derived in the same way.

Substituting the coefficients from Lemma A.2 into (A.7), we can derive (3.24a) and, in the same

way, (3.24b). Substituting them into (A.2) yields the inequalities in Proposition 2. We can further

explicate the parameter restrictions as follows:

Lemma A.3 (Parameter Restrictions). (A.2) implies

2κz < ai +
√
a2
i + 4

r
κz (ai − κz) for i = w, π, (A.14)

which can only be fulfilled if ai > κz holds, as stated in (3.21).

Proof. (A.2) and (A.11) imply two inequalities, 0 < 1− ψi · κz and 1− ψi · κz ≤ 1. Substituting

(3.23) into the first inequality yields (A.14), for which ai > κz is necessary. This implies that ψi
is positive; see (3.23). Then the second inequality also holds.

The inequality in (3.23) follows from Lemma A.3. Finally, we can replace the unknown coef-

ficients in the value functions of Lemma A.1 and simplify, which yields the value functions in

Proposition 3.

B Derivation of the Nash Bargaining Solution

From the discussion in Section 4.2, we know that the present value of contribution payments can

be derived with the threat value functions and the equilibrium values of intertemporal welfare

and profit. Thus, we first derive the threat and equilibrium extraction paths and then determine

the contribution payment path. From the discussion in Section 4.2, we also know that the threat

extraction function must be the same as in the welfare-maximizing case. Furthermore, we guess

that the equilibrium extraction function has the same linear form as in the benchmark cases.

Using the coefficients from Lemma A.2, we thus have

q?(z) = Xg,0 +Xg,1z, (B.1a)

q#(z) = q∗∗(z) =

ψw · (bw − κzz) if bw − κzz ≥ 0,

0 if bw − κzz < 0.
(B.1b)

Strictly speaking, we would need to explicate the non-negativity constraint for q?(z); but by the

same logic as in the benchmark cases, the convergence level is only reached asymptotically so

that the constraint never becomes binding. This is different for the threat extraction quantity,

however. At some point, the lobbying extraction may lead to a total extraction above the welfare-

maximizing convergence level. Then the non-negativity constraints are still irrelevant for the

equilibrium path, but they bind for the government’s threat.

Achim Voss and Mark Schopf 39/48



B. Derivation of the Nash Bargaining Solution

The government’s threat value function must be equal to the welfare-maximizing one from

Proposition 3. The lobby’s threat value function also results from the welfare-maximizing ex-

traction path; it has the same form as (A.3b), but the π coefficients have to be replaced by the

w ones. Using the coefficients from Lemma A.2, we thus have the present-value functions of

Proposition 4.

We can now determine the present values of welfare and profits in equilibrium.

Lemma B.1 (Equilibrium Intertemporal Welfare and Profit). Assume that

0 < 1 +Xg,1 ≤ 1. (B.2)

Then

W ?(z) =
bw + Xg,0

Xg,1
κz

1− β
(
1 +Xg,1

)q?(z)− aw
2 + 1

Xg,1
κz

1− β
(
1 +Xg,1

)2 q?(z)2 − χzz

1− β , (B.3a)

Π?(z) =
bπ + Xg,0

Xg,1
κz

1− β
(
1 +Xg,1

)q?(z)− aπ
2 + 1

Xg,1
κz

1− β
(
1 +Xg,1

)2 q?(z)2, (B.3b)

where q?(z) is defined in (B.1a).

Proof. The proof follows along the lines of the proof of Lemma A.1.

The next step is to determine the equilibrium extraction path because we know by the discussion

in Section 4.2 that this path maximizes (4.16) (and is therefore relatively easily characterizable):

Lemma B.2 (Equilibrium Extraction). In the equilibrium extraction function (B.1a), we have the
following coefficients:

Xg,0 = ψ · b, (B.4a)

Xg,1 = −ψ · κz (B.4b)

so that q?(z) = ψ ·(b− κzz) where ψ and b are defined as stated in (4.27) and (4.26b), respectively.

Proof. From (4.17) and (3.18), q?(z) must maximize

V (z) = (bw − κzz) q(z)−
aw
2 q(z)2 +

[
q(z)
r
− z
]
χz + µ

[
(bπ − κzz) q(z)−

aπ
2 q(z)2

]
+ β

[
W ?(z+) + µΠ?(z+)

]
, (B.5)
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where µ is defined by (4.15). By Lemma B.1:

W ?(z+) =
bw + Xg,0

Xg,1
κz

1− β
(
1 +Xg,1

) (Xg,0 +Xg,1z+
)
−

aw
2 + 1

Xg,1
κz

1− β
(
1 +Xg,1

)2 (Xg,0 +Xg,1z+
)2 − χzz+

1− β ,

(B.6a)

Π?(z+) =
bπ + Xg,0

Xg,1
κz

1− β
(
1 +Xg,1

) (Xg,0 +Xg,1z+
)
−

aπ
2 + 1

Xg,1
κz

1− β
(
1 +Xg,1

)2 (Xg,0 +Xg,1z+
)2
. (B.6b)

The coefficients in (B.4) are then derived along the lines of the proof of Lemma A.2.

Substituting the coefficients from Lemma B.2 into (A.7), we can derive (4.30). Substituting

(B.4b) into (B.2) yields the inequality in Proposition 6. We can now also state the contribution

payments that will be paid along the equilibrium path:

Lemma B.3 (Equilibrium Contribution Payments). The equilibrium contribution payment func-
tion is as stated in equation (4.28c) of Proposition 5.

Proof. Substituting the coefficients from Lemma B.2 into the equilibrium intertemporal welfare

and profit (from Lemma B.1) and the threat value function (from Proposition 4) into (4.19)

yields the present value of contribution payments in equilibrium, which we can state for z and

z?+. Using the equilibrium equation of motion (4.6a) together with the extraction functions

from (4.28), we can plug the two equations into (4.20) and derive the equilibrium contribution

payments.

The inequality in (4.27) follows from Lemma A.3. Finally, we can simplify the equilibrium in-

tertemporal welfare and profit and the present value of contribution payments in equilibrium

derived in the proof of Lemma B.3, which yields the equilibrium value functions in Proposition

7.

C Development of the Contribution Payments

For the benchmark cases, we distinguished four cases in Section 3.3, constituted by the relation

between ψw, ψπ, bw, and bπ (Cases 1 to 4). We have similar cases for the relation between ψw,

ψ, bw, and b that we use for the discussion in Section 4.4 (Cases I to IV). In this Appendix, we

first show how the sets of cases relate. Afterwards, we formally characterize the development of

payments.

Lemma C.1 (Parameter Relations). The benchmark cases and the lobbying-equilibrium cases are
summarized in Table 2 (on page 13) and Table 3 (on page 25), respectively. In Cases 1 and 2, we
have ψw < ψπ and ψw = ψπ, respectively. Then, Cases I and II, ψw < ψ and ψw = ψ, respectively,
hold because ψπ R ψw ⇔ ψ R ψw. In Cases 3 and 4, we have ψw > ψπ and in Cases III and
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IV, we have ψw > ψ. Case 3 is defined by ψw < ψπbπ/bw. Then Case III, ψw < ψb/bw, holds if
ψw < ψ̃πbπ/bw where

ψ̃π ≡
2

aπ + 1+µ
µ

√
a2 + 4

rκz (a− κz)− 1
µ

√
a2
w + 4

rκz (aw − κz)
< ψπ. (C.1)

Else, Case IV, ψw > ψb/bw, holds, which it also does if ψw > ψπbπ/bw (Case 4).

Proof. From (3.23), (4.26), and (4.27), we have

ψwbw R ψb ⇔ ψwbw R ψ̃πbπ. (C.2)

The derivative of ψ̃π with respect to µ is greater than or equal to zero:

∂ψ̃π
∂µ = 1

2

(
ψ̃π
µ

)2
aaw + 4

rκz
(
a+aw

2 − κz
)√

a2 + 4
rκz (a− κz)

−
√
a2
w + 4

r
κz (aw − κz)

 ≥ 0. (C.3)

From (C.3) and 0 < µ <∞, we have

lim
µ→0

ψ̃π < ψ̃π < lim
µ→∞

ψ̃π ⇔ 2

aπ + awaπ+ 4
rκz( aw+aπ

2 −κz)√
a2
w+ 4

rκz(aw−κz)

< ψ̃π < ψπ. (C.4)

By ψb = ψ̃πbπ and ψπ > ψ̃π, ψw > ψπbπ/bw implies ψw > ψb/bw. By contrast, ψw < ψπbπ/bw

does not necessarily imply ψw < ψb/bw.

In Proposition 5, we have the formula for the contribution payments. Substituting from Propo-

sition 4, taking into account that the non-negativity constraint on the government’s threat ex-

traction constitutes three distinguishable cases (see discussion at the end of Section 4.3), and

simplifying yields:

m?(z) = 1
γ
·


Θ1 · (b− bw)

[
q?(z)− q∗∗(z)

]
+ Θ2 ·

[
q?(z)− q∗∗(z)

]2
if z < ẑw,

(b− bw) q?(z) + Θ3 · q?(z)2 −Θ4 · (b− bw) q∗∗(z)−Θ5 · q∗∗(z)2 if ẑw ≤ z < ẑw,

(b− bw) q?(z) + Θ3 · q?(z)2 if z ≥ ẑw,
(C.5)
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where

Θ1 ≡ η (1 + µ)

 1− β
1− β (1− ψwκz)

+ ψ (a− aw)
2
(

1
ψ −

a
2

)
(ψ − ψw)

 R 0 ⇔ ψ R ψw, (C.6a)

Θ2 ≡
1− β

1− β (1− ψwκz)2

[
1
ψw
− aw

2 + η (1 + µ)
(

1
ψ
− a

2

)]
> 0, (C.6b)

Θ3 ≡
aw
2 −

1
ψ

+ η (1 + µ)
(

1
ψ
− a

2

)
> − 1

ψ
, (C.6c)

Θ4 ≡
η (1 + µ)

1− β (1− ψwκz)
> 0, (C.6d)

Θ5 ≡
1

1− β (1− ψwκz)2

[
aw
2 −

1
ψw

+ η (1 + µ)
(

1
ψw
− a

2

)]
> − 1

ψw
. (C.6e)

Even though these coefficients are not intuitively interpretable, they allow a comfortable charac-

terization of the development of payments. In the following, we discuss the payments and their

development for different parameter relations. We start with the time after ẑw has been reached

so that q∗∗(z) ≥ 0 and q∗∗(z?+) ≥ 0 are binding for the welfare-maximizing path because it is

clear from Section 4.4 that this is easiest to analyze.

Proposition C.1 (Contribution Payments for z ≥ ẑw). For ẑ > z ≥ ẑw, contribution payments
are positive. For z → ẑ, they asymptotically converge towards zero. This convergence is monotone if

η (1 + µ) ≥ 1
2

(
1−

aw − a
2

1
ψ −

a
2

)
. (C.7)

Else, they increase for small z and decline for large z, in particular for z ≥ (ẑ + ẑw) /2. The relation
(C.7) always holds if η(1 + µ) ≥ 1/2. Else, if η(1 + µ) < 1/2, the left-hand side of the relation
(C.7) must be the larger, the smaller aw (or the larger aπ) for the convergence of the contribution
payments to be monotone. Note that the relation (C.7) is independent of bw and bπ.

Proof. Using Θ3 > −1/ψ:

m?(z) > 1
γ

[
(b− bw) q?(z)− 1

ψ
q?(z)2] = 1

γ
(κzz − bw)︸ ︷︷ ︸

>0

q?(z) > 0, (C.8)

except asymptotically where q?(z) = 0 so that m?(z) = 0. Furthermore,

∂m?(z)
∂z <

1
γ

[
(b− bw)− 2

ψ
q?(z)

]
(−ψκz) = 1

γ
(2κzz − b− bw)︸ ︷︷ ︸
R0⇔ zR(ẑ+ẑw)/2

(−ψκz)︸ ︷︷ ︸
<0

(C.9)

so that contribution payments at the latest decline when z ≥ (ẑ + ẑw) /2. They always decline if

they decline for small z, in particular for z = ẑw. Differentiating the first line of (C.5), substitut-
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ing z = ẑw and rearranging yields (C.7). Along the lines of the remark after Proposition 4, the

fraction in (C.7) is positive so that η(1 + µ) ≥ 1/2 is sufficient for the (weak) inequality in (C.7)

to hold. Furthermore, the fraction in (C.7) is increasing in aw and declining in aπ.

We continue with the time before ẑw has been reached so that q∗∗(z) ≥ 0 and q∗∗(z?+) ≥ 0 are

not binding for the welfare-maximizing path. Here, we have to distinguish between the four

lobbying-equilibrium cases. We start with Cases I and II in which ψw ≤ ψ.

Proposition C.2 (Contribution Payments for z < ẑw and ψ ≥ ψw). Suppose that ψ > ψw

(Case I) or ψ = ψw (Case II) and that 0 ≤ z < ẑw. Then contribution payments are positive.
They are declining in Case I and constant in Case II.

Proof. In both cases, q?(z) − q∗∗(z) > 0; see (4.35). Additionally, ψ > ψw implies Θ1 > 0 for

Case I and ψ = ψw implies Θ1 = 0 for Case II; see (C.6a). Thus, all (remaining) parts of (C.5)

are positive. For the development of payments, we have

∂m?(z)
∂z = 1

γ

[
Θ1 · (b− bw) + Θ2 · 2∆q?(z)

]
(ψw − ψ)κz. (C.10)

For Case I, every part of the square-bracketed term is positive and the round-bracketed difference

with which it is multiplied is negative so that the whole derivative is negative and contribution

payments decline. For Case II, the round-bracketed difference is zero so that contribution pay-

ments remain constant.

Now we discuss Cases III and IV in which ψw > ψ.

Proposition C.3 (Contribution Payments for z < ẑw and ψ < ψw). Define

z1 = ẑw − ψ
1− ψwκz
ψw − ψ

(
ẑ − ẑw

)
= ψwbw − ψb

(ψw − ψ)κz
, (C.11a)

z̃1 = z1 −
Θ1

2Θ2

1− ψκz
ψw − ψ

(
ẑ − ẑw

)
= z1 −

Θ1

2Θ2

b− bw
(ψw − ψ)κz

, (C.11b)

z2 = z̃1 −
Θ1

2Θ2

1− ψκz
ψw − ψ

(
ẑ − ẑw

)
= z̃1 −

Θ1

2Θ2

b− bw
(ψw − ψ)κz

, (C.11c)

where z1 < z̃1 < z2 by Θ1 < 0. If z ≤ z1 or z ≥ z2, contribution payments are positive. If
z1 < z < z2, they are negative. If z < z̃1, contribution payments are declining. If z ≥ z̃1, they are
increasing.

Suppose that ψwbw ≤ ψb (Case III) and that 0 ≤ z < ẑw. Then z1 ≤ 0. If z2 ≤ 0, contribution
payments are globally positive and increasing. If z2 > 0, they are negative for 0 ≤ z < z2 and
positive for z ≥ z2, and if z2 ≥ ẑw, they are globally negative. Furthermore, if z̃1 > 0, contribution
payments are declining for 0 ≤ z < z̃1 and increasing for z ≥ z̃1, and if z̃1 ≥ ẑw, they are globally
declining.

Now suppose that ψwbw > ψb (Case IV) and that 0 ≤ z < ẑw. Then 0 < z1 < ẑw and
contribution payments are positive and declining for 0 ≤ z ≤ z1. If z2 < ẑw, they are negative and
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declining for z1 < z < z̃1, negative and increasing for z̃1 ≤ z < z2, and positive and increasing for
z2 ≤ z < ẑw. If z2 ≥ ẑw, contribution payments remain negative for z1 < z < ẑw and if z̃1 > ẑw,
they remain declining for z1 < z < ẑw.

Proof. In both cases, ψ < ψw implies Θ1 < 0; see (C.6a). In Case III, ψwbw ≤ ψb so that z1 ≤ 0
and in Case IV, ψwbw > ψb so that 0 < z1 < ẑw; see (C.11a). We can write m?(z) and ∂m?(z)

∂z as

functions of z:

m?(z) = 1
γ
·Θ2 · (ψκz − ψwκz)2 · (z1 − z) · (z2 − z) , (C.12a)

∂m?(z)
∂z = 1

γ
·Θ2 · (ψκz − ψwκz)2 · (z̃1 − z) · (−2) . (C.12b)

Those levels of cumulative extraction for which m?(z) and ∂m?(z)
∂z change their signs directly

follow from (C.12).

Finally, we consider what happens in the period after ẑw (or before ẑw) has been reached. In this

period, the current threat extraction q∗∗(z) is positive but the future threat extraction q∗∗(z?+) is

zero and its non-negativity constraint is binding. As this is relevant for at most one period, we

do not analyze how the contribution payments develop between z = ẑw and z = ẑw, but how

this development changes around z = ẑw and z = ẑw.

Proposition C.4 (Contribution Payments for ẑw ≤ z < ẑw). Suppose that η = 0. Then ∂m?(z)
∂z

is continuous for z → ẑw and z → ẑw. Now suppose that η > 0. Then ∂m?(z)
∂z is discontinuous for

z → ẑw and z → ẑw. For z → ẑw, its right-hand limit is greater than its left-hand limit and for
z → ẑw, its right-hand limit is smaller than its left-hand limit.

Proof. Subtracting the derivative of the first line in (C.5) from the derivative of the second line

in (C.5) for z → ẑw yields:

lim
z→ẑw+

∂m?(z)
∂z − lim

z→ẑw−
∂m?(z)
∂z = η (1 + µ)ψwκz (b− bw)

1− β (1− ψwκz)

· βψ2

2 (1− ψκz)

[
(a− 2κz)

√
a2 + 4

r
κz (a− κz) + κ2

z +
(
a− κz + 2

r
κz

)
(a− κz)

]
. (C.13)

The square-bracketed term is positive if a ≥ 2κz. Else, if a < 2κz, the square-bracketed term is

also positive because then

κ2
z +

(
a− κz + 2

r
κz

)
(a− κz) > (2κz − a)

√
a2 + 4

r
κz (a− κz)

⇔

[
κ2
z +

(
a− κz + 2

r
κz

)
(a− κz)

]2

>

[
(2κz − a)

√
a2 + 4

r
κz (a− κz)

]2

⇔ 4κ2
z (a− κz)2

(1− β)2 > 0. (C.14)
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Thus, (C.13) is greater than (equal to) zero if η is greater than (equal to) zero. Subtracting the

derivative of the second line in (C.5) from the derivative of the third line in (C.5) for z → ẑw

yields:

lim
z→ẑw+

∂m?(z)
∂z − lim

z→ẑw−
∂m?(z)
∂z = −η (1 + µ)ψwκz (b− bw)

1− β (1− ψwκz)
< 0. (C.15)

Thus, (C.15) is smaller than (equal to) zero if η is greater than (equal to) zero.
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