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Abstract

Stochastic frontier models are widely used to measure, e.g., technical efficiencies
of firms. The classical stochastic frontier model often suffers from the empirical
artefact that the residuals of the production function may have a positive skewness,
whereas a negative one is expected under the model, which leads to estimated full
efficiencies of all firms. We propose a new approach to the problem by generaliz-
ing the distribution used for the inefficiency variable. This generalized stochastic
frontier model allows the sample data to have the wrong skewness while estimat-
ing well-defined and non-degenerate efficiency measures. We discuss the statistical
properties of the model and we discuss a test for the symmetry of the error term
(no inefficiency). We provide a simulation study to show that our model delivers
estimators of efficiency with smaller bias than those of the classical model even if
the population skewness has the correct sign. Finally, we apply the model to data
of the U.S. textile industry for 1958-2005, and show that for a number of years our
model suggests technical efficiencies well below the frontier, while the classical one
estimates no inefficiency in those years.
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1 Introduction

One of the most popular econometric models to estimate the production frontier and

firm efficiency is the parametric stochastic frontier model (SFM). The basic model was

introduced by Aigner et al. (1977) and Meeusen and van den Broek (1977). The model

assumes some functional form for the frontier which represents the locus of maximal

achievable output Y ∈ R (production) for a given set of inputs X ∈ R
p (production

factors such as labor, energy, capital, etc.). If we want a model allowing for inefficiency,

we need to specify a model allowing to observe production plans (xi, yi) below this optimal

frontier. The interesting feature of SFM (as opposed to deterministic frontier models) is

that the model permits the presence of the usual random noise. Thus, the error term

in a SFM is a convolution of two terms: a one-sided inefficiency term plus a classical

symmetric statistical noise, usually modeled by a normal distribution.

Several one-sided distributions have been proposed in the literature for the inefficien-

cies. The pioneering work of Aigner et al. (1977) suggests the use of an exponential or of

a half-normal distribution. Other choices, e.g., two-parameter distributions such as the

gamma (Greene 1990) or the truncated-normal (Stevenson 1980), have been proposed, see

Kumbhakar and Lovell (2000), or Greene (2007) for detailed surveys. All of these one-

sided distributions have a positive skewness, so Li (1996) considers the case of a uniform

distribution and Carree (2002) a negative binomial allowing negative skewness. In the

same spirit Almanidis and Sickles (2011) and Almanidis et al. (2014) consider a doubly

truncated normal distribution for the inefficiencies. The latter three approaches assume

that the inefficiency term is bounded above and below.

Typically the basic model can be written as

Yi = α0 + α′Xi +Wi, i = 1, . . . , n, (1)

where Wi = Vi − Ui with Vi ∼ N(0, σ2
v) and Ui has one-sided parametric distribution on

R+. We assume independence between Vi and Ui which are both i.i.d.1

It is well known (see, e.g., Greene 1990) that the third moment of Wi is given by

E
[
(Wi − EWi)

3
]
= −E

[
(Ui − E(Ui))

3
]
, (2)

so that a positive skewness for Ui implies a negative skewness for Wi. A simple estimator

of the parameters of the model is given by the Modified OLS (MOLS) approach (Olson

1In this paper we consider the production frontier case, but this can be easily translated to a cost

frontier model where the error wi would have the form vi + ui, ui ≥ 0 accounting for cost inefficiencies.
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et al. 1980, Greene 1990) where a simple OLS procedure leads to consistent estimators of

the slope parameters α of the following shifted model

Yi = α∗
0 + α′Xi + εi, i = 1, . . . , n, (3)

where α∗
0 = α0−E(Ui) so that εi = Wi+E(Ui) = 0. Then the moments of OLS residuals are

used to estimate the parameters of the distributions of Ui and Vi. If these distributions

involve two unknown parameters (as in the normal/half-normal or normal/exponential

cases), only the second and third empirical moments of ε̂i,OLS are needed (one additional

moment of higher order is needed if the distributions of ui and vi involve three unknown

parameters, see Kumbhakar and Lovell 2000 for details).

From (2), it is clear that µ̂3,n = n−1
∑n

i=1 ε̂
3
i,OLS is a consistent estimator of the negative

of the third moment of Ui, which gives the sign of the skewness of Ui. It is well known

and illustrated by numerous Monte-Carlo experiments (see Olson et al. 1980, or Simar

and Wilson 2010) that very often, in finite samples, the sign of µ̂3,n is positive, even

though the opposite is expected. In this literature, researchers say that they observe the

“wrong” skewness when the sign of the empirical skewness is positive. The consequence

of a “wrong” skewness, as shown, e.g., by Waldman (1982), is that the MOLS and the

MLE estimates of the slope are identical to the OLS slope, and there are no inefficiencies:

the mean and the variance of Ui are estimated at zero and all the firms are supposed to

be efficient, i.e., lying on the estimated frontier.

Long debates have appeared about this issue, see Carree (2002) and Almanidis and

Sickles (2011) and the references therein for details. To summarize, the question whether

the skewness is “wrong” or not is perhaps a misleading debate. The OLS residuals are

what they are, and the wrong sign of the skewness is indeed unexpected when, under the

chosen model, ui has positive skewness. To be clear we follow in our approach the idea

that the “wrong skewness” is a small sample problem but that can pose serious problems

for practitioners when estimating the traditional SFA models.

For these reasons, solutions have been proposed for choosing distributions for Ui that

allow for negative skewness. Examples are the aforementioned negative binomial model of

Carree (2002) and the double truncated normal of Almanidis and Sickles (2011), Almanidis

et al. (2014). While these approaches have their merits, there are potential drawbacks.

In particular, they do not nest the classical models (such as the normal/half-normal or

normal/exponential). The traditional SFM may be correct but we are observing the

unexpected skewness just by analyzing an unlucky sample. This is annoying as it plagues

the estimation of the inefficiencies. The contribution of this paper is to extend the classical
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SFM to a model allowing the opposite skewness, but still nesting the traditional SFM.

This is important because, when observing the “wrong” skewness, most researchers are

tempted to believe that the model is wrong, and we know that even a correct SFM allowing

inefficient firms may produce the wrong sign for the skewness. This happens more often

with small sample sizes or when the ratio Var(V )/Var(U) increases (see Simar and Wilson

2010 for a careful Monte-Carlo investigation).

The remainder of the paper is organized as follows. The following section presents the

basic models and the extensions we suggest and discusses their properties. In Section 3

least-squares and maximum likelihood estimators are proposed and their properties are

described. In particular, we are able to derive a simple likelihood ratio test for testing the

symmetry of the error term. Section 4 reports results of a simulation study to illustrate

the usefulness of the proposed model in situations where the true model is the classical

one. In Section 5 we apply the model to analyze the efficiency of sub-sectors of the U.S.

textile industry for 1958-2005. Finally, in Section 6 we conclude.

2 The model

Let us first recall the classical stochastic frontier model, starting from the basic model

(1),

Y = α0 + α′X +W, (4)

where W = V −U , and U and V are independent random variables, the former represent-

ing inefficiency, and the latter statistical noise, which we assume is given by V ∼ N(0, σ2
v).

The positive random variable U is linked to the notion of inefficiency. Technical efficiency

is the given by exp(−U). The typical assumptions on the distribution of U imply that U

has a positive skewness andW has negative skewness, which often leads to incompatibility

with data when the sample skewness of residuals w is positive. Mean technical efficiency

in the basic model is defined as E[exp(−U)], and technical efficiency for a given firm can

be predicted using the conditional expectation given W

τc = E[exp(−U)|W ], (5)

such that τc ∈ [0, 1] by construction.

The classical normal-halfnormal SFM assumes that U has a halfnormal density given

by

h(u) =
2

σu
φ

(
u

σu

)
, u ≥ 0. (6)
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where σu > 0, φ(·) is the standard normal pdf, and the expectation of U is µ = σu

√
2/π >

0. The density of W is then given by

g(w) =
2

σ
φ

(
−w

σ

)
Φ

(
−w

σ

σu

σv

)
(7)

where σ2 = σ2
u + σ2

v and Φ(·) is the cdf of a standard normal random variable, see,

e.g., Kumbhakar and Lovell (2000, p.75). They also give expressions for the conditional

expectation of U and the inefficiency:

U |W = w ∼ N+(µ∗, σ
2
∗) (8)

E(U |W = w) = σ∗

[
A+

φ(A)

Φ(A)

]
(9)

E(exp(−U)|W = w) = [1− Φ(σ∗ − A)] [Φ(A)]−1 exp(−µ∗ + σ2
∗/2) (10)

where µ∗ = −wσ2
u/σ

2, σ2
∗ = σ2

uσ
2
v/σ

2 and A = µ∗/σ∗. These expressions can then be used

for maximum likelihood estimation of the parameters and of the inefficiency measures.

Other distributions such as the exponential have been used for U and similar expres-

sions as above can be found in Kumbhakar and Lovell (2000, p.82). Note that both

densities (half normal and exponential) belong to the class of one-parameter scale densi-

ties, which facilitates many computations. These densities can be written as

h(u) =
1

η
h̃

(
u

η

)
, u ≥ 0, (11)

where the only parameter η > 0 and where h̃(·) is a density on R
+ (

∫∞

0
h̃(t)dt = 1).

Then all the moments of U can be written as E(U j) = ηjkj, for j = 1, 2, . . . where

kj =
∫∞

0
tj h̃(t)dt are constants depending on the chosen basic density h̃(·).

The literature on SFM (see e.g. Kumbhakar and Lovell 2000 and the references therein)

has also suggested more flexible two-parameter densities by adding a location parameter.

Examples are the gamma or the truncated normal cases that could be applied to our

extension ideas below. However, these models come at the cost of numerical problems due

to the potential difficulties to identify all the parameters of the models in small samples

(see the discussion in Ritter and Simar 1997). Therefore we will focus our presentation

below on the one-parameter scale family and give all the analytical details for the two

basic benchmark models, i.e., the half-normal and the exponential.

2.1 The extended stochastic frontier model

An important parameter in what follows is γ whose sign determines the sign of the skew-

ness of U . For the basic models above, this skewness is positive and η = γ > 0 and
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the third central moment of U can be written as E [(U − E(U))3] = a+3 γ
3 > 0, where

a+3 = k3 − 3k1k2 + 2k3
1 can easily be computed. A first modification of the basic model

would be to maintain the production model (4) with composed error term

W = V − U (12)

where U is a positive random variable with expectation µ ≥ 0. However, the distribution

of U depends on the sign of γ. If γ > 0, then U has a classical density h+(u) with support

[0,∞) such as the half-normal or exponential (one parameter scale family with η = γ).

If γ < 0 we build a density h−(u) for U as follows: first we take the same density as

h+ and we mirror it onto the negative axis by reflecting it at zero. Then we truncate this

density at −B and finally we shift the resulting density to the right by B such that now

the support of U is [0, B]. Since we want to stay in the one-parameter scale family we

will fix the truncation parameter such that the resulting random variable U has the mean

E(U) = µ as in the case γ > 0. To be specific, we define

h−(u) =

[∫ B

0

h+(t)dt

]−1

h+(B − u)I(u ∈ [0, B]), (13)

where B will be determined below and I(·) is the indicator function. It can be seen that

if h+ belongs to the one-parameter scale family, h+(u) = (1/|γ|)h̃+(u/|γ|), then h− also

belongs to the one-parameter scale family. We have indeed

h−(u) =
1

|γ|

[∫ B/|γ|

0

h̃+(t)dt

]−1

h̃+

(
B − u

|γ|

)
I(u/|γ| ∈ [0, B/|γ|])

=
1

|γ|
h̃−(u/|γ|) (14)

where it can be shown that the basic density h̃− is such that
∫∞

0
h̃−(t)dt = 1. The density

h̃− only depends on B/|γ| that turns out to be a constant given by equating the means

of the two densities h+ and h−. Indeed we have the equation

k+
1 =

∫ ∞

0

th̃+(t)dt =

∫ B/|γ|

0

th̃−(t)dt = k−
1

=

[∫ B/|γ|

0

h̃+(t)dt

]−1 ∫ B/|γ|

0

th̃+(B/|γ| − t)dt. (15)

There is only one unknown, B/|γ|, which only depends on the choice of the basic h̃+. We

call the solution a0 = B/|γ|, so that B = a0|γ| > 0.
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The intuition behind our construction of h− is as follows: since the skewness of h+

is positive, we change its sign by reflecting it at zero. Then we shift the density to the

right by B and truncate it at zero to get a density on the positive real line. By doing

so we obtain a density with negative skewness and that converges to a Dirac measure at

zero when γ approaches zero. Finally, the constant B is fixed to ensure that the mean

of U depends only on the absolute value of γ, which has the additional advantage of not

having to estimate this parameter that may be difficult to identify numerically.

Obviously, model (12) reduces to the classical SFA model if γ > 0, but we gain

flexibility by allowing γ to become negative. In any case, however, the mean of U is

µ = k+
1 |γ| > 0 and that of W is −µ, so that the mean of W only depends on the

size of γ, not its sign. The size of γ is related to measures of inefficiency, whereas the

sign of γ gives flexibility to fit distributional properties of the data, such as positive or

negative skewness. Full efficiency is attained when γ = 0, in which case U degenerates to

a one-point distribution at zero and W ∼ N(0, σ2
v) is symmetric.

We will see now how to derive the density h− and the value a0 in the particular cases

of our two benchmark models. In particular, we will see that the likelihood function for

W is continuous for all γ ∈ R including γ = 0 ensuring the consistency of the MLE for

all γ. We will also be able to derive a LR test for testing the hypothesis γ = 0 in the full

stochastic frontier model.

2.2 Examples

In the following we give the details of the computations for our two benchmarked basic

densities that are often used in practice.

2.2.1 The extended normal-halfnormal distribution

Suppose U has a half-normal density given by

h+(u) =
2

γ
φ

(
u

γ

)
, u > 0, (16)

where γ > 0. This is the classical normal-half-normal SFA model with moments of U

given by µ = E[U ] =
√

2
π
γ = φ(0)

Φ(0)
γ, Var(U) = a+2 γ

2 = [(π − 2)/π]γ2 and E[(U − µ)3)] =

a+3 γ
3 =

√
2/π

(
(4− π)/π

)
γ3 ≈ 0.2180γ3 > 0.

We extend this to the possibility γ < 0. This is achieved when U has a half-normal

distribution mirrored at zero, shifted to the right by B = a0|γ| to have the same mean
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as the corresponding half-normal distribution with positive γ, and truncated at zero to

ensure that inefficiency can only be positive. This is in fact a special case of the doubly-

truncated normal distribution of Almanidis and Sickles (2011) and Almanidis et al. (2014)

with location parameter B, truncation at zero and B, and scale parameter given by |γ|.

In this case the moments of U can be found analytically. Thus, U is a N(B, γ2) truncated

at zero and at B = a0|γ|. We have

µ = E[U ] = |γ|

[
a0 +

φ(a0)− φ(0)

Φ(a0)− Φ(0)

]
, (17)

where a0 = 1.3892032925 is the non-trivial solution of
[
a0 +

φ(a0)−φ(0)
Φ(a0)−Φ(0)

]
= φ(0)

Φ(0)
such that

the expectation of U as a function of |γ| is the same for the two densities. We also have

Var(U) = a−2 γ
2 (18)

E[(U − µ)3)] = a−3 γ
3 < 0, (19)

where the constants a−2 > 0 and a−3 > 0 are obtained from the formulae derived in

Almanidis and Sickles (2011, p.211).2 The density h−(u) is thus given by

h−(u) = [Φ(a0)− Φ(0)]−1 1

|γ|
φ

(
a0 −

u

|γ|

)
, 0 < u < a0|γ| (20)

where γ < 0. Note that in h−, |γ| can be replaced everywhere by −γ to facilitate some

derivations below. Figure 1 shows the density of U for the case of positive and negative

skewness (|γ| = 0.5). Both distributions have the same mean µ = |γ|
√
2/π = 0.3989 and

are bounded below by zero. However, when γ < 0 the density is also bounded from above

at B = a0|γ| = 0.6946.

The density of W for the classical case γ > 0 is given by

g+(w) =
2

σ
φ
(w
σ

)
Φ

(
−w

σ

γ

σv

)
(21)

where σ2 = γ2 + σ2
v . For the case γ < 0, the density of W can be shown to be3

g−(w) =
1

σ(Φ(a0)− Φ(0))
φ

(
w − a0γ

σ

)[
Φ

(
Aw +

a0σ

σv

)
− Φ(Aw)

]
, (22)

2We obtain

a−
2
= 1−

[
φ(a0)− φ(0)

Φ(a0)− Φ(0)

]2
+

−a0φ(a0)

Φ(a0)− Φ(0)
≈ 0.14471441

a−
3
= −2

[
φ(a0)− φ(0)

Φ(a0)− Φ(0)

]3
+

[
φ(a0)− φ(0)

Φ(a0)− Φ(0)

](
1− 3

a0φ(a0)

Φ(a0)− Φ(0)

)
−

a2
0
φ(a0)

Φ(a0)− Φ(0)
≈ 0.016741474.

3The density of W is the same as the one of ε in the first row of Table 1 of Almanidis et al. (2014)

replacing µ by B, σu by |γ| and setting B = −a0γ > 0.
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Figure 1: The upper figure plots the density h+(u) of U in (16) (half-normal case) with

γ = 0.5. The lower figure plots the density h−(u) of U with γ − 0.5, given in (20).

where

Aw =
w − a0γ

σ

γ

σv
. (23)

In Figure 2 the density of W is plotted. For γ > 0 the distribution has negative skewness,

whereas for γ < 0 its skewness is positive. Again, both distributions have the same mean.

We know that when γ = 0, the density of U is degenerate (a mass point) at zero and

the density of W coincides with the one of V (typically a normal with zero mean and

variance σ2
v). So we will consider a density of W defined as follows:

g(w; γ) = g+(w)I(γ > 0) + g−(w)I(γ < 0) +
1

σv
φ
( w

σv

)
I(γ = 0). (24)

Figure 3 displays the shape of the density of g(w) when γ is varying from -2 to +2. The

density seems to be continuous at γ = 0. However, on the floor of the picture, the contour

plots indicates a non-smooth behavior near γ = 0. We will investigate this issue in detail

in Section 3.

Technical efficiency for the case γ < 04 can be predicted given W using by numerical

4The expressions for the case γ > 0 were given in (8)-(10) with σu = γ.
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Figure 2: Normal-Halfnormal case: Density g+(w) for γ = 2.5 (solid line) and g−(w)

for γ = −2.5 (dash-dotted line), with σv = 0.5. Both densities have the same mean

−µ = −
√

2/π|γ| = −1.9947.

4321
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Figure 3: Normal-Halfnormal case: Density g(w) as a function of γ ∈ [−2,+2]. Here

again σv = 0.5.
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integration:

TE = E[exp(−U)|W ] =

∫ a0|γ|

0

exp(−u)f−(u|w)du (25)

where from the first row of Table 1 in Almanidis et al. (2014) we can recover

f−(u|w) =
1

σ∗
φ

(
u− µ∗

σ∗

)[
Φ

(
a0|γ| − µ∗

σ∗

)
− Φ

(
−
µ∗

σ∗

)]−1

I(u ∈ [0, a0|γ|]) (26)

with σ∗ = |γ|σv/σ and µ∗ = −(a0γσ
2
v + wγ2)/σ2.

2.2.2 The extended exponential distribution

In the normal-exponential SFA model, the random variable U has density given by

h+(u) =
1

γ
exp

(
−
u

γ

)
, u > 0 (27)

where µ = E(U) = γ > 0. We have also Var(U) = a+2 γ
2 = γ2 and E [(U − E(U))3] =

a+3 γ
3 = 2γ3 > 0. The density of W is, see e.g. Kumbhakar and Lovell (2000, p.80),

g+(w) =
1

γ
exp

(
w

γ
+

σ2
v

2γ2

)
Φ

(
−
w

σv
−

σv

γ

)

=
1

γ

Φ(−Cw)

φ(−Cw)
φ
( w

σv

)
, (28)

where Cw = w/σv + σv/γ and where the latter expression is introduced to facilitate the

analysis below.

As explained above we extend this to allow a density with negative skewness (γ < 0),

in which case U has an exponential distribution mirrored at zero, shifted to the right by

B = a0|γ|, where a0 > 0 is selected such that the density has the same positive mean as

the corresponding original exponential distribution, µ = |γ| > 0. We have

h−(u) =
e−a0

γ(e−a0 − 1)
exp

(
−
u

γ

)
, 0 < u < a0|γ|. (29)

The expectation of the latter distribution is simply

E[U ] = k−
1 |γ|, where k−

1 =
ea0(a0 − 1) + 1

ea0 − 1
> 0,

and a0 has to be chosen such that k−
1 = 1. The non-trivial solution of this equation is

a0 = 1.59362426. The moments of the density h− are easy to compute, and we have

Var(U) = a−2 γ
2 (30)

E[(U − µ)3)] = a−3 γ
3 < 0, (31)
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where the constants5 are given by

a−2 = k−
2 − 1 = (−a20 + 2a0 − 2 + 2e−a0)ea0/(1− e−a0) = 0.18724852 > 0

a−3 = −(k−
3 − 3k−

2 + 2k−
1 ) = (a30 − 3a20 + 6a0 − 6 + 6e−a0)ea0/(1− e−a0) = 0.044214556 > 0.

(32)

For the density of W when γ < 0, we have

g−(w) =
e−a0

γ(e−a0 − 1)

Φ(−Cw)− Φ(−Cw + a0γ/σv)

φ(−Cw)
φ
( w

σv

)
, (33)

where as above Cw = w/σv + σv/γ, but here γ < 0. Note that this corresponds to

a reflection around its center of the truncated exponential distribution in Table 1 of

Almanidis et al. (2014). Hence, ε is replaced by −w − B = −w + a0γ and σu by −γ.

As above, the density for W will be obtained by combining these results and defining

g(w; γ) = g+(w)I(γ > 0) + g−(w)I(γ < 0) +
1

σv

φ
( w

σv

)
I(γ = 0). (34)

These densities are displayed in Figure 4 for two values of γ and in Figure 5 as a function

of γ in the range [−2,+2]. These pictures are qualitatively very similar to the half normal

case of the preceding section.

Finally, a predictor of the technical efficiencies for a given value of W when γ < 0 can

be calculated numerically as in (25) with the conditional density given by6

f−(u|w) =
1

σv
φ

(
u

σv
+ Cw

)[
Φ

(
Cw −

a0γ

σv

)
− Φ (Cw)

]−1

I(u ∈ [0, a0|γ|]). (35)

3 Statistical Properties

3.1 Least-squares estimators

Since it is easy to derive the moments of W we can define the MOLS estimators of the

parameters θ = (α0, α
T , σv, γ)

T in both our extended models. These are obtained from

the OLS residuals having variance µ̂2,n and third moment µ̂3,n whatever being the sign of

the latter.

5These constants can also be recovered from the formulae in Table 2, 3rd row, in Almanidis et al.

(2014) with the appropriate changes.
6When γ > 0 the formulae are given e.g. in Kumbhakar and Lovell (2000). For γ < 0 the density can

be recovered from Almanidis et al. (2014, Table 1) when realizing that u has to replaced by B − u, with

B = −a0γ.
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Figure 4: Normal-Exponential case: Density g(w) for γ = 2.5 (solid line) and γ = −2.5

(dash-dotted line), with σv = 0.5. Both densities have the same mean −µ = −|γ|.
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Figure 5: Normal-Exponential case: Density g(w) as a function of γ ∈ [−2,+2]. Here

again σv = 0.5.
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Table 1: Constants for the central moments of U according the sign of γ.

a+2 a−2 a+3 a−3

norm-halfnormal (π − 2)/π 0.14471441
√

2/π
(
(4− π)/π

)
0.016741474

norm-exponential 1 0.18724852 2 0.044214556

Indeed we have Var(U) = a2γ
2 and E

[
(U − E(U))3

]
= a3γ

3 where a2 and a3 have a

different value according to the sign of γ. For the two particular models detailed in the

preceding section the values are summarized in Table 1. This allows to define the MOLS

estimators as follows:

if µ̂3,n < 0, γ̂ =

[
−

1

a+3
µ̂3,n

]1/3
> 0, and σ̂2

v = µ̂2,n − a+2 γ̂
2, (36)

if µ̂3,n > 0, γ̂ = −

[
1

a−3
µ̂3,n

]1/3
< 0, and σ̂2

v = µ̂2,n − a−2 γ̂
2. (37)

The other parameters are estimated as usual, α̂ is directly given by the OLS, and α̂0 =

α̂0,OLS+k1 |γ̂|, where k1 =
√
2/π for the half normal model and k1 = 1 for the exponential

case. As already noticed in the related literature (see e.g. Almanidis and Sickles 2011,

Almanidis et al. 2014), this provides a consistent estimator of the parameter vector θ.

3.2 Maximum likelihood estimators

In the extended models, the log-likelihood function for a sample (Xi, Yi), i = 1, . . . , n is

given by

logL(θ) =
n∑

i=1

[
log g+(wi; θ)I(γ > 0) + log g−(wi; θ)I(γ < 0) + log g0(wi; θ)I(γ = 0)

]
,

(38)

where g0(wi; θ) = (1/σv)φ
(
wi/σv

)
is the density in the case of full efficiency (only noise).

The two sub-models defining our model are “regular” models (meaning, in particular,

differentiability of the likelihood) as long as either γ > 0 or γ < 0, see e.g. Aigner et al.

(1977), Almanidis and Sickles (2011), Almanidis et al. (2014). Thus, our model is regular

for any γ 6= 0. The same is obviously true in the limiting case of γ = 0, in which case we

have a standard regression model. The asymptotic properties of θ̂ = argmaxθ logL(θ),

the MLE of θ, will depend on the value of γ ∈ R. Obviously, when γ 6= 0, we have the

13



usual asymptotic properties of the MLE coming from one of the two regular sub-models.

However, in the degenerate case γ = 0, we know (see Lee 1993) that the situation is more

complex and depends on the sign of γ̂. We now analyze the behavior of the likelihood as

a function of γ near γ = 0. We show that the likelihood function in (38) is continuous at

γ = 0, but that it is not continuously differentiable at this point.

Theorem 1 For the extended normal-half-normal and for the normal-exponential models

we have for all values of the other parameters ξ = (α0, α
T , σv)

T and for all w,

lim
γ→0+

g(w; θ) = lim
γ→0−

g(w; θ) =
1

σv

φ

(
w

σv

)
. (39)

The left and right derivatives of log g at γ = 0 are given by

lim
γ→0+

∂ log g(w; θ)

∂γ
= −k1

w

σ2
v

(40)

lim
γ→0−

∂ log g(w; θ)

∂γ
= k1

w

σ2
v

, (41)

where k1 was defined above. It is the first moment of the basic underlying density of

the one-parameter scale family, with k1 =
√
2/π for the half-normal and k1 = 1 for the

exponential cases.

The proof is given in Appendix A. This result has immediate consequences for the likeli-

hood function. We have the following corollary.

Corollary 1 In the extended normal-half-normal and for the normal-exponential models,

the likelihood function is continuous at all values of θ and θ̂
p

−→ θ as n → ∞.

Proof. The continuity of the likelihood function derives from the regularity of the two

sub-models for γ > 0 and for γ < 0 and from the continuity at γ = 0 obtained in

Theorem 1. The consistency of the MLE estimator follows directly, see, e.g., Amemiya

(1985, Section 4.2.2).

For both the normal-half-normal and for the normal-exponential models it is easy to

derive the score function for each sub-model (by applying the formulae available in the

literature, see, e.g., Almanidis et al. 2014) and using the result obtained in Theorem 1

above. By doing so we will see that the information matrix at γ = 0 is singular and

that we are for each sub-model in the situation described in detail by Lee (1993). To

save space we only give the score in our extended normal-half-normal model with respect

to the vector β = (α0, α
T )T and to γ because, as pointed out by Lee, the singularity is

14



coming from the intercept of the model and the scale parameter of U (the score w.r.t. to

σv does not play any particular role). So we have when γ > 0 and denoting x̃i = (1, xT
i )

T :

∂ logL(θ)

∂β
=

n∑

i=1

wi

σ2
x̃i +

γ

σσv

n∑

i=1

ηi(θ)x̃i

∂ logL(θ)

∂γ
=

γ

σ2

n∑

i=1

(w2
i

σ2
− 1

)
−

σv

σ3

n∑

i=1

ηi(θ)wi

where η+i (θ) =
φ
(
− (wiγ)/(σσv)

)

Φ
(
− (wiγ)/(σσv)

) . Clearly, when γ → 0+ we have σ → σv and η+i (θ) →

φ(0)/Φ(0) = k1 and, denoting ξ = (α0, α
T , σv)

T , we obtain

∂ logL(ξ, 0)

∂β
=

n∑

i=1

wi

σ2
v

x̃i (42)

∂ logL(ξ, 0)

∂γ
= −

1

σ2
v

k1

n∑

i=1

wi. (43)

We see that
∂ logL(ξ, 0)

∂θ
S(ξ) = 0 where in our parametrization S(ξ) = (k1ℓ

T
1 , 0, 1)

T with

ℓ1 being the first column of the identity matrix of order p + 1. So we are in the same

situation as the one described by Lee (1993) (up to a different parametrization): we obtain

a singular information matrix in the sub-model where γ > 0 as γ → 0+.

We have a similar situation for the case γ < 0 where

∂ logL(θ)

∂β
=

n∑

i=1

wi − a0γ

σ2
x̃i +

γ

σσv

n∑

i=1

η−i (θ)x̃i

∂ logL(θ)

∂γ
=

nγ

σ2
+

1

σ4

n∑

i=1

[
σ2a0(wi + a0γ)− γ(wi + a0γ)

2
]

−
1

σ3

n∑

i=1

(wi + a0γ)σvη
−
i (θ)−

a0γ

σvσ

n∑

i=1

φ(Awi
)

Φ
(
Awi

+ a0σ/σv

)
− Φ

(
Awi

) ,

where η−i (θ) =
φ
(
Awi

+ a0σ/σv

)
− φ

(
Awi

)

Φ
(
Awi

+ a0σ/σv

)
− Φ

(
Awi

) with the notation Aw introduced in (23).

Again it is easy to check that as γ → 0−, Awi
→ 0, σ → σv, so we have

∂ logL(ξ, 0)

∂β
=

n∑

i=1

wi

σ2
v

x̃i (44)

∂ logL(ξ, 0)

∂γ
=

n∑

i=1

wi

σ2

[
a0 +

φ(a0)− φ(0)

Φ(a0)− Φ(0)

]
=

1

σ2
v

k1

n∑

i=1

wi. (45)
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where the last equality is due to our way of choosing the truncation point of the double

truncated normal. We have the same singularity issue for the information matrix as

described by Lee (1993). Here, the S-vector is defined as S(ξ) = (k1ℓ
T
1 , 0,−1)T .

By using some re-parametrization, Lee is able to transform the singular information

matrix into a nonsingular one. This allows to build the asymptotic distribution of the MLE

estimator when γ = 0 which is a mixture of two complicated conditional distributions

depending on the condition that the MLE of γ is positive or zero. However, Lee considers

only the traditional model with the half-normal U , so when γ = 0, the probability of

γ̂ > 0 is 1/2 and the same for the probability of γ̂ = 0. In our extended model we avoid

this and P(γ̂ = 0) = 0. In our case, we only have the asymptotic conditional distribution

obtained for the two sub-models when γ̂ > 0 corresponding to the model g+ and when

γ̂ < 0, corresponding to the model g−, each having a probability 1/2. As we will argue,

to derive a test for γ = 0 we do not need an explicit expression for the distribution under

γ = 0, but our previous results allow to determine the distribution of the Likelihood Ratio

(LR) test by adapting Lee’s results to our framework.

3.3 Testing symmetry of W

As a side result of the derivations in the last section, we can build a likelihood ratio test

for testing the symmetry of the error term W . This corresponds to the case where there is

no inefficiency and P (U = 0) = 1, so we only have noise in the model and W ∼ N(0, σ2
v).

In our approach this corresponds to the case γ = 0. Testing H0 : γ = 0 against the

alternative H1 : γ 6= 0 can be achieved with a likelihood ratio statistic that turns out to

follow a standard chi-square distribution with one degree of freedom. We avoid indeed

the difficulties described in Lee (1993) because in our extended model we are not testing

a boundary value of the parameter of interest.

Under the null (γ = 0) we have a reduced set of parameters ξ = (α0, α
T , σv)

T of a

regular standard regression model. Thus, under the null, the MLE of ξ is given by ξ̃

(which are the OLS estimators) and the LR test statistics can be written as

LR = 2(logL(θ̂)− logL(ξ̃, 0)). (46)

Conditioning on the two events γ̂ > 0 and γ̂ = 0, Lee (1993) shows that under the null

γ = 0, LR asymptotically has a mixture of chi-square distributions, (1/2)χ2
0 + (1/2)χ2

1,

i.e., a chi-square with zero degrees of freedom (a mass 1 at zero) and a chi-square with

one degree of freedom (the number of restrictions of the null). The degenerate part χ2
0 is
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Table 2: Size of the LR test for symmetry

α/n 50 100 200 500 1000 2000

0.1 0.2065 0.1324 0.113 0.1037 0.1015 0.0964

0.05 0.1522 0.0755 0.0607 0.0541 0.0529 0.0491

0.1 0.0975 0.0228 0.0131 0.0116 0.0107 0.0100

Note: Empirical size of the likelihood ratio test for symmetric errors. The data is gen-

erated from the model in (47) with σv = 1 and γ = 0. The number of Monte Carlo

replications is equal to 100,000.

coming from the conditional distribution if γ̂ = 0 (with probability 1/2). As pointed out

above, in our extended model, this probability is zero and the conditioning event is now

γ̂ < 0 where the other sub-model is used, leading to a corresponding χ2
1 with probability

1/2. Therefore we can conclude that under the null, the LR statistics has an asymptotic

χ2 distribution with one degree of freedom. As usual, we reject the null if LR is larger

than the critical value of this distribution depending on the level of the test.

Table 2 show the size properties for the test in small samples based on 100,000 Monte

Carlo replications. The data generating process is given by equation (47) below with

σv = 1 and γ = 0. Hence it is identical to the setup in our Monte Carlo simulations in

the next section. It can be seen that the test is oversized for small samples, for n = 200

or larger the asymptotic distribution is an appropriate approximation for the distribution

of the LR statistic.

4 A simulation study

In this section we present the results of a Monte Carlo study to compare the behavior of

our proposed model compared with the classical stochastic frontier model. We do this for

the normal-half normal and normal-exponential models. We are interested in how well the

models estimate the location of the production frontier and average technical efficiency

in small samples when it is likely to observe a sample that is characterized by the “wrong

skewness” problem. Our data generating process allows for two production factors and is

given by

Yi = α0 + α1 logX1i + α2 logX2i + Vi − Ui, i = 1, . . . , n, (47)
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where Vi ∼ N(0, σ2
v), Ui ∼ exp(γ) or Ui ∼ N+(0, γ) , logX1i ∼ N(1.5, 0.3) and logX2i ∼

N(1.8, 0.3). The true parameters are α0 = 0.9, α1 = 0.6, α2 = 0.5. We let γ take on the

values 0.3, 0.4, and 0.5 corresponding to varying degrees of average technical efficiency.

The standard deviation of the two-sided error σv is chosen as σv = 0.25 for the half-normal

and as σv = 0.5 for the exponential case. Different values were chosen to ensure that the

fraction of samples with positive skewness is similar in the two situations. We consider

the sample sizes n = 50, 100, 200. We report the average bias and mean-square-error

(MSE) for two parameters of interest. The first is the estimate of technical efficiency

defined as TE = E(exp(−U)) (true values obtained by simulation) and estimated as

n−1
∑n

i=1 Ê(exp(−Ui)|Wi). The second parameter of interest is the intercept α0 as this

represents the location of the frontier. We also report the fraction of samples having

positive skewness (column: “pos. skew.”). Results for “Standard” refer to the classical

(one-sided) stochastic frontier model and for “Extended” to our extended (two-sided)

version. The number of Monte Carlo replications is equal to 10,000.

The results are reported in Tables 3 to 6. For the specifications chosen the fraction of

samples with positive skewness ranges from 31% to 0.3%. The advantage of our approach

becomes apparent when looking at the bias for technical efficiency, which is always smaller

for the extended model, except for the half-normal case with n = 50 and γ = 0.3. This

can be explained by the fact that the classical model cannot handle positive skewness and

estimates technical efficiency to be equal to one in these cases. For the settings for which

the fraction of samples with positive skewness is close to zero, however, the two models

basically give identical estimates. The MSE here gives a very similar picture, although

for the exponential case there are several cases in which the MSE is actually smaller for

the standard model.

The intercept α0 is also estimated with a smaller bias for our model. This shows the

the problem of wrong skewness affects the estimation of the location of the frontier as

well and that this problem can again be mitigated using our extension. In terms of the

MSE both models are quite close to each other.

In the lower panels of Tables 3 and 6 we report the results only for samples that were

characterized by positive skewness. It can be seen that the extended model performs quite

well in terms of bias, whereas the classical model gives biased estimates for average tech-

nical efficiency, which for these samples is always estimated to be 1, and for the location

of the frontier. It should be noted that for both γ and n small TE is underestimated. This

is not unexpected, because in case of wrong skewness only few observations are allowed

to be close to the frontier by the construction of the model extension, see the lower panel
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Table 3: Bias normal-half normal model

bias TE bias α0

γ = 0.3 pos. skew. Standard Extended Standard Extended

n=50 0.3103 0.044 -0.051 -0.045 0.084

n=100 0.2256 0.039 -0.023 -0.041 0.037

n=200 0.1405 0.029 -0.005 -0.032 0.011

γ = 0.4

n=50 0.2083 0.047 -0.018 -0.048 0.042

n=100 0.1027 0.029 -0.001 -0.033 0.006

n=200 0.0349 0.016 0.007 -0.018 -0.007

γ = 0.5

n=50 0.1358 0.044 0.006 -0.049 0.007

n=100 0.0466 0.022 0.009 -0.028 -0.011

n=200 0.0056 0.008 0.006 -0.012 -0.010

γ = 0.3 Only pos. skewed samples

n=50 0.3103 0.201 -0.102 -0.241 0.173

n=100 0.2256 0.201 -0.071 -0.238 0.109

n=200 0.1405 0.201 -0.047 -0.243 0.066

γ = 0.4

n=50 0.2083 0.254 -0.054 -0.314 0.119

n=100 0.1027 0.254 -0.039 -0.319 0.067

n=200 0.0349 0.254 0.012 -0.317 -0.011

γ = 0.5

n=50 0.1358 0.301 0.017 -0.395 0.017

n=100 0.0466 0.301 0.034 -0.398 -0.035

n=200 0.0056 0.301 0.030 -0.398 -0.043

Note: Table 3 presents Monte Carlo estimates of the bias for the estimates of average

technical efficiency (TE) and the regression constant (α0) for the model given in (47) with

one-sided errors coming from a half-normal distribution. The column “Pos. skew” is the

fraction of samples that are characterized by the wrong skewness problem. The columns

labeled “Standard” refer to the classical stochastic frontier model, whereas “Extended”

refers to the model introduced in Section 2.1. The lower panel only considers those

samples characterized by positive skewness. The results are based on 10,000 Monte Carlo

replications.
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Table 4: MSE normal-half normal model

MSE TE MSE α0

γ = 0.3 Standard Extended Standard Extended

n=50 0.0163 0.0116 0.0679 0.0755

n=100 0.0119 0.0069 0.0373 0.0345

n=200 0.0074 0.0039 0.0208 0.017

γ = 0.4

n=50 0.0176 0.0092 0.0832 0.0846

n=100 0.0095 0.0049 0.0403 0.0359

n=200 0.0044 0.0027 0.0194 0.0175

γ = 0.5

n=50 0.017 0.0093 0.1011 0.1009

n=100 0.0074 0.0044 0.0435 0.0406

n=200 0.0022 0.0017 0.0191 0.0183

γ = 0.3 Only pos. skewed samples

n=50 0.0403 0.0251 0.0996 0.1244

n=100 0.0403 0.0185 0.075 0.0624

n=200 0.0403 0.0136 0.0673 0.039

µ = 0.4

n=50 0.0642 0.0235 0.1545 0.1606

n=100 0.0642 0.0195 0.1239 0.0813

n=200 0.0642 0.0181 0.1053 0.0535

µ = 0.5

n=50 0.0905 0.0323 0.2208 0.2194

n=100 0.0905 0.0279 0.1792 0.1168

n=200 0.0905 0.0183 0.1651 0.0543

Note: Table 4 presents Monte Carlo estimates of the mean-square-error for the estimates

of average technical efficiency (TE) and the regression constant (α0) for the model given

in (47) with one-sided errors coming from a half-normal distribution. The columns la-

beled “Standard” refer to the classical stochastic frontier model, whereas “Extended”

refers to the model introduced in Section 2.1. The lower panel only considers those sam-

ples characterized by positive skewness. The results are based on 10,000 Monte Carlo

replications.
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Table 5: Bias normal-exponential model

bias TE bias α0

γ = 0.3 pos. skew. Standard Extended Standard Extended

n=50 0.2903 0.063 -0.056 -0.080 0.111

n=100 0.2084 0.050 -0.028 -0.063 0.053

n=200 0.1087 0.033 -0.004 -0.039 0.012

γ = 0.4

n=50 0.1820 0.060 -0.006 -0.071 0.032

n=100 0.0825 0.035 0.011 -0.046 -0.011

n=200 0.0202 0.016 0.011 -0.023 -0.016

γ = 0.5

n=50 0.1124 0.049 0.014 -0.069 -0.016

n=100 0.0308 0.025 0.017 -0.034 -0.023

n=200 0.0031 0.009 0.009 -0.014 -0.013

γ = 0.3 Only pos. skewed samples

n=50 0.2903 0.231 -0.177 -0.298 0.359

n=100 0.2084 0.231 -0.144 -0.303 0.254

n=200 0.1087 0.231 -0.102 -0.285 0.187

γ = 0.4

n=50 0.1820 0.286 -0.074 -0.373 0.191

n=100 0.0825 0.286 -0.016 -0.399 0.029

n=200 0.0202 0.286 0.018 -0.403 -0.038

γ = 0.5

n=50 0.1124 0.333 0.018 -0.480 -0.003

n=100 0.0308 0.333 0.065 -0.470 -0.109

n=200 0.0031 0.333 0.072 -0.400 -0.040

Note: Table 5 presents Monte Carlo estimates of the bias for the estimates of average

technical efficiency (TE) and the regression constant (α0) for the model given in (47)

with one-sided errors coming from an exponential. The column “Pos. skew” is the

fraction of samples that are characterized by the wrong skewness problem. The columns

labeled “Standard” refer to the classical stochastic frontier model, whereas “Extended”

refers to the model introduced in Section 2.1. The lower panel only considers those

samples characterized by positive skewness. The results are based on 10,000 Monte Carlo

replications.
21



Table 6: MSE normal-exponential model

MSE TE MSE α0

γ = 0.3 Standard Extended Standard Extended

n=50 0.0253 0.0317 0.1846 0.2998

n=100 0.0155 0.0167 0.0950 0.1329

n=200 0.0093 0.0080 0.0489 0.0577

γ = 0.4

n=50 0.0279 0.0233 0.2118 0.2742

n=100 0.0124 0.0092 0.1044 0.1143

n=200 0.0049 0.0038 0.0487 0.0490

γ = 0.5

n=50 0.0260 0.0203 0.2339 0.2635

n=100 0.0087 0.0066 0.1093 0.1124

n=200 0.0024 0.0022 0.0498 0.0497

γ = 0.3 Only pos. skewed samples

n=50 0.0533 0.0752 0.2216 0.613

n=100 0.0533 0.0594 0.1521 0.3438

n=200 0.0533 0.0414 0.1123 0.1929

γ = 0.4

n=50 0.0816 0.0568 0.3119 0.6456

n=100 0.0816 0.0440 0.2279 0.3459

n=200 0.0816 0.0317 0.1761 0.1875

γ = 0.5

n=50 0.1111 0.0552 0.4023 0.6969

n=100 0.1111 0.0467 0.3386 0.4329

n=200 0.1111 0.0426 0.2911 0.2560

Note: Table 6 presents Monte Carlo estimates of the mean-square-error for the estimates

of average technical efficiency (TE) and the regression constant (α0) for the model given

in (47) with one-sided errors coming from an exponential distribution. The columns

labeled “Standard” refer to the classical stochastic frontier model, whereas “Extended”

refers to the model introduced in Section 2.1. The lower panel only considers those

samples characterized by positive skewness. The results are based on 10,000 Monte Carlo

replications.
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of Figure 1. This makes it more remarkable that for larger γ and n this bias is small

when considering only the samples characterized by the “‘wrong skewness”. In terms of

the MSE the extended model certainly performs better for estimating technical efficiency.

The MSE for estimating a0 is smaller when using the extended model in the normal-half

normal case, but mostly larger in the normal-exponential case.

The bias for the remaining parameters are not reported. Nevertheless, we mention

that the slope coefficients α1 and α2 are estimated without bias for both models. The

bias in γ is larger for the extended model, which can be expected due to the fact that it is

allowed to take on negative values whenever the wrong skewness problem arises. Finally,

the bias for σv is roughly the same for the two models.

5 Application

We illustrate the advantages of our model for estimating technical efficiency using data

from the NBER manufacturing productivity database (Bartelsman and Gray 1996). This

database contains annual information on US manufacturing industries and contains data

since 1958. Output is measured as total value added and as input factors we use total

employment, cost of materials, energy cost and capital stock. In particular, we consider

54 sub-sectors from the textile industry over the years 1958-2005. We proceed by consec-

utively estimating the model on the cross-sectional data for each year. As a starting point

the model is estimated by OLS to analyze the signs of the skewness of the residuals. It

turns out that for a large number of years the OLS residuals have positive skewness. Thus,

relying solely on the classical stochastic frontier model with exponential or half-normal

inefficiencies one would not find any inefficiencies for the corresponding years. This seems

highly unreasonable and our extended model is considered to be able to estimate technical

efficiency in such cases.

We consider the models with exponential and half-normal distribution for the ineffi-

ciency terms. For each year we estimate the classical stochastic frontier model and our

extended model. For 18 out of the 48 years µ̂3,n is positive, in which case the classical

model estimates the absence of technical inefficiency for all industries. Detailed estima-

tion results are not reported, but are available from the authors upon request. Based on

the estimated models we compute the average technical efficiency for each year. Figures

6 and 7 show plots of the estimated technical efficiencies over time for the exponential

and half-normal model, respectively. In both cases the results for the years characterized
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Figure 6: Technical efficiency estimated by the normal-exponential

stochastic frontier model (solid line) and our extended model (dashed

line) for the years 1958-2005.

by “wrong skewness” are much more reasonable for the extended models. However, it is

striking that the estimates of technical efficiencies in these years are quite small. This is

likely caused by the fact that under the wrong skewness less firms are allowed near the

frontier, resulting in a potential underestimation of technical efficiency7.

There are two possible explanations for our findings. The first is that the classical

stochastic frontier model is indeed a reasonable approximation for the data generating

process, but that by chance we observe the “wrong skewness” in a number of years. This

is likely to happen for samples of such a small size. The second explanation is more of

economic nature. Changes in the industry due to competition from abroad and changes

in technology may have led to an adaptation of firms. Periods with wrong skewness may

represent times when some firms have already adapted, whereas others are still in the

process of adapting to the new conditions. In this case the large number of firms still

adopting may have inefficiencies quite far below the frontier.

7We would like to thank an anonymous referee for pointing this out.
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Figure 7: Technical efficiency estimated by the normal-half normal

stochastic frontier model (solid line) and our extended model (dashed

line) for the years 1958-2005.

6 Conclusions

In traditional SFA models, the “wrong skewness” problem is not a small issue because

first, it plagues the estimation of the inefficiencies and second because researchers will

often be tempted to change their model until they will observe the expected skewness.

Classical inference assumes that the model specification is chosen independently of any

estimates that are obtained. Specification-searching introduces problems of bias in both

parameter estimates as well as variance-covariance estimates and we know from various

simulation studies that the wrong skewness may appear even when the model is correctly

specified.

Previous approaches to handle this issue involve the choice of densities for the efficien-

cies that are bounded below (by zero) and above. These approaches have their own merits

but also some drawbacks. They restrict a priori the admissible range for the efficiency,

which is rather unusual in this literature and these models do not nest the traditional

SFA models.

Our approach extends the SFAmodel, allowing to disentangle inefficiency and skewness

and nesting, as a particular case, the traditional SFA model. The statistical properties
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of our model include continuity of the log-likelihood for any value of the scale parameter

of the inefficiency distribution, in particular also at zero. As a consequence the MLE is

consistent for any parameter value and standard likelihood ratio tests can be applied to

test for the presence of inefficiencies. Future research may compare this test to alterna-

tive tests in the literature, see, e.g., Ahmad and Li (1997) or Kuosmanen and Fosgerau

(2009). Our Monte-Carlo experiments show that the extended model performs favorably

for estimating the technical efficiencies than the traditional SFA model, as it provides

reasonable estimates of firm efficiencies in the presence of “wrong skewness”. Therefore

the model we propose enriches the toolbox of the researcher for investigating efficiency

analysis with parametric SFA models.

A Appendix: Proof of Theorem 1

A.1 The Normal-Halfnormal Case

The analytical derivations in this case are rather straightforward. When γ > 0 our model

of W is

g+(w) =
2

σ
φ
(w
σ

)
Φ

(
−w

σ

γ

σv

)

where σ2 = γ2 + σ2
v . For the case γ < 0, the density of W is

g−(w) =
1

σ(Φ(a0)− Φ(0))
φ

(
w − a0γ

σ

)[
Φ

(
Aw +

a0σ

σv

)
− Φ(Aw)

]
,

where Aw = w−a0γ
σ

γ
σv

. It is very easy to check that, limγ→0+ g+(w) = limγ→0− g(w) =

(1/σv)φ(w/σv). So defining the density g(w) at γ = 0 as this common normal limiting

distribution, the continuity of g(w) at γ = 0 follows.

Concerning the score in γ of the two sub-models, the partial derivatives of the log(g)

for the two sub-models can be computed directly. Careful derivations lead to

∂ log g+(w)

∂γ
= −

γ

σ2
+

γw2

σ4
−

wσv

σ3

φ
(
− (wγ)/(σσv)

)

Φ
(
− (wγ)/(σσv)

) ;

∂ log g−(w))

∂γ
=

γ

σ2
+

[
σ2a0(w + a0γ)− γ(w + a0γ)

2
]

σ4

−
1

σ3
(w + a0γ)σvη

−(θ)−
a0γ

σvσ

φ(Aw)

Φ
(
Aw + a0σ/σv

)
− Φ

(
Aw

) ,
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where η−(θ) =
φ
(
Aw + a0σ/σv

)
− φ

(
Aw

)

Φ
(
Aw + a0σ/σv

)
− Φ

(
Aw

) . Then it is easy to see that

lim
γ→0+

∂ log g+(w)

∂γ
= − lim

γ→0−

∂ log g−(w)

∂γ
= −

w

σ2
v

φ(0)

Φ(0)
,

where the last equality comes from the definition of a0 below equation (17) for the two

densities of U having the same mean. This completes the proof.

A.2 The Normal-Exponential Case

The analytical derivations for the Normal-Exponential case are more tedious due to the

presence of several indeterminacy involving the use of the L’Hospital rule. We have for

γ > 0 and γ < 0, respectively,

g+(w) =
1

γ

Φ(−Cw)

φ(−Cw)
φ
( w

σv

)
,

g−(w) =
e−a0

γ(e−a0 − 1)

Φ(−Cw)− Φ(−Cw + a0γ/σv)

φ(−Cw)
φ
( w

σv

)
,

where Cw = w/σv + σv/γ. It can be seen that lim
γ→0+

g+(w) = φ(w/σv) lim
γ→0+

Φ(−Cw)/γ

φ(−Cw)
.

By the L’Hospital rule the latter limit converges to 1/σv, so we have

lim
γ→0+

g+(w) = (1/σv)φ(w/σv).

Similarly it can be found that lim
γ→0−

g−(w) = c0φ(w/σv) lim
γ→0−

Φ(−Cw)− Φ(−Cw + a0γ/σv)

γφ(−Cw)
.

Again by L’Hospital’s rule and after some analytical derivations, the latter limit can be

shown to converge to (1− ea0)/σv = (e−a0 − 1)/(e−a0σv). Thus we again have

lim
γ→0−

g−(w) = (1/σv)φ(w/σv),

which proves the continuity of g(w) defined in (34) w.r.t. γ, even at γ = 0 by defining

g(w; γ = 0) = g0(w) = (1/σv)φ(w/σv).

For the score function w.r.t. γ the easiest way to organize the calculations is to start

with the densities. For γ > 0 we have the right derivative

∂g+(w; γ)

∂γ

∣∣∣∣
0+

= lim
γ→0+

g+(w; γ)− g0(w)

γ
.
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Simple calculations lead to

∂g+(w; γ)

∂γ

∣∣∣∣
0+

= φ(w/σv) lim
γ→0+

(1/γ)Φ(−Cw)− (1/σv)φ(−CW )

γφ(−Cw)
.

L’Hospital’s rule and the fact that the Mill’s ratio Φ(−Cw)/φ(−Cw) → 0 when γ → 0+,

give for the latter limit (and after some careful calculations) the value −w/σ3
v . So we have

∂g+(w; γ)

∂γ

∣∣∣∣
0+

= −
w

σ3
v

φ
( w

σv

)
.

When γ < 0 we have for the left derivative at zero by similar but more tedious

derivations that we summarize below:

∂g−(w; γ)

∂γ

∣∣∣∣
0−

= lim
γ→0−

g(w; γ)− g0(w)

γ
.

This can easily be transform in

∂g−(w; γ)

∂γ

∣∣∣∣
0−

= φ(w/σv) lim
γ→0−

(c0/γ) [Φ(−Cw)− Φ(−Cw + a0γ/σv)]− (1/σv)φ(−CW )

γφ(−Cw)
,

where c0 = e−a0/(e−a0 − 1). This latter limit can be handled with L’Hospital’s rule

leading to the value −
w

σ3

[
a0

e−a0 − 1
+ 1

]
. Now by the definition of a0 in (29) we see that

a0 + 2(e−a0 − 1) = 0, so
a0

e−a0 − 1
= −2. Finally, for γ < 0 we have the left derivative

∂g−(w; γ)

∂γ

∣∣∣∣
0−

= +
w

σ3
v

φ
( w

σv

)
.

For getting the scores derived in Theorem 1, we just divide these derivatives by g0(w) =

(1/σv)φ(w/σv) and this completes the proof.
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