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Non-technical summary 

Research Question 

Since the 2007-08 financial crisis, the literature pays increasing attention to the cyclical 
behavior of financial markets. Especially at the Bank of International Settlements (BIS) and 
the International Monetary Fund (IMF) a considerable amount of recent research is devoted 
to the financial cycle. A key aspect in the current literature is to measure duration and 
amplitude of fluctuations in financial variables. Studies usually find that, compared to the 
business cycle, the duration and amplitude have increased considerably, particularly since 
1985. The most common empirical approaches are the analysis of turning points and band-
pass filters. While the analysis of turning points requires a pre-specified rule to identify 
minima and maxima, band-pass filters require to pre-specify the frequency range where the 
financial cycle is assumed to operate. For these reasons, both approaches are quite 
descriptive and testing existing hypotheses on the financial cycle is not possible. 

 

Contribution 

The main objective of the current paper is to establish the empirical regularities of the 
financial cycle on the basis of straightforward time series econometric methods. In 
particular, our contribution is twofold. First, we provide a complete characterization of the 
properties of the financial cycle in the frequency domain. To this end, we estimate univariate 
time series models for the usual financial variables and use the estimated models to 
compute their corresponding frequency domain representations. Compared to frequency-
based filter methods and the turning point analysis, our approach has the advantage that no 
a priori assumption on the cycle length is needed. Moreover, also very long cycles can be 
detected, even if the sample period is limited. Second, a distinguishing feature of our 
estimation approach is that it allows us to test existing hypotheses on various characteristics 
of the financial cycle by statistical means. In this respect, we address the following 
questions: At what frequency does the financial cycle mostly operate? Does the financial 
cycle indeed have a longer duration, as well as a larger amplitude than the classical business 
cycle? Have the characteristics of the financial cycle changed over time?  

 

Results 

Our main results are as follows. We find that the typical duration of the financial cycle has 
increased in recent times in the United States and the United Kingdom, currently being 
about 15 years. Also, compared to the business cycle in these countries, we find strong 
statistical evidence in support of a longer duration and a larger amplitude of the financial 
cycle. In the case of Germany – the third representative country we analyze in this paper – 
distinct characteristics of the financial cycle are, if at all, much less visible. 



Nichttechnische Zusammenfassung 

Fragestellung 

Seit der Finanzkrise 2007-08 gibt es in der Literatur ein erhöhtes Interesse am zyklischen 
Verhalten von Finanzmärkten. Insbesondere beschäftigen sich Forschergruppen an der Bank 
für Internationalen Zahlungsausgleich (BIZ) und am Internationalen Währungsfonds (IWF) 
mit dem sogenannten Finanziellen Zyklus. Ein Kernaspekt in der aktuellen Literatur ist die 
Bestimmung der Dauer und der Intensität von Schwingungen in Finanzmarktvariablen. 
Häufig zeigt sich in den Analysen, dass Länge und Stärke der Zyklen in Relation zum 
Konjunkturzyklus, insbesondere seit 1985, deutlich zugenommen haben. Dabei benutzen die 
vorliegenden Arbeiten hauptsächlich die zur Bestimmung von Konjunkturzyklen entwickelten 
Wendepunktanalysen und Bandpassfilter. Während Wendepunktanalysen ein a priori 
festgelegtes Abzählkriterium zur Bestimmung von Minima und Maxima voraussetzen, muss 
bei der Anwendung von Bandpassfiltern a priori die für den Finanziellen Zyklus vermeintlich 
relevante Frequenz angegeben werden. Aus diesen Gründen sind die Methoden 
weitestgehend deskriptiv und erlauben es nicht, die bestehenden Hypothesen bezüglich der 
Eigenschaften des Finanziellen Zyklus zu testen.   

 

Beitrag 

Das Ziel des vorliegenden Papiers ist es, unter Verwendung zeitreihenökonometrischer 
Methoden, die Eigenschaften des Finanziellen Zyklus empirisch fundiert aufzuzeigen. Unser 
Beitrag zur Literatur bietet erstens eine vollständige Charakterisierung des Finanziellen 
Zyklus im Frequenzbereich. Dazu schätzen wir zunächst univariate Zeitreihenmodelle für die 
in der Literatur gängigen finanziellen Variablen, um dann deren Darstellung im 
Frequenzbereich analytisch zu bestimmen. Im Vergleich zu den Wendepunktanalysen und 
Bandpassfiltern hat unser Ansatz den Vorteil, dass wir keine Annahmen über die Länge des 
Finanziellen Zyklus treffen müssen. Außerdem ist es uns möglich, auch sehr lange Zyklen 
nachzuweisen, selbst wenn der Untersuchungszeitraum begrenzt ist. Zweitens ist es ein 
zentrales Unterscheidungsmerkmal unseres Ansatzes, dass wir bestehende Hypothesen über 
die Eigenschaften des Finanziellen Zyklus mittels formaler Tests statistisch überprüfen 
können. Diesbezüglich gehen wir folgenden Fragen nach: Was ist die typische Dauer des 
Finanziellen Zyklus? Weist der Finanzielle Zyklus tatsächlich längere und stärker ausgeprägte 
Schwingungen auf als der Konjunkturzyklus?  Haben sich die Eigenschaften des finanziellen 
Zyklus über die Zeit geändert?  

 

Ergebnisse 

Wir kommen zu den folgenden Hauptergebnissen. Die Länge des finanziellen Zyklus in den 
USA und in Großbritannien ist in jüngerer Zeit auf etwa 15 Jahre angestiegen. Im Vergleich 
zum Konjunkturzyklus in diesen Ländern zeigen unsere Ergebnisse eindeutig, dass der 
Finanzielle Zyklus signifikant länger und stärker ausgeprägt ist. In Deutschland, dem dritten 
Land in der vorliegenden Untersuchung, sind die typischen Eigenschaften des Finanziellen 
Zyklus, wenn überhaupt vorhanden, sehr viel weniger deutlich.    
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1 Introduction

Fluctuations in financial markets play a key role in the macroeconomic dynamics of modern

economies, often leading to either significant economic booms or severe economic crises, see

e.g. Kindleberger and Aliber (2005) and Schularick and Taylor (2012). The last twenty years

provide several examples, from Japan’s lost decade following the asset market crash in the

early 1990s to the 2007-08 global financial crisis which led the world economy to the brink

of a new Great Depression. Against this background, a renewed interest in financial market

dynamics is emerging. A growing body of literature argues that the cyclical behavior of

financial aggregates may be understood not only as a pure reflection of the real side of the

economy, but also as the result of underlying changes in the general perception and attitudes

towards financial and macroeconomic risk (see Caballero, 2010 for a survey).

The distinctive feature of the financial cycle, as put forward in recent studies, is that

its duration and amplitude are considerably longer and larger than those of the classical

business cycle (e.g. Claessens et al., 2011). Borio (2014) suggests that the financial cycle

operates at lower, medium-term frequencies, with a cycle length between eight and thirty

years. This extended length of the financial cycle is often considered to reflect the build-

up of macro-financial instability, most recently contributing to the 2007-08 financial crisis.

Despite its crucial importance for macroeconomic developments, however, it is not clear how

the financial cycle should be empirically analyzed.

Most of the existing insights into the characteristics of the financial cycle are based on

either the analysis of turning points (e.g. Claessens et al., 2011, 2012) or frequency-based

filter methods (e.g. Drehmann et al., 2012). The turning point approach requires a pre-

specified rule which is applied to an observed time series in order to find local maxima and

minima. Frequency-based filter methods require a pre-specified frequency range at which the

financial cycle is assumed to operate. Therefore, both approaches are quite descriptive and

do not allow to test the hypothesized characteristics of the financial cycle. Indeed, while

there is a broad consensus concerning the fundamental characteristics of the business cycle

(see Diebold and Rudebusch, 1996 for a survey), this is not yet true for the financial cycle.
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The main objective of the current paper is to establish the empirical regularities of the

financial cycle on the basis of straightforward time series econometric methods. In particular,

our contribution is twofold. First, we provide a complete characterization of the properties

of the financial cycle in the frequency domain. To this end, we exploit the fact that any

covariance-stationary stochastic processes can be equivalently represented in the time and in

the frequency domain. More specifically, we estimate time series models of the autoregressive

moving average (ARMA) class for standard financial cycle indicators and use the estimated

models to compute their corresponding frequency domain representations. Compared to

frequency-based filter methods (e.g. Baxter and King, 1999) and the turning point analysis

(Bry and Boschan, 1971, Harding and Pagan, 2002), our approach has the advantage that

no a priori assumption on the cycle length is needed. Moreover, also very long cycles can be

detected, even if the sample period is limited.

Second, a distinguishing feature of our estimation approach is that it allows us to test

existing hypotheses on various characteristics of the financial cycle by statistical means.

Based on the computed spectral densities and their bootstrap standard errors, we address

the following questions: At what frequency does the financial cycle mostly operate? Does the

financial cycle indeed have a longer duration, as well as a larger amplitude than the classical

business cycle? Have the characteristics of the financial cycle changed over time?

Our main results are as follows. We find that the typical duration of the financial cycle

has increased in recent times in the United States and the United Kingdom, currently being

about 15 years. Also, compared to the business cycle in these countries, we find strong

statistical evidence in support of a longer duration and a larger amplitude of the financial

cycle. In the case of Germany – the third representative country we analyze in this paper –

distinct characteristics of the financial cycle are, if at all, much less visible.

The remainder of this paper is organized as follows. Section 2 motivates and discusses our

methodology in detail. Section 3 contains our empirical results on the financial cycle in the

US, the UK, and Germany. Finally, we draw some concluding remarks in Section 4.
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2 Methodology

2.1 Existing Approaches: Analysis of Turning Points and Frequency-Based Fil-

ters

The first important empirical approach to assess the financial cycle is the traditional turning

point analysis. The method goes back to Bry and Boschan (1971) and is adapted to quarterly

data by Harding and Pagan (2002). While originally used to analyze business cycles, recent

studies of Claessens et al. (2011, 2012) and Drehmann et al. (2012) adopted it to investigate

financial cycles. The turning point analysis requires a pre-specified rule which defines a

complete cycle in terms of the minimum number of periods of increases (expansion phase) and

decreases (recession phase). Therefore, this method is descriptive in nature and hypotheses

testing is not possible.

The second prominent approach is to work with frequency-based filters (Drehmann et al.,

2012) which are usually based on Baxter and King (1999) or refinements thereof, see e.g.

Christiano and Fitzgerald (2003). When filters are used to analyze cycles, a crucial point is

that the frequency range has to be pre-specified by the researcher. This may lead to results

biased into the direction of the pre-defined range. The intuition behind this difficulty is best

described by briefly discussing the general functioning of filters.

In the time domain, any linear filter can be written in the form of a two-sided moving

average

yt =
n∑

j=−m

ajxt−j . (1)

The filtered series yt depends simultaneously on the properties of the filter (the coefficients

aj) and the data (the observed series xt). To convert equation (1) into the frequency domain,

one uses the corresponding filter function

C(λ) =
n∑

j=−m

aje
−iλj , i2 = −1 , (2)
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and its transfer function

T (λ) = |C(λ)|2 , (3)

where λ ∈ [−π, π] denotes the frequency range, see e.g. Wolters (1980a, 1980b). The

relationship between the spectra of the original and the filtered series is given by

fy(λ) = T (λ)fx(λ). (4)

When compared to the time domain, a major advantage of the representation in (4) is that

now the filter effect T (λ) is separated from the data fx(λ). For the spectrum of the filtered

series fy(λ) to accurately identify cycles in the spectrum of the observed series fx(λ), a

so-called band pass filter is used. Such a filter has the value 1 at the frequency range of

interest [λlow, λhigh] and 0 otherwise. In view of equation (4), this implies fy(λ) = fx(λ) for

λ ∈ [λlow, λhigh] and fy(λ) = 0 for λ /∈ [λlow, λhigh]. Theoretically, the ideal time domain

filter can be achieved by moving averages of infinite order. Yet, in practice, this is not possible

since only a limited number of observations is available.

The main idea of frequency-based filters is to pre-specify a range from λlow to λhigh and

to choose finite values for m and n in equation (1) to find the weights aj which approximate

the ideal filter as good as possible. Due to the approximation, the spectrum of the filtered

series is in general different from the one of the observed series in [λlow, λhigh] and reflects a

mixture of filter and data properties in the form of T (λ)fx(λ). More precisely, it can be shown

that any filter has the tendency to overstate the contributions of cycles in the pre-defined

frequency range [λlow, λhigh] to the overall variance of the underlying time series. Because of

this tendency, artificial cycles may be produced even if the true data generating process has

no cycles.1

In this study, we emphasize that the appropriate λlow and λhigh are unknown. Indeed,

while there seems to be general consensus in the literature about the relevant frequency range

for the business cycle (2 to 8 years), the relevant frequency range for the financial cycle is

1This issue has been raised already in the 1950’s and 1960’s. For a discussion of the general problem see
e.g. König and Wolters (1972), Baxter and King (1999), Christiano and Fitzgerald (2003) and Murray (2003).
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less clear. For instance, Drehmann et al. (2012) construct their financial cycle measure from

the underlying series with a priori chosen cycle length between 8 and 30 years.

2.2 An Alternative Approach: Indirect Estimation of Spectral Densities

This paper proposes a simple method to characterize cycles in the frequency domain. Instead

of focusing on certain frequency ranges, we analyze the complete spectrum which provides

information of all possible cycles from periods of two units to infinity. Hence, our approach

seeks to use statistical methods to exploit all the information included in the data.

It is known that any covariance-stationary process has a time domain and a frequency

domain representation which are fully equivalent.2 However, when compared with the time

domain representation, the frequency domain representation is more suited to the analysis

of cyclical features, as the importance of certain cycles for the total variation of the process

can be easily derived from the spectrum.3 This is possible because the spectrum represents

an orthogonal decomposition of the variance of the process.

The starting point of the indirect spectrum estimation is to specify the DGP of the un-

derlying time series as an ARMA model:

A(L)xt = δ + B(L)ut , ut ∼ WN(0, σ2) . (5)

In equation (5), A(L) and B(L) denote polynomials in the lag operator L of order p and q,

respectively. For stable processes, the MA(∞) representation has the form

xt − µ =
B(L)

A(L)
ut , µ =

δ

A(1)
. (6)

Equation (6) shows that an ARMA representation can be interpreted as an estimated filter

that transforms the white noise process ut into the observed time series xt. This filter is

of infinite length but depends only on a finite number of parameters. The ARMA model is

2This was first discussed in Wiener (1930) and Khintchine (1934).
3Technically, the spectrum is the Fourier transformation of the autocovariance function.
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in fact a filter which captures the whole dynamics of the observed process xt in form of its

complete spectrum from −π to π. In direct analogy to equation (4) it holds that

fx(λ) =
|B(e−iλ)|2

|A(e−iλ)|2
fu(λ) , (7)

where |B(e−iλ)|2/|A(e−iλ)|2 = T (λ) and fu(λ) = σ2

2π
as the spectrum of the white noise

process. Equation (7) represents the indirect spectrum estimation and allows us to derive the

cyclical properties of xt.
4

From fx(λ) we can identify, without any a priori assumptions, which frequency range is

most relevant for the dynamics of the time series under consideration in terms of its variance

contribution. The spectrum will exhibit a peak at a given frequency if cyclical variations

occurring around that frequency are particularly important for the overall variation of the

process. Also, if spectral mass is more concentrated in a given range around the peak, the

corresponding cycle will show a larger amplitude causing more regular process fluctuations

in the time domain. Normalizing the spectrum by the process variance5, one obtains the

spectral density which provides the relative contributions of particular frequencies to the

total variance of the process.

To statistically assess the characteristics of the financial cycle across variables and different

sample periods, the inference in the empirical part will be based on bootstrap methods.6 We

apply the following bootstrap procedure, see e.g. Benkwitz et al. (2001).

1. Estimate the parameters of the ARMA model in equation (5).

2. Generate bootstrap residuals u∗
1, . . . , u∗

T by randomly drawing with replacement from

the set of estimated residuals.

3. Construct a bootstrap time series recursively using the estimated parameters from step

1 and the bootstrap residuals from step 2.

4This is a valid approach, as “If the model is correctly specified, the maximum likelihood estimates [of the
ARMA(p,q) model] will get closer and closer to the true values as the sample size grows; hence, the resulting
estimate of the population spectrum should have this same property” (Hamilton, 1994, p.167).

5The process variance is calculated by numerically integrating the spectrum.
6To the best of our knowledge, analytical expressions for such standard errors are not available.
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4. Reestimate the parameters from the data generated in step 3.

5. Repeat step 2 to step 4 5000 times.

6. From the bootstrap distributions of the statistics of interest, e.g., cycle length, am-

plitude etc., we compute the standard errors and the corresponding 95% confidence

intervals.

An obvious alternative to the indirect parametric estimation would be the direct non-

parametric estimation of the spectrum, see e.g. Fishman (1969).7 In order to get consistent

estimates, however, one has to use a kernel estimator. Such estimates depend heavily on the

chosen kernel and its bandwidth parameter M , implying that a large amount of observations

is required to have the necessary degrees of freedom. For instance, if we estimate the spectrum

from T observations by transforming the first M estimated autocovariances, we have C · T
M

degrees of freedom. The constant C is kernel-specific and usually takes on values of around

3. A small value of M decreases the variance but increases the bias of the estimator. Having

in mind the data in our empirical analysis below, let us consider a sample size of T = 100. In

that case, a reasonable choice for M maybe 20, leading to only about 15 degrees of freedom.

In contrast, the indirect estimation approach, starting from an ARMA model with e.g. 5

parameters, leaves us with 95 degrees of freedom and hence implies a strong efficiency gain.

3 Empirical Analysis

3.1 Data Description: Indicators of Financial and Real Developments

As perceptions and risk attitudes are not directly observable it is unclear which particular

financial indicator or set of financial variables might reflect the financial cycle best.8 In the

7For an empirical analysis of US business cycles via directly estimated spectra see Sargent (1987).
8On the one hand, in Drehmann et al. (2012) and Borio (2014) it is argued that the financial cycle can be

most parsimoniously described in terms of credit and property prices. Similarly, according to Claessens et al.
(2011), the core of financial intermediation should be well captured by the three distinct market segments of
credit, housing and equity. On the other hand, studies such as English et al. (2005), Ng (2011), and Hatzius
et al. (2010) have used principal components and factor analysis to identify the common factors of a number
of financial price and quantity variables for the characterization of the financial cycle. To extract the main
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following analysis we use the most common proxy variables for the financial cycle; quarterly,

seasonally adjusted aggregate data on credit volume, the credit to GDP ratio, house prices

and equity prices, see Claessens et al. (2011, 2012) and Drehmann et al. (2012). Real GDP is

taken as a proxy for the business cycle. We study three industrialized countries: the United

States (US), the United Kingdom (UK), and Germany. The US is not only the largest

economy in the world, but it also has the most important financial sector. As representative

countries for Europe, we consider the UK with its leading financial sector and Germany as

the largest EMU country.9

To allow for a meaningful comparison to existing studies, we employ data transformations

similar to those found in Drehmann et al. (2012). All series are measured in logs, deflated

with the consumer price index and normalized by their respective value in 1985Q1 to ensure

comparability of units. Growth rates are obtained by taking annual differences of each time

series.10 The only exception is the credit to GDP ratio which is expressed in percentage

points and measured in deviations from a linear trend.11 We use the longest possible sample

for each individual time series which is mostly 1960Q1 until 2013Q4 for the US and the UK,

see Figures 7 and 8. Due to data availability the German time series start only in 1970Q1,

see Figure 9.

We split the data into two subsamples to analyze possible changes in the characteristics

of the financial cycles over time. According to Claessens et al. (2011, 2012) and Drehmann

et al. (2012), the break point is specified at 1985Q1 for the US and UK.12 In the case of

Germany, we choose the break point close to the German reunification, 1990Q2.13

driving forces behind business and financial cycles, Breitung and Eickmeier (2014) have recently applied a
multi-level dynamic factor model to a large international data set of macroeconomic and financial indicators.

9A more detailed description of the definition and sources of the variables can be found in Appendix A.
10This implies that we investigate cycles in growth rates.
11Unit root tests of the level series indicate that, with the exception of the credit to GDP ratios which are

found to be trend-stationary, all other time series can be considered as integrated of order one. Therefore,
working with annual growth rates for GDP, credit, housing and equity, i.e., annually differencing the data, is
in line with the unit root test results. In the case of the credit to GDP ratio, we eliminated a deterministic
linear trend. Results are available upon request.

12This is often seen as the starting point of the financial liberalization phase in mature economies. Moreover,
during this period monetary policy regimes being more successful in controlling inflation are established, see
Borio (2014).

13From 1990Q2 on, official data for the unified Germany are available.

8



All data used in the analysis are shown in Figures 1 to 3, where the vertical gray line

highlights the sample split. A first visual inspection of the data shows that the credit and

house price growth rates exhibit more pronounced swings than GDP growth, particularly in

the US and the UK. In Germany, this is only true for housing. In view of equity, the figures

illustrate that these series not only feature a high volatility, but their dynamics seem to be

very different from the previous proxy variables for the financial cycle, credit and housing.
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3.2 Time Domain Estimation Results and Frequency Domain Representation

The empirical estimates of the spectral densities are based on the ARMA models reported in

Tables 7 to 9 in Appendix B.14 The model specification procedure follows the principle of par-

simony. We initially allow for a maximum autoregressive order of 5 and subsequently remove

any remaining residual autocorrelation by the inclusion of appropriate moving average terms.

As reported in Tables 7 to 9, all parameters in the final specifications are statistically signif-

icant at standard confidence levels and the estimated residuals are free from autocorrelation

according to the Lagrange multiplier (LM) test.

In order to provide an example of how we use the estimated ARMA models to obtain the

spectral densities, consider the following process of US real GDP growth during the pre-1985

period with t-values in parentheses (cf. Table 7) and the notation as in equation (5):

xt = 0.002
(2.97)

+ 1.144
(19.21)

xt−1 − 0.224
(−4.37)

xt−3 − 0.985
(−42.04)

ut−4 + ut .

These estimates are applied to equation (7) to calculate the corresponding spectrum as

fx(λ) =
|1 − 0.985 e−i4λ|2

|1 − 1.144 e−iλ + 0.224 e−i3λ|2
σ2

2π
,

with e−iλ = cos(λ) − i · sin(λ) by Euler’s relation and i2 = −1. According to this procedure,

we calculated the spectra for all countries and sample periods under consideration. Dividing

fx(λ) by the variance of xt yields the spectral densities.

The estimated spectral densities are shown in Figures 4 to 6 in the range [0 , π/4], i.e., for

periods of ∞ to 2 year.15 We do not show frequencies in [π/4 , π] since almost no spectral

mass is located in this range. The frequency π/16 corresponds to 8 years and separates the

14To statistically double-check the specified break dates, we also estimated ARMA models for the full
sample. Chow breakpoint tests show overwhelming evidence for a break at 1985Q1 for the US and the UK.
For Germany, the statistical support for a break at 1990Q2 is weaker, but for GDP and credit we clearly
reject the null hypothesis of no break. Nonetheless, the German reunification is a natural break date from an
economic point of view.

15When using quarterly data, all cycles of length infinity to half a year are described by the spectrum in the
range from 0 to π because fx(λ) is an even symmetric continuous function. We approximate the continuous
spectrum by 1000 equally spaced frequency bands from 0 to π.
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financial cycle range from the business cycle range. An initial visual inspection of Figures 4

to 6 delivers at least two noteworthy results.

First, especially for the US and UK the spectral densities of credit, credit to GDP and

house prices are substantially shifted to the left in the later period compared to the first

one, indicating - at least superficially - that longer cycles became present, see Figures 4 and

5. Moreover, the peaks of the spectral densities are much more pronounced, suggesting that

these longer cycles are also more important for the variation of the process. For Germany,

as illustrated in Figure 6, this is only true for house prices. We obtain no clear results for

German credit and credit to GDP. Therefore, German data do not provide much evidence in

favor of the postulated financial cycle properties.

0 π/16 π/8 3π/16 π/4
0

0.5

1

1.5

2

2.5

3

Frequency

S
pe

ct
ra

l D
en

si
ty

US GDP

 

 

Before 1985Q1
After 1985Q1

0 π/16 π/8 3π/16 π/4
0

2

4

6

8

10

12

Frequency

S
pe

ct
ra

l D
en

si
ty

US Credit

 

 

Before 1985Q1
After 1985Q1

0 π/16 π/8 3π/16 π/4
0

2

4

6

8

10

Frequency

S
pe

ct
ra

l D
en

si
ty

US Credit to GDP

 

 

Before 1985Q1
After 1985Q1

0 π/16 π/8 3π/16 π/4
0

0.5

1

1.5

2

2.5

Frequency

S
pe

ct
ra

l D
en

si
ty

US Equity

 

 

Before 1985Q1
After 1985Q1

0 π/16 π/8 3π/16 π/4
0

2

4

6

8

10

12

Frequency

S
pe

ct
ra

l D
en

si
ty

US Housing

 

 

Before 1985Q1
After 1985Q1

Figure 4: Spectral Densities in the US. Note: Spectral densities from frequency zero to π/4,

corresponding to a cycle length of infinity to 2 year. Frequency π/16 corresponds to 8 years. Densities

are denoted in thousands.
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Figure 5: Spectral Densities in the UK. Note: Spectral densities from frequency zero to π/4,
corresponding to a cycle length of infinity to 2 year. Frequency π/16 corresponds to 8 years. Densities

are denoted in thousands.
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Figure 6: Spectral Densities in Germany. Note: Spectral densities from frequency zero to π/4,

corresponding to a cycle length of infinity to 2 year. Frequency π/16 corresponds to 8 years. Densities

are denoted in thousands.
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Second, Figures 4, 5 and 6 clearly show that in all three countries, the spectral densities of

both GDP and equity changed very little from the period before the sample split to the one

thereafter. The interesting exception is the spectrum of UK GDP growth which may indeed

have experienced a change. The general impression, however, is that in almost all cases GDP

and equity show very similar spectral shapes with less pronounced peaks compared to the

other variables.

Having obtained a frequency representation of the time series under consideration which

is particularly suitable for the analysis of their cyclical properties, we continue in the next

section by statistically testing various hypotheses concerning key features of the financial

cycle which have been postulated in recent studies.

3.3 Statistics to Characterize Cycles in the Frequency Domain

We propose four different statistics derived from the spectral densities to describe the main

features of business and financial cycles. Table 1 summarizes the statistics for all countries

under consideration and the two estimation subsamples. The first two columns of Table 1

include the main cycle length in years measured at the peak of the spectrum. It is given by

2π
λmax

with λmax as the frequency where the spectral density has its unique maximum. The

remaining columns include three statistics that provide information about the distribution of

the spectral mass. To approximate the variance contribution of the main cycle’s amplitude, we

report the spectral mass, measured in percentage points, located around λmax. We choose a

symmetric frequency band with length of about π
20 .16 The last four columns present estimates

of the spectral mass for pre-defined ranges which are often used in the literature, i.e., 8 to 40

years for the financial cycle and 2 to 8 years for the business cycle. The values in brackets

below the point estimates are the 95% bootstrap confidence intervals.

16This band is defined as λmax ±
π

1000
· 25.
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Table 1: Frequency Domain: Length and Variance Contribution of Cycles

spectral mass in percent located. . .
length of main cycle

in years . . . at the amplitude . . . at longer-term . . . at shorter-term
of the main cycle cycles (8 to 40 years) cycles (2 to 8 years)

pre post pre post pre post pre post

GDP 6.2 7.1 29.9 31.9 17.4 27.9 71.4 63.3
[4.6, 7.2] [4.9, 17.2] [22.3, 35.8] [27.2, 42.3] [10.0, 23.4] [11.4, 41.5] [66.6, 74.9] [45.1, 77.7]

credit 6.9 13.9 46.1 75.4 39.6 77.3 51.4 19.3
[5.7, 12.2] [12.8, 14.7] [39.1, 59.7] [71.9, 78.6] [17.0, 51.4] [72.5, 80.5] [34.9, 80.6] [15.4, 23.3]

US credit to GDP 6.8 23.8 33.7 86.4 23.7 67.9 66.0 6.8
[5.1, 9.4] [14.7, 45.4] [27.8, 36.7] [75.2, 91.2] [13.7, 32.3] [56.3, 76.2] [54.7, 71.0] [4.1, 12.8]

housing 7.6 12.8 41.4 73.0 26.2 73.2 66.2 24.9
[4.0, 9.6] [10.2, 14.7] [20.6, 72.3] [61.4, 81.0] [3.3, 38.0] [56.2, 81.1] [53.5, 89.9] [17.5, 41.3]

equity 4.6 7.0 25.3 23.9 10.7 19.5 74.2 65.4
[3.3, 5.6] [5.4, 8.5] [21.7, 30.9] [21.0, 27.1] [3.9, 15.3] [14.3, 23.0] [67.5, 82.0] [61.6, 69.3]

GDP 6.9 10.9 19.4 41.8 16.8 39.1 58.6 55.8
[6.2, 8.1] [8.2, 12.5] [19.3, 19.5] [32.0, 47.0] [15.3, 18.1] [26.4, 46.8] [57.3, 59.6] [48.3, 65.2]

credit 7.8 17.8 39.5 60.6 26.4 65.1 63.5 27.6
[4.6, 9.4] [15.1, 20.0] [21.4, 54.3] [53.7, 64.9] [8.2, 38.9] [57.0, 68.9] [53.5, 77.3] [23.0, 35.3]

UK credit to GDP 9.8 14.3 62.1 73.2 55.6 72.0 39.7 13.1
[5.7, 13.9] [8.8, 31.2] [46.5, 79.4] [52.0, 87.1] [18.3, 64.5] [46.8, 85.2] [29.5, 76.6] [6.3, 41.3]

housing 5.3 13.1 69.2 58.1 5.1 58.8 93.0 37.8
[3.7, 6.4] [11.1, 14.3] [35.0, 96.8] [33.5, 72.2] [0.3, 16.7] [30.1, 73.5] [76.8, 99.4] [24.9, 63.0]

equity 3.6 5.4 25.2 23.0 12.4 14.1 75.3 68.4
[2.4, 6.4] [3.3, 6.8] [20.7, 47.9] [20.6, 27.1] [2.2, 20.0] [4.4, 18.6] [61.5, 89.5] [62.8, 77.2]

GDP 5.6 4.5 25.4 27.0 14.0 9.5 62.2 74.2
[5.0, 7.8] [2.9, 5.7] [20.7, 32.1] [21.7, 33.1] [11.3, 23.7] [3.0, 15.7] [58.0, 62.8] [66.0, 81.6]

credit 6.9 45.4 29.8 23.3 21.0 23.6 67.9 56.6
[6.1, 8.5] [−, −] [25.2, 36.9] [−, −] [16.7, 29.1] [−, −] [63.6, 69.3] [−, −]

GER credit to GDP ∞ ∞ 86.9 91.4 53.0 29.5 4.1 5.7
[−, −] [−, −] [69.7, 94.5] [45.2, 96.5] [34.9, 57.8] [13.0, 58.7] [1.7, 10.4] [2.2, 41.2]

housing 7.9 18.5 59.8 60.6 39.6 63.6 59.4 27.7
[4.9, 12.8] [11.6, 20.8] [33.2, 72.8] [35.8, 70.3] [11.4, 56.8] [34.4, 72.4] [38.7, 84.4] [19.6, 55.0]

equity 7.9 4.9 30.7 24.9 24.3 12.2 63.0 72.5
[4.8, 10.2] [3.0, 6.4] [18.6, 40.7] [21.5, 31.4] [10.6, 33.7] [3.0, 17.8] [56.0, 71.1] [65.3, 82.3]

Notes: The terms pre and post refer to the sample periods 1960Q1 until 1984Q4 and 1985Q1 until 2013Q4, respectively, for the US and the
UK. In the case of Germany the samples are 1970Q1 until 1990Q1 and 1990Q2 until 2013Q4. The cycle length is defined as 2π

λmax

, where

λmax is the frequency where the spectral density has its unique maximum. The amplitude of the main cycle is defined as the spectral mass
in the frequency band symmetric around λmax with a length of about π

20
. 95% bootstrap confidence intervals are given in brackets. By

”−” it is indicated that there is no distinct solution (maximum and percentiles) in the frequency range 0 < λ ≤ π.
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As it can be observed from the estimates of the main cycle length in Table 1, the duration

of the financial cycle increased strongly from the first to the second subsample. Averaging

over the four financial variables, we find cycles of 6.5, 6.6 and 7.6 years during the first

period, and 14.4, 12.7 and 11.7 years during the second period in the US, UK, and Germany,

respectively.17 Hence, the point estimates suggest that the duration of the financial cycle

has indeed exceeded the classical business cycle range in both subsamples. With respect

to the business cycle as measured in terms of a country’s GDP, our results reproduce a

common result from the literature. The length of the business cycle has remained roughly

constant and, with a single exception, is in line with the standard notion that business cycle

fluctuations have a duration between 2 and 8 years, see Hodrick and Prescott (1997).

3.4 Hypotheses Tests

Going beyond the point estimates, let us now turn to the formal hypotheses tests. Detailed

testing results are only reported for credit and housing. This is because in none of the

countries studied, equity shows any feature usually ascribed to financial cycles. The tests

simply confirm the impression from the figures in the last subsection. The cyclical properties

of equity are neither significantly different from those of GDP nor do they change over time.

For the credit to GDP ratio, the results are very similar to those obtained from credit alone,

making use of credit to GDP redundant.18 Further, following Borio (2014), credit and house

prices should capture the most important features of financial cycles. Credit represents a

direct financing constraint and house prices are seen as a proxy variable for the average

perception of value and risk in the economy. In the following, we address four distinct

hypotheses.

Is the financial cycle significantly longer than the business cycle? As a starting

point, we test whether the financial cycle tends to be a medium-term phenomenon with a

17For Germany, cases where finite standard errors could not be found are not taken into account.
18Note that the results for the other variables can easily be derived from the measures and their standard

errors given in Table 1.
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significantly longer cycle length than that of the business cycle as suggested by Claessens

et al. (2011), Drehmann et al. (2012) and Borio (2014). This addresses the key question, are

financial market fluctuations mere reflections of the business cycle, in which case they should

operate at similar frequencies, or are financial market fluctuations driven by intrinsic and

self-reinforcing forces which would make such fluctuations last longer, and feature a larger

amplitude. Table 2 reports the test results of the null hypothesis that the financial cycle and

the business cycle are of equal length against the alternative hypothesis that the financial

cycle is longer than the business cycle. According to one-sided two-sample t-tests, the null

hypothesis cannot be rejected in the first subsample for any of the countries. This is no

longer true in the second subsample, where the null is rejected at all conventional confidence

levels. With respect to the information given in Table 1 this is not surprising. In the second

subsample the average financial cycle is twice as long as the average business cycle.

Table 2: Is the Financial Cycle Longer Than the Business Cycle?

H0: The financial cycle and the business cycle are of equal length.
H1: The financial cycle is longer than the business cycle.

pre break post break

t̂-stat p-value t̂-stat p-value

US
credit 0.26 0.399 2.45 0.007

housing 0.76 0.224 1.95 0.025

UK
credit 0.64 0.259 4.28 0.000

housing −1.86 0.968 1.72 0.042

GER
credit 1.37 0.085 − −

housing 0.90 0.185 5.39 0.000

Notes: t̂-stat represents the estimated value of the t-statistic of a one-sided two-sample t-test.
By ”−” it is indicated that we could not obtain finite bootstrap standard deviations which
implies that it is not possible to conduct a t-test.

Did the financial cycle increase in length over time? We now consider if the medium-

term nature of the financial cycle is a recent phenomenon, i.e., whether the length of the cycle

increased over time. Statistical evidence is shown in Table 3. The results clearly support the

hypothesis that the financial cycle is indeed longer during the second sample period. The

mean value of the financial cycle length across the three countries more than doubled, from
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about 7 years in the first period, to about 15 years in the second period. These findings,

together with the test results reported in Table 2, not only corroborate the insights gleaned

from Figures 4, 5 and 6 – where a general left-shift of the spectral densities of credit and

housing growth (as well as of the credit to GDP ratio) can be observed – but they also

deliver statistical support for the descriptive findings of Claessens et al. (2011), Drehmann

et al. (2012) and Borio (2014).

Table 3: Did the Financial Cycle Increase in Length Over Time?

H0: The length of the financial cycle
has not changed over time.

H1: The length of the financial cycle
has increased over time.

t̂-stat p-value

US
credit 2.32 0.010

housing 2.59 0.005

UK
credit 5.69 0.000

housing 7.26 0.000

GER
credit − −

housing 3.01 0.001

Notes: t̂-stat represents the estimated value of the t-statistic of
a one-sided two-sample t-test that compares the cycle lengths
in the pre and post sample period. By ”−” it is indicated
that we could not obtain finite bootstrap standard deviations
which implies that it is not possible to conduct a t-test.

Does the financial cycle have a larger amplitude than the business cycle? Next,

we investigate the variance contributions (i.e. the amplitudes) of given frequency ranges to

analyze the relevance of the financial cycle. First, we test whether the financial cycle and the

business cycle featured the same amplitude in the two subperiods. Table 4 shows somewhat

mixed evidence in the first sample period. In most cases we reject the null of equal amplitudes

of business and financial cycles. For US house prices and German credit, however, a rejection

is not possible. In the second period, the results are much clearer. The null hypothesis is

rejected for all variables in all countries. This indicates that, particularly in recent times, the

financial cycle is characterized by a larger amplitude than the business cycle.
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Table 4: Does the Financial Cycle Have a Larger Amplitude Than the Business Cycle?

H0: The financial cycle and the business have the same amplitude.
H1: The financial cycle has a larger amplitude than the business cycle.

pre break post break

t̂-stat p-value t̂-stat p-value

US
credit 2.64 0.004 6.48 0.000

housing 0.82 0.207 5.05 0.000

UK
credit 2.27 0.012 3.97 0.000

housing 3.01 0.001 1.66 0.049

GER
credit 0.96 0.169 − −

housing 3.17 0.001 3.54 0.000

Notes: The approximate amplitude is defined as the spectral mass in the symmetric frequency
band with a length of about π

20
around λmax, where λmax is the frequency where the spectral

density has its unique maximum. t̂-stat represents the estimated value of the t-statistic of a
one-sided two-sample t-test. By ”−” it is indicated that we could not obtain finite bootstrap
standard deviations which implies that it is not possible to conduct a t-test.

Did the importance of the financial cycle increase over time? Finally, we investigate

whether the financial cycle has become more important over time in terms of its variance

contribution. We address this question by testing whether the main cycle’s amplitude has

increased, whether the contribution of longer-term cycles to the overall variation of the process

has increased, and whether the variance contribution of shorter-term (business) cycles has

decreased. As can be seen from Table 5, the t-tests strongly support the alternative hypothesis

of a significant increase for the US using both the credit and housing series. In the UK, the

t-test results deliver a significant result only for the credit series. Germany seems again to be

characterized by different dynamics, as the main cycle’s amplitude of the house price series

does not appear to have changed between the two time periods.

We also find strong statistical evidence supporting the idea that the contribution of longer-

term cycles in the dynamics of credit and housing has increased over time, both for the US

and the UK, but much less significantly for Germany. This is further supported by the test

results in the last two columns in Table 5 which suggest that the variance contribution of

shorter-term cycles in credit and housing has significantly decreased in the US and UK, and,

to a lesser extent, in Germany. Put differently, these results indicate a significant change of
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Table 5: Did the Importance of the Financial Cycle Increase Over Time?

H0: The relevance of longer-term cycles has not changed over time.

That is, the variance contribution. . .

. . . of the main cycle’s amplitude . . . of longer-term cycles . . . of shorter-term cycles
remained constant over time. (8 to 40 years) remained (2 to 8 years) remained

constant over time. constant over time.

H1: Longer-term cycles became more important in recent decades.

That is, the variance contribution. . .

. . . of the main cycle’s amplitude . . . of longer-term . . . of shorter-term
increased over time. cycles (8 to 40 years) cycles (2 to 8 years)

increased over time. decreased over time.

t̂-stat p-value t̂-stat p-value t̂-stat p-value

US
credit 5.38 0.000 4.25 0.000 2.72 0.003
housing 2.18 0.015 4.16 0.000 3.39 0.000

UK
credit 2.28 0.011 4.51 0.000 5.03 0.000
housing −0.59 0.722 4.86 0.000 5.10 0.000

GER
credit − − − − − −

housing 0.06 0.478 1.52 0.065 2.04 0.021

Notes: The approximate amplitude is defined as the spectral mass in the symmetric frequency band with a length
of about π

20
around λmax, where λmax is the frequency where the spectral density has its unique maximum. t̂-stat

represents the estimated value of the t-statistic of a one-sided two-sample t-test. By ”−” it is indicated that we
could not obtain finite bootstrap standard deviations which implies that it is not possible to conduct a t-test.

the overall shape of the spectral density over time. In more recent times, the largest share of

spectral mass of the credit and housing series in the US and UK is clearly located at cycles

longer than the business cycle. This conclusion does not seem to bear out for the house

price dynamics in Germany. However, medium-term frequencies do seem to have become

somewhat more relevant in the second period.
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4 Concluding Remarks

What are the main characteristics of the financial cycle?19 Is it a medium-term phenomenon,

meaning it is longer than the business cycle, as suggested in the literature, or does it share

similar characteristics with the business cycle? Did its importance increase over time? Or is

it tied to the business cycle in a way that makes analysis of the financial cycle a redundant

exercise? In this paper we intended to shed some light on these and other related questions.

We did that by estimating the data generating processes of financial and business cycle

variables using econometric methods, in contrast to the more descriptive approaches pursued

by Claessens et al. (2011, 2012), and Drehmann et al. (2012).

Specifically, we made use of the correspondence between the time domain and the fre-

quency domain representation of linear stochastic processes to obtain a complete characteri-

zation of the series’ DGP. We derived the cyclical properties from ARMA models which are

estimated for a given sample period and then analytically transformed into the frequency

domain. This approach has a number of appealing features. It allowed us to take into ac-

count all possible cycles without a priori assuming different ranges for financial and business

cycles. Also, while for the usual methods the maximum cycle length is limited to the length

of the sample period, our approach can detect cycles of any duration between 2 quarters and

infinity. Applying bootstrap methods, we were able to statistically test the characteristics of

the financial cycle.

Our results concerning the United States, United Kingdom and Germany can be summa-

rized as follows. First, while the financial and the business cycles had a similar length of

about 7 years in the first subsample of our analysis, the duration of the financial cycle has

dramatically increased since 1985 or in the case of Germany, 1990. This has indeed turned

the financial cycle into a medium-term phenomenon, operating at cycles with an average

length of about 15 years. We also found strong statistical evidence supporting the notion

19At the theoretical level the notion of the existence of such an underlying “financial cycle” is not new:
Seminal works by Fisher (1933), Keynes (1936), von Mises (1952), Hayek (1933) and Minsky (1982) stressed
the inherently procyclical behavior of the financial system and the role of extrapolative behavior by financial
market participants.
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that financial cycles have larger amplitudes than business cycles, as suggested in particular

by Drehmann et al. (2012) and Borio (2014).

While the main characteristics of the financial cycle have been postulated by the existing

literature, the statistical significance of our findings elevates the relevance of theses issues

from a descriptive exercise to stylized facts. Important to policymakers, our results indicate a

decoupling of the dynamics of the financial cycle (measured here in terms of credit and housing

dynamics) from those of the business cycle, particularly in the recent decades. Although both

cycles have shared similar lengths and amplitudes before the financial liberalization process

of the 1980s, the financial cycle has since significantly changed, featuring long and persistent

upward movements followed – as the recent financial crisis has shown – by abrupt downward

corrections.

At least two interesting extensions of our approach would be straightforward. First, time-

varying parameter autoregressive models could provide deeper insight into the question when

the financial cycle has developed its distinguishing features. Second, multivariate models

could be specified to capture the dynamic interaction between real and financial variables at

different frequencies. We intend to do this in further research.
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Appendix A Data Sources and Definitions

All series are measured in logs and deflated using the consumer price index. All series
are normalized by their respective value in 1985Q1 to ensure comparability of the units. We
obtain annual growth rates by taking annual differences of the time series. The only exception
is the credit to GDP ratio which is expressed in percentage points.

Table 6: Definition and Sources of the Data

Source Identifier Notes

GDP OECD.Stat CARSA national currency
CPI OECD.Stat Consumer Prices national index

credit Datastream USBLCAPAA, UKBLCAPAA, national currency, credit to private
BDBLCAPAA non-financial sector from all sectors

housing OECD.Stat House Prices national index

equity IMF
USQ62...F, UK62...F,

BDQ62.EPC
national index
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Figure 7: Real GDP and Financial Cycle Proxy Variables in the United States. All series
are log levels except the credit to GDP ratio, which is measured in percentage points. The
vertical gray line shows the sample split.
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Figure 8: Real GDP and Financial Cycle Proxy Variables in the United Kingdom. All series
are log levels except the credit to GDP ratio, which is measured in percentage points. The
vertical gray line shows the sample split.
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Figure 9: Real GDP and Financial Cycle Proxy Variables in Germany. All series are log
levels except the credit to GDP ratio, which is measured in percentage points. The vertical
gray line shows the sample split.
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Appendix B Time Domain Results: Estimated ARMA Models

Table 7: ARMA Models for the US

parameters GDP credit credit to GDP housing equity
total pre post total pre post total pre post total pre post total pre post

const 0.028 0.031 0.022 0.039 0.044 0.038 −1.180 0.239 −1.795 0.009 0.001 0.010 0.050 −0.049 0.043
(18.7) (21.3) (2.95) (24.2) (5.10) (10.5) (−0.50) (1.40) (−0.43) (4.15) (0.14) (2.48) (2.04) (−5.77) (3.25)

AR(1) 1.202 1.144 1.318 1.185 1.237 1.170 1.251 0.873 1.381 1.373 1.130 1.664 1.350 1.302 1.285
(29.9) (19.2) (27.1) (79.7) (19.6) (47.3) (28.8) (18.4) (35.8) (18.7) (17.2) (18.5) (20.8) (13.5) (14.3)

AR(2) −0.332 −0.827 −0.365 −0.410 −0.333
(−2.58) (−4.66) (−5.64) (−4.33) (−3.77)

AR(3) −0.230 −0.224 −0.328 −0.346 −0.600 −0.402 0.270 0.484
(−5.76) (−4.37) (−6.64) (−5.69) (−6.49) (−10.3) (2.10) (2.68)

AR(4) 0.939 −0.342 −0.201 −0.345
(62.68) (−4.64) (−3.28) (−3.69)

AR(5) −0.222 −0.201 −0.611
(−14.9) (−7.92) (−10.2)

MA(3) 0.403 0.360
(3.68) (3.95)

MA(4) −0.978 −0.985 −1.144 −0.904 −0.374 −0.929 −0.429 0.212 −0.973 −0.983 −0.932 −0.977 −0.943 −0.972
(−92.2) (−42.0) (−18.1) (−29.5) (−3.75) (−31.6) (−5.65) (2.76) (−37.2) (−29.5) (−25.9) (−65.2) (−47.2) (−60.5)

MA(5) 0.241 0.487 −0.516
(2.21) (5.95) (−8.47)

MA(6) 0.302 −0.185
(2.95) (−2.75)

MA(7) −0.429
(−5.87)

MA(12) 0.182
(3.02)

diagnostics

Chow 3.37 1.74 3.66 3.97 3.38
(0.01) (0.14) (0.00) (0.00) (0.01)

LM(4) 0.75 0.89 0.35 0.82 0.16 0.21 0.47 0.62 0.28 0.14 0.69 0.83 0.94 0.51 0.99
LM(8) 0.36 0.46 0.42 0.53 0.38 0.14 0.79 0.94 0.54 0.11 0.63 0.69 0.81 0.44 0.99
LM(12) 0.13 0.34 0.17 0.22 0.44 0.35 0.57 0.68 0.63 0.14 0.57 0.56 0.71 0.26 0.93

Notes: The terms pre and post refer to the sample periods 1960Q1 until 1984Q4 and 1985Q1 until 2013Q4, respectively. Total denotes the full sample period. Below the parameter
estimates t-values are given in parentheses. Chow tests with p-values in parentheses refer to a break in parameters at 1985Q1. For LM(k) tests of no autocorrelation up to order k the
table shows p-values.
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Table 8: ARMA Models for the UK

parameters GDP credit credit to GDP housing equity
total pre post total pre post total pre post total pre post total pre post

const 0.024 0.021 0.023 0.057 0.043 0.037 −4.367 −0.094 −1.538 0.037 0.001 0.039 0.032 −0.024 0.023
(23.3) (5.95) (10.8) (12.7) (2.71) (3.71) (−2.87) (−0.07) (−0.37) (7.24) (0.16) (4.64) (3.03) (−0.83) (3.05)

AR(1) 1.101 0.941 1.464 1.113 1.174 1.060 1.099 1.046 1.151 1.480 1.321 1.573 1.309 1.372 1.206
(32.0) (27.2) (17.2) (36.4) (39.6) (19.6) (37.3) (17.8) (36.0) (36.9) (33.0) (17.1) (18.0) (11.8) (13.3)

AR(2) −0.291 −0.291 −0.400 −0.571 −0.289
(−1.98) (−1.65) (−3.37) (−3.05) (−3.32)

AR(3) −0.198 −0.596 −0.446 −0.300 0.166 0.446
(−2.33) (−8.03) (−12.1) (−3.17) (1.37) (2.32)

AR(4) −0.135 0.267 0.479 −0.235 −0.596
(−3.82) (2.28) (4.43) (−1.98) (−3.19)

AR(5) −0.400 −0.192 −0.137 −0.589 −0.120 −0.192 0.095 0.123 0.280
(−4.00) (−6.34) (−2.29) (−7.04) (−2.01) (−5.99) (2.27) (1.70) (2.40)

MA(4) −0.922 −0.946 −0.986 −1.148 −0.954 −0.930 −0.474 −1.120 −0.956 −1.261 −0.979 −0.939 −0.979
(−113.6) (−34.9) (−81.8) (−14.9) (−39.2) (−30.4) (−5.33) (−12.3) (−41.1) (−12.6) (−74.5) (−30.1) (−38.6)

MA(6) −0.229 −0.246
(−3.47) (−2.42)

MA(8) −0.237 0.150 0.156 0.317
(−3.40) (3.02) (1.75) (3.33)

MA(12) 0.174 −0.832
(2.41) (−28.0)

diagnostics

Chow 1.86 5.54 1.92 3.24 1.90
(0.12) (0.00) (0.07) (0.01) (0.07)

LM(4) 0.83 0.62 0.77 0.88 0.74 0.44 0.83 0.75 0.72 0.15 0.98 0.99 0.95 0.40 0.70
LM(8) 0.39 0.39 0.85 0.41 0.74 0.78 0.83 0.81 0.52 0.18 0.99 0.57 0.85 0.82 0.92
LM(12) 0.43 0.40 0.56 0.51 0.81 0.84 0.71 0.31 0.36 0.30 0.99 0.87 0.94 0.94 0.98

Notes: The terms pre and post refer to the sample periods 1960Q1 until 1984Q4 and 1985Q1 until 2013Q4, respectively. Total denotes the full sample period. Below the parameter
estimates t-values are given in parentheses. Chow tests with p-values in parentheses refer to a break in parameters at 1985Q1. For LM(k) tests of no autocorrelation up to order k the
table shows p-values.

26



Table 9: ARMA Models for Germany

parameters GDP credit credit to GDP housing equity
total pre post total pre post total pre post total pre post total pre post

const 0.017 0.022 0.013 −0.159 0.035 −0.047 − −2.168 −0.933 −0.005 −0.001 −0.004 0.038 0.065 0.029
(8.59) (14.1) (14.2) (−0.16) (15.0) (−0.83) (−0.71) (−0.10) (−1.93) (−0.30) (−0.31) (5.12) (1.66) (2.06)

AR(1) 1.032 0.820 1.201 1.091 1.159 1.018 0.999 0.586 1.094 1.545 1.769 1.440 1.233 1.076 1.291
(24.7) (12.2) (12.4) (28.2) (16.8) (22.3) (55.4) (5.11) (19.7) (19.9) (23.0) (14.0) (16.6) (16.9) (13.2)

AR(2) −0.363 0.298 −0.429 −0.811 −0.337 −0.307 −0.386
(−3.80) (2.53) (−3.06) (−10.7) (−2.54) (−4.17) (3.97)

AR(3) −0.223 −0.139
(−3.75) (−1.77)

AR(4) −0.072 −0.092 −0.725 −0.518 −0.136
(−1.72) (−2.37) (−8.61) (−3.09) (−2.16)

AR(5) 0.688 0.396 −0.116
(9.74) (2.39) (−2.80)

MA(4) −0.751 −0.615 −0.782 −0.647 −0.912 0.402 0.520 0.764 −0.736 −0.751 −0.905 −0.969 −0.923 −0.957
(−9.90) (−5.34) (−6.94) (−8.86) (−28.6) (5.74) (5.11) (5.93) (−10.9) (−7.59) (−24.5) (−74.5) (−21.3) (−45.0)

MA(8) −0.228 −0.302 −0.182 −0.239 −0.907 0.814
(−3.03) (−2.68) (−1.63) (−3.18) (−38.2) (19.3)

MA(12) 0.563 −0.198 −0.183
(6.28) (-3.09) (-1.87)

diagnostics

Chow 3.63 3.68 1.74 1.22 0.30
(0.00) (0.00) (0.18) (0.30) (0.88)

LM(4) 0.96 0.80 0.15 0.88 0.66 0.32 0.43 0.76 0.83 0.57 0.74 0.58 0.57 0.31 0.86
LM(8) 0.28 0.90 0.58 0.20 0.86 0.19 0.43 0.40 0.92 0.59 0.95 0.75 0.89 0.73 0.87
LM(12) 0.42 0.97 0.86 0.38 0.92 0.31 0.54 0.50 0.59 0.76 0.81 0.81 0.78 0.57 0.80

Notes: The terms pre and post refer to the sample periods 1970Q1 until 1990Q1 and 1990Q2 until 2013Q4, respectively. Total denotes the full sample period. Below the parameter
estimates t-values are given in parentheses. Chow tests with p-values in parentheses refer to a break in parameters at 1990Q2. For LM(k) tests of no autocorrelation up to order k the
table shows p-values.
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