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Abstract

We study road congestion as a mechanism design problem. In our basic model we an-
alyze the allocation of a set of drivers among two roads, one of which may be congested.
An additional driver on the congestible road imposes an externality on the other drivers by
increasing their travel time. Each driver is privately informed about her value of time and
asked to report that value to the mechanism designer, who assigns drivers to roads. With a
�nite number of drivers, there is aggregate uncertainty and the e�cient allocation is ex ante
unknown. Setting a single Pigouvian price is then not optimal. However, the e�cient alloca-
tion is implementable by a Vickrey-Clarke-Groves price schedule that lets each driver pay the
externality she imposes on other drivers. This allows drivers to pay to have other drivers use
the slow road instead of the congestible road. As the number of drivers becomes large, there
is a single optimal Pigouvian price that leads to an e�cient allocation. However, �nding this
price requires the mechanism designer to either know the precise distribution of the value
of time or the use of our mechanism. We analyze some extensions and apply our model to
various congestion problems arising in other contexts.
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1 Introduction
Congestion is an ever-present nuisance to many people living in the world’s urban areas. There
is a substantial literature on the pricing of roads to reduce congestion. As more cars drive on a
road, the lower the overall rate of �ow will be. Each driver will slow down other drivers on the
same road, but will not take this e�ect into account when deciding which road to use. Therefore
in the absence of government intervention there will be excess use of some roads, leading to
welfare losses. Economists have long recognized the externality inherent in road transport and
have suggested charging road users a price for using the road. This price or congestion charge
should be set at a level to ensure that each driver faces the marginal value of the increased travel
time of other drivers on the same road.

The existing literature on congestion pricing is primarily concerned with �nding the right
level of such a congestion charge. This is often linked to the idea of Pigouvian taxation, in which
problems resulting from externalities are solved by charging a price that re�ects the externality.
In practice the economists’ suggestion requires the government to have an estimate of the value of
time in travel. Note however that one would expect the value of travel time to di�er substantially
across di�erent drivers. For example, an ambulance responding to an emergency will have a
higher value for travel time than other road users. Small et al. (2005) as well as Steimetz and
Brownstone (2005) have empirically demonstrated the existence of substantial heterogeneity in
the value of time both from observed and unobserved sources.

Given the importance of the value of time for optimally setting congestion charges, the main
issue for a successful implementation of a Pigouvian congestion charge is the availability of infor-
mation about the value of time. To analyze the implications of the lack of detailed knowledge on
the part of the government concerning the value of time, we reformulate this classical problem
into a mechanism design problem. The theory of mechanism design is particularly well-suited
to studying problems in which the government lacks important information, which is privately
held by other agents and important in making a decision. Previous models of congestion pricing
focused on cases in which the e�cient allocation was known by the regulator. With �nitely many
drivers and privately known values of time, the e�cient allocation is not known ex ante. Hence
�nding the optimal regulatory policy requires the use of a mechanism design approach. The liter-
ature on mechanism design has already provided many insights on problems of interest, such as
the sale of items (Myerson, 1981) or the provision of public goods (Clarke, 1971; Montero, 2008), in
which the agents have private information on their value for the item, their value of public good
provision or about their cost of emissions reduction. Our paper introduces congestion pricing as
a novel application of the theory of mechanism design.

In this paper each person using a road is assumed to have private information regarding their
value of time. We consider a simple Origin-Destination model in which travelers can make use
of one of two roads, one of which may potentially be congested. The mechanism designer, who
can be seen as either a local government authority or a private company administering the roads,
asks each driver to report their value of time and then allocates drivers to di�erent roads to max-
imize her objective function, which we take to be either to maximize total surplus or revenues.
If the mechanism is designed to elicit truthful reports of the value of time, then there is no need
to estimate it. In the past this procedure might have seemed impractical as there was no way to

2



easily communicate to a central decision-maker information concerning the value of time. There
was also no way for the decision-maker to force drivers to take particular routes. Modern com-
munication technology, i.e. smart phones and GPS, and the advent of self-driving cars imply that
these practical problems may be overcome in the near future. When travelers use a self-driving
car it becomes conceivable that travelers simply indicate their desired destination and their desire
for reaching it on time. Provided with that information, a self-driving car would electronically
transmit this information to a central authority, which calculates an e�cient travel schedule for
the self-driving cars.

We characterize the e�cient allocation in this model. For a �nite number of drivers, the op-
timal usage of each road depends on the realized values of time of each driver. If the value of
time for one driver becomes very large, the e�cient allocation will be to have only that driver
use the congestible road. In practice, this could arise in the case of ambulances. If an ambulance
reaches the site of an accident too late, there might be loss of life, while if other drivers are slightly
delayed, their dinner might get cold.

To implement the e�cient allocation, traditionally a single price that internalizes drivers’ ex-
ternality on each other is recommended. We show that this solution is not su�cient. Since the
e�cient allocation varies for di�erent realizations of the values of travel time, a simple Pigouvian
price cannot adjust allocations accordingly. Instead, we recommend a more �exible procedure:
Given the reports the mechanism designer computes the e�cient allocation of drivers to roads
and sets payments in such a way that each driver pays his externality on the other drivers to
ensure that drivers report their value of time truthfully. This is in line with the well-known
Vickrey-Clarke-Groves (VCG) pivot mechanism. The externality of a driver on the others arises
from replacing other drivers from the congested road and from changing the travel time on the
congested road. The price schedule implementing the e�cient allocation will feature transfer
schedules for each driver that feature a �nite number of upward jumps. At each jump the number
of drivers on the congested road changes discontinuously. Holding others’ reports �xed, a driver’s
allocated travel time is decreasing in the driver’s value of time. The following example illustrates
such a price scheme for a special case.

A Simple Example We consider a problem in which only the value of time of one driver is
not known by the mechanism designer. There are �ve drivers i “ 0, 1, 2, 3, 4 traveling from a
common origin to a common destination at the same time. There are two roads that the drivers
can take. It takes a driver half a minute to travel from the origin to the destination on road A if
there are no other drivers. For each additional driver on road A, the average travel time for all
drivers on that road increases by half a minute. On Road B it takes 2.5 minutes to travel from the
origin to the destination irrespective of the number of drivers using it. It is common knowledge
that the value of time is given by θi “ 11 ´ i for i P t1, 2, 3, 4u. The valuation of time of driver
i “ 0, given by θ0 P p0,8q is private information. The utility of a driver traveling from the origin
to the destination in t minutes and paying a price of p is given by: Ui “ v ´ θit ´ p. Let A˚pθ0q

be the set of drivers on road A at the e�cient allocation. This is given by:
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A˚pθ0q “

$

’

’

&

’

’

%

t1, 2u θ0 ă 8.63
t0, 1, 2u 8.63 ď θ0 ă 9.8
t0, 1u 9.8 ď θ0 ă 32
t0u 32 ď θ0

The e�cient allocation depends on the value of θ0. Therefore there is aggregate uncertainty
over the e�cient allocation ex ante. Knowing θ0 the mechanism designer could set a single price
as a function of θ0 such that drivers use roads e�ciently. When the mechanism designer does
not know θ0, a mechanism which sets the price as a function of the report of θ0 gives driver 0 an
incentive to lie about her value of time. However the e�cient allocation can be implemented by
letting driver 0 face the following payment schedule for a travel time t P t0.5, 1, 1.5, 2.5u:

P ˚ptq “

$

’

’

&

’

’

%

0 t “ 2.5
9.5 t “ 1.5
14.4 t “ 1
30.4 t “ 0.5

The di�erence of this payment schedule to setting a single price is that it allows to charge
driver 0 di�erent prices for di�erent travel times, while a single price mechanism only charges
for use of the fast road irrespective of the number of other drivers on the fast road. This payment
schedule is constructed in a way that the prices faced by driver 0 capture the externalities this
driver imposes on the other drivers. When the value of time is low, driver 0 is allocated to road B.
For high enough values of θ0, driver 0 is allocated to road A which will increase the travel time
for drivers 1 and 2. The price of 9.5 re�ects that increased travel time for those drivers. As the
value of θ0 increases it becomes e�cient for only drivers 0 and 1 to be using road A. The presence
of driver 0 thus makes driver 2 switch from the fast road A to the slower road B. The price of 14.4
re�ects the cost of that change to driver 2. As θ0 increases even more it becomes e�cient for only
driver 0 to use road A. To give driver 0 an incentive not to always claim to have such a high value
of time, the payment is accordingly high.

In the absence of such a pricing schedule and a high realization of θ0 it is possible that driver
0 could sign a contract with the other drivers and pay them not to use the road prone to con-
gestion. This would be the classic Coasian solution to the externality problem (Coase, 1960). In
practice, such contracts would not exist due to the high transaction cost for bilateral contractual
agreements; however, our mechanisms implicitly implements these kinds of Coasian contracts.
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Figure 1.1: E�cient Allocation and Pricing

To bridge the gap between the traditional Pigouvian results and our approach, we study the
limit case as the number of drivers approaches in�nity. in this case aggregate uncertainty vanishes
and there is an optimal Pigouvian congestion charge. Pricing in that limit case only needs to
determine for each driver which road that driver uses, but not what the overall e�cient level of
road usage is.

Even if there is a large number of drivers, there may be aggregate uncertainty, for example
when all drivers’ value of time depends on an aggregate shock. In that case the optimal Pigouvian
congestion charge will depend on the realization of the shock. Not adjusting the value of the
Pigouvian congestion charge does not implement the e�cient allocation.

When the objective of the mechanism designer is to maximize revenues, the problem is similar
to the one of maximizing total surplus, except thats the true values of time are replaced by virtual
values. Virtual values depend on the prior beliefs the mechanism designer has of the distribution
of the value of time. We further consider a modi�ed problem with two identical, congestible roads.
The basic framework of our analysis continues to hold.

The following subsection 1.1 discusses previous papers on congestion pricing and mechanism
design problems with externalities. Section 2 introduces our basic model and solves for the ef-
�cient allocation. Section 3 derives a payment schedule that implements the e�cient allocation
and considers the limit case when the number of drivers becomes large. Section 4 studies the
case when the mechanism designer maximizes revenue rather than welfare. Section 5 extends
our results to the case when there are two congestible roads. Section 6 discusses currently used
congestion pricing schemes in the light of our results. Section 7 considers congestion problems
arising in the internet, access to high-speed data links and online keyword auctions. Section 8
concludes.

5



1.1 Literature
The idea to use prices to implement e�cient road usage dates back to Pigou (1920) and Knight
(1924) and later gained popularity among economists. Vickrey and Sharp (Vickrey and Sharp,
1968; Vickrey, 1969) are still regarded as the founding fathers of transport economic theory (Ver-
hoef, 2000). The unifying idea of this literature, the Pigouvian approach, is to implement e�cient
road usage by internalizing the social cost of congestion via a tax or price regulation: the price
surcharge of road usage is set to equate the marginal social cost at the e�cient level.

Subsequent empirical and theoretical research has identi�ed several problems with this ap-
proach, namely information requirements and the users’ heterogeneity in their value of travel time.
It has been shown that the value of travel time varies in the course of the day and hence also the de-
mand for road usage; moreover, there is considerable heterogeneity across users (for an overview,
see Small, 2012). Small et al. (2005), for instance, estimate the distribution of the value of time,
using data on the usage of so-called pay lanes. Commuters had the choice between using either a
standard lane or a high occupancy tolled lane, which is available only for vehicles carrying more
than one person or for drivers carrying a transponder and paying a toll. That study �nds a me-
dian value of time of around $23 with substantial heterogeneity unrelated to observable factors.
Steimetz and Brownstone (2005) uses commuters’ choices on the California Interstate 15 north
of San Diego to characterize the heterogeneity in the value of time by observable characteristics.
They �nd that while the mean value of time is $30 per hour, this value ranges between $7 and $65
per hour.

Several theoretical papers analyze the congestion pricing problem assuming a commonly
known value of travel time, identical across all drivers. For example, Bernstein and El Sanhouri
(1994) and Verhoef et al. (1996) analyze the problem of optimally setting congestion charges in a
network with two roads, in which only one of the roads can be tolled. The value of travel time is
implicitly normalized to unity for all drivers. The heterogeneity present in those papers concerns
mainly the overall value of a trip. In our paper, in contrast, the heterogeneity of drivers concerns
the value of travel time and assumes that the value of a trip is such that using a road is e�cient
for all drivers. We thus focus on �nding which road is used by the drivers, rather than whether
to drive or not.

Another strand of the literature has studied optimal congestion pricing when there is hetero-
geneity in the value of time. Closest to our paper is Mayet and Hansen (2000), who also consider
a model in which there are two roads, only one of which may be congested. Like in our model
the heterogeneity of drivers concerns valuation of travel time, rather than the value of a trip.
However they restrict the regulator to setting a single toll for using the congestible road. Their
model is similar to the limit case of our model when there is no aggregate uncertainty. There-
fore in their model the restriction to a single price does not harm welfare. Small and Yan (2001)
consider a model in which there are only two types of drivers, one with a high value of time and
another with a low value of time. They highlight that because of the heterogeneity, there is some
welfare gain from having roads with di�erent travel times, as drivers with a high value of time
will be willing to pay more to reach their destination faster. Verhoef and Small (2004) also com-
pare the social optimum to the congestion charges chosen by a private, pro�t-maximizing road
operator. Arnott et al. (1994) analyze the choice of an optimal time-varying toll in a model with a
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heterogeneous value of travel time and random departure times. The number of drivers of each
type in this model is known ex ante. Arnott and Kraus (1998) distinguish between anonymous
and non-anonymous congestion charges and investigate under which conditions an anonymous
congestion charge is optimal, when drivers can have varying values of time. Unlike our model,
the departure times may vary across drivers.

One feature of those papers is that it is usually assumed that there is a continuum of drivers,
with time valuations distributed according to a (continuous) cumulative distribution function. As
a result, there is no aggregate uncertainty over the number of drivers on each road and over the
optimal level of road usage. When setting a �xed congestion charge the mass of drivers using
a road is perfectly determined, so determining the optimal number of drivers on each road is
unproblematic in the previous papers. There is thus no role for the optimal pricing scheme in
eliciting information on what the optimal level of road usage is. The mechanism used then only
determines which driver uses which road. In contrast, in our mechanism the reports by the drivers
will also determine the optimal number of drivers on each road. In the limit of our model, aggre-
gate uncertainty disappears so that we also recover the optimality of a single congestion charge.
In general this single congestion charge (for each observable type) is not optimal. This point has
not been explicitly recognized in the earlier literature.

Methodically, we draw from the litertaure on mechanism design. Many of these papers focus
on auctions in which buyers have private values for the items to be sold or look at the optimal
provision of public goods such as Vickrey (1961), Clarke (1971), Groves (1973) or Myerson (1981).
Jehiel et al. (1996) study a single unit auction in which a buyer is privately informed about the
payo� received by other buyers when she is assigned the item. Jehiel et al. (1999) study a similar
single unit auction in which a buyer has private information about her own payo� from owning
the item as well as from others owning the item. The paper is therefore closer to ours, in the
sense that a driver in our setting has private information about his valuation when another driver
is added to a road. The main di�erence of our paper is that in our case private information is
unidimensional, rather than multidimensional. This signi�cantly reduces the di�culty of �nding
e�cient and incentive compatible mechanisms. VCG-type mechansims have also been used to
study e�cient solutions to environmental externalities (Montero, 2008). He looks at the problem
of emissions abatement where polluters are privately informed about their cost of abatement.
Traditionally proposed solutions, such as a tax on emissions or an emissions trading scheme are
not e�cient mechanisms in this context. Montero (2008) proposes instead a VCG-type mechanism
to give polluters an incentive to report their cost of abatement truthfully and to implement the
e�cient level of abatement.

2 Model
There are n drivers that simultaneously want to reach some destination D, starting from a com-
mon starting point O. To do so, they can take one of two roads s P tA,Bu. There is a con-
gestion problem on road A but none on road B. The travel time for each driver on road B is
tB “ t̄ and tA “ Cpkq on road A, where k denotes the number of travelers on road A and Cp¨q
is weakly increasing with weakly increasing di�erences, i.e. Cpk ` 1q ě Cpkq for all k and
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O D
tA “ Cpkq

tB “ t̄

Figure 2.1: Case with a congestible and an uncongestible road

Cpk`1q´Cpkq ě Cpk1`1q´Cpk1q for all k ą k1. To make the congestion problem interesting,
we assume that an uncongested road A is faster than road B: Cp1q ă t̄.

We assume that drivers have private information on their value of time, represented by θi P
Θi Ď R`zt0u for driver i. For some results we assume additionally that all θi are independently
and identically distributed according to the well-behaved cumulative distribution function F pθiq1.
We let θ P Θ ” ˆiΘi be the n-dimensional vector of all drivers’ valuation of time. We assume
that for all i, j, θi ‰ θj . Given well-behaved distribution functions, this case is expected to occur
with certainty. We will denote by θ´i the vector of all valuations except that of driver i.2 For
most of our analysis the assumption on the distribution of the value of time F p¨q is not necessary
as the e�cient mechanism induces the revelation of each drivers’ value of time independent of
distributional assumptions. However the distribution of drivers’ value of time is needed when
we consider limit cases and revenue maximization. Driver i’s utility is uipp, θi, tq “ v ´ p ´ θit,
where p is the transfer i has to pay, t is the amount of time it takes for i to travel from O toD and
v is the valuation for reaching the destination. We assume that v is su�ciently large so that not
traveling is not an option for the drivers. The allocation of agent i is given by xi P t0, 1u, where
xi “ 1 means that i is allocated to road A, while xi “ 0 means that i is allocated to road B. We
let x P X “ t0, 1un denote the overall allocation. We can then write the time driver i will spend
traveling fromO toD as tipxq “ xiC

´

řn
j“1 xj

¯

`p1´xiqt. Note that the travel time of an agent
therefore will depend on the allocation of other agents, hence our problem is a speci�c instance
of a resource allocation problem with externalities.

A mechanism designer, who can be thought of as the government authority or a private
monopoly in charge of regulating tra�c, is assumed to maximize total welfare, i.e. the sum of
all drivers’ well-being plus the total revenue collected. Hence the objective function of the mech-
anism designer is given by:

W “ maxrxipθq,ppθqs

n
ÿ

i“1

ruippi, x; θiq ` pis (2.1)

1Well-behaved means that F p¨q is continuously di�erentiable with a strictly positive derivative fp¨q and such that
1´F pθiq
fpθiq

is weakly decreasing in θi.
2With a slight abuse of notation we will denote by F pθq the joint distribution of the vector of valuations and

F pθ´iq the joint distribution of all valuations except for that of driver i.
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In section 4 we consider the case when the mechanism designer is only interested in maxi-
mizing total revenue collected.

While we have set up the model in terms of drivers being able to use one of two roads, there is
an alternative interpretation. The model can also be interpreted as specifying the option to travel
on a congested road and no travel. Drivers in this interpretation have a type-dependent outside
option. The assumption that t is large then ensures that the overall utility of a driver is increasing
in θ so that high value drivers will be using the road at e�cient allocations. Alternatively one can
reformulate that model as one in which there is an outside option with a �xed value of 0, but in
which drivers with a high value of θi also have a high value for traveling overall.

In the absence of a mechanism, drivers would be free to choose either road without payments.
In that case travel time on the fast road would need to be close to that on the slow road or all
drivers would use the fast road. If it weren’t, more drivers would start using the fast road, thereby
increasing travel time on the fast road. Furthermore, there is a coordination problem as nearly
identical travel times mean that there is no sorting according to the value of time in terms of road
usage. In contrast, the e�cient allocation both solves the coordination problem, as drivers with
a high value of time are allocated to the fast road and ensures that the fast road is indeed faster
than the slow road.

Before discussing the incentive problem associated with the fact that each driver’s value of
time is private knowledge, we will analyze the problem with perfect information.

First-Best Allocation In the �rst-best case we can cancel out the transfers and write the mech-
anism designer’s problem as follows:

W “ minrxipθqs

n
ÿ

i“1

θi

«

xiC

˜

n
ÿ

j“1

xj

¸

` p1´ xiqt

ff

(2.2)

Hence maximizing social welfare is equivalent to minimizing the value of time spent on traveling
from the origin O to the destination D. First, note that at an optimum we need that the travel
time on road A has to be less than the travel time on road B. If it were di�erently, the total value
of travel time could be reduced by increasing the number of drivers using road B. The driver
moving from road A to road B not only will be able to take the faster route, but this driver will
also no longer contribute to congestion on road A, thereby reducing the travel time for all other
drivers using that road. From now on, we will therefore refer to road A as the fast road, while
road B is referred to as the slow road. Second note that at the optimum drivers will be sorted
according to their value of time, with high-value drivers using the faster road, while low value
users taking the slower road. If this were not true, so that one driver using the slow route had a
higher value of time than a driver using the fast road, then the total value of travel time could be
reduced by changing the road used by each of those drivers.

Lemma 1. Let xFBpθq be the allocation that solves Equation 2.2. Then it must satisfy:

• C
`
řn
i“1 x

FB
i pθq

˘

ă t.

• If θi ą θj then xFBi pθq ě xFBj pθq.
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Proof. For the �rst part suppose the travel time on road A were strictly greater than on road B.
Then consider reassigning one driver from road A to road B. This driver would be strictly better
o� due to a decrease in travel time. Drivers that remain on road A, due to Cp¨q being weakly
increasing, are weakly better o�. Next suppose that travel time on road A were equal to that on
road B, i.e. t. Consider reassigning one driver from road A to road B. The reassigned driver is
indi�erent. SinceCp¨q is weakly increasing, this reassignment can either leave travel time on road
A unchanged or lead to a reduction in travel time. In the latter case, drivers that remain on roadA
are strictly better o�, while those on road B are indi�erent. In the former case, drivers remaining
on road A are also indi�erent so reassigning one driver did not a�ect welfare. But then one can
reassign another driver from roadA to roadB until the travel time on roadA falls below t, which
will necessarily happen by the assumption that Cp1q ă t. It follows that C

`
řn
i“1 x

FB
i pθq

˘

ă t.
For the second part suppose otherwise. Then there is at least one pair of drivers ti, ju such

that θi ą θj and xipθq ă xjpθq. But then one could replace xipθq and xjpθq by x˚i pθq :“ xjpθq and
x˚j pθq :“ xipθq which would lead to change in welfare of pθi ´ θjqpt´C p

řn
l“1 xlpθqqq. Note that

because θi ą θj and because of the �rst part this term is strictly positive.

Given Lemma 1 the �rst-best allocation has a simple structure: all drivers with a value of θ
su�ciently high will be using the fast road while the remainder will use the slow road. To solve
the problem it thus remains to �nd the optimal number of drivers using the fast road, as a function
of θ. We de�ne θpkq to be the kth highest value of θ from among the n drivers. Suppose there are
k P t0, 1, ..., n ´ 1u drivers on the road and consider adding another driver to the fast road. The
change in welfare resulting from this reallocation is given by:

∆kpθq ” θpk`1q
`

t´ C pk ` 1q
˘

´

k
ÿ

i“1

θpiq pCpk ` 1q ´ Cpkqq

The expression ∆k characterizes the key trade-o� in determining the e�cient allocation. The
�rst term appearing in ∆k is the bene�t of moving driver k`1 from the slow road to the fast road.
The reduction in travel time for that driver is valued at that driver’s valuation of time, θpk`1q. The
second term captures the cost of increased travel time on the �rst k drivers from another driver
using the fast road. Note that the �rst term will generally be positive for e�cient allocations,
while the second term always enters negatively since Cp¨q is a strictly increasing function. The
next Lemma characterizes some properties of ∆kpθq that will be useful.

Lemma 2. For all θ P Θ and all k P t0, 1, ..., n´ 2u, we have that ∆kpθq ą ∆k`1pθq. Furthermore
∆0pθq ą 0.

Proof. For the �rst result in Lemma 2 consider the di�erence in the �rst terms of ∆kpθq and
∆k`1pθq which is given by:

θpk`1q
`

t´ C pk ` 1q
˘

´ θpk`2q
`

t´ C pk ` 2q
˘

.
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From the de�nition of θpkq we have that θpkq ą θpk`1q. Furthermore we have that Cpk ` 2q ě
Cpk ` 1q, so that this di�erence is strictly positive. Next consider the di�erence in the second
terms ∆kpθq and ∆k`1pθq which is given by:

k`1
ÿ

i“1

θpiq pCpk ` 2q ´ Cpk ` 1qq ´
k
ÿ

i“1

θpiq pCpk ` 1q ´ Cpkqq .

This can be re-written as:
k
ÿ

i“1

θpiq rpCpk ` 2q ´ Cpk ` 1qq ´ pCpk ` 1q ´ Cpkqqs ` θpk`1q
pCpk ` 2q ´ Cpk ` 1qq .

The �rst term is weakly positive since each θi is positive and because of our assumption that Cp¨q
has weakly increasing di�erences. The second term is weakly positive because Cp¨q is a weakly
increasing function. Hence it follows that ∆kpθq ą ∆k`1pθq.

The value of ∆0pθq can be directly veri�ed from the de�nition of ∆kpθq by setting k “ 0.

Lemma 2 shows how the trade-o� from adding another driver evolves as more drivers use the
fast road. First, the bene�t of adding one driver gets lower, since the value of time of the marginal
driver decreases. Second, the cost the additional driver imposes on the other drivers on the fast
road increases, because more drivers are a�ected by increased congestion. Thus the two e�ects
go in the same direction, so that the welfare gain of each additional driver falls. When there is no
driver on the fast road, then there is no cost of adding another driver as no other drivers will be
slowed down. The following proposition, which follows directly from Lemma 2, gives a necessary
and su�cient condition for the �rst-best allocation.

Proposition 1. There exists some k˚ such that for all i “ t1, ..., nu at the optimum xipθq “ 1 if
and only if θi ě θpk

˚q. The value of k˚ is given by:

k˚ “ max
∆kpθqě0

k ` 1 (2.3)

The logic behind Proposition 1 follows from Lemma 2: as the number of drivers on the fast
road increases, the bene�t of adding another driver gets smaller. Welfare changes are strictly
positive when the driver with the largest valuation enters the fast road, but become smaller as
more drivers use the fast road. If n is large enough thatCpnq ą t then ∆n´1pθq is negative, so that
k˚ ă n. It may however happen that ∆n´1pθq ą 0, which implies that k˚ “ n, i.e. all drivers use
the fast road. Note however that this case is not particularly interesting, as even in the absence of
a mechanism the e�cient allocation would be chosen by drivers. Thus, there is a unique number
of drivers, k˚, on the fast road for which both adding and subtracting a driver decreases welfare.

For subsequent results the e�ect of a change in a single θi on the optimal allocation needs to
be determined holding θ´i �xed. Let θpkq´i be the kth highest value of time among all drivers except
driver i. Consider the auxiliary problem in which we set θi “ 0, but driver i still needs to be
allocated to a road. In that case, it is clear that xFBi “ 0. Denote the e�cient allocation in this
case by k˚´i, which is a function of θ´i. Refer to the driver with the k˚´i highest value of time as

11



driver lppθ´iqq. Denote his associated value of time by θlpθ´iq “ θ
k˚

´i

´i . We denote by θ1 the value
of θi such that adding driver i to the fast road when k˚´i are allocated to the fast road results in no
welfare change.

θ1pt´ Cpk˚´i ` 1qq ´

k˚
´i
ÿ

j“1

θpjq
“

Cpk˚´i ` 1q ´ Cpk˚´iq
‰

“ 0

We consider two cases. First, suppose θ1i ě θlpθ´iq. Then for θi ď θlpθ´iqwe have that k˚ does
not vary in θi and neither does the allocation xFB . When θi ą θlpθ´iq it follows that xFBi “ 1
while xFBl “ 0. As θi increases, k˚ falls. This is because given that θi is allocated to the fast road,
the cost of adding other drivers increases as the value of the congestion su�ered by i increases.
Therefore k˚ is a decreasing function of θi.

Second, suppose θ1i ă θl. For θi ă θ1i we have k˚ “ k˚´i. For θi P rθ1i, θlpθ´iqs we have that it is
optimal to add driver i to the fast road without removing any other driver from it. Therefore we
have k˚ “ k˚´i ` 1. For θi ą θlpθ´iq, k˚ falls as θi increases. Since θi is allocated to the fast road,
any increase in θi increases the cost of adding other drivers to the fast road, implying that k˚ will
fall. We summarize this discussion in the following Lemma:

Lemma 3.

1. Comparative statics of k˚:

(a) If θ1i ě θlpθ´iq, then k˚pθi, θ´iq is a weakly decreasing function in θi.

(b) If θ1i ě θlpθ´iq, then k˚ppθi, θ´iqq is constant for θi ă θ1´i, increases by one at θi “ θ1i
and for θi ą θ1´i is weakly decreasing.

2. The e�cient travel time xFBi
´

Cp
řn
j“1 x

FB
j q

¯

`
`

1´ xFBi
˘

t of driver i is weakly decreasing
in θi, @i.

In short, if θi increases and becomes just large enough to be assigned to the fast road, she will
be either added to the set of drivers on the fast road or she replaces someone else. Since k˚ is only
non-decreasing in θi at the point when driver i is added to the fast road, the travel time on the fast
road is only non-decreasing in θi at that point. Nonetheless, the travel time for driver i is strictly
lower due to Lemma 1, since for a lower θi that driver is assigned to the slow road. When driver
i is assigned to the fast road and θi increases further, both, k˚ and driver i‘s travel time decrease.

3 Implementing the First-Best Allocation
In this section we consider the problem of allocating drivers to roads as a mechanism design
problem. We �rst derive an e�cient and incentive compatible mechanism. We highlight this
mechanism using a simple example. Last we consider the congestion pricing problem as the
number of drivers increases and present simulation results.
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An important consideration in the mechanism design literature is incentive compatibility, i.e.
to design the mechanism in such a way that drivers always report their private information truth-
fully. As a �rst step, we apply the dominant strategy revelation principle of Gibbard (1973), which
allows us to study a large class of mechanisms by focusing on a smaller subclass. By the revelation
principle every complicated mechanism involving potentially very large message spaces may be
replaced by a simpler mechanism that only asks drivers to directly report their type truthfully.
Thus, instead of studying each of these complicated mechanisms where in equilibrium a type can
be inferred from a message, it is w.l.o.g. to study a direct mechanism. In such a mechanism, each
driver will be asked to report her private information, namely her valuation for travel time, to the
mechanism designer who then allocates drivers to roads. More precisely, a (direct) mechanism is
a function associating to each θ an allocation, x and a transfer function p, where p is the transfer
paid by a driver to the mechanism designer3. In short, a mechanism is a mapping from reports of
the drivers’ valuation of time to an allocation and transfers, i.e. rxpθq, ppθqs : θ Ñ X ˆ Rn.

We apply the concept of dominant strategy incentive compatibility. The mechanism designer
requires each driver to prefer truth-telling for all possible valuations of the other drivers. Hence,
the mechanism works regardless of what driver i thinks about driver j’s valuation of travel time
and the mechanism designer obtains the exact valuations of the n drivers without requiring pre-
cise ex-ante information.

De�nition 1. A direct mechanism rx, ps is dominant strategy incentive compatible if for all θi, θ̂i P
Θi and θ´i P Θ´i it satis�es

Uipθi; θ´iq ” v ´ pipθiq ´ θitipxpθi, θ´iqq ě v ´ pipθ̂iq ´ θitipxpθ̂i, θ´iqq ” Uipθ̂i, θi; θ´iq (DIC)

A mechanism that satis�es DIC makes it optimal for a driver with type θi to report this value,
rather than any other value θ̂i for all other possible reported values θ´i of the other drivers. Under
dominant strategy incentive compatibility, truth-telling is optimal regardless of a drivers’ belief
over other drivers’ valuations. Alternatively one could consider truth-telling incentives of the
drivers given their beliefs about others’ types. However in our application it is unlikely that the
mechanism designer knows these beliefs. Mechanisms that satisfy DIC are robust to incorrect
beliefs of the mechanism designer and do not require detailed knowledge about the distribution
of values by the mechanism designer. This is an attractive feature in our application.

The mechanism designer maximizes welfare given by equation 2.1 subject to the DIC con-
straints. We say that an allocation function xpθq is implemented in dominant strategies by
payment rules pipθq if together they satisfy the incentive constraints. Notice that the objective
function of the mechanism designer considers total welfare. There is thus no revenue-raising mo-
tive for the mechanism designer. Note also that the private information held by the drivers a�ects
other drivers only indirectly through the travel time induced by the resulting allocation. Rather
than seeing the allocation as specifying which driver uses which road, one might alternatively
think about an allocation as simply specifying the travel time for each driver, subject to this allo-
cation being consistent with the underlying model. When looking at allocations as travel times,
there are thus no externalities present.

3In our notation we already assume that transfer functions are the same for all drivers. Hence the mechanisms
we consider satisfy anonymity.
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In the following discussion, we are going to make use of some extra notation that was intro-
duced in the previous section. We denote by θpk˚q the k˚-highest value of time, where k˚ is as
de�ned in Proposition 1, where we have suppressed the dependence of k˚ on θ for simplicity. We
let k˚´jpθ´jq to be the value of k˚ as in Proposition 1 excluding driver j. As before we let θpkq´j
be the kth-highest value of time in the problem excluding driver j among the n ´ 1 remaining
drivers, where we have again suppressed the dependence of k˚´j on θ´j for simplicity. We de�ne
for each j P t1, ..., nu, the following two sets:

Ω`j pθq ” ti ‰ j|θi ě θpk
˚q
u

Ω0
jpθq ”

!

i ‰ j|θi P
´

θ
pk˚

´jq

´j , θpk
˚q
¯)

The set of drivers, excluding j, that use the fast road irrespective of driver j’s allocation is
denoted by Ω`j . Similarly the set of drivers that is only assigned to the fast road if driver j is
allocated to the slow road is denoted by Ω0

j . Note that both sets’ dependence on θ has been
suppressed for ease of notation. If Ω0

j is empty, then driver j’s report does not a�ect other drivers’
assigned road but may a�ect their travel time. Note that both Ω`j and Ω0

j depend on the vector of
the valuation of time, θ. Note that one consequence of Lemma 3 it holds that k˚ ´ k˚´j ď 1.

Proposition 2. The �rst-best allocation, xFBpθq is implemented by the following payment rule,
which speci�es for all j P t1, ..., nu:

pFBj pθq “
ÿ

iPΩ`
j

θi
“

Cpk˚q ´ Cpk˚´jq
‰

`
ÿ

iPΩ0
j

θi
“

t´ Cpk˚´jq
‰

(3.1)

Proof. The basic logic behind a Vickrey-Clarke-Groves mechanism is to let each driver internalize
the mechanism designers problem by making her a residual claimant of total welfare. To this can
be added a term which may depend on the reports of all the other drivers, as this does not a�ect
truth-telling incentives. In our model, this implies that the VCG payment rule has the following
form:

pV CGj pθq “
n
ÿ

i“1;i‰j

θi
`

xFBi pθqCpk˚pθqq ` p1´ xFBi pθqqt
˘

` hjpθ´jq

Since k˚pθq is by de�nition the function that maximizes welfare for each θ P Θ, driver j
maximizes her utility, given by:

Ujpθ̂j, θj; θ´jq “ v ´ θj
`

xFBj pθqCpk˚pθqq ` p1´ xFBj pθqqt
˘

´

n
ÿ

i“1;i‰j

θi
`

xFBi pθqCpk˚pθqq ` p1´ xFBi pθqqt
˘

´ hjpθ´jq

This means that driver j faces the mechanism designer’s problem 2.1, so that reporting θ̂j “ θj
is optimal. The function hjpθjq is a constant from j’s point of view and therefore does not a�ect
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j’s incentives. For drivers whose presence does not a�ect the �nal allocation it can be normalized
such that payments are zero. We thus choose:

hjpθ´jq ”
n
ÿ

i“1;i‰j

θi
`

xFBi,´jpθ´jqCpk
˚
´jpθ´jqq ` p1´ x

FB
i,´jpθ´jqqt

˘

Since k˚´jpθ´jq solves the allocation problem, e�ectively assuming the value of time of driver
j is zero, driver j will in that case be allocated to the slow road. Hence the payment above is the
surplus of the other drivers under the optimal allocation given that j is assigned to the slow road.
Note that it may happen that θ

pk˚
´jq

´j ą θpk
˚q. In this case, the set Ω0

j is empty and only the �rst
term in 3.1 remains. Given our choice of hjpθ´jq and the de�nitions of Ω`j and Ω0

j we can simplify
the expression for the VCG payment to 3.1.

The payment schedule 3.1 that drivers face consists of two components. The �rst component
captures the e�ect that driver j’s report has on other drivers via the travel time on the fast road.4
This congestion e�ect may be either positive or negative. It will be negative (meaning that driver
j has to pay less) under the condition in Part 1(a) of Lemma 3. In that case a higher report of
θj reduces k˚, so that all driver on the fast road will bene�t from a reduced travel time. The
reduction in the price paid by driver j re�ects the value of this reduced travel time of the other
drivers. The �rst component will be positive (meaning driver j has to pay more) only if it holds
that the valuations of time θ are such that k˚ ´ k˚´j “ 1.5 In that case the report of driver j
increases the travel time on the fast road for the other drivers. It may also happen that the �rst
component is zero, which occurs when k˚ “ k˚´j . This happens when driver j replaces another
driver on the fast road.

The second component of 3.1 captures the e�ect that driver j’s report has on other drivers via
reallocation of those driver from the fast road to the slow road. For high values of θj , it becomes
e�cient to reduce travel time on the fast road. This is accomplished by reallocating drivers with
a lower value of time to the slow road. Those reallocated drivers due to Lemma 1 face a higher
travel time, the cost of which is taken into account by the payment rule. Another feature of the
payment schedule is that drivers allocated to the slow road pay nothing. By being allocated to the
slow road, both the congestion and the reallocation e�ect are zero.6

Remark 1. The payment schedule pFBj pθq is a weakly increasing step function.

The payment schedule 3.1 depends on θj only through its e�ect on the e�cient allocation
k˚pθq. From the de�nition of k˚ it follows that k˚ can only take a �nite number of values. It is
constant almost everywhere but there are jumps at a �nite number of points, which is whenever
the number of drivers allocated to the fast road changes. Therefore the payment schedule faced by
driver j will also be constant almost everywhere and have a �nite number of jumps. Furthermore
by Lemma 3 the travel time of driver j is weakly decreasing in θj . This implies that the payment

4Note that this is similar, but di�erent to the congestion e�ect that was present in the de�nition of ∆kpθq.
5This corresponds to case 1(b) in Lemma 3 at the point where k˚ is increasing in θj .
6Note that this follows mainly from our assumption that there is no congestion on the slow road. This assumption

will be relaxed in Section 5.
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schedule of driver j needs to be weakly increasing. If it were not then there would be cases in
which driver i by misreporting her valuation could obtain both a lower travel time and a lower
payment to be made. This would violate incentive compatibility. Figure 1 in the Introduction
features one such payment schedule.

3.1 Congestible Roads with a Known, Fixed Capacity
In this section we consider a special case of the congestion function Cpkq, such that it has a
�xed capacity of k̄. This special case is of interest as it eliminates aggregate uncertainty over the
e�cient number of drivers to be allocated to the fast road. Travel time on the fast road is t ă t as
long as fewer than k̄ drivers use it. Above that capacity, travel time on the fast road increases to
t. Hence, Cpkq is given by:

Cpkq “

"

t if k ď k̄
t if k ą k̄

Clearly, the e�cient allocation irrespective of the realization of θ is for the k̄th-highest valua-
tion drivers to travel on the fast road and all other drivers on the slow road. The function Cpkq
satis�es the assumptions that we imposed in Section 2. However, since the optimal number of
drivers on the road is known to the mechanism designer, the e�cient allocation can be imple-
mented by simply auctioning o� k̄ licenses to use the fast road among the n drivers. The reason
that this procedure works is that the reports by the agents are no longer needed to determine the
optimal number of drivers on the fast road.

3.2 Example with Two Drivers
To highlight some of the properties of our proposed mechanism, consider our model with two
drivers. We consider the case in which Cpkq “ k. Parameters are t “ 4 and n “ 2. In the e�cient
allocation, if θi ą θj both drivers use the fast road if and only if ´2pθi ` θjq ą ´θi ´ 4θj which
simpli�es to θi ă 2θj . Otherwise, only θi is e�ciently allocated to the fast road. Overall, the
e�cient allocation is

px1, x2qpθq “

$

&

%

t1, 1u if θ1 P r
1
2
θ2, 2θ2s

t1, 0u if θ1 ą 2θ2

t0, 1u if θ1 ă
1
2
θ2

In Figure 3.1 it can be seen that when the values of time of the two drivers are close to each
other (i.e. we are in the violet area around the 45 degree line) then it is e�cient for both of them
to use the fast road. When the di�erences in the value of time are more extreme, it is however
optimal to let only the driver with the higher value of time use the fast road.

We apply proposition 2 to compute the prices that implement this allocation for driver 1:

p1pθq “

$

&

%

0 if θ1 ă
1
2
θ2

θ2 if θ1 P r
1
2
θ2, 2θ2s

3θ2 if θ1 ą 2θ2
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θ1

θ2

1

1

0

x1 “ 1, x2 “ 1

x1 “ 1, x2 “ 0

x1 “ 0,
x2 “ 1

Figure 3.1: Optimal allocations with Two Drivers

Figure 3.2 plots the optimal price schedule faced by driver 1 for two values of θ2. Note that
the price paid by driver 1 is not monotone in θ2.

The corresponding travel time for driver 1 is given in the following function:

t1pθq “

$

&

%

4 if θ1 ă
1
2
θ2

2 if θ1 P r
1
2
θ2, 2θ2s

1 if θ1 ą 2θ2

Figure 3.3 plots the optimal travel time of driver 1 for two di�erent values of θ2 as a func-
tion of θ1. Note that unlike the payment schedule, the travel time is a monotone function of the
value of θ2. Note that in this example we did not use information on the distribution of θ for the
construction of the payment schedule.
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θ1

ppθq

2θ2
1
2
θ2

θ2

3θ2

2θ̂2
1
2
θ̂2

θ̂2

3θ̂2

Figure 3.2: Payment schedule for two di�erent values of θ2

θ1

tpθq

1

2

4

2θ2
1
2
θ2 2θ̂2

1
2
θ̂2

Figure 3.3: Travel time for two di�erent values of θ2
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3.3 Congestion Pricing in the Limit
The previous discussion implies that each driver should face a menu of di�erent transfers, depend-
ing on that driver’s valuation and on all other driver’s reported types. The previous literature has
mainly focused on situations in which each driver faces a single transfer to be paid when using
the fast road, but not a schedule of di�erent prices. To reconcile our results with the existing
literature, we will consider a variant of our model in which we let the number of drivers go to
in�nity. To ensure convergence, we need to change the congestion externality on the fast road.
We assume that travel time on road A is Cnpkq “ t ` bnk, where bn “ b{n and k is the number
of drivers on the fast road. If the congestion each driver caused did not decline with the total
number of drivers, then as n goes to in�nity, the share of drivers using the fast road at the e�-
cient allocation would converge towards zero. We assume that t ´ t ´ b ă 0, to ensure that at
the e�cient allocation not all drivers will use the fast road in the limit. We also normalize the
objective function by dividing through by the number of drivers n:

W “ maxrxipθq,ppθqs
1

n

n
ÿ

i“1

rUippi, x; θiq ` pis (3.2)

For each n we can use the results of Lemmas 1 and 2 as well as Proposition 1 to �nd the
optimal solution for each value of n. We consider now the probability limit of the value of ∆kpθq
as n converges to in�nity, while letting k go to in�nity, such that limnÑ8

k
n
“ q P r0, 1s.

plimnÑ8 ∆k “ plimnÑ8 θ
pk`1q

ˆ

t´ t´
k ` 1

n
b

˙

´
b

n

n
ÿ

i“1

θi1
`

θi ą θpk`1q
˘

(3.3)

Note that plimnÑ8 θ
pk`1q is simply the p1 ´ qqth quantile of the distribution function F p¨q,

which we will denote by θq ” F´1p1´ qq. The probability limit of the second term is:

plimnÑ8

b

n

n
ÿ

i“1

θi1
`

θi ą θpk`1q
˘

“ b

ż θ

θq
θdF pθq

Therefore, we have that:

plimnÑ8 ∆k “ θq
`

t´ t´ qb
˘

´ b

ż θ

θq
θdF pθq ” ∆q (3.4)

We have that ∆q is strictly decreasing in the value of q. To obtain the e�cient level of q, we
simply take the unique solution of ∆q “ 0, denoted by q˚. Let θ˚ be such that a fraction q˚ of all
drivers have a greater value of time. Then we have the following:

θ˚
`

t´ t´ q˚b
˘

“ b

ż θ

θ˚

θdF pθq (3.5)
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Hence, like in the models of the earlier literature, in the limit there is a deterministic share
of drivers e�ciently using the fast road. Therefore, we can set a single congestion charge to im-
plement the e�cient allocation in the limit. The following Proposition summarizes the preceding
discussion:

Proposition 3. In the limit, the e�cient allocation is implemented when the mechanism designer
sets a unique Pigouvian price p˚ for the use of the fast road. This price is given by:

p˚ “ b

ż θ

θ˚

θdF pθq (3.6)

This e�cient congestion charge equals the value of the marginal increase in travel time from
a small increase in the number of drivers using the fast road. The Pigouvian approach of setting a
price that includes the social cost of an externality is e�cient, thus is found to hold only if there
are many drivers, each of which has a negligible e�ect on the other drivers. Furthermore, the
Pigouvian approach requires the mechanism designer to know the distribution of the value of
time.

3.4 Simulations
The limit results of the previous section might suggest that an appropriately set Pigouvian price
can ensure that maximal welfare is obtained. However, there are two impediments to setting the
Pigouvian price optimally. First, the number of drivers in practice is �nite. Given that we focus
on a static problem in which all drivers are taken to be using the road simultaneously, the number
of drivers in applications may be low depending on the situations. If this is the case, then limit
results cannot be relied upon.

Second, setting the Pigouvian price optimally requires knowledge of the distribution of the
value of time. As this is usually not known by the policy maker, the price will be set either as a
function of the policy maker’s prior or may need to be estimated, for example as in Small et al.
(2005). When estimating the distribution, one however needs to allow for possible shifts in the
distribution. For example, the estimation would need to allow for the distribution of the value
of time to vary by time of day, weather and other, possibly irregular, factors. Given that some of
these factors are unobservable and �uctuate randomly, it is unlikely that even a �exible estimation
procedure allows to always set the price optimally.

To illustrate potential problems with mechanism designers’ priors, suppose the common dis-
tribution of the value of time depends on an unobservable parameter α, so that each θi is dis-
tributed according to F pθi;αq where α is distributed uniformly over the unit interval. Note that
one implication of this assumption is that from the mechanism designer’s view, the values of θi are
not independent. The mechanism designer’s prior is then fppθiq ”

ş1

0
fpθi;αqdα. When setting

the Pigouvian price, based on the prior the mechanism designer will set:

p “ b

ż θ

θ˚

θdFppθq
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This will not yield the optimal price p˚pαq that the mechanism designer would set if the value
of α were known. In contrast, our proposed mechanism achieves an e�cient allocation for each
value of α. Note that in this case the mechanism designer’s lack of knowledge over α re�ects
aggregate uncertainty other than that resulting from a �nite number of drivers. So even with a
continuum of drivers, aggregate uncertainty implies that setting a Pigouvian price based on priors
is not e�cient.

To investigate the consequences of both, a smaller number of drivers and errors in setting the
Pigouvian price, we simulated the normalized welfare loss7 from using a Pigouvian price as well
as both a higher and a lower price. The results are summarized in Figure 3.4. The purple curve
indicates the welfare loss when the Pigouvian price is set optimally. As can be seen the welfare
loss from using the optimal Pigouvian price vanishes as the number of drivers increases. However
for a small number of drivers there is still some welfare loss. The orange line indicates welfare
loss when a price is set at 20% below the optimal Pigouvian price. It can clearly be seen that the
welfare loss under this price converges to a strictly positive percentage. Note that when there are
few drivers the lower price gives a lower welfare loss than the optimal Pigouvian price. This can
be due to realizations of the valuations of time such that none of the drivers is willing to pay the
price to use the fast road. In that case a lower price may induce at least one driver to use the fast
road, which always dominates no driver using the fast road. This shows that with a �nite number
of drivers the Pigouvian price that maximizes welfare will in general depend on n. The blue curve
shows the welfare loss when the price is set at 20% above the optimal Pigouvian price. Again, the
welfare loss does not vanish as the number of drivers increases.

The simulation results highlight that even when the number of drivers is large our mechanism
can achieve signi�cant welfare gains by generating the information needed to set the right price.
While the Pigouvian price is optimal in the limit, for each realization of the values of time with
�nitely many drivers, the Pigouvian price is not optimal in expectation.

7Welfare loss is calculated as follows: Loss “ W˚
´W ppq

W˚´W p0q , where W˚ is maximum welfare, W ppq gives welfare
when a price of p is set and W p0q is welfare resulting from a price of 0, so all drivers’ travel time is given by t. We
compare the loss in welfare from setting a price p to the welfare loss from not having a mechanism. Thus welfare
losses are normalized by the maximal welfare gain from a mechanism.
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Figure 3.4: Welfare loss of single price mechanisms in the limit

Simulation results comparing welfare under the e�cient limit price (Pigouvian price) ˘20% to maximum welfare in
%. For each n, 10,000 random draws were taken. Parameters were set as follows: b “ 15, t “ 14, t “ 0. F p¨q was
chosen to be a lognormal distribution with a median of 21.46 $/h and interquartile range of 10.47 $/h, taken from
Small et al. (2005), Table 3. Hence the natural logarithm of the value of time is distributed with a mean of 3.07 and a
variance of 0.13. The e�cient limit price under this set-up is given by: 186$, implying that around 40.23% of drivers
use the fast road in the limit.

4 Revenue Maximization
So far the focus of the mechanism designer is e�ciency, in the sense of maximizing total surplus.
In many applications, this may not be realistic. In this section the mechanism designer’s objective
is to maximize revenue given her beliefs about the distribution of θ, given by F p¨q. We assume
that F p¨q has positive mass only on the interval Θ “ rθ, θs. We need to modify the interpretation
of our set-up and allow for non-participation. If all drivers always participated, the mechanism
designer could obtain unbounded pro�t. Now each driver has the option to travel on a congestible
road or to not travel at all. The utility from not traveling is given by 0, while the utility of traveling
on the congestible road is given by:

uipxi, piq “ θi pδ ´ bkqxi ´ pi (4.1)

This can be derived from our earlier model where the value of the outside option is type-dependent
and given by v ´ tθi and letting δ “ t ´ t. The normalization of the outside option to a value
of zero simpli�es the model, but otherwise gives equivalent results. In this sense, the model with
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non-participation discussed here is equivalent to the model with a type-dependent outside option,
i.e. a non-congestible road, discussed so far in the paper.

We denote by Upθ̂i, θi; θ´iq the utility to driver i when her true type is θi, she reports θ̂i and
the value of time of the other drivers is given by the vector θ´i. Hence we have:

Upθ̂i, θi; θ´iq ” θi

˜

δ ´ b

˜

n
ÿ

j“1

xjpθ̂i, θ´iq

¸¸

xipθ̂i, θ´iq ´ pipθ̂i, θ´iq

The mechanism designer thus faces the following incentive constraints:

Uipθi; θ´iq ” Uipθi, θi; θ´iq ě Uipθ̂i, θi; θ´iq, @i and θ̂i, θi P Θi, θ´i P Θ´i. (4.2)

and the participation constraint becomes

Uipθi; θ´iq ě 0, @i and θi P Θi, θ´i P Θ´i. (4.3)

The objective function of the mechanism designer is to maximize total expected revenues
subject to participation and incentive constraints:

W “ maxrxipθq,pipθqsEθ

«

n
ÿ

i“1

pi

ff

“ maxrxipθq,Uipθi;θ´iqs

n
ÿ

i“1

Eθ

«

θipδ ´ b
n
ÿ

j“1

xjpθqqxipθq ´ Uipθi, θ´iq

ff

(4.4)
subject to 4.2 and 4.3.

We solve this problem as in the classical optimal auction problem in Myerson (1981). The
proof of the following Lemma is standard8 and therefore omitted.

Lemma 4. The incentive constraints in equation 4.2 are equivalent to:

Uipθi; θ´iq “ Uipθi; θ´iq `

ż θi

θi

xipθ̃i, θ´iq

˜

δ ´ b
n
ÿ

j“1

xjpθ̃i, θ´iq

¸

dθ̃i (4.5)

and

xipθi, θ´iq

˜

δ ´ b
n
ÿ

j“1

xjpθi, θ´iq

¸

(4.6)

is weakly increasing in θi.

Pro�t maximization requires that the participation constraint is binding for the lowest type,
i.e. Uipθi; θ´iq “ 0 for all θ´i P Θ´i. We can then plug in the �rst expression of Lemma 4 into the

8See for example the proof of Proposition 23.D.2 in Mas-Colell et al. (1995).
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mechanism designers’ objective function and simplify in the usual way by using integration by
parts to get the following expression:

maxrxipθqs

n
ÿ

i“1

ż θ

θ

ˆ

θi ´
1´ F pθiq

fpθiq

˙

«

xipθqpδ ´ b
n
ÿ

j“1

xjpθqq

ff

fpθiqdθ. (4.7)

If we substitute vi ” θi´
1´F pθiq
fpθiq

, known as the virtual value, in the above equation, we obtain
a maximization problem that corresponds to 2.2 except virtual valuations are used instead of true
valuations and the optimization is subject to the additional monotonicity requirement of Lemma
4. This implies that all our results concerning the implementation can be applied to the problem
of revenue maximization as well as long as the allocated value of travel is weakly increasing in θi
for all θ´i P Θ´i. One su�cient condition to ensure this holds true is that virtual valuations are
weakly increasing in θi. This is implied for example if the distribution of the value of time is such
that 1´F pθiq

fpθiq
is weakly decreasing in θi.

To obtain the optimal number of drivers on the fast road, the mechanism designer trades o�
the additional virtual-valuation for travel time of adding another driver to the fast road with the
reduced virtual valuation of all drivers already allocated to this road. Thus, the algorithm is the
same as in Proposition 1 but using virtual valuations vi instead of θi for all drivers i. Note that we
have assumed that valuations are distributed identically across drivers. This implies that a driver
with a higher virtual value also has the higher value of time so that a similar sorting of high
value of time drivers occurs. Hence keeping the number of drivers �xed, the revenue maximizing
mechanism e�ciently selects drivers to drive on the road. If drivers’ di�ered in their distribution
of the value of time, this would no longer be true. The payment schedules that implement the
revenue maximizing allocation can be obtained in the usual way by substituting the resulting
allocation of drivers to roads into equation 4.5 and rearranging.

Despite the fact that this procedure is very similar to the one studied for e�cient mechanisms,
there is an important di�erence: knowledge of virtual valuations requires the mechanism designer
to have some belief concerning the distribution F p¨q. As a result, the revenue maximizing mech-
anism will only maximize revenues if the mechanism designer knows the true distribution of the
value of time, whereas the VCG mechanism will be e�cient irrespective of the distribution of
values of time.

4.1 Example with Two Drivers Continued
We highlight the di�erences between welfare maximization and revenue maximization using the
simple example with two drivers from Subsection 3.2. In contrast to the results concerning welfare
maximization, we need to make an assumption about the distribution of the value of time of the
drivers. Speci�cally we assume that the distribution of the value of time is the uniform distribution
over the unit interval. So θi „ Up0, 1q for i “ 1, 2. Substituting into equation 4.7 yields:

maxrxipθqs

n
ÿ

i“1

ż 1

0

p2θi ´ 1q

«

xipθqp4´
n
ÿ

j“1

xjpθqq

ff

fpθiqdθ. (4.8)
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Clearly, a necessary condition for xipθq “ 1 is that θi ě 0.5. If only one of the drivers satis�es
that condition, that driver is allocated to driver on the road. If both drivers satisfy the condition,
the driver with the higher value of time is allocated to the road. Let j be the driver with the lower
value of time. The e�ect of adding driver j on the road on pro�t is given by´p2θ´j´1q`2p2θj´1q.
The �rst term captures the reduced virtual value of driving on the road for driver ´j, while the
second term represents the addition of the virtual value of driver j switching from not driving to
driving. Hence the optimal allocation is given by:

px˚1 , x
˚
2qpθq “

$

’

’

&

’

’

%

t0, 0u if θ1, θ2 ă 0.5
t1, 1u if θ1, θ2 ě 0.5 & θ1 P p0.5θ2 ` 0.25, 2θ2 ´ 0.5q
t1, 0u if θ1 ě maxp0.5, 2θ2 ´ 0.5q
t0, 1u if θ2 ě maxp0.5, 2θ1 ´ 0.5q

The revenue maximal allocation is shown in the �gure below:

θ1

θ2

11
2

1

1
2

0

x˚1 “ 0
x˚2 “ 0

x˚1 “ 1
x˚2 “ 1

x˚1 “ 1
x˚2 “ 0

x˚1 “ 0,
x˚2 “ 1

Figure 4.1: Revenue Maximizing Allocation with Two Drivers

As in the original example, the violet area shows values of pθ1, θ2q for which both drivers use
the road. In orange areas only one driver uses the road, while in the blue area none of the drivers
uses the road. The dashed lines in Figure 4.1 indicate the solution for the e�cient allocation from
Figure 3.1. Dashed areas highlight values of pθ1, θ2q in which the revenue maximizing allocation
does not coincide with the e�cient allocation. Notice that the number of drivers on the road is
weakly lower in the revenue optimal allocation compared to the e�cient allocation. Therefore
the driving time on the road is also weakly lower in the revenue optimal allocation compared to
the e�cient allocation.
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Given the revenue maximizing allocation we can use the drivers’ incentive constraints to get
the payment schedule that implements the revenue maximizing allocation:

p˚i pθq “

$

&

%

0 if θi ă maxt0.5, 0.5θ´i ` 0.25u
θ´i ` 0.5 if θ´i ě 0.5 & θi P r0.5θ´i ` 0.25, 2θ´i ´ 0.5q
3 maxt0.5, θ´iu if θ´i P r0, 0.75q & θi ě maxt0.5, 2θ´i ´ 0.5u

The following graphs show the pricing function for driver i for di�erent values of time of the
other driver in violet. The payment schedule that implements the e�cient allocation is shown for
comparison purposes in orange.

θi

pipθq

1

θ´i “ 0.3

1
2

3
2

θi

pipθq

1

θ´i “ 0.6

11
20

14
20

11
10

18
10

θi

pipθq

1

θ´i “ 0.9

7
10

14
10

Figure 4.2: Payment schedules for Driver i given di�erent values of θ´i.

Figure 4.2 shows that the qualitative features of the revenue maximizing payment schedule
are similar to the payment schedule that implements the e�cient allocation. It can be seen that
for values of θi below 0.5, the price charged by the e�cient mechanism lies above that charged by
the revenue maximizing one, which also occurs when comparing the optimal auction of Myerson
(1981) with a standard auction without a reserve price. Not allowing drivers with a low value of
time to use the road is optimal when maximizing revenues as this allows the mechanism designer
to charge higher prices when the value of time is above 0.5. Note that payments are not monotone
in the reported value of time of the other driver.

5 Two Identical Roads
The assumption that there is no congestion on one of the roads is not relevant for many applica-
tions. In the case in which the two roads are simply the two lanes of one road is not covered by
that example. However this is a practically relevant case. For example, in California there are spe-
cial high-occupancy vehicle (HOV) lanes, which di�er from normal lanes (see for example Small
et al. (2005)). In this section we extend our results to the case in which there are two identical
roads. As before, there are two roads s “ A,B. We focus throughout on the case of a linear
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congestion function for both roads, i.e. Cpkq “ a ` bk, where a ě 0 and b ą 0. We assume that
there is an odd number n of drivers, such that n “ 2m ` 1 and m P N. This is to ensure that at
the e�cient allocation there will necessarily be a fast and a slow road. We again refer to road A
as the fast road. We assume that if there are q drivers on road s, then it takes those drivers on
that road a time of ts “ a ` bq to go from the origin to the destination. When xi “ 1 driver i is
allocated to road s “ 1 and to road s “ 2 when xi “ 0. Hence the travel time of a driver i when
the allocation is x is given by:

a` xi

˜

b
n
ÿ

j“1

xj

¸

` p1´ xiq

˜

b
n
ÿ

j“1

p1´ xjq

¸

Valuations and utility functions are otherwise as before. Similarly we only consider the allocation
of drivers to one of the two roads assuming full participation.

First-Best Allocation with Two Identical Roads As before we begin by characterizing the
e�cient allocation when there are two roads that maximizes 2.1. We begin by noting that there
will be a fast and a slow road at the e�cient allocation. We will denote the e�cient allocation as
a function of the drivers’ valuations by xFB,2pθq, where the superscript 2 refers to the case of two
identical roads.

Lemma 5. Let xFB,2pθq be the e�cient allocation. Then it must satisfy:

• a` b
´

ř

i x
FB,2
i pθq

¯

ă a` b
´

n´
ř

i x
FB,2
i pθq

¯

.

• For all i, j and θ P Θ such that θi ą θj , we have x
FB,2
i pθq ě xFB,2j pθq.

The �rst point follows directly from assuming an odd number of drivers, full participation and
having two identical roads. Since all drivers are allocated to one of the roads, one of the roads has
to be faster. Since there is a slow road and a fast road, it continues to be optimal to put drivers
with a high value of time on the fast road.

The proof for the second point is analogous to the proof of Lemma 1. Given the previous
two results it remains to consider how many drivers will be using the fast road. To analyze this
question, suppose there are k ď m drivers (i.e. those with the k highest valuations) using the fast
road and we consider adding another driver to it. By Lemma 5 it can only be optimal to add the
driver with the pk ` 1qth highest valuation to the fast road. The change in welfare that results is
given by:

∆2
kpθq “ 2θpk`1qbpm´ kq ´

k
ÿ

i“1

bθpiq `
n
ÿ

i“k`1

bθpiq

The �rst term is the bene�t for the driver that was previously using the slow road and is now
moved to the fast road. The second term is the loss to drivers on the fast road from having another
driver added to the fast road. The trade-o� between these two e�ects is also present in the base
model without congestion on the slow road. The third term is new and represents the bene�t
to the drivers on the slow road from having one fewer driver on it. The next Lemma gives the
properties of ∆2

kpθq.
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Lemma 6. For all θ P Θ and all k P 1, ...,m, we have that ∆2
kpθq ą ∆2

k`1pθq. Furthermore
∆2

0pθq ą 0 and ∆2
mpθq ă 0.

The Proof of Lemma 6 is similar to that of Lemma 2.

Proof. We can write ∆2
0pθq “ 2θp1qbm`

řn
i“2 bθ

piq. Clearly this expression is positive. For k “ m
we have that ∆2

m “ ´
řm
i“1 bθ

piq `
řn
i“m`1 bθ

piq, which is negative since the �rst sum contains
the m largest values of θ, while the second term contains the m smallest values of θ. To see that
∆2
kpθq is decreasing in k, consider the �rst di�erence, which is given by:

∆2
k`1pθq ´∆2

kpθq “ ´θ
pk`2qb´ 2

`

θpk`1q
´ θpk`2q

˘

pm´ kq ´ θpkqb

Since k ă m, this expression is clearly negative.

Using the results of Lemma 6 the e�cient allocation is characterized as follows:

Proposition 4. There exists some k˚˚ such that for all i “ t1, ..., nu at the optimum xipθq “ 1 if
and only if θi ě θpk

˚˚q. The value of k˚˚ is given by:

k˚˚ “ max
∆2

kpθqě0
k ` 1 (5.1)

The proof follows the same lines as the proof of Proposition 1 above making use of Lemmas 5
and 6.

Implementing the First Best Having characterized the �rst-best allocation, we again �nd
a payment schedule for the drivers that ensures that truthfully reporting of drivers’ types is a
dominant strategy. Hence we maximize the mechanism designer’s objective function 2.1 subject
to DIC and taking into account that there will also be congestion e�ects on the slow road. We
again need to de�ne a few new terms, similarly to Proposition 2. We denote by k˚˚´j the optimal
number of drivers on the fast road in the auxiliary problem when driver j’s value of time is not
considered, i.e. set equal to zero. We denote by θpkq´j the kth-highest value of time among all drivers
excluding driver j.

We de�ne the following sets:

Ω`j pθq ”
!

i ‰ j|θi ě θpk
˚˚q

)

Ω0
jpθq ”

!

i ‰ j|θi P
´

θ
pk˚˚

´j q

´j , θpk
˚˚q

¯)

Ω´j pθq ”
!

i ‰ j|θi ď θpk
˚˚
´j q

)

The sets Ω`j and Ω0
j are de�ned similarly as in the base model. The set Ω´j is the set of those

drivers that are allocated to the slow road irrespective of the allocation of driver j.

Proposition 5. The �rst-best allocation when there are two identical roads, xFB,2pθq is implemented
by the following payment rule, which speci�es for all j P 1, ..., n:

pFB,2j pθq “
ÿ

iPΩ`
j

bθipk
˚˚
´ k˚˚´jq `

ÿ

iPΩ0
j

θib
`

n´ k˚˚ ´ k˚˚´j
˘

`
ÿ

iPΩ´
j

θib
`

k˚˚´j ´ k
˚˚
˘

(5.2)
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Proof. The proof follows along the same lines as the proof of Proposition 2.

The main di�erence to the payments in Proposition 2 results from the fact that the slow road
also becomes congested. The �rst two terms in equation 5.2 are analogous to the terms in equation
3.1. The �rst term captures the externality of driver i on those drivers which remain on the
fast road when driver i is added to the optimization problem. The second term captures the
externality of driver i on those drivers that were on the fast road when driver iwas not considered
in the optimization problem, but are assigned to the slow road when driver i is considered in
the optimization problem. The third term, which was not present in equation 3.1 represents the
externality on the drivers that remain on the slow road when driver i is added to the optimization
problem.

When there is a slow road without congestion e�ects, moving driver i from the slow road
to the fast road or adding more drivers to the slow road had no externality on those who were
on the slow road. However when there are two identical roads the addition of more drivers to
the slow road increases the travel time of those drivers who remain on the slow road. We have
again normalized payments to be such that those drivers who do not a�ect the �nal allocation pay
zero transfers. When there is congestion on both roads, this however means that drivers on the
slow road may also pay a positive transfer. Intuitively drivers need to make a transfer payment
whenever they a�ect the allocation, since in that case they impose an externality on others. In
the case of two identical roads the number of drivers allocated to the slow road a�ects the travel
time on the slow road.

More precisely, consider a driver i such that i is allocated to the slow road at the e�cient
allocation. When driver i is not considered in the maximization, the bene�t of adding another
driver to the fast road is lower than when the e�ect on driver i is also considered. This is because
when driver i is not considered, she implicitly has a value of θi “ 0, meaning she does not care
about congestion. This may lead to more drivers on the slow road when i is not considered,
than when i is considered. Hence driver i may in�uence the �nal allocation with her report even
though it does not a�ect the road to which she is allocated. Note however that while she uses the
slow road in both circumstances, the travel time on the slow road will be lower when driver i is
considered. As a consequence drivers do not just pay for faster travel on the fast road, but also
for faster travel on the slow road.

Finally, notice that the payment schedule that implements the �rst best depends on θi only
through its e�ect on k˚˚ which implies that the payment schedule is again a weakly increasing
step function. The result that a single Pigouvian price is not an e�cient mechanism thus continues
to hold.

Even Number of Drivers In this section we so far assumed that there was an odd number of
drivers. This facilitated the search for an e�cient allocation, as we could use the fact that there
would be a slow and a fast road at the e�cient allocation. We now show that in the case of an
even number of drivers, the travel time on both roads may be the same at the e�cient allocation.

Proposition 6. Suppose n is even and θi “ θ̂ for all i and let xFB,2pθq be the e�cient allocation.
Then we have that

ř

i x
FB,2
i pθq “ n

2
.
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To see this, consider an allocation such that
ř

i x
FB,2
i pθq “ n

2
. Now consider changing one xi

from 0 to 1. The e�ect on those on road 1 is that the travel time increases by b which imposes
a welfare loss of pn

2
` 1qbθ̂. The e�ect on those on road 2 is that the travel time decreases by b

which leads to a welfare gain of pn
2
´ 1qbθ̂. Hence there is a net loss of 2bθ̂. For any further driver

that is added to the �rst road there will be an additional net welfare loss of 2bθ̂. The same applies
when we consider moving drivers from the �rst road to the second road. As a result, the uniquely
optimal allocation is to have the same number of drivers on both roads.

It should be noted that even with heterogeneous values of time it will continue to be optimal
to have the same travel time on both roads, as long as the degree of heterogeneity is su�ciently
small. However, if there is su�cient heterogeneity as indicated by the empirical literature, then
also with an even number of drivers there will be a fast and a slow road at the e�cient allocation.
As we already analyzed this case for an odd number of drivers, we do not consider this for an
even number of drivers as the analysis will be identical.

6 Congestion Pricing in Practice
Mechanism design is often criticized for being too complicated for real world implementation.
In this section we will discuss currently used or proposed road and congestion pricing schemes
around the world and explain how they relate to our mechanism. If applicable, we will suggest
how to modify some of these schemes to approach our proposed mechanism and thereby achieve
e�ciency gains. Moreover, we will explore how our mechanism relates to incentives and special
regulations regarding ride sharing and challenges of initial incomplete implementation.

Congestion pricing is a speci�c aspect of road pricing which attempts to (at least partially)
internalize the marginal social cost of congestion. Even though the economic interest in road
pricing emerged from the congestion problem (Pigou, 1920; Knight, 1924), road pricing is nowa-
days also concerned with local and global environmental externalities, as well as recovering the
cost of infrastructure development (see for instance Morrison, 1986; May, 1992). In practice, the
vast majority of road pricing schemes currently in place9 do not contain an explicit congestion
pricing element in the sense of price discrimination with respect to the level of congestion. These
general schemes may only a�ect the congestion externality by reducing overall demand for car
rides. Some systems however address the congestion externality in a more sophisticated way by
charging higher prices during certain periods (e.g. the rush hour) and/or at congestion-prone
areas.

To the best of our knowledge there is no congestion pricing system in place which asks drivers
to report their value of travel time; however, part of the idea of our mechanism-design approach
is frequently implicitly implemented without using monetary transfers. For instance, in case of
accidents, ambulances have a high value of travel time since any delay might potentially cause
a loss of life. Thus, regulation is usually in place to give ambulances privileged use of roads.
Similarly, convoys transporting heads of state are often given privileged use of public roads to

9For instance per usage or per distance charges (Ordinary tollways, truck road pricing in Germany, highway fees
in e.g. France and Italy, etc.) or a vignette to have the permission to use a road network (e.g. the Austrian or the
Swiss highway system) for a certain period of time.
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ensure timely arrival times, while increasing travel time for other drivers. In terms of our model,
these regulations are e�cient if the value of time for one driver (i.e. a convoy or an ambulance) is
large enough such that the e�cient allocation requires that driver to have a very low travel time.

Road pricing with a focus on alleviating congestion is currently only implemented in the urban
context and only in a handful of cities around the world; however, in many cities, the implementa-
tion of such a system has been debated. A particularly simple form of congestion pricing is cordon
area congestion pricing, i.e. a fee to enter a speci�c (congestion prone) area of the city. In many
cases, price di�er mainly for the purpose of achieving other objectives, for example environmen-
tal ones (e.g. in London or Milan).10 If the fee structure of road prices is not �exible with respect to
tra�c conditions, the resulting level of congestion is unlikely to be e�cient. Even though Leape
(2006) argues that the introduction of the London congestion charge is "a triumph of economics"
and led to time savings and better reliability of transport in general, he only �nds small positive
net bene�ts. Prud’homme and Bocarejo (2005) on the other hand argue that the economic bene�ts
of the congestion charge represent less than 60% of the economic costs.

More complex systems are in place in the Swedish cities Gothenburg and Stockholm (The
Swedish Transport Agency, 2015). These cities and the city state Singapore (Land Transport Au-
thority, 2015) have more �exible systems, in which the toll is charged automatically and the prices
vary over the course of the day and at di�erent places. In Singapore, payments even vary with
respect to tra�c conditions11; hence, these systems are more adequate in charging the actual
congestion externality, instead of giving an access ticket to a certain area of the city. Still, our
mechanism could improve on such a system by not only taking into account the tra�c level but
also variations in the valuation of travel time. Moreover, our mechanism improves the existing
systems by increasing the amount and the quality of the information. From a technical point of
view, extending the Swedish or the Singaporean system would consist in o�ering a menu of travel
times with respective prices to reveal the value of travel time, a dialog which could for instance
be done by a simple smartphone app or on-board navigation systems.

Another concern regarding the practical implementation is a situation in which not all drivers
participate in our mechanism right from the start. However, we do not believe this to be an
insurmountable obstacle. For instance, if a mechanism designer considers to introduce our system
by designating fast lanes only for people using our proposed mechanism, she could simply ban
all drivers who are not using the mechanism from that road. Alternatively, cars could be charged
based on the time it took them to reach their destination, assuming that they would have chosen
the actual price and time combination o�ered by the mechanism designer. Charging without
detailed noti�cation about the cost is for instance currently done in Stockholm (The Swedish
Transport Agency, 2015) and hence not an uncommon feature of road pricing.

Another area of transportation research which gained interest due to technological progress
is ride sharing (see Furuhata et al., 2013 for a recent survey). Ride sharing refers to any action in
which travelers share a vehicle to go from their origins to their destinations. Public transport is

10The London congestion charge for instance is a daily price (currently £11.50) for entering one zone in the inner
city center which will be charged between 7:00 a.m. and 6:00 p.m.. However, there are various discounts for cars with
low emissions, vans, residents, etc (Transport for London, 2015).

11Tra�c conditions are estimated based on retrospective data and current tra�c �ows, similar to a real time
weather forecast.
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usually regarded as a cheap but inconvenient form due to the �xed routes and schedules. More
�exible solutions could be obtained by so-called dynamic ride sharing, i.e. a real-time matching of
travelers with similar itineraries, using cars or in the future autonomous vehicles. With the advent
of new technologies such as GPS and smart-phones, dynamic ride sharing gained considerable
commercial and academic interest.12 Even though we ruled out the possibilities that drivers would
like to engage in car pooling or ride sharing in our set-up; the introduction of any per vehicle fees
generates a potentially large incentives to do so13, which in practice would further reduce the
extent of congestion problems.

Incentives to engage in car pooling and ride sharing are already implicitly implemented in
many cities, e.g. the designation of special bus lanes, such as in Berlin, which can only be used
by buses and taxis. This could be e�cient in the context of our model, since a bus usually carries
several people so that their value of time should be added, implying a large value for time of
the bus overall. Similarly, the High-Occupancy Vehicle Lanes in California allow faster travel
to cars which seat more passengers. Here the expectation is also that vehicles carrying more
people implicitly have a higher value for time. The di�erence to an optimal mechanism is that the
allocation is implemented through rigid rules which are based on implicit assumptions regarding
the value of time of certain types of vehicles, while in our mechanism this information would
be reported directly by di�erent vehicles. In our congestion externality framework it is not clear
from an ex ante perspective whether such a feature, namely the free access to the fast road for
cars with a certain minimum number of drivers is desirable, since it increases the number of cars
on the fast road and hence might hinder welfare gains from higher velocity for the drivers with
a high valuation of travel time. Once our mechanism would be implemented and eliminating
any discounts for cars with more than one driver, these types of ine�cient allocations would
disappear.

7 Further Applications
Congestion problems arise not only in the case of road pricing but in many other applications
that are of interest to economists and policymakers. In this section we discuss a number of such
additional applications in a preliminary manner.

7.1 Network Neutrality
The congestion problem studied so far is similar to the congestion problem that content providers
(CP), similarly to drivers, face in the context of the recent net-neutrality debate (Economides and
Hermalin, 2012; Economides and Tåg, 2012). Some CPs require a fast internet connection to o�er
their service, such as video-call services, compared to other CPs who o�er a less time-sensitive

12Kleiner et al. (2011) for instance, evaluate the potential of a VCG mechanism for the e�cient allocation of drivers
in such a dynamic ride sharing system.

13When Singapore introduced congestion pricing in 1975, the number of cars entering the center decreased by
41.6% initially and 22.9% in the long-run, (Morrison, 1986). Interestingly, Leape (2006) does not report any e�ects of
the London congestion charge on car pooling
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service, e.g. video streaming. The sensitivity of their service to the connection speed is likely to be
private information of the CPs since it depends mainly on the value consumers derive from those
services. The Internet service provider (ISP) has a number of ways of delivering the content of
CPs to users, each of which may lead to a di�erent latency. The mechanism studied above o�ers
an e�cient solution to this congestion problem.

Note that in the context of data transmission, we can no longer assume that each CP is identical
in terms of how much bandwidth capacitiy is required for service provision. Thus CPs can have
heterogeneous e�ects on the overall level of congestion. This is not captured in our model so far.
Nevertheless, the qualitative features of our mechanism should continue to hold. In particular,
it is doubtful that a single Pigouvian price is an e�cient mechanism when the number of CPs is
�nite.

To account for the particularities of congestion in data transmission, we adjust our model.
There are n CPs, indexed by i “ 1, ..., n and a single ISP who o�ers access to a congestible high-
speed data link that can be used by the CPs to send data to a consumer or a group of consumers
and an alternative low speed data link, that is not congestible. CP i wishes to send a data pack-
age of size αi ą 0 to consumers where the αi are commonly known. This is because an ISP can
observe the amount of data sent via its connections. The latency, i.e. the time it takes to send the
data from a CP to consumers is given by C p

řn
i“1 αixiq where xi P t0, 1u indicates whether or

not CP i is using the ISP’s high speed data link and C p¨q is de�ned as in Section 2. This implies
that di�erent CPs have di�erent e�ects on congestion. The value of using the high-speed data
link to a CP is given by ui “ v ´ θiC p

řn
i“1 αixiq ´ p, while the value of using the low-speed

data link is given by ui “ v´ θit´ p, where θi is the private information of CP i concerning how
critical latency is for the services o�ered by the CP and p is the payment made to the ISP. In the
special cases when αi “ ᾱ for all i, then the results of our existing model can be directly applied.
However in practice di�erent CPs will wish to send data packages of di�erent sizes. For example,
some CP only needs to send an e-mail while another CP o�ers high-de�nition video conference
calls. As a result it is no longer the case that CPs with a high value of θi will necessarily use the
high-speed data link. This is shown in the following example.

Example Suppose n “ 2, Cpxq “ x, α1 “ 0, α2 “ 10, t “ 5 and θ1 “ 1, θ2 “ 10. For example
CP 1 could wish to send an email, while CP 2 tries to perform a video call in a rural region with
insu�cient bandwidth. Clearly, allocating CP 2 to the high-speed data link will imply a worse
latency than allocating CP 2 to the low speed data link. Hence even though θ1 ă θ2, CP 1 is
optimally allocated to the high-speed data link.

The challenge arising when di�erent CPs have di�erent e�ects on congestion is that the second
part of Lemma 1 might no longer hold. However if one is willing to make a few restrictions then
parts of our existing results can be recovered. Irrespective of the restrictions one places on the
model, a VCG-type mechanism could still be applied in this context. The main di�culty that arises
lies in characterizing the resulting payment schedules and allocation rules.

Two Possible Package Sizes An alternative case to consider is one where for all i, αi P t0, αu.
For example, there could be some services, such as sending an e-mail, that take up a negligible
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amount of bandwidth and other services that take some larger, but common, bandwidth such as
streaming videos. In that case, it is clear that at an e�cient allocation any CP for which αi “ 0
would be allocated to the high-speed data link, irrespective of the vector of time-sensitivities. For
those CPs for which αi “ α the results of Sections 2 and 3 would continue to hold, taking account
of the fact that congestion on the high-speed data link also a�ects CPs with αi “ 0.

Negatively related Time-Sensitivity and Package Size Suppose it holds that for i ‰ j θi ą
θj implies that αi ă αj .14 Then all the results of Lemma 1 continue to apply: CPs with a high
value of θi will be allocated to the high-speed data link. The expression for the marginal e�ect
of adding another CP’s data package to the high-speed link would need to be adapted to take
account of the heterogeneous congestion e�ects, but otherwise all of the logic of Sections 2 and
3.

7.2 High Frequency Trading
Our model may also be applied to some problems arising in �nancial markets. So-called high
frequency trading (HFT) �rms use speed advantages in order to bene�t from highly transitory
price changes lasting for tiny fractions of a second. The company "Spread Networks" built a tunnel
connecting a stock exchange data center in New York to another in Chicago and sold access to
this high-speed data link to several high frequency trading �rms. Lewis (2014) writes that after
hearing of the o�er for access to the new data link one of the prospective customers asked whether
it would be possible to increase the price. While such a request may appear puzzling, the model
we have studied so far can lead to situations in which some agents are willing to pay to exclude
other agents from a resource due to externalities that are present.

We again let θi denote the private information held by some HFT �rm i “ 1, ..., n. In this case
we interpret θi to be the privately known skill of the HFT �rm in bene�ting from temporary price
di�erences. This skill may depend on the type of code used by the �rm or on the ability of the
programmers working for the HFT �rm. In our benchmark congestion pricing model, the value
of being allocated to the fast road was only a function of the number of other drivers using the
same road. In the context of HFT �rms however, it appears more likely that the value of access
to a high-speed data connection not only depends on the number of other HFT �rms that have
access, but also on their ability to exploit the same type of price di�erences as other �rms. Hence
we will write the utility to an HFT �rm of having access to the high-speed data link as:

ui “ θi

˜

v ´
ÿ

j‰i

θjxj

¸

xi ´ p

Note that this formulation is similar to the formulation we employed when analyzing network
neutrality, where the "package size" is assumed to equal the privately held information fo the HFT
�rms. The di�erence is that package size was observable in the previous section, while the ability
of an HFT �rm is private information.

14Notice that in reality one would expect the opposite to hold, namely that those data packages that are the most
time-sensitive are also those that take up the most bandwidth.
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While it may be of interest to study the general problem of e�ciently allocating access to the
high-speed data link, we are going to focus on the case when there are just 2 HFT �rms present,
so n “ 2. We focus on �nding an e�cient allocation.

Proposition 7. It is e�cient for both HFT �rms to use the high-speed data link if and only if v ě
2 maxtθ1, θ2u. Otherwise the �rm with the higher value of θi is the only one to use the high-speed
data link.

Proof. If both HFT �rms are allocated to the data link, total welfare is pv ´ θ1qθ2 ` pv ´ θ2qθ1. If
only HFT �rm i is allocated to the data link then total welfare is vθi. Hence having both �rms on
the data link is optimal if and only if vpθ1`θ2q´2θ1θ2 ě vmaxtθ1, θ2uwhich can be re-arranged
to v ě 2 maxtθ1, θ2u. Clearly, if it is not optimal for one �rm to use the data link, then the �rm
with the higher value of θi should use it.

θ1

θ2

v
2

v
2

0

x˚1 “ 1,
x˚2 “ 1

x˚1 “ 1,
x˚2 “ 0

x˚1 “ 0,
x˚2 “ 1

Figure 7.1: E�cient Allocation with Two HFT Firms

The set-up studied here is similar to mechanism design problems with interdependent values,
as in Jehiel et al. (1999) and Jehiel et al. (2006). In the general set-up studied by these papers, it is
not possible to implement e�cient social choice functions. Our model di�ers from those papers in
that the private information held by HFT �rms is unidimensional, while the private information in
those papers is multidimensional. We additionally put more structure on the problem by assuming
particular functional forms.

We show that the strict impossibility of implementing any non-constant social choice function
of Jehiel et al. (2006) does not apply in our context. Given the nature of the problem we no longer
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focus on dominant strategic incentive compatibility, but instead focus on the weaker notion of
ex-post incentive compatibility, which requires agents not wishing to deviate from truth-telling
from their report given that the other agents have reported their types truthfully.15 The distinction
arises because dominant strategy incentive compatibility would additionally require truth-telling
from agents if others have lied, so that while the utility of agent i is given by θxipv ´ θjxjq, the
other agent j ‰ i has reported some θ̂j ‰ θj . In the previous models this did not matter as
the private information of agent j did not directly a�ect the utility of agent i. Ex-post incentive
compatibility requires that for all i, and all θi, θ̂i P Θi and θ´i P Θ´i we have:

θixipθq
´

v ´ θ´ix´ipθq
¯

´ pipθq ě θixipθ̂i, θ´iq
´

v ´ θ´ix´ipθ̂i, θ´iq
¯

´ pipθ̂i, θ´iq (ExPost IC)

Given our relaxed notion of incentive compatibility, we can show that the e�cient allocation
is implementable, implying that the results of Jehiel et al. (1999) are not applicable in our set-up
despite featuring interdependent preferences.

Proposition 8. The e�cient allocation is implemented in the sense of ex-post incentive compatibility
by the following payment schedule:

p˚1pθq “

$

’

’

&

’

’

%

0 θ1, θ2 ď v{2
0 θ1 ă θ2, θ2 ą v{2
vθ2{2 θ2 ď v{2, θ1 ą v{2
vθ2 θ2 ą v{2, θ1 ě θ2

p˚2pθq “

$

’

’

&

’

’

%

0 θ1, θ2 ď v{2
0 θ2 ď θ1, θ1 ą v{2
vθ1{2 θ1 ď v{2, θ2 ą v{2
vθ1 θ1 ą v{2, θ2 ą θ1

Proof. Suppose θ2 ď v{2. Then HFT �rm 1 pays 0 when reporting θ̂1 ď v{2 , giving a pay-o�
of θ1pv ´ θjq, while paying vθ2{2 when reporting θ1 ą v{2, giving a pay-o� of θ1v. Hence the
di�erence in pay-o� is given by vθ2{2´ θ1θ2, which is positive whenever θ1 ď v{2, implying that
HFT �rm 1 optimally tells the truth.

Suppose θ2 ą v{2. Then HFT �rm 1 pays 0 when reporting θ̂1 ď θ2 , giving a pay-o� of 0,
while paying vθ2 when reporting θ̂1 ą θ2, giving a pay-o� of pθ1 ´ θ2qv. Hence the di�erence
in pay-o� is given by vpθ1 ´ θ2q, which is positive whenever θ1 ě θ2, implying that HFT �rm 1
optimally tells the truth.

A similar logic applies for HFT �rm 2.

15In the case of our road congestion pricing set-up, dominant strategy compatibility and ex-post incentive com-
patibility are equivalent.
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7.3 Keyword Search Auctions
E�ects similar to congestion are also prevalent in keyword search auctions on the internet, which
have �rst been analyzed by Varian (2007) and Edelman et al. (2007). These papers assumed that the
total number of clicks of an ad depended solely on the position on which the ad is shown. However
the attention and hence the number of clicks an ad receives on a website likely depends on the
total number of other ads displayed in the same impression. Hence advertisers might be willing to
pay to ensure that fewer other advertisers are shown on the same impression. In practice however
the type of externalities that arise in this context are likely to be more complex than those arising
in the application to tra�c congestion pricing. Jeziorski and Segal (2012) empirically analyze
clicking behavior of consumers. They �nd that the number of times an ad is clicked depends to a
signi�cant and economically meaningful extent on the identity of other ads shown both in higher
and lower positions.

We expect that the following complexities would need to be added to our model to make it
realistic. First, the attention diverted from an advertisement does not just depend on the number
of other ads shown, but also on their identity and perceived similarity. For example, two ads for
pizza delivery might draw attention away from each other to a larger extent than an ad for pizza
delivery and one for sushi delivery food. Second, the attention received by an ad will also depend
on the precise placement of the ad. For example, ads placed on top of the generic search results
receive more clicks than those placed at the bottom. Overall, these complexities imply that the
results of Lemma 1 might no longer apply. Note however that to the extent that the magnitude
of these complexities is known to the mechanism designer, which appears realistic, a VCG-type
mechanism is still applicable, but may be hard to characterize.

8 Conclusion
This paper shows that the traditional Pigouvian approach of internalizing social costs of conges-
tion by setting a single congestion charge applies only when there are in�nitely many drivers.
The generally optimal solution involves charging drivers a variety of di�erent prices depending
on the speed on which they want to travel on a road, i.e. on the number of other drivers on that
road.

One major advantage of applying mechanism design to congestion problems is that it obvi-
ates the need to conduct detailed econometric studies to estimate the distribution of the value
of time. Moreover, other externality-related objectives, such as pollution-taxes could be easily
implemented on top of our mechanism. The mechanism design approach requires, however, that
each driver may communicate instantaneously with the mechanism designer. Given modern com-
munication technology, we do not believe this is a major issue.

Requiring drivers to directly report their value of time may be impractical because such mech-
anisms might be hard to explain to people. Instead other solutions which that allow drivers to
choose from a simpli�ed menu of prices and arrival times may be easier to use by people. For
example people could be o�ered a choice of three categories: fast, normal and slow. In that case
they would be charged a premium for choosing faster options. The exact user interface, would
need to be investigated further before such congestion pricing mechanisms are implemented.
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Critics of congestion pricing schemes often point towards adverse e�ects on lower income
drivers. In the case of revenue maximization, there is an incentive for the mechanism designer
to treat drivers with a lower distribution (i.e. lower value of time on average) more favorably
to extract more surplus from drivers with a relatively good distribution. In practice, this means
that lower income drivers might optimally be favored relative to higher income drivers by a rev-
enue maximizing congestion pricing scheme. Ultimately, distributive outcomes from congestion
pricing also depend on how revenues generated in such a scheme are used.

One other potential concern is that congestion pricing mechanisms as envisioned here would
provide too much information on citizens’ travel behavior. However there are ways in which con-
gestion pricing could be implemented without collecting detailed personal information. Charges
for traveling in an autonomous vehicle could technically be depersonalized.

The main remaining theoretical question is how to extend our model and mechanism to allow
for endogenous departure times. So far we assumed that all drivers traveled at the same time.
In practice a high congestion charge at a particular time of the day is likely to lead to drivers
switching their travel to other times of the day, when congestion charges are lower. So far our
model does not capture this. We expect that an e�cient mechanism that takes such dynamic
issues into account will allow further e�ciency gains. Congestion at a particular time of the day
could then be alleviated not only be rerouting some tra�c but also by postponing some trips.
However information acquisition would become somewhat more complicated, since drivers also
have private information regarding their preferred departure times. Therefore the mechanism
designer would face a multi-dimensional screening problem. The decisions made by a mechanism
would also depend on expected future tra�c �ows, for example as in Singapore now. We leave
this for future research.
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