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Modelling the distribution of health related quality of
life of advanced melanoma patients in a longitudinal
multi-centre clinical trial using M-quantile random

effects regression

Riccardo Borgoni∗ Paola Del Bianco† Nicola Salvati‡

Timo Schmid § Nikos Tzavidis¶

Abstract

Health-related quality of life assessment is important in the clinical evaluation of

patients with metastatic disease that may offer useful information in understand-

ing the clinical effectiveness of a treatment. To assess if a set of explicative vari-

ables impacts on the health-related quality of life, regression models are routinely

adopted. However, the interest of researchers may be focussed on modelling other

parts (e.g. quantiles) of this conditional distribution. In this paper we present an ap-

proach based on M-quantile regression to achieve this goal. We applied the proposed

methodology to a prospective, randomized, multi-centre clinical trial. In order to

take into account the hierarchical nature of the data we extended the M-quantile

regression model to a three-level random effects specification and estimated it by

maximum likelihood.

Keywords: Hierarchical data; influence function; robust estimation; quantile regression;

multilevel modelling

1 Introduction

Assessing the health-related quality of life (HRQOL) forms an important part in the

clinical evaluation of patients suffering from a metastatic disease and offers useful infor-

mation for understanding the clinical effectiveness of a therapeutic option. For this reason
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HRQOL is nowadays considered as an important endpoint in oncological studies, helping

physicians and patients to better understand the treatment outcomes, balancing among

intent to cure, survival, side effects and quality of life, and to make appropriate decisions.

HRQOL is a subjective, dynamic and multidimensional measure that includes physical,

psychological and social domains. Its measurement evaluates the overall clinical benefit

that a particular treatment offers to a patient.

HRQOL is evaluated through self assessment questionnaires measuring various aspects

of quality of life. Data is frequently collected at various time points for investigating how

the disease and treatment impact upon an individual’s well-being over time.

Many clinical trials also enrol patients from different medical centres since conducting a

multi-centre trial enhances the generalisation of findings, allowing researchers to evaluate

the efficacy of a therapy in a variety of patients and settings, and makes it possible to

investigate the effect of treatments when it is difficult, or even impossible, for a single

centre to recruit the required number of patients. However, multi-centre studies involve an

inter-centre variability as a result of differences in applying the study protocol procedures

(Localio et al., 2001; Guthrie et al., 2012). Hence, a relevant issue in HRQOL is centre

heterogeneity. The clustered structure of a multi-centre trial is neither accidental nor

ignorable and ignoring it may lead to erroneous statistical inference.

Studies of multi-centre clinical trials quantify centre differences by using either a fixed

effect or a random effect approach. In clinical trials with a relatively large number of

centres each with a small number of patients the estimated centre-specific treatment

effects may be unstable and the loss of efficiency can be severe (Sakamoto et al., 1999;

Yamaguchi et al., 2002).

Centre effects can therefore be more conveniently specified by using a multilevel (ran-

dom effects) modelling approach (Goldstein, 2003) where patients are hierarchically clus-

tered within centres. Methods to design and analyse HRQOL studies, including the use

of random effect models, are thoroughly discussed by Fairclough (2002).

Typically, a regression model offers a summary of the expected value of the conditional

distribution of the outcome variable given the set of explanatory variables. Researchers,

however, may be interested in modelling other parts (e.g. quantiles) of this conditional

distribution. This may be the case if one is interested for example in understanding

whether a treatment has a differential impact on patients with different HRQOL status.

For instance, patients with a poor HRQOL status might suffer more when receiving one

of the treatments under evaluation, than those who are in a better HRQOL state, as a

consequence of a different toxicity or adverse events of the treatment itself. Identifying

this effect provides relevant information particularly in those cases, as the one presented

in the case study discussed in Section 5, where the improvement in the survival (or in

the primary end point of the trial) due to a new treatment is moderate. In this case, to

expose patients to a new treatment may be ethically and economically appropriate if this

does not have a detrimental effect on their HRQOL. On the other hand, adopting a new

treatment can be inappropriate for those patients who, being in a poorer HRQOL state,

may suffer side effects as a result of the new treatment beyond what is considered to be
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ethical, given the expected improvement in the survival. Some further actions should have

been considered for the latter kind of patients who have been medicated with the new

treatment, such as explaining to them the potential consequences of the therapy, planning

appropriate supporting actions when in therapy and so on.

This type of analysis is not possible by using conventional regression models for the

conditional expectation but it can be obtained using quantile regression models. Quantile

regression was introduced in the econometrics literature by Koenker and Bassett (1978)

and thoroughly described by Koenker (2005). Since then, quantile regression has been

applied in many and different areas of research. Recently it has been successfully em-

ployed in medical applications (Carey et al., 2004; Austin et al., 2005; Wei et al., 2006;

Geraci and Bottai, 2007; Bottai et al., 2010; Li et al., 2010). Only few applications of

quantile regression to modelling HRQOL currently exist in literature (Nicholson et al.,

2006; Pourhoseingholi et al., 2008; Broccoli et al., 2005), but the studies do not take

into account the hierarchical structure of the data. Recently, Geraci and Bottai (2007,

2014) propose a conditional two-levels quantile regression model (LQMM) that assumes

an Asymmetric Laplace Distribution (ALD) for modelling the conditional likelihood given

the random effects. Inference for the model parameters is performed by using a bootstrap

approach based on resampling the sample data. Estimation and inference is facilitated

by the lqmm package in R.

There are, however, alternatives to quantile regression, such as M-quantile regres-

sion (Breckling and Chambers, 1988), which is a quantile-like generalization of regression

based on influence functions (M-regression), and expectile regression (Newey and Powell,

1987), a quantile-like generalization of mean regression. Tzavidis et al. (2015) propose

the extension of M-quantile regression to two-levels M-quantile random effects regression

for multilevel-type data.

This paper is, to the best of our knowledge, the first attempt to apply a quantile-like

random effects model to complex data from longitudinal and multi-centre studies (three-

levels models). More specifically, in this paper we proposes the extension of two-levels

M-quantile regression to three-levels M-quantile regression models.

M-quantile regression (Breckling and Chambers, 1988) integrates the concepts of quan-

tile regression and expectile regression within a framework defined by a ‘quantile-like’ gen-

eralization of regression based on influence functions (M-regression). The M-quantile of or-

der q for the conditional density of y given the set of covariates X, f(y|X), is defined as the

solution MQy(q|X;ψ) of the estimating equation
∫
ψq

{
y−MQy(q|X;ψ)

}
f(y|X)dy = 0,

where ψq denotes an asymmetric influence function, which is the derivative of an asym-

metric loss function ρq. A linear M-quantile regression model for yi given xi is one where

we assume that

MQyi(q|xi;ψ) = xTi βq,

and estimates of βq are obtained by minimising

n∑
i=1

ρq{riq}, (1)
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where riq =
yi−xTi βq

σ
, σ is a scale parameter and ρq{riq} = 2ρ{riq}

[
qI(riq > 0) + (1 −

q)I(riq 6 0)
]
. Different set of regression parameters can be defined for each value of q.

In particular, by varying the specifications of the asymmetric loss function ρ we obtain

the expectile, M-quantile and quantile regression models as special cases. When ρq is the

square loss function, we obtain the linear expectile regression model if q 6= 0.5 (Newey

and Powell, 1987) and the standard linear regression model if q = 0.5. When ρ is the loss

function described by Koenker and Bassett (1978) we obtain the linear quantile regression.

Throughout this paper we will take the linear M-quantile regression model to be defined

by using as ρ the Huber loss function (Huber, 1981). For more details on M-quantile

regression models see Breckling and Chambers (1988).

Quantiles have a more intuitive interpretation than M-quantiles even if they target

essentially the same part of the distribution of interest. In this paper we use M-estimation

because it offers some advantages: (i) it easily allows for robust estimation of both fixed

and random effects; (ii) it can trade robustness for efficiency in inference by selecting the

tuning constant of the influence function; (iii) it can offer computational stability because

it can use a wide range of continuous influence functions instead of the absolute value

used in the quantile regression.

Tzavidis et al. (2015) extended M-quantile regression to include random effects to

account for a two-level hierarchical structure in the data and used maximum likelihood

to estimate the parameters of the model. In this paper we extend this approach to a

three-level random effects model, which is appropriate for the analysis of the data we

consider in Section 2 and we propose a maximum likelihood approach to estimate the

model parameters. We applied the proposed methodology to a prospective, randomized,

multi-centre clinical trial. The paper is structured as follows. The data are introduced

in Section 2. Section 3 presents the proposed methodology. In Section 4 we evaluate

the proposed regression models using model-based simulation studies, under a range of

different data generating mechanisms. In Section 5 we present the results from the appli-

cation of three-levels, two-levels M-quantile random effects regression models and quantile

random effects regression (Geraci and Bottai, 2014) to the HRQOL data. The results are

discussed and concluding remarks are presented in Section 6.

2 The data: HRQOL of advanced melanoma patients

in a multi-centre clinical trial

The study considered in this paper is a prospective, randomized, multi-centre phase III

clinical trial that aimed at comparing the efficacy of two treatments, Cisplatin 75 mg/m2

and DTIC 800 mg/m2 (CT) versus the same regimen plus IL-2 and IFN-2b (bio-CT),

in advanced melanoma patients, who had not been previously treated with systemic

chemotherapy. Both treatments were administered for six cycles or until disease progres-

sion. The primary objective of the trial was overall survival, while HRQOL evaluation

was planned as a secondary objective. Further details on the clinical analysis and the
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Table 1: Summary statistics of PSDS stratified by treatment.
Order of sample quantiles

treatment N. Obs 0.10 0.25 0.50 0.75 0.90 mean std. dev.
CT 264 68.70 78.26 87.88 93.94 97.10 84.73 11.82
bio-CT 244 64.26 75.76 86.66 92.75 97.10 83.17 12.72

Table 2: Summary statistics of PSDS at different temporal occasions.
Order of sample quantiles

temporal occasions N. Obs 0.10 0.25 0.50 0.75 0.90 mean std. dev.
0 137 69.70 82.61 90.91 96.97 98.55 87.80 11.25
1 121 65.08 76.81 86.36 92.42 95.65 83.20 12.02
2 98 63.64 74.89 86.04 92.32 97.10 83.00 12.36
3 68 61.84 75.76 84.85 89.86 94.36 81.07 13.07

HRQOL analysis are reported elsewhere (Ridolfi et al., 2002; Chiarion-Sileni et al., 2003).

The HRQOL status was assessed by a self-reported questionnaire, the Rotterdam

Symptom Checklist (RSCL). In this paper, we focus on the physical symptom distress scale

(PSDS) score as the primary HRQOL outcome. The questionnaire was administered to all

patients for completion prior to the first cycle of chemotherapy (baseline assessment), and

subsequently just before each successive cycle of chemotherapy. The HRQOL evaluation

was not planned after disease progression or during the follow-up period. Since a large

part of the sample experienced disease progression starting from the fourth assessment

onwards, we limited our analysis to the data collected in the first four occasions, since the

sample became too small after this assessment.

The data were collected between March 1997 and December 1999. The trial enrolled

178 patients from 23 different clinical centres, half of them were randomized to receive

CT and the remaining 89 to receive bio-CT. The median time to progression was 3.6

months for bio-CT and 3 months for CT, showing a moderate effect of the treatment

under evaluation.

We considered 137 patients for the HRQOL analysis discarding 16 patients who did

not have a baseline measurement, 22 patients who never completed any form and three

who died before the start of treatment. In total there were 508 measurements of PSDS,

the average being 83.98 (sd=12.27). Summary statistics of PSDS stratified by treatment

are shown in Table 1. A difference between the two groups is evident in the left tail of

the PSDS distribution whereas the discrepancy is negligible at the centre as well as the

right tail of it.

Table 2 shows key sample quantiles of PSDS stratified by the temporal occasion at

which patients were evaluated. From Figure 1 it clearly appears that the HRQOL, as

measured by PSDS, tended to decline, roughly linearly, at all quantiles as the study

progresses. As mentioned above, the number of patients in the study declined as the

study continued.

Figure 2 shows the centre-specific distribution of PSDS scores at baseline. The distri-

bution appears to vary from centre to centre, suggesting that a certain degree of variability

in PSDS measures can be attributed to the centres which participated in the trial.
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Figure 1: PSDS quantiles versus temporal occasions. The quantiles considered are 0.10,
0.25, 0.50, 0.75 and 0.90.

!
Figure 2: Distribution of PSDS scores at baseline. The width of each box is proportional
to the number of patients in each centre showing the different sample sizes in each of
them.

3 Three-level M-quantile random effects regression

In what follows we present a three-level M-quantile random effects regression. In order

to bring continuity, we first briefly review random effects models. We consider data

with a three-level hierarchical structure because in the multi-centre clinical trial data set,

occasions (repeated measures denoted by k - level 1) are nested within patients (denoted by

j - level 2), and patients are nested within centres (denoted by i - level 3). A conventional

three-level random effects model is described by

yijk = xTijkβ + ui + γij + εijk, i = 1, . . . ,m, j = 1, . . . , ni, k = 1, . . . , tij, (2)
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where yijk denote the value of the variable of interest y, xijk is a p vector of auxil-

iary variables associated with measure k of unit j in group i and
∑m

i=1 ni = n and∑m
i=1

∑ni
j=1 tij = N . We assume that xijk contains 1 as its first component. Here β

is a p vector of fixed effect parameters, εijk is the occasion random effect, γij is a pa-

tient random effect and ui denotes a m vector of centre specific random effects. Model

(2) conventionally assumes that u ∼ N(0,Σu), with Σu = σ2
uIm, γ ∼ N(0,Σγ), with

Σγ = σ2
γIn, εijk ∼ N(0, σ2

ε) and mutually independent. Here and throughout the paper

Ig is an identity matrix of size g. In matrix form model (2) can be re-written as

y = Xβ + Du + Zγ + ε, (3)

where Z and D are an auxiliary contextual matrices. In simplest case, we assume Z and

D as incidence matrices which specify the random intercepts specification of model (2).

Maximum likelihood (ML) estimation based on the marginal distribution of y is widely

used for estimating the unknown parameters of model (2) (Harville, 1977). In particular,

estimates of β, σ2
u, σ

2
γ and σ2

ε are obtained by first differentiating the log-likelihood with

respect to these parameters and then solving the estimating equations defined by setting

these derivatives equal to zero (Goldstein, 2003). It is easy to see that in this log-likelihood

a squared loss function of the residuals is assumed. Estimates of the random effects are

then obtained by using the maximum likelihood estimates of the fixed effects and the

variance components.

Data may contain outliers that invalidate the Gaussian assumptions. In such a case,

the estimated model parameters under (3) will be biased and inefficient (Richardson and

Welsh, 1995). A number of papers (Huggins, 1993; Richardson and Welsh, 1995; Richard-

son, 1997; Huggins and Loesch, 1998) proposed robust estimation of the random effects

model, which offers protection against departures from normality. This is achieved by us-

ing an alternative loss function in the log-likelihood that grows along with the regression

residuals at a slower rate than the squared loss function. Alternatively, Richardson and

Welsh (1995) proposed a robust version of the estimating equations of the log-likelihood

function, but there is no associated likelihood function unlike in the case of large tun-

ing constant in the influence function. For details see Richardson and Welsh (1995) and

Richardson (1997).

For describing the relationship between y and a set of covariates X at other parts of

a conditional distribution we extend the two level M-quantile random effects regression

model (Tzavidis et al., 2015) to a three-level M-quantile random effects regression model.

In particular, we propose using asymmetric loss functions for this purpose when the data

are hierarchically structured. Since the estimating equations obtained from the modified

marginal log-likelihood function (Richardson and Welsh, 1995; Richardson, 1997) are sus-

ceptible to multiple solutions, we begin from the robust maximum likelihood proposal II

in Richardson and Welsh (1995). According to Sinha and Rao (2009), we observe that one

can extend the idea of asymmetric weighting of residuals to hierarchical data by defining
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the following modified estimating equations

XTV−1q U1/2
q ψq{rq} = 0 (4)

1

2
ψq{rq}TU1/2

q V−1q DDTV−1q U1/2
q ψq{rq} −

K2q

2
tr
[
V−1q DDT

]
= 0

1

2
ψq{rq}TU1/2

q V−1q ZZTV−1q U1/2
q ψq{rq} −

K2q

2
tr
[
V−1q ZZT

]
= 0

1

2
ψq{rq}TU1/2

q V−1q V−1q U1/2
q ψq{rq} −

K2q

2
tr
[
V−1q

]
= 0, (5)

where rq = U
−1/2
q (y −Xβq) is a vector of scaled residuals with components rijkq, Uq

is a diagonal matrix with diagonal elements uijq equal to the diagonal elements of the

covariance matrix Vq and ψq(r) = 2ψ(r){qI(r > 0) + (1 − q)I(r ≤ 0)} is a bounded

influence function obtained as the derivative of a loss function ρq. Here Vq = DΣuqD
T +

ZΣγqZ
T + Σεq , Σuq = σ2

uqIm, Σγq = σ2
γqIn, Σεq = σ2

εqIN , σuq , σγq and σεq are the quantile-

specific variance parameters, and βq is the p×1 vector of M-quantile regression coefficients.

Finally, the component K2 = E[ψ(ε)ψ(ε)T ] with ε ∼ N(0, IN).

With (5) we extend the idea of weighting positive residuals by q and negative residuals

by (1−q), where 0 < q < 1 is the quantile order, used in fitting the single-level M-quantile

regression (Huber, 1981), to M-quantile regression for hierarchically structured data.

We note that the ML equations of model (3) and their robust version are a special

case of the estimating equations in (5) for a specific choice of ρq and q. For example, when

q = 0.5 and ρq is the squared loss function we obtain ML estimating equations whereas

when q = 0.5 and we use a loss function other than squared loss, for example the Huber

loss function, we obtain a robust version of the ML proposal II estimating equations by

Richardson and Welsh (1995). For q values other than 0.5 and for different choices of ρq,

the solutions of (5) will provide estimates of fixed effects and variance parameters, which

can then be used for obtaining the M-quantile random effects regression (MQRE) fits. In

particular, using a squared loss function and its derivative (influence function) in (5) at

q 6= 0.5 results in an expectile random effects fit.

As discussed in Jones (1994), under specific distributions the relationship between

quantiles and M-quantiles is known and both quantiles and M-quantiles model the same

part of the distribution of interest. In this case estimates of the fixed effects βq can be

practically interpreted, for example, as the effect of a one unit increase in x on the lower

quartile, middle or upper quartile of the distribution of y. The variance parameters show

the between and within group dispersion around the M-quantile being estimated.

Estimating equations can be solved iteratively to obtain estimators of βq, σuq , σγq

and σεq . Here we adopt Newton-Raphson algorithm for solving (4) and the fixed-point

iterative method (Anderson, 1973) for solving estimating equations (5). The steps of the

estimation algorithm are outlined in Appendix A. Robust estimates of the random effects

can be obtained by solving a modified version of the estimating equations proposed by

Fellner (1986) at each value of q. See Appendix A and Tzavidis et al. (2015) for details.
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A function that fits the three-levels M-quantile (expectile) random effects regression has

been in written in R. Some asymptotic properties of the estimators and their variance

parameters for the MQRE models of order q are discussed in Tzavidis et al. (2015).

4 A simulation experiment

In order to compare the performance of the estimators from Section 3, a Monte-Carlo

simulation was conducted. In this simulation we evaluate the performance of the MQRE

(three-level) at two quantiles, q = 0.25 and q = 0.5. The aim here is two-fold. For one

thing, we investigate the ability of the MQRE to account for the dependence structure

of hierarchical data beyond two-levels and for another thing, we assess the asymptotic

approximations of the standard errors of the regression parameters and the variance pa-

rameters (level 2 and level 3). For both goals, a nested error regression model

yijk = 100 + 2xijk + ui + γij + εijk i = 1, ..., 40, j = 1, ..., 200, k = 1, ..., nj (6)

is used as a core model for the generation of the dependent variable. Similar to the

HRQOL data, the sample sizes nj vary between 1 and 5 leading to a total sample size

of n = 505. The auxiliary variables are uniformly distributed in [0, 20]. The covariates

and the sample sizes are held fixed throughout the simulation study. The level 1, level 2

and level 3 error terms εijk, γij and ui are independently generated depending on three

different scenarios:

- Normal distribution ([N,N,N ]): ui ∼ N(0, 1), γij ∼ N(0, 4) and εijk ∼ N(0, 16),

- t-distribution ([N,N, T ]): ui ∼ N(0, 1), γij ∼ N(0, 2) and εijk ∼ t(df = 3),

- Outliers in level 1 and 2 ([N, γ, ε]): ui ∼ N(0, 1), γij ∼ 0.9N(0, 4) + 0.1N(0, 20) and

εijk ∼ 0.9N(0, 16) + 0.1N(0, 150).

Each scenario is evaluated by R = 500 independent Monte-Carlo replications. The as-

sumptions of the underlying three-level random effects model (2) are valid under scenario

[N,N,N ]. In setting [N,N, T ] we have some departures from normality by a t-distribution,

whereas scenario [N, γ, ε] displays a setting under a mixture distribution (outlier contam-

ination) in level 1 and 2. The tuning constant c of the Huber influence function is set to

1.345 for the MQRE.

Starting with the first aim of the simulation section, we assess the performance of the

MQRE with 3 levels (MQRE), the MQRE with 2 levels (MQRE-2L) regression model

(Tzavidis et al., 2015) and the linear M-quantile (MQ) regression model (Breckling and

Chambers, 1988). We expect that the MQRE performs on a higher level compared to

the MQRE-2L and MQ when clustering occurs in the data for quantiles q = 0.25 and

q = 0.5. At q = 0.5, we compare the MQRE also with the two-level linear random effects

model (LRE-2L) and the three-level linear random effects model (LRE). We suppose

more efficient results of the LRE compared to the MQRE in the setting under normality.
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Table 3: Values of bias (ARB), efficiency (EFF), and average of point estimates over
simulations of fixed effects under the three data generating scenarios and the alternative
regression fits: MQRE, MQRE-2L, MQ, LRE, LRE-2L at q = 0.25 and q=0.5.

β̂0 β̂1 β̂0 β̂1
ARB EFF β̄0 ARB EFF β̄1 ARB EFF β̄0 ARB EFF β̄1

q = 0.25 q = 0.5
Scenario 1 - [N,N,N ] Scenario 1 - [N,N,N ]

MQRE 0.558 0.979 97.845 0.057 0.956 2.001 -0.011 0.968 99.989 -0.004 0.956 2.000
MQRE-2L 0.570 0.996 97.857 0.010 0.992 2.000 -0.000 0.990 100.000 -0.043 0.986 1.999
MQ 0.571 1.000 97.857 0.017 1.000 2.000 0.003 1.000 100.003 -0.051 1.000 1.999
LRE — — — — — — -0.002 0.941 99.998 -0.018 0.925 2.000
LRE-2L — — — — — — 0.007 0.971 100.007 -0.054 0.970 1.999

Scenario 2 - [N,N, T ] Scenario 2 - [N,N, T ]
MQRE -0.291 0.784 98.946 0.024 0.630 2.000 -0.013 0.760 99.987 0.034 0.572 2.001
MQRE-2L -0.290 0.902 98.947 0.011 0.853 2.000 -0.010 0.888 99.990 0.005 0.834 2.000
MQ -0.289 1.000 98.949 -0.000 1.000 2.000 -0.005 1.000 99.995 -0.024 1.000 2.000
LRE — — — — — — -0.008 0.835 99.992 0.019 0.717 2.000
LRE-2L — — — — — — -0.006 0.957 99.994 0.001 0.932 2.000

Scenario 3 - [N, γ, ε] Scenario 3 - [N, γ, ε]
MQRE 0.258 0.964 97.553 0.027 0.962 2.001 0.010 0.961 100.010 -0.014 0.953 2.000
MQRE-2L 0.263 0.989 97.558 0.004 0.988 2.000 0.015 0.983 100.015 -0.044 0.992 1.999
MQ 0.266 1.000 97.561 0.008 1.000 2.000 0.011 1.000 100.011 -0.023 1.000 2.000
LRE — — — — — — 0.010 1.146 100.011 -0.014 1.188 2.000
LRE-2L — — — — — — 0.014 1.153 100.014 -0.036 1.218 1.999

In contrast, the MQRE should perform on a higher level compared to the LRE in the

scenarios with contamination. The focus of the first part of the simulation study is set on

comparing fixed effects of the different methods. The results for the variance parameters

are available from the authors upon request. For each regression parameter performance

is evaluated using the following quality measures:

(a) Average Relative Bias (ARB) defined as

ARB(θ̂) = R−1
R∑
r=1

θ̂(r) − θ
θ

× 100,

where θ̂(r) is the estimated parameter at quantile q for the rth replication and θ is

the corresponding ‘true’ value of this parameter.

(b) Relative Efficiencies (EFF) defined as

EFF (θ̂) =
S2
model(θ̂)

S2
MQc=1.345(θ̂)

where S2(θ̂) = R−1
∑R

r=1(θ̂
(r) − θ̄)2 and θ̄ = R−1

∑R
r=1 θ̂

(r).

Table 3 shows the simulation results for the different methods of the fixed effects

under various scenarios for quantiles q = 0.25 and q = 0.5. The tables indicates that

the estimators from LRE are more efficient than the corresponding estimator from the

MQRE under the scenario [N,N,N ] for quantile q = 0.5. Under this scenario, there is no

reason to use outlier-robust methods and therefore, this leads to a higher variability of the

MQRE regression estimators. It can also be observed that the MQRE is more efficient

10



Table 4: Empirical standard errors and estimated standard errors of β̂q, σ̂
2
u and σ̂2

γ for
q = (0.25, 0.5) using MQRE for the three-level model.

Empir. s.e. Estim. s.e. Empir. s.e. Estim. s.e. Empir. s.e. Estim. s.e. Empir. s.e. Estim. s.e.

β̂0 β̂1 σ̂2
u σ̂2

γ

MQRE q = 0.25
Scen. 1 - [N,N,N ] 0.4675 0.4644 0.0365 0.0362 0.4070 0.4894 0.9223 0.9473
Scen. 2 - [N,N, T ] 0.2414 0.2528 0.0149 0.0149 0.2340 0.2586 0.2791 0.3403
Scen. 3 - [N, γ, ε] 0.5729 0.5432 0.0470 0.0433 0.4741 0.5996 1.2464 1.3284
MQRE q = 0.5
Scen. 1 - [N,N,N ] 0.4481 0.4435 0.0349 0.0339 0.6527 0.7178 1.2731 1.2512
Scen. 2 - [N,N, T ] 0.2287 0.2361 0.0135 0.0131 0.3474 0.2969 0.3715 0.3261
Scen. 3 - [N, γ, ε] 0.5177 0.4960 0.0411 0.0388 0.7541 0.8545 1.5944 1.6716

than the corresponding MQRE-2L or MQ. This is natural, because the MQRE correctly

models the three-level structure present in the synthetic population. Coming now to

quantile q = 0.25, the outstanding performance of the MQRE is especially demonstrated

in settings with clear departures from normality. For instance, the regression parameters

of the MQRE have a smaller standard error than the corresponding estimators from two-

level models (MQRE-2L or LRE-2L) or single level models (MQ). Furthermore, Table 3

indicates in the settings under contamination ([N,N, T ] and [N, γ, ε]) that the MQRE is

more efficient than the MQRE-2L. These phenomena show that using the MQRE with 3

levels protects against outlying values and it accounts for the specific dependence structure

of hierarchical data. Coming now to the average relative bias (ARB) of the regression

parameters of the different methods, Table 3 reveals that all methods are almost unbiased

in all scenarios. For instance, we observe an ARB of less than 0.1% for the intercept and

slope for all estimation methods for q = 0.5.

Having evaluated the efficiency and bias of MQRE, the second aim of this Section

is to assess the asymptotic approximations of the standard errors of the fixed effects

and the variance parameters. Thus, we compare the estimated and empirical standard

errors under the three scenarios. For each scenario and for each estimator θ̂, at q =

0.25 and q = 0.5, Table 4 reports the estimated standard errors of the fixed effects

β and variance parameters, σ̂2
u and σ̂2

γ, and the Monte-Carlo standard error S(θ̂) =√
R−1

∑R
r=1(θ̂

(r) − θ̄)2. The table reveals that for all scenarios the asymptotic standard

error of the fixed effects and the variance parameters at q = 0.25 and q = 0.5 provides

a good approximation to the true variances. However, in some cases we observe slightly

under- or overestimation, especially for the intercept and the variance parameter σ̂2
u. We

expect that the results can potentially be improved as the number of observations within

groups, the number of groups and the number of Monte-Carlo replications are raised.

Overall, the MQRE with three-levels is a good compromise between efficiency under

normality and robust properties under contamination. Furthermore, the MQRE performs

on a higher level than the MQRE-2L when three-level clustering is present in the data.

11



5 M-quantile modelling of HRQOL

In this section we apply the methodology described in Section 3 for modelling the dis-

tribution of HRQOL in advanced melanoma patients using the data of the randomized

multi-centre clinical trial presented in Section 2. The aim of the trial was to compare the

efficacy of CT versus bio-CT as a primary end-point. Here we considered the impact of

the two treatments on the HRQOL. In particular we modeled the change of the HRQOL

score at each time point from the baseline as a function of the treatment. In addition to

the treatment effect, the model includes a linear trend since a reduction in the quality

of life is expected as the exposure to the treatment increases. To account for the hierar-

chical nature of the data we also included a random effect to capture the between centre

variability and a random effect to account for unobserved individual heterogeneity, i.e.

the variability due to repeated measurements on the same patient.

5.1 Preliminary data analyses

Before presenting the results from the study we present some preliminary data analysis.

We applied the following three-level model for the analysis:

yijk = β0 + β1bio-CTijk + β2temporal occasionijk + centre idi + npzij + εijk,

where, as said before, yijk is the change of the HRQOL score at each time point from

the baseline. Figure 3 shows normal probability plots of level 1 - plot (a) -, level 2 - plot

(b) - and level 3 - plot (c) - residuals obtained by fitting a three-level mixed model to

the data. We denote by level 1 the observation at a given temporal occasion, by level 2

the patient level (npz ) and by level 3 the centre. The normal probability plots indicate

that the Gaussian assumptions of the mixed model are not met. This is confirmed by a

Shapiro-Wilk normality test, which rejects the null hypothesis that the residuals follow a

normal distribution (p-values: level 1 = 2.42e-06, level 2 = 0.05771, level 3 = 0.02672).

Figure 4 shows two plots of standardized mixed model residuals. The histogram, plot

(a), depicts a skewed distribution of the residuals. This is confirmed by plot (b) which

shows the distribution of standardized mixed model residuals by centre: some centres have

many positive residuals, whereas others have many negative residuals. From this second

plot we can observe some high residuals r in absolute value (|r| > 2). This indicates

the presence of influential observations in the data. Figure 5 shows the Cook’s Distance

by centre, plot (a), and by patient, plot (b). These graphs also suggest the presence of

influential observations in the data. Our preliminary analysis hence indicates that the

estimates of model parameters can be potentially driven by the influential observations

and hence robust estimation may improve inference under the random effects model.

5.2 Results

Table 5 shows the estimated three-levels MQRE regression coefficients for five quantiles:

0.1, 0.25, 0.5, 0.75 and 0.90. The tuning constant c was fixed at 1.345. This value gives
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Figure 3: Normal probability plots of level 1 (a) level 2 (b) and level 3 residuals (c) derived
by fitting a three-levels linear mixed model to the survey data.

!
Figure 4: A histogram of standardized mixed model residuals (a) and the distribution of
standardized mixed model residuals by centre (b).

reasonably high efficiency under normality and protects against outliers (Huber, 1981).

The estimates of the bio-CT coefficient measure the effect of bio-CT, as opposed to CT,

on the PSDS at a given quantile.

The intercept of the model associated with each conditional quantile represents the

value of PSDS at the first occasion, i.e. the effect of the first cycle of chemotherapy on

each patient after controlling for the centre and patient heterogeneity.

The plots in Figure 6 show the estimated effect of each explanatory variable we in-

cluded in the model by quantiles. Estimates far from the centre of the distribution

usually cannot be evaluated with high precision. To display the sampling variation, a

confidence band across the quantiles was constructed by estimating the point-wise 95%

confidence interval for the regression coefficients associated with the selected quantiles.

Grey-shaded areas around the line represent confidence bands. It appears that variation

differs among quantiles, sometimes substantially, and generally increases as the quantile

13



!
Figure 5: Cook’s Distance by centre (a) and by patient (b).

Table 5: Parameter estimates and corresponding standard error estimates in parentheses
for the data. MQRE three-level.

q=0.10 q=0.25 q=0.50 q=0.75 q=0.90
intercept -7.69 (2.56) -4.51 (1.73) -1.91 (1.30) 0.67 (1.58) 2.63 (2.51)
bio-CT -4.37 (2.62) -3.52 (1.58) -2.99 (1.06) -2.64 (1.06) -2.10 (1.98)
temporal occasions -3.33 (1.48) -2.25 (0.87) -0.97 (0.51) -0.15 (0.56) 0.48 (0.88)
σ2
centreq 3.24 (4.08) 6.58 (7.51) 11.97 (7.66) 5.19 (2.59) 0.08 (1.99)

σ2
npzq 17.10 (9.28) 35.32 (15.14) 33.03 (7.86) 27.81 (12.05) 20.32 (11.70)

σ2
εq 32.28 (13.52) 36.25 (10.00) 22.99 (4.95) 17.39 (6.39) 14.59 (6.19)

Table 6: Parameter estimates and corresponding standard error estimates in parentheses
for the data. MQRE two-level.

q=0.10 q=0.25 q=0.50 q=0.75 q=0.90
intercept -8.06 (3.18) -4.71 (1.94) -2.20 (1.29) 0.27 (1.51) 2.61 (2.52)
bio-CT -4.00 (3.04) -3.34 (2.07) -2.88 (1.61) -2.46 (1.72) -2.10 (2.56)
temporal occasions -3.43 (1.58) -2.32 (0.93) -1.06 (0.54) -0.22 (0.56) 0.47 (0.86)
σ2
npzq 19.10 (9.93) 42.07 (13.72) 45.10 (8.83) 31.99 (12.50) 20.53 (12.33)

σ2
εq 32.11 (14.78) 36.73 (9.64) 24.10 (4.88) 16.36 (5.40) 14.65 (5.46)

Table 7: Parameter estimates and corresponding standard error estimates in parentheses
for the data. LQMM (two-level) - random intercepts.

q=0.10 q=0.25 q=0.50 q=0.75 q=0.90
intercept -10.22 (2.53) -6.38 (2.13) -0.65 (2.14) 0.72 (1.68) 2.38 (2.65)
bio-CT -1.92 (4.07) -4.45 (2.43) -2.83 (2.88) -1.52 (1.99) -1.76 (3.05)
temporal occasions -1.90 (1.13) -1.29 (0.83) -0.86 (0.61) -0.72 (0.60) -0.64 (0.67)
σ2
npzq 77.21 (—) 61.33 (—) 50.96 (—) 52.52 (—) 48.46 (—)

order approaches 0 or 1. On the edges of the probability range, such an increase can be

quite large as shown in Figure 6.

Table 5 shows that the centre effect (σ2
centreq) is low at the tail of the distribution and

it is high in the centre of the distribution. However this effect is not significant for all

the locations. As it has also mentioned in the introduction in randomized clinical trial

studies, patients are recruited at multiple centers to accrue large enough samples within an

acceptable period. This rises an issue concerning the heterogeneity induced by potentially
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Table 8: Parameter estimates and corresponding standard error estimates in parentheses
for the data. LQMM (two-level) - random slopes.

q=0.10 q=0.25 q=0.50 q=0.75 q=0.90
intercept -7.27 (2.70) -5.30 (2.24) -1.34 (2.21) 1.45 (1.66) 2.81 (2.58)
bio-CT -3.88 (4.10) -1.82 (2.50) -4.10 (2.68) -0.89 (1.87) -0.30 (2.73)
temporal occasions -2.49 (1.09) -3.02 (0.87) -1.50 (0.64) -1.45 (0.57) -1.42 (0.80)
σ2
npzq 59.94 (—) 55.20 (—) 31.78 (—) 29.46 (—) 49.78 (—)

σ2
time 10.40 (—) 10.73 (—) 7.68 (—) 7.04 (—) 5.50 (—)
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Figure 6: Parameter estimates and corresponding 95% confidence intervals estimates: (a)
intercept, (b) BIO-CT treatment and (c) temporal occasion.

different procedures for data gathering. To standardize the procedures a common study

protocol is usually adopted by participating centres. If the protocol has been properly

planned and applied the centre heterogeneity is expected to be negligible. Hence, this

result confirms the quality of the multi-centric design implemented for collecting the data

used in this paper.

For this reason we have also fitted the two-levels MQRE (Tzavidis et al., 2015) and

the LQMM (Geraci and Bottai, 2014). Table 6 reports the estimated parameter for the

two-levels MQRE: the magnitude and the sign of the regression coefficients don’t change

respect the three-levels MQRE, as well as, the values of the estimated variance parameters

for the patient and temporal occasion levels. Table 7 shows the estimates of the regression

coefficients and variance component for the two-levels LQMM (random intercept). Note

that the lqmm package does not report the standard errors of the variance components

for the LQMM. It is evident that there are not differences in the sign of the regression

coefficients respect the MQRE models. This means that the effect of the covariates do

not change between the MQRE and LQMM models at different quantiles. The major

difference is in the magnitude of the estimated variance parameter. The estimate of

the patient effect level by LQMM shows higher values of variability respect that given

by MQRE especially at the tail of the conditional distribution. The MQRE allows the

estimation of a two-level and three-levels random intercepts model but it does not allow for
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more complex correlation structures, including random coefficient models. In contrast, the

lqmm in R allows for the specification of both random intercepts and random coefficients for

the two-levels models. For this reason, we have used the LQMM with random intercepts

specified at the level of the patient and random slopes (coefficients) specified for time.

Random intercepts imply a uniform (exchangeable) correlation structure whereas random

slopes allow the correlation structure to depend on time, which may offer a more realistic

structure for repeated measures data. Table 8 reports the estimated parameter for this

model. The estimates are comparable in terms of magnitude with those obtained by

the other models. The estimated variance component for the time does not show high

variability between temporal occasions. Considering that allowing for random slopes

in quantile random effects models is complex and can potentially result in convergence

problems when fitting the model and that quantile models with a random intercepts

specification have a correlation structure that is simpler to estimate whilst allowing for

modelling the entire conditional distribution of the outcome, the two and three-levels

random intercepts MQRE and two-levels LQMM could be appropriate for this application.

6 Discussion and conclusion

The estimates reported in Table 5 and depicted in Figure 6 indicate that the bio-CT

effect on PSDS score changed quite substantially at different quantiles. At the lower end

of the distribution of PSDS the effect is strongly negative meaning that bio-CT reduces

the PSDS score of patients compared to the standard treatment (CT). At the upper part

of the distribution of PSDS, the effect of bio-CT declined becoming negligible and not

statistically significant. This offers some evidence that patients can in fact benefit from

the bio-CT (although this is not statistically significant). Hence, for those patients, the

experiment regimen can be highly recommended, given the positive effect that this also

has on the survival. In the case that one had considered only a conventional random

effects linear model, this picture we get out of the quantile random effects model would

have been completely lost. The treatment effect on the expected value of PSDS is negative

(-3.29, sd=1.73) and not significant at the 5% level (p-value=0.0583).

Similarly we also found that the effect of time changed at different quantiles. The

exposure to treatments reduced the PSDS score much more at the lower quantiles than

at the highest ones, where this effect is not significant. This means that those patients

who are in a better HRQOL state tolerated the treatment reasonably well whereas those

who are in a poorer state suffered from the exposure to the therapy. In addition this

information is completely lost, if the data was analyzed using a standard hierarchical

linear random effects model. In this case one can only conclude that the HRQOL tends

to decline on average as the study goes on with the slope being -1.38 (sd=0.60, p-value

0.0214).

As mentioned above the MQRE allows for the estimation of a two and three-levels

random intercepts model but it does not allow for more complex correlation structures,

including random coefficient models. To evaluate the stability of our results as compared
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to other model allowing for more complicate correlation structures, we have also estimated

a LQMM two-level random slope model via the lqmm package of R. Although the MQRE

and LQMM results are not directly comparable as these models are targeting different

location parameters, both models attempt to model location parameters that are asso-

ciated with the same part of the conditional distribution of HRQOL scores. We found

that the bio-CT coefficients obtained from lqmm have the same sign as the MQRE hence

confirming our results.

In a multi-centre longitudinal trial, heterogeneity is often an issue and participating

centres usually resort to a common study protocol to standardize the procedures and

identifying eligible patients. Despite this, a large variability is often observed, hence,

one of the goal of this paper was to evaluate if a centre effect impacts on the outcome

distribution resorting to a MQRE three-level model.

Figure 7 shows the estimated intra-class correlation (ICC) of the MQRE at different

quantiles. It is interesting to note that the ICC follows an inverted U curve. That is,

both intra-centre and intra-patient correlation are higher in the middle of the outcome

distribution where, proportionally, the within variability is smaller. Differences between

centres and between patients, therefore, might play a less important role in explaining

the total variability in below- and above-the-average quality of life of patients.

Via the MQRE analysis reported in the previous section we have demonstrated that

centre heterogeneity is not an issue for the data at hand since it has been found negligible

at all quantiles suggesting that the implemented protocol has succeeded in standardizing

the data collection amongst centres. Nonetheless the methodology proposed in the present

paper allows one to investigate centre heterogeneity in depth. Hence it worths to consider

further this point.
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Figure 7: Estimated intra-class correlation (ICC) of the MQRE at quantiles.

Figure 8 depicts the ranks of the centre effect estimated at a low quantile order (0.10)

plotted versus the ranks of the same effect estimated at a high quantile order (0.90). If

the centre effect were the same at both quantiles this would imply that the points were
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aligned on the first bisector which is also reported in the graph as a dashed line.

On the contrary from our analysis it turns out that some centres had a big effect (low

rank) on the HRQOL at the higher quantile whereas they ranked very highly at the lower

quantile. Motivations for this may be various. One may speculate that the recruitment

of patients might have been different, at least to some extent, for different hospitals.

Physicians, for instance, might have cared differently in administering questionnaires in

some centres. One may argue that it is easier to obtain reliable information from patients

in a reasonably good health, whereas this can be more problematic from those in poor

health, particularly if and where appropriate staff, i.e. psychologists or ad hoc prepared

hospital nurses, are not available as often occurs in smaller centres. This could result

in a positive effect on HRQOL of some centres at the lower tail and may disappear at

the higher quantiles where the performance of the hospitals can be sometimes reversed.

This would also be consistent with the largest centre variability at the highest quantile

modelled observed above.
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Figure 8: Plot of centre random effect ranks (MQRE for q = 0.10, 0.90).

This seems somehow confirmed by observing that the four centres which lay closer

to the first bisector (dashed line) of Figure 8, i.e. those which preserved the ranks per-

forming in a similar manner both at the lower and at the upper quantile, are in fact

leading centres of the trial considered in this paper, all of them having a reasonably large

number of enrolled patients (at least 10). Looking at the estimated residuals of centres of

the M-quantile regression of order 0.9, one may also notice that all of the centres which

enrolled at least 10 patients (the larger ones) show estimates below the average of the

estimated residuals. This proportion drops to 15.8% for centres with less than 10 patients.

On the contrary, while exactly a half of the bigger centres are above the average of esti-
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mated residuals when the M-quantile regression of order 0.1 is considered, the proportion

of estimated residuals above the average drops to 36.8% (less than what happened for

quantile 0.9) for smaller centres. This consideration seems to be consistent with a sort of

enrollment bias that may have occurred in some of the participating centres.

This also suggests that a plot like the one reported in Figure 8 can also be usefully

employed in ad interim analysis to point out potential anomalous behaviours or situations

which may deserve some more in-depth ad hoc investigation. Finally, box-centile plots of

the predicted random effects are shown in Figure 9.
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Figure 9: Box-centile plots of predicted centre and npz-specific random effects.

We can observe that the drop out in this study is not negligible as in many other

longitudinal studies on HRQOL (see amongst others a recent work of le Cessie et al., 2009)

particularly in chronic diseases where the survivorship is extremely short. In our dataset

only a minor part withdrew from the study for reasons other than the trial design. In fact

nearly all of them dropped out of the study due to disease progression hence the treatment

was interrupted and their quality of life measurements were no longer collected. A usual

way to compensate a disproportioned drop-out is via sampling weights as far as the drop

out mechanism can be considered at random (Little and Rubin, 2002). Lipsitz et al. (1997)

and Yi and He (2009) investigated the use of weighting within a generalized equation

estimation framework in quantile and median regression respectively, an approach akin

to what Robins et al. (1995) proposed for estimating mean regression. A part from these

two remarkable pieces of work, no other attempts have been made to adjust for non

response in fix effect quantile models. No papers at all have dealt with this issue in

fix effect M-quantile modelling. Embedding weights in usual mixed model is a difficult

task firstly addressed by Pfeffermann et al. (1998). Estimated weights may heavily affect

the inference procedures both for the estimation of the model and for hypotheses testing.

Weighting-adjusted inferential procedures in random effect M-quantile modelling have not

been addressed so far to the best of our knowledge. Investigating drop out adjustment in

fix as well as random effect M-quantile models is a challenging issue which was, however,
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far beyond the aim of the present paper and it is a matter for future research.

Appendix A

The steps of the estimation algorithm as it follows:

1 Start by assuming that (σ2
uq , σ

2
γq , σ

2
εq) are known.

2 Given these variance parameters, form the covariance matrix Vq, and estimate βq

by solving the iterative equation

βt+1
q = βtq + {XTU−1/2q Hq(β

t
q)U

1/2
q V−1q X}−1XTV−1q U1/2

q ψq{rq},

where Hq(β
t
q) is a diagonal matrix with its jth diagonal element Hijkq = ψ′q(rijkq) =

(∂/∂rijkq)ψq(rijkq).

3 Use the estimates of βq to obtain estimates of the variance parameters. The esti-

mates of the variance parameters are obtained by using fixed-point iterative method.

This requires us to change the estimating equations (5) as:
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ZZ

T
IN

) σ2uq
σ2γq
σ2εq


 = 0,

by replacing Vq by Vq = σ2
uqDD

T
+ σ2

γqZZ
T

+ σ2
εqIN and using V−1q Vq = IN .

The fixed point algorithm of the estimating equations for the tth iteration can be

presented as follows:

 σ
2(t+1)
uq

σ
2(t+1)
γq

σ
2(t+1)
εq

 =

A

 σ
2(t)
uq

σ
2(t)
γq

σ
2(t)
εq



−1

a

 σ
2(t)
uq

σ
2(t)
γq

σ
2(t)
εq

 , (A-1)

where

A


σ2
uq

σ2
γq

σ2
εq

 =


K2qtr

[
V−1
q DD

T
V−1
q DD

T
]

K2qtr

[
V−1
q DD

T
V−1
q ZZ

T
]

K2qtr

[
V−1
q DD

T
V−1
q IN

]
K2qtr

[
V−1
q ZZ

T
V−1
q DD

T
]

K2qtr

[
V−1
q ZZ

T
V−1
q ZZ

T
]

K2qtr

[
V−1
q ZZ

T
V−1
q In

]
K2qtr

[
V−1
q INV−1

q DD
T
]

K2qtr

[
V−1
q INV−1

q ZZ
T
]

K2qtr
[
V−1
q INV−1

q IN

]


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and

a

 σ2
uq

σ2
γq

σ2
εq

 =


1
2
ψq{rq}TU

1/2
q V−1q DD

T
V−1q U

1/2
q ψq{rq}

1
2
ψq{rq}TU

1/2
q V−1q ZZ

T
V−1q U

1/2
q ψq{rq}

1
2
ψq{rq}TU

1/2
q V−1q INV−1q U

1/2
q ψq{rq}

 .

Iterative equation (A-1) is more stable than the Newton-Raphson method and it

typically converges in 10 to 15 steps. Like any other iterative algorithm, the fixed-

point algorithm requires initial values for the parameters. As a result, suggesting a

well-defined starting value for the variance parameters could facilitate the procedure.

4 Iterate steps 2 and 3 until convergence.

5 At convergence, estimates of the random effects at qth quantile fit are obtained by

solving the following estimating equations with respect to uq and γq

DTΣ−1/2εq ψq{Σ−1/2εq (y −Xβq −Duq − Zγq)} −Σ−1/2uq ψq{Σ−1/2uq uq} = 0. (A-2)

ZTΣ−1/2εq ψq{Σ−1/2εq (y −Xβq −Duq − Zγq)} −Σ−1/2γq ψq{Σ−1/2γq γq} = 0. (A-3)

As can be seen from the steps of the estimation algorithm, estimates of the random

effects are obtained at convergence, i.e. we start by first estimating the fixed effects and

the variance parameters and then given robust estimates of the fixed effects and of the

variance parameters we estimate the random effects. The reason for this, as also pointed

out by Sinha and Rao (2009), is that estimates of the variance parameters that depend

on the estimated random effects are not statistically efficient.
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