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Universities as local knowledge hubs under differ-

ent technology regimes – New evidence from aca-

demic patenting 

 

Friedrich Dornbusch1 

Fraunhofer Institute for Systems and Innovation Research ISI, Competence Center 

Policy and Regions 

Thomas Brenner 

Economic Geography and Location Research, Philipps-University, Marburg. 

 

Abstract: 

It is often claimed that universities act as local knowledge factories. Although this 
function is largely analyzed in previous research, there still is a knowledge gap re-

garding the role of a technological match between the profiles of partners in uni-
versity-industry interactions. In addition, the effects of different knowledge dynam-
ics in technological regimes remain under-researched. 

In this paper, we thus draw special attention to the question how geographical dis-

tance and the specific role of a technological fit between the knowledge provided 
by the university and the technological needs of the local industry affects interac-
tions between universities and firms. Thereby, we differentiate between six techno-

logical regimes constituted by different knowledge dynamics. 

Our analyses are based on a unique dataset containing all German universities’ ac-

ademic patenting and publication activities. As these are further enriched by sec-
ondary data, they enable us to show that the technological fit between a university 

and its surrounding region (in terms of local industry needs) indeed has a signifi-
cant influence on a university’s innovation-related research interactions, especially 

with small firms. We further show that this effect additionally depends on the un-
derlying knowledge base in heterogeneous technological regimes. 

 

Keywords: university-industry interaction, technological fit, knowledge base, aca-

demic patenting, technology regime, local knowledge hub. 
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I. Introduction  

Universities are generally speaking expected to act, beside their primary task of research and 

teaching, as local knowledge factories. Thereby, local knowledge and technology transfer from 

universities is found to be affected by several factors, among them geographical distances, type 

of research, kinds of universities (e.g. Drucker/Goldstein 2007; Uyarra 2010; Youtie/Shapira 

2008) as well as the attributes of its surrounding region (Smith/Bagchi-Sen 2012). Thus, a 

match between the knowledge provided by the university and regional conditions in terms of 

local actors’ willingness and ability to interact is needed to generate regional impact 

(Bercovitz/Feldmann 2006; Malmberg/Power 2005). Therefore, simply assuming a positive 

effect from universities on their local environment would disregard the basic incentive struc-

tures in academic research. This makes it important to account for different types of knowledge 

production (Rutten/Boekma 2009) and for the relationship between firm behavior, in terms of 

basic strategies and organization and technological regimes, in terms of opportunity, appropria-

bility and the complexity of the knowledge bases in technological regimes (Malerba/Orsenigo 

1993).  

The academic system is rooted in Mertonian norms of science (Merton 1957) and usually gen-

erates knowledge within and for academic communities. This is why the basic type of 

knowledge production (mode 1) (Gibbons et al. 1994) in universities refers mainly to the dis-

semination of basic and science-based knowledge and its absorption strongly depends on the 

ability of other actors to assimilate and interpret it. This has strong implications for universities’ 

outgoing linkages with firms. It can help to improve a firm’s basic understanding of particular 

phenomena and thus enhance its awareness of new research and technological opportunities. 

However, interactions containing this kind of mode 1 or “know-why” knowledge (Jensen et al. 

2007) require long-term resource investments in pre-market R&D and the employment of re-

searchers with networks in academic communities. These are particularly important for compa-

nies which intend to overcome knowledge exchange problems with the scientific system 

(Bercovitz/Feldman 2007; De Faria et al. 2010; Tödtling et al. 2009). The exchange of this 

knowledge usually entails large shares of codified information and takes place within epistemic 

communities that are not necessarily bound to the local level (Manniche 2012). 

A smaller share of academic knowledge is produced in an interactive, multidisciplinary and 

application oriented way requiring face-to-face contacts with practitioners (Gibbons et al. 1994; 

Rutten/Boekma 2009). It contributes to a firm’s exploitation abilities and problem-solving ca-

pabilities (Bishop et al. 2011; Cohen et al. 2002). This mode 2 type of knowledge production 

refers more to “know-how” knowledge (Jensen et al. 2007) and is often derived via social net-

works which play an important role for iterative exchange processes. These patterns in 
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knowledge interaction are assumed to be strongly bound to the co-location of actors (Rut-

ten/Boekma 2009) and takes place within communities of practice (Manniche 2012). 

In sum, knowledge interactions from universities crossing organizational boarders to industry 

depend on the type of knowledge as well as the characteristics of the participating counterpart, 

in terms of ability to deal with different types of academic knowledge production. As previous 

case study-based research shows, industries and technological sectors consist of different com-

binations of knowledge bases (Asheim 2007; Manniche 2012) highlighting a differentiated per-

spective on academic contribution to local industries knowledge pools. In this sense, this paper 

wants to add insights into the patterns of interactions between universities and firms and how 

the role of universities as providers of locally applicable knowledge differs under different tech-

nology regimes. 

 Thus, the main questions to which this paper wants to contribute are: 

a. how the similarity between a university’s scientific profile and the local environment’s 

technological profile influences its knowledge interaction with small and large firms. 

b. how this differs between various technology regimes. 

Our empirical analyzes rely on a unique dataset containing academic patents that are either filed 

by universities, by small firms or by large corporations and is further enriched by secondary 

data to examine the influences of regional environment and organizational characteristics of 

universities. Inventions with academic participation and turning them into patented- as well as 

marketable innovations involves a complex daisy chain set of relationships including academic 

scientists and in many cases company researchers (Feller, Feldman 2009; Von Proff, Dettmann 

2012). Knowledge interactions serve the integration of complementary and additional 

knowledge during the innovation process while academics are often only one source of 

knowledge (Manniche 2012). While a minority of academic patents is assigned by the universi-

ties themselves, the larger share is derived from collaborations with firms and assigned by firms 

(Geuna/Rossi 2011; Schmoch 2007). Thus, the basic proposition of this paper is that the key for 

cross-organizational interactions between universities and firms are personal networks and rela-

tionships between members of inventor teams. The emergence and maintenance of those is in-

fluenced by and embedded in institutional and organizational backgrounds, shaping the compo-

sition of the underlying inventor networks (Von Proff, Dettmann 2012). Therefore, we take 

patterns of ownership in academic patenting as a proxy for different organizational and institu-

tional backgrounds of inventor teams. In order to show how these shape cross-organizational 

interactions we differentiate between inventor teams embedded in purely academic back-

grounds, those being cross-organizational reflecting boarder-crossing interactions between uni-

versities and small firms and finally those crossing organizational boarders between universities 

and large firms. 
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The reminder of the paper is structured as follows. The second section provides the theoretical 

background which is used to develop the paper’s hypotheses. The third section describes the 

dataset while the fourth section describes the results of multivariate regressions for different 

technological sectors, the fifth section contains the summary and discussion and section six the 

conclusion. 

 

II. Theory 

The main aspects of an organization’s interaction with its surroundings seem to be, firstly, the 

opportunities based on resources that are available to an organization to trigger knowledge in-

teraction, secondly, the social capital of an organization and thirdly, the opportunities provided 

by the local environment in which an organization is embedded (Malmberg/Power 2005).  

II.1 Knowledge bases and technological regimes 

As already stressed in the introduction, it is important to keep in mind that sectors rest on a mix 

of different knowledge bases shaping the patterns of knowledge interactions in innovative pro-

jects (Manniche 2012). Thus, knowledge should not be treated as a coherent whole. Learning 

processes and the ways how firms interact with universities are likely to be different, depending 

on the dominant type of knowledge base in different sectors. We refer to the synthetic and ana-

lytical knowledge base (Asheim et al. 2007), because both consider knowledge interactions with 

universities as conceptual elements. 

The synthetic knowledge base is mainly characterized by incremental innovations through novel 

combinations of existing knowledge. This is often instrumental, context specific, and practice 

related, that is to say aimed at solving specific problems arising in interactions with clients and 

suppliers (Manniche 2012). The dominant forms of learning are learning by doing, using and 

interacting (Jensen et al. 2007). Learning takes place as an interactive, recursive trial and error 

process, including constant feedback-loops (Moodysson et al. 2008) and, in the context of mar-

kets and networks, often involving customers, suppliers as well as institutions conducting ap-

plied research. Synthetic knowledge is practice-related and largely tacit. Know-how is the most 

important knowledge and face-to-face interactions foster knowledge exchanges (Asheim et al. 

2007). Here, scientists interested in design, development and industrial exploitation of techno-

logical artifacts, act as mediators between the two spheres of academic basic science and indus-

trial development. Close collaboration and regular interaction facilitate learning across organi-

zational boarders and contribute to the formation of “communities of practice” between univer-

sity and industry (Perkmann/Walsh 2009). Mutual cognitive understanding and social proximity 

become crucial, since networks between company researchers and university scientists are ex-

clusive and created over time (Breschi/Lissoni 2001; Mattes 2012). Thus, spatial proximity 

alone does not trigger knowledge flows between academics and local engineers. Knowledge is 
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rather circulated in individual social networks that are often biased towards the local environ-

ment (Breschi/Lissoni 2009; Ostergaard 2009). These typical characteristics of engineering 

related sectors at best describe circumstances that allow for the mode 2 type of academic 

knowledge production (Gibbons et al. 1994; Mattes 2012), enhancing the probability that uni-

versities contribute to local knowledge production. 

In contrast, analytical knowledge mainly aims at understanding basic principles and mecha-

nisms. Innovations are radical and generate new knowledge. Analytical knowledge generation 

constitutes the core attributes of universities, research institutions and R&D departments of 

companies (Manniche 2012; Moodysson et al. 2008). The innovation process is a more formal-

ized one, characterized by know-why knowledge. It is based on activities where scientific un-

derstanding is important and learning takes place by searching and researching, both being in-

tentional and directed. The knowledge resulting from analytical knowledge processing is to a 

large extent codified and can be transferred across space. But still, a certain amount of tacit 

knowledge as well as shared concepts are needed to interpret, understand and work with codi-

fied knowledge. Typical case-study examples named in the literature are genetics, biotech, life 

science, pharmaceuticals and some segments of information and communication technology 

(e.g. Manniche 2012). Here, cognitive proximity and an adequate organizational framework are 

indispensible for individuals to achieve correct interpretations of codified knowledge and to 

obtain access to the usually stored knowledge. Thus, both dimensions are crucial for cross-

organizational knowledge interactions, while social and geographical attributes facilitate the 

transfer of knowledge (Mattes 2012). In doing so, epistemic communities are the dominant 

frameworks for learning by searching and researching in these sectors (Manniche 2012) and 

scientists’ knowledge dissemination is likely to take place within exclusive, academic and glob-

al networks constituted by mode 1 type of knowledge production, making local communities 

less important. 

In sum, patterns of boundary-spanning interactions presumably depend on the combination of 

knowledge bases underlying a technological regime. To our knowledge, no previous quantita-

tive approach has tried to model patterns of university-industry interaction in the light of differ-

ent knowledge bases in technological regimes. Therefore, as we are conducting an explorative 

approach, we highlight the importance of a differentiated perspective, but abstain from develop-

ing concrete hypotheses. We study six different sectors, which can be assumed to be shaped by 

different knowledge dynamics. In sum, the studies cited above show that engineering (electrical 

and mechanical) related sectors are predominantly based on synthetic knowledge. For life sci-

ences and chemicals we find case-study based evidence that they are dominated by analytical 

knowledge. For measurement and controls as well as information and communication technolo-

gies (ICT) the picture is less clear and we consider both as being more heterogeneous than the 

four other sectors. 
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II.2 Technological fit and proximity 

Boschma (2005) introduces five proximity dimensions that facilitate knowledge interactions. 

Following this idea, different dimensions substitute for other missing features in relationships 

between actors, i.e. the need for geographical proximity turn out to be relative to the existence 

of cognitive, social, organizational, cultural or institutional proximity.  

Especially the social and geographical proximity dimensions foster and facilitate the creation of 

other types of proximity (Mattes 2012). Both are related, since the main advantages of close 

spatial proximity are seen in (1) the reduction of communication costs, (2) a higher probability 

of meetings and (3) a higher probability that social relationships will evolve. All three aspects 

can open new arrays of social networking and can provide new opportunities for knowledge 

exchange (Agrawal et al. 2006). Face-to-face contacts act as a communication tool and are gen-

erally viewed as instruments that build up trust, facilitate screening, socializing and provide 

incentives for the inclusion of new relationships (Asheim et al. 2007; Zeller 2002). Thus, en-

hanced opportunities for social interaction in close proximity, increases the probability of estab-

lishing social networks (Singh 2005; Sorenson et al. 2006) and search processes of firms and 

individuals are often biased towards their local environment as well as well-known and familiar 

technologies in that search processes take place along established trajectories created by past 

experience, routines, and heuristics (Dosi 1982; Malerba/Orsenigo 1993). Individuals searching 

under bounded rationality often chose the first seemingly appropriate (often second best) solu-

tion, leading to a spatial bias in networking and knowledge exchange (Brökel/Binder 2007). 

Consequently, a proportionally higher share of information, experiences and knowledge are 

gathered from local sources and social networks and have a higher propensity to be built up 

locally. This becomes evident in communities of practice, where informal relationships and 

networks are important channels for job changes and knowledge exchange (Breschi/Lissoni 

2009; Malmberg/Power 2005). Consequently, co-location of economic actors often resides in 

the context-specificity of knowledge (Gertler 2003). Institutional factors like habits, routines, 

practices and laws often shape territory and industry-specific structures in which individuals are 

embedded (Asheim/Coenen 2005) creating institutional proximity as a normative dimension that 

regulates interactions between actors in shared local environments (Boschma 2005; Mattes 

2012). 

We are not able to measure the different kinds of proximity in our empirical approach, except 

for geographical proximity (see below). However, cultural differences between academia and 

industry require inter-organizational trust and long-term systems of informal reciprocity are 

considered as important parts of university-industry networks (Bruneel et al. 2010). Individuals 

act as bridging agents between the two spheres (Lam 2007) while the establishment of 

knowledge exchange relationships and open science channels is in most cases based on existing 

social relationships and informal networks. Thus, the various kinds of proximity between aca-
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demia and economy are more likely to develop if both deal with similar issues at the same loca-

tion. Therefore, we consider the technological fit between a university and its economic envi-

ronment important for the development of interaction between the two spheres. However, we 

expect a strong difference between large and small firms in the relevance of this technological 

fit. 

The institutional and organizational proximity created in subsidiaries and with contractually 

bound partners enables firms to access specific knowledge and personnel, making spatial prox-

imity between partners less important (Von Proff, Dettmann 2012). Thus, large firms are able to 

maintain inter-regional partnerships  and look for horizontal co-operation with companies and 

research institutions outside their region, while they build vertical networks to smaller business-

es within the region (Torre 2008). Hence,  

H1a: Large firms’ knowledge interactions with universities are not or only slightly sensitive to 

the technological fit between university and its economic environment. 

Due to resource constraints, small businesses are more likely to interact within existing clusters 

(Torre 2008). They are often missing the opportunities of large firms with big R&D departments 

and only few people are familiar with tasks in R&D and knowledge management (Tödtling et 

al. 2009). They miss the resource-based backup of colleagues and are likely to be more oriented 

towards their local environment if this provides sufficient opportunities for local interactions. 

Thus, spatial proximity and local opportunities for knowledge sharing are more likely to be-

come a determining factor.  

H1b: Small businesses’ knowledge interactions with universities are sensitive and positively 

affected by the technological fit between the university and its economic environment. 

II.3 Geographic proximity 

As discussed above, other kinds of proximity can substitute for geographical proximity and 

various kinds of proximity interact. The need for geographical proximity is rather weak when 

strong coordination mechanisms are implemented and partners share cognitive experiences 

(Torre 2008). 

Nevertheless, face-to-face meetings are found to remain important to reassure common agree-

ments among the partners, to discuss unsolved problems, to solve conflicts and to define further 

milestones. Resource endowments, particularly in R&D personnel, are seen as the most im-

portant factor to mediate geographical distance (Asheim/Coenen 2005). In most studies, limiting 

effects of physical proximity tend to refer to small and medium-sized enterprises. Companies 

with low or very application-oriented R&D-capacities are found to be rather sensitive to geo-

graphical proximity in interactions with universities. This seems to apply less for large compa-

nies and suggests that large companies are less likely to be subject to the limitation of geograph-
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ical distances and simply have more resources available to meet their needs for physical proxim-

ity (Torre 2008). The bigger the firm, the more easily it adjusts its localizations to the temporal 

nature of the need for proximity. 

H2a: Inventor teams of patents filed by large firms are likely to span over larger distances than 

those of other organizations. 

For purely academic inventor teams von Proff and Dettmann show that these are more sensitive 

to distance than corporate teams, because focusing on basic research shapes the characteristics 

of inventing teams(Von Proff, Dettmann 2012). Complexity and uncertainty in basic research 

require the establishment of particularly strong social and communicative processes. Additional-

ly, personal and carrier-related issues drive academics’ membership in research groups. Thus, in 

a purely academic environment research teams show strong social cohesion and form group 

structures that last longer than those of teams that were just formed to provide a specific solu-

tion to a certain predefined task. In order to maintain this particularly strong social cohesion in 

the long-run, these teams require intense interactions and face-to-face contacts that are difficult 

to substitute. 

H2b: Inventor teams of patents filed by universities are likely to span shorter distances than 

those of other organizations. 

Additionally, following these remarks we expect that inventor teams with a background of a 

small firm bridge larger distances than those of universities, but shorter distances than inventor 

teams with a background of a large firm. Thus, they have an in-between position between both 

other categories. 

Table 1 sums up the derived hypotheses and shows the expected directions of the effects by 

putting the outcome categories in relation to each other. 

Table 1: Summary of hypotheses  

dV H1: Similarity H2: Distance 

 Hypothesis Expected 

effect 

Category 

relation 

Hypothesis Expected 

effect 
Category relation 

UNI No hypothesis derived H2b (--) UNI<SME&MNE 

SME H1b (++) SME>MNE  (-/+) UNI<SME>MNE 

MNE H1a (O) MNE<SME H2a (++) MNE>SME&UNI 

Sources: Own compilation 
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III Data 

III.1 Data sources 

Up to now, a major problem with regard to identifying and thus conducting analyses regarding 

the phenomenon of academic patenting was that a solid and comprehensive large scale approach 

to identify academic patents has been missing. It should be noted, that if research is financed 

fully or partly by external contractors like private companies, it remains possible for parties to 

negotiate the allocation of patent rights (Geuna/Rossi 2011). Particularly the patents invented 

partially or in total by university employees, but then filed by extra-university entities as part of 

contractual agreements represent the blind spot in analyses dealing with the issue of academic 

patenting. In order to identify the full range of academic patents, this paper draws on a recently 

developed approach to identify academic patenting activities (for details see Dornbusch et al. 

(2013). The basic principle is an algorithm that matches author names from scientific publica-

tions with inventor names derived from patent filings. The patent data were extracted from the 

"EPO Worldwide Patent Statistical Database" (PATSTAT), which provides information about 

published patents collected from 81 patent authorities worldwide. All patent filings at the 

DPMA (Deutsches Patent und Markenamt) were included. For the publications Scopus, provid-

ed by Elsevier, was chosen. It encompasses information on articles of about 18,500 peer-

reviewed journals and further 1,000 titles from trade publications, book series and conference 

proceedings. The dataset was on both sides restricted to authors from German organizations and 

to inventors residing in Germany, in order to account for the inventor principle (Hinze/Schmoch 

2004),. This enables us to differentiate between academic patents applied for by the universities 

themselves (university-owned) and those filed by other organizations like enterprises. Taken 

together, both groups are referred to as academic patents (Lissoni et al. 2008; Meyer 2003).  

Two steps are employed during the matching. The first includes the construction of appropriate 

databases including the cleaning, harmonizing and complementing of missing data. The second 

involves the matching of names of inventors and authors complemented by further filtering 

criteria1 to increase the matching accuracy. When dealing with a trade-off between high recall 

and precision priority is put on precision. Thus, the rate of incorrect assignments was kept as 

low as possible. Estimates show that the assigned patents are correctly identified in more than 

93 percent of the cases2. As a consequence the dataset contains only approximately 60 percent 

                                                

1  These criteria were: 1. Location of the authors’ employer and the inventors’ residence by postal 

codes. 2. 2-years-publication period to each priority year of patent filings, considering a time-lag of 

one year that is needed for the review of scientific publications. 3. Assignment of the scientific sub-

ject (of the publishing journal) to the technological area of the patent. 

2  Due to recent improvements of the matching approach an even higher precision rate is likely. One of 

the improvements was the integration of NUTS3-codes and a distance matrix enabling us to use a 

more precise location criterion. 
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of all academic patents – meaning patents that the algorithm should identify. Hence, we miss 

quite a number of academic patents, but those identified are characterized by high precision 

allowing representative analyzes of structures in academic patenting (see also Dornbusch et al. 

2013).  

The analyses refer to academic patents filed at the DPMA with priority year 2007 including all 

patents with either a university or a firm as the applicant. The differentiation of academic patent 

filings by the type of filing entity was made by the following distinction, the name and legal 

status of an applicant (e.g. Inc., AG, GmbH, S.R.L, etc.) as well as the difference between the 

name of the applicant and the name of the inventor. Applicants with more than three patent fil-

ings in a three year time window between priority years 1996 and 2008 and more than 500 em-

ployees were classified as MNEs, others as SMEs, corresponding to the German SME definition 

(Günterberg/Kayser 2004). Data on employees were taken from Hoppenstedt and complement-

ed with information from internet searches where necessary. 

Since one aim of this study is to consider different knowledge dynamics in different sectors it 

was important to coherently assign scientific articles to patent technology codes. The WIPO34 

technology fields (Schmoch 2008) were aggregated into seven technology groups for which all 

existing Web of Science journal codes could be assigned without any overlap. Scientists and 

patent attorneys active in research on both patent analysis as well as bibliometric indicators at 

the Fraunhofer ISI validated the classification.3 In the end seven technological sectors and asso-

ciated scientific disciplines were obtained: electrical engineering, IT and ICT, measurement and 

controls, life sciences, chemicals, mechanical engineering, environmental sciences.  

Additional data regarding regional and university characteristics are gathered from Eurostat and 

from the EUMIDA dataset, which was established within the European Union project “Feasibil-

ity Study for Creating a European University Data Collection”.4  

III.2 Dependent variable and regression 

The categorical dependent variable (dV) is defined as UNI if an academic patent was filed by a 

university5, as SME if a small or medium sized enterprise filed the patent, or as MNE if a large 

and multinational enterprise filed the patent. 

                                                

3  We are particularly grateful to Professor Ulrich Schmoch. Without his expert knowledge and helpful 

advice these analyses would not have been possible. 

4  http://datahub.io/dataset/eumida 

5  A reverse-check of university-owned patents indeed revealed that only few patents are co-invented 

with firms. From a randomly drawn sample of 55 patents only three involved inventors from large 

firms. Two patents involved inventors from small firms. Two inventors could not be uniquely identi-

fied.  
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Several multinomial logit regression models with robust standard errors using this variable (dV) 

are employed in order to test the hypotheses developed in the previous section. The reference 

category is universities. To ease interpretations and to make the retrieved coefficients compara-

ble in terms of probabilities, we calculated marginal effects at the means of the independent 

vars. In doing so, the logits are turned into probabilities enabling an interpretation in terms of 

probability that a one unit change in the predictors alters the dependent variable (see Williams 

(2011) for a detailed discussion). The regressions are run for each of the above-named technol-

ogy-science fields separately. Due to low numbers, we had to exclude environmental sciences. 

III.3 Independent variables 

Proximity measures 

Two explanatory variables measure types of proximity, a physical distance and a cognitive 

proximity:  

 DIST: The first variable represents the average geographical distance between the in-

ventors on a patent. The distances were calculated based on the coordinates6 belonging 

to each of the postal codes of German inventors’ home addresses. 

 SIM: The technological fit between a university’s scientific and its local environment’s 

profile is calculated as the cosine similarity between the specialization of a university’s 

scientific and a region’s technological specialization. 

As a measure for specialization we employ the Revealed Symmetric Comparative Ad-

vantage (RSCA) as defined by (Laursen 1998). Where the Revealed Comparative Ad-

vantage (RCA) 

 




j ji

i
ij

XijXij

XijXij

RCA
/

/

 (I) 

is standardized and made symmetric 

)1/()1(  RCARCARSCA  (II) 

The RSCA is calculated for both, the scientific output (publications7) and economic in-

novation activity (patents) and is used to calculate the cosine similarity which measures 

the cosine of the angle between two vectors of an inner product space: 

                                                

6  The coordinates were retrieved from http://opengeodb.org/wiki/OpenGeoDB 

7  We used a classification of all publishing German institutions in WoS which was implemented by 

the “Institut für Wissenschafts- und Technikforschung (IWT) - University of Bielefeld”. We 

acknowledge and are thankful for the valuable work which has been supported and funded by the 

German Ministry for Education and Research under the research project “Kompetenzzentrum Bibli-

ometrie” (Förderkennzeichen 01PQ08004D). 
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The vectors A and B are defined by the specialization of A = each university in a scien-

tific field and B the adhering NUTS2 regions specialization in the belonging technolo-

gy. Thus, a value between 0 and 1 indicates the similarity between a university’s scien-

tific and local environment’s technological activities, where 1 means high and 0 no sim-

ilarity. 

University characteristics 

In addition, we account for general university characteristics in order to model the overall mis-

sion-orientation of a university. We operationalize the orientation towards basic science in sense 

of mode 1 type of knowledge production with two indicators: 

 SR: On the basis of the journal-specific expected citation the indicator Scientific Regard 

(SR) was calculated. It indicates whether a publication of an entity is cited above or be-

low average compared to the other documents in the same journal.8 A positive SR 

shows above-average citation rates, negative values indicate below-average citation 

rates and 0 means equivalent to the average. 

 RES: The research intensity of a university is measured by the number of PhD students 

and postdocs (ISCED6) per students (ISCED5). This is the most commonly used proxy 

of research intensity as it provides an indication of the effort spent on research com-

pared to that on teaching (Seeber et al. 2012; Van Vught 2009). 

The universities’ orientation towards more applied research is also proxied by two indicators: 

 IND: The share of industrial R&D of total third party funding a university receives. 

 PAT: Average number of patents a university contributed to from 2005 till 2007 in the 

specific sector. 

Further control variables 

The control variables include publications per scientist measuring publication intensity (PUB) 

and academic staff (STAFF) measuring the size of the university. Furthermore, for each patent a 

                                                

8  The calculation of the SR is represented in the following formula: SRk = 100 tanh ln 

(OBSk/EXPk); OBSk refers to the actual observed citation frequency of publications of an entity k. 

EXPk is the expected citation rate resulting from the average citation frequency of the journals where 

the authors of this entity published their papers.  
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dummy is determined, which is 1 if non-patent literature (NPL) is cited in the patent and 0 oth-

erwise. It is included as a proxy for a patent’s closeness to science (Deng et al. 1999). We fur-

ther control for the characteristics of the regional environment by share of SMEs (%REG), GDP 

per capita (GDP) and population in a region (POP) as indicators of wealth and agglomeration 

effects in the university’s home region.  

Table2: Summary of variables 

 
Source: Own compilation 

III.2 Summary statistics 

The sample contains 1061 patents accounting for 1201 cases. 140 patents appear twice, since 

either inventors from two universities are involved or two different applicants appear as the 

owner of the patent. Since patents are often classified in different IPC classes some appear in 

more than one field. The summary statistics show that the sectors electrical engineering, ICT 

and mechanical engineering are characterized by high shares of large firms’ filings. While uni-

versity-owned patents are around 20-25 percent, those of small firms are under 15 percent. Par-

ticularly, in ICT this share is low (ca. 8 percent), indicating a generally stronger share of collab-

orations with larger firms.  

 

 

 

 

 

 

 

Definition

uni/sme/mne categorical Indicates if a university is applicant of a patent (dependent variable)

SIM metric Cosine similarity between a university's scientific and the local technological profile

DIST metric Average distance amomg inventor teams in kilometres

SR metric Scientific reputation of a university measured by journal-specific expected citation rates

RES metric Research intensity of a university measured no. of PhDs / students

IND metric Universities share of industrial R&D by total third party funding 

PAT metric Avg. no. of patents with university contribution between 2005 and 2007

NPL dummy Indicates if a patent cites non patent literature as a proxy for science closeness 

PUB metric Publications per scientist 

STAFF metric No. of academic staff employed

%SME metric Share of SMEs in the university's region

GDP metric GPD/capita in the university's region

POP metric Total population in the university's region

Variable



16 

 

Table 3: Summary statistics 

 
Source: Own calculations 

The highest shares of university ownership appear in life sciences and chemicals. Both are usu-

ally seen as being close to science and having a high share of analytical knowledge. This as-

sumption is further supported by the high share of NPL citations with more than 60 percent of 

the patents citing these. A surprisingly high share of university-owned patents in measurement 

indicates a comparatively strong purely academic inventive activity. Furthermore, 45 percent of 

patents with NPL citations seem to indicate a relatively strong science link. Both indicators 

support Paula Stephan’s (2012) consideration of measurement as being a sector where academic 

input at the frontier of research is getting increasingly important. Additional anecdotal evidence 

indicates that, since working with laboratory equipment is commonplace and essential for aca-

demics, they often have to invent new tools and improve existing equipment for their research 

leading to more university patent applications. In the three sectors life sciences, chemicals and 

Variable

Freq. % Freq. % Freq. %

uni 40 22,6 46 20,91 76 31,67

sme 24 13,56 17 7,73 54 22,5

mne 113 63,84 157 71,36 110 45,83

Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max

SIM 177 0,93 0,10 0,56 1,00 220 0,95 0,08 0,57 1,00 240 0,95 0,09 0,62 1,00

DIST1 163 0,88 1,18 0,00 7,29 200 0,62 0,85 0,00 3,82 212 0,73 0,85 0,00 4,36

SR 177 11,40 9,58 -20,03 27,12 220 12,85 8,52 -20,03 27,12 240 10,82 9,22 -20,03 25,98

RES 177 0,05 0,03 0,00 0,15 220 0,05 0,03 0,00 0,15 240 0,06 0,03 0,02 0,34

IND 177 0,03 0,02 0,01 0,10 220 0,03 0,02 0,01 0,07 240 0,03 0,02 0,01 0,09

PAT 177 15,76 13,98 0,33 40,67 220 30,81 25,96 0,33 63,67 240 12,34 9,98 0,33 32,33

NPL 177 0,29 0,45 0 1 220 0,36 0,48 0 1 240 0,45 0,50 0 1

PUB 177 0,35 0,08 0,07 0,90 220 0,37 0,09 0,10 0,90 240 0,39 0,28 0,10 2,69

STAFF2 177 2,84 1,27 0,30 5,35 220 3,37 1,26 0,30 5,35 240 2,71 1,26 0,19 5,35

%SME 177 73,81 4,03 67,56 95,75 220 73,01 1,49 67,56 78,07 240 73,66 3,89 67,56 95,07

GDP1 177 331,75 68,73 212,00 475,00 220 359,66 66,39 206,00 475,00 240 315,03 69,69 206,00 475,00

POP3 177 2641,69 1234,79 515,90 4387,90 220 3313,63 1206,10 663,50 5212,70 240 2715,36 1193,71 663,50 5212,70

Variable

Freq. % Freq. % Freq. %

uni 164 40,39 112 41,03 62 24,41

sme 81 19,95 54 19,78 38 14,96

mne 161 39,66 107 39,19 154 60,63

Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max

SIM 406 0,96 0,06 0,73 1,00 273 0,94 0,08 0,61 1,00 254 0,94 0,06 0,67 1,00

DIST1 349 0,84 1,07 0,00 4,91 261 1,12 1,30 0,00 7,29 234 0,74 0,85 0,00 4,24

SR 406 10,17 9,12 -33,80 25,98 273 7,90 10,49 -33,80 27,12 254 7,33 11,72 -20,03 45,39

RES 406 0,07 0,04 0,02 0,48 273 0,07 0,03 0,00 0,19 254 0,06 0,04 0,02 0,48

IND 406 0,03 0,02 0,01 0,09 273 0,03 0,02 0,01 0,09 254 0,04 0,02 0,01 0,07

PAT 406 19,46 14,21 0,33 50,33 273 10,54 8,00 0,33 32,33 254 16,21 11,12 0,33 30,67

NPL 406 0,60 0,49 0 1 273 0,65 0,48 0 1 254 0,19 0,39 0 1

PUB 406 0,40 0,28 0,21 2,69 273 0,36 0,19 0,13 2,69 254 0,35 0,10 0,08 0,90

STAFF2 406 2,70 1,20 0,03 5,35 273 2,28 1,18 0,03 5,35 254 2,44 1,20 0,31 5,35

%SME 406 73,40 2,82 67,56 95,07 273 73,88 4,08 67,56 95,07 254 73,50 3,83 67,56 95,07

GDP1 406 306,40 68,04 206,00 475,00 273 287,35 65,82 206,00 475,00 254 319,33 70,74 212,00 475,00

POP3 406 2730,17 1234,95 663,50 5212,70 273 2553,88 1193,66 1039,90 5212,70 254 2899,41 1222,19 663,50 5212,70
1per 100; 2per 1.000; 3 per 10.000

Mechanical engineering

Electrical engieneering ICT Measurement and controls

Life Sciences Chemicals
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measurement the shares of SMEs are comparably high (around 20 percent), reflecting a relative-

ly stronger importance of academic knowledge for SMEs in these sectors.  

Mechanical and electrical engineering show rather low shares of NPL references. This was ex-

pected and underlines their application-oriented research with strong shares of a synthetic 

knowledge base. This might also explain why the total number of SMEs appearing as applicants 

in these sectors is rather low compared to other sectors. For SMEs collaborating with universi-

ties in applied sectors is less interesting and affordable than in more science-based sectors.  

 

IV Results and discussion 

As discussed above, we conducted the regression analysis for six technological sectors separate-

ly to account for different knowledge dynamics in heterogeneous technology regimes. Table 4 

provides a summary of the regression results. To ease interpretation, only significant effects and 

the direction of influence are displayed and discussed (the complete regression results are pre-

sented in Table A.1 in the appendix). Furthermore, only marginal effects are presented for each 

category in order to allow for comparisons among the three dependent variables. 

IV.1 Technological fit between a university and its economic surroundings 

Our findings corroborate the assumption that the technological fit between a university and its 

economic surrounding matters for knowledge interactions.  

In line with Hypothesis H1b, in two cases, electrical and mechanical engineering, SMEs are 

more often applicants of academic patents if the technological fit between universities and their 

local environment is high. Hence, for SMEs the technological fit between a university and its 

surroundings seems to matter, but only in engineering-related sectors. The coefficients (see table 

A.1) in both sectors are particularly strong and significantly raise the probability by 103 respec-

tively 113 percent that SMEs appear as applicants in academic patenting.  
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Table 4: Summary of marginal effects in the six sector-specific regressions 

 
Source: Own calculations 

However, for measurement and controls we find the opposite: In contrast to Hypothesis H1b, 

the technological fit decreases the probability that SMEs and enhances the probability that uni-

versities file academic patents. This seems to indicate some kind of ingoing effect for universi-

ties and academic scientists which are embedded in a complementary local environment with 

- ** + *** + * + *** - ** - *** + *

+ ** + * + ** - *** - ***

- *** + ** - *** - *** + *** + ***

- *** + *** - *

+ ** - ** + *
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- * + **
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- * - ** + *
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- *** - *** - * + *** + * - ***

+ *** + * - *
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knowledge assets that contribute to academic research. This might be rooted in the original tasks 

of academics, as their daily work often requires the usage of laboratory and measurement 

equipment. Thus, being embedded in a complementary milieu provides new incentives to im-

prove their own equipment and tools. It might also be a trigger to conduct more application-

oriented research. 

Furthermore, the findings are in line with Hypothesis H1a, assuming that large firms are less 

sensitive to the technological fit between universities and their surroundings. Significant nega-

tive effects are found for chemicals and electrical engineering. For electrical engineering a very 

high marginal effect is found (compare table A.1). This means that especially in electrical engi-

neering universities with fitting surroundings tend to conduct a comparably small share of their 

patent-relevant research for large firms. Fitting surroundings lead universities, especially in 

electrical engineering and chemicals, to conduct more research as a leading partner and/or as a 

partner of SMEs.  

For life sciences and ICT we find no such effect. From a technological perspective our results 

show that those regimes, which tend to be dominated by a synthetic knowledge base, are more 

likely to be affected by a technological fit between the university and its region. As suggested in 

the theoretical section, our results further corroborate that in engineering-related sectors univer-

sities are most likely to contribute to industry by means of mode 2 type of knowledge produc-

tion. In life sciences, chemicals and ICT similarity has a limited influence on patterns of 

knowledge interaction. A potential explanation, finding further support from previous research, 

is that here interactions contain a high share of codified knowledge, making local communities 

and technological fit less important for university-industry interaction. In sum, the effect of the 

technological fit between universities and their surroundings seems to be strong in sectors with 

a strong synthetic knowledge base, while they are weak or non-existing in sectors with a strong 

analytical knowledge base. 

IV.2 Geographic proximity 

Hypotheses H2a and H2b are confirmed by the results in table 4. All six regressions clearly 

show that inventor teams with a shorter average distance show a higher probability of the uni-

versity filing the patent. This confirms previous results by Von Proff and Dettmann (2012). 

However, it contrasts findings that research networks (measured by publications) span over 

larger distances than innovation networks (measured by patents) (Ponds 2009; Sorenson/Singh 

2007). But we have to keep in mind that we compare patents that are invented by university 

researchers only with patents that are invented by university researchers in collaboration with 

firms. The former seems to involve, on average, more local interaction than the latter. 
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Furthermore, the analyses clearly show that inventor networks that span over larger distances 

are more likely to come along with MNEs, that are equipped with sufficient R&D resources to 

manage and co-ordinate these networks.  

As expected, we do not find significant marginal effects for SMEs, meaning that the relevance 

of geographic proximity for SMEs is between those for large firms and pure academic patent-

ing. The only significant effect for SMEs is found in ICT – which is positive. Due to the par-

ticularly low numbers in this category (see table 3), the findings have to be carefully interpreted, 

but indicate that SMEs in ICT are able to establish and maintain inventor teams over larger dis-

tances. The coefficients for SMEs and MNEs derived from the full mlogit models help to gain 

further insights. They show for both firm categories that inventor teams in corporate environ-

ments bridge larger distances compared to those in purely academic ones (see table A.1 with 

universities as base category). In sum, inventor teams with shorter distances emerge in academic 

backgrounds, while those in firms, especially large firms, span over larger distances. Indeed, 

large firms’ capacities seem to enable them to source knowledge over larger distances and to 

integrate it into their invention process. In the case of geographic distance we do not find differ-

ent effects for technologies that are based on synthetic knowledge compared to those based on 

analytic knowledge. 

IV.3 Control variables 

Some control variables show clear significant effects that merit some short discussions. First, 

the effects of NPL citations are significantly positive in five of six sectors for universities and 

significantly negative in four of six sectors for large firms. Hence, university-owned patents 

have a strong science link, while patents owned by large firms, even if they involve university 

scientists, refer less to scientific publications. 

Regarding scientific reputation we find the interesting result that in electrical engineering, ICT, 

and life sciences, universities with a high scientific reputation are more likely to be the owner of 

patents in which they are involved. This indicates that academic environments with an orienta-

tion towards scientific excellence and reputation are likely to also raise the emergence of patents 

filed by universities. In line with previous studies, we find that excellence in research comes 

together with higher patenting activities (Larsen 2011). Thus, our findings partially support that 

raising the amount of university-owned patents is most likely to be achieved by supporting an 

excellence-oriented research environment in IP relevant research disciplines. 

Additional effects emerge in chemicals where research intensity raises the probability that 

SMEs file an academic patent while universities are negatively influenced. Resources invested 

in research-relevant personnel seem to increase the likelihood that SMEs collaborate with the 

university. For application-orientation hardly any conclusive evidence is found. Only in life 

sciences we find that an application-oriented university mission raises the probability that large 
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firms collaborate with universities. Previous patent activities of universities increase the proba-

bility of cooperation with firms in a number of sectors. Among the regional control variables 

only GDP shows a clear picture. Universities in regions with a high GDP seem to be much more 

able to be involved in patents filed by large firms, probably because these firms are located in 

such regions. 
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V Summary and conclusions 

Summing up the findings, we obtain clear evidence for the fact that the technological fit be-

tween a university’s scientific and its local environment’s profile matters for interactions be-

tween universities and industry. This further confirms and highlights the importance of com-

plementarities between university type and profile and the industry’s requirements, needs and 

abilities to absorb the knowledge offered by the local university. In particular, interactions be-

tween universities and small firms are more likely to emerge with a rising technological fit, if 

the technological regimes they are embedded in rest mainly on a synthetic knowledge base. We 

find that universities sharing complementary knowledge production with local industry are 

much more likely to act as local knowledge factories and to contribute to local knowledge an-

choring via mode 2 types of knowledge production in collaboration with SMEs. But we also 

find remarkably clear evidence that this effect can not be observed for technology regimes rest-

ing mainly on analytical knowledge, where mode 1 types of academic knowledge production 

play a dominant role. Hence, we do not find indications that complementarities between univer-

sities’ knowledge production and local knowledge demand are important for the local absorp-

tion of academic knowledge, neither for small nor for large firms, in these technologies.  

Large firms are largely unaffected by the technological fit between the universities’ academic 

and the region’s innovation activities, electrical engineering and chemicals constituting interest-

ing substitution effects. In line with the finding that large firms’ inventor networks spread over 

larger distances, this indicates that large firms tend to acquire the knowledge they need inde-

pendently from its geographical location. Contrarily, purely academic inventor teams seem to be 

more affected by internal mechanisms, as cohesion processes in close geographical proximity 

and team dynamics are influenced by a university’s orientation towards basic science.  

To our knowledge, this is the first quantitative study that tries to model the match between a 

university’s scientific and its region’s technological profile. Thereby, a new indicator has been 

developed and its usefulness for other studies has been proven. Future studies with times series 

data and more fine-grained assignment of scientific and technological classification could help 

to test the robustness of our results and to gather more detailed insights into the knowledge dy-

namics in interactions between academics and local company researchers. Nevertheless, our 

results provide a first insight into the role played by universities in different technological re-

gimes. 

Thus, this paper proves the value of sector-specific analyses for scientific purposes as well as 

adequate policy advice. Different technology regimes resting on different combinations of 

knowledge bases indeed show different patterns of interaction. Mode 2 knowledge produced in 

direct application contexts and technologically fitting environments is disseminated as part of 

the generation process and subsequently contributes to the local knowledge pool of SMEs. Lo-
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cal knowledge anchoring in mode 1 types of knowledge production seems to be more challeng-

ing as its exchange takes place in globally configured epistemic communities that are often only 

attainable by a small number of eligible professionals.  

Thus, the function of universities as local knowledge hubs in analytical knowledge bases de-

pends on the existence of communities between academics and firm R&D units that are capable 

of absorbing, translating and making this knowledge available to other actors in the region. This 

is likely to depend on both the technological fit and on the absorptive capacity of firms in the 

universities’ local environment. Here, only firms that provide sufficient R&D resources are able 

to collaborate with universities in mode 1 interactions. These do not depend on a specific local 

context, but form national or global knowledge networks. In regions with high absorptive capac-

ity trickling-down effects from mode 1 knowledge are more likely to take place, independent 

from the geographic location of the knowledge producing university. Thus, future research 

should also consider the absorptive capacity that is located in a region in order to test whether 

regions with higher absorptive capacity are more likely to participate from mode 1 knowledge. 

From a policy perspective, the importance of networks and networking between university and 

local “high-end” (Rutten/Boekma 2009) users should be highlighted. Two elements in this con-

text are in need of further clarification: Firstly, policy funding programs and their effectiveness 

in supporting the emergence of long-term networks between adequate partners. Secondly, the 

role that publicly funded intermediaries like transfer offices and exploitation agencies can and 

should play.  
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Annex I 

Table A.1: Full regressions for six sectors (part I) 

 
Source: Own calculations 

  

Sim field 8.755 ** -5.295 ** 0.456    1.030 ** -1.486 *** -3.370    -1.866    0.226    -0.129    -0.098    -8.117 *** -7.030 ** 1.618 ** -0.664 *  -0.954    
s .e. 4.313    2.625    0.309    0.436    0.533    3.635    3.082    0.335    0.241    0.447    3.129    3.268    0.653    0.355    0.615    

Avg. Distance 0.241    0.683 ** -0.074 ** -0.027    0.101 ** 1.467 *** 0.968 *** -0.114 *** 0.046 ** 0.068    0.567 *  1.035 *** -0.195 *** -0.007    0.202 ***
s .e. 0.319    0.288    0.034    0.025    0.048    0.382    0.364    0.043    0.019    0.047    0.316    0.307    0.060    0.038    0.059    

SR -0.075    -0.160 *** 0.018 *** 0.005    -0.022 *** -0.088 *  -0.095 *** 0.011 *** 0.000    -0.010 *  -0.014    -0.006    0.002    -0.002    0.000    
s .e. 0.058    0.052    0.006    0.003    0.007    0.046    0.029    0.004    0.003    0.005    0.027    0.031    0.006    0.004    0.007    

Research_int -19.606    -21.870 *  2.517 *  -0.073    -2.443    -13.436    -25.393 *  2.746    0.610    -3.356    -10.086    -8.211    1.932    -0.876    -1.055    
s .e. 13.760    12.717    1.526    0.944    1.852    17.630    15.268    1.824    1.192    2.352    8.249    6.840    1.412    1.171    1.452    

Ind_RD (%) 60.920    -24.917    1.919    6.379 *  -8.298    -17.890    0.908    0.090    -1.359    1.269    14.640    17.555    -3.654    0.721    2.933    
s .e. 48.872    29.584    3.275    3.763    5.090    22.682    17.843    1.947    1.461    2.599    16.301    14.100    2.740    2.584    3.309    

No.pat/field (3y_avg) 0.067    -0.006    0.000    0.006    -0.005    0.034    0.010    -0.001    0.002    -0.001    -0.016    0.067 *  -0.009    -0.009    0.018 ** 
s .e. 0.058    0.054    0.006    0.003    0.007    0.039    0.029    0.003    0.002    0.004    0.044    0.036    0.007    0.006    0.008    

NPL_cit (0/1) -0.794    -2.828 *** 0.306 *** 0.126 ** -0.431 *** -0.618    -0.581    0.066    -0.009    -0.057    0.190    -1.404 *** 0.199 ** 0.169 ** -0.368 ***
s .e. 0.681    0.610    0.083    0.060    0.097    0.709    0.469    0.052    0.046    0.070    0.479    0.414    0.083    0.071    0.094    

Publ_int (pub/cap) -2.017    -5.264    0.575    0.192    -0.767    3.813    0.792    -0.120    0.228    -0.108    -0.228    0.477    -0.056    -0.085    0.141    
s .e. 3.417    4.363    0.490    0.293    0.692    3.294    2.780    0.301    0.223    0.411    0.803    0.771    0.154    0.112    0.163    

Size (total staff) 0.765    1.097    -0.124    -0.013    0.137    0.344    1.062 ** -0.113 *  -0.041    0.154 ** -0.440    0.014    0.028    -0.075    0.046    
s .e. 0.834    0.703    0.084    0.068    0.115    0.638    0.455    0.058    0.042    0.071    0.422    0.365    0.076    0.058    0.076    

Reg_SME (%) -0.378    0.221 *** -0.019 ** -0.044 *** 0.063 *** -0.182    -0.227    0.025    0.001    -0.026    -0.042    -0.005    0.004    -0.007    0.003    
s .e. 0.264    0.070    0.008    0.015    0.016    0.177    0.152    0.018    0.011    0.023    0.054    0.066    0.012    0.008    0.015    

GDP/cap -0.005    0.035 *** -0.004 *** -0.003 *** 0.006 *** -0.010    0.009    -0.001    -0.001 ** 0.002 ** 0.010 *  0.015 *** -0.003 *** 0.000    0.003 ***
s .e. 0.012    0.008    0.001    0.001    0.001    0.008    0.006    0.001    0.001    0.001    0.006    0.005    0.001    0.001    0.001    

Pop (totals) -0.008    -0.008 ** 0.001 * 0.000    -0.001    0.003    -0.004    0.000    0.000 *  -0.001 ** 0.002    -0.003    0.000    0.001    -0.001 *  
s .e. 0.005    0.004    0.001    0.000    0.001    0.004    0.002    0.000    0.000    0.000    0.002    0.002    0.000    0.000    0.000    

Obs. 163    200 212

P 0.000 *** 0.000 *** 0.000 ***

p-R² 0.353 *** 0.290 *** 0.229 ***

m-logit 

(UNI = Baseoutcome)

SME MNE

d(V) = UNI / SME / MNE 

(MfX / (dy/dx) atmeans)

Electrical engineering Information and communication technologies

d(UNI)/d(X) d(SME)/d(X) d(MNE)/d(X) d(UNI)/d(X)SME MNE

m-logit 

(UNI = Baseoutcome)
d(V) = UNI / SME / MNE 

(MfX / (dy/dx) atmeans)

d(SME)/d(X) d(MNE)/d(X)

Measurement and controls

m-logit 

(UNI = Baseoutcome)
d(V) = UNI / SME / MNE 

(MfX / (dy/dx) atmeans)

SME MNE d(UNI)/d(X) d(SME)/d(X) d(MNE)/d(X)
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Table A.1: Full regressions for six sectors (part II) 

 
Source: Own calculations 

 

Sim field -0.054    0.420    -0.063    -0.042    0.104    -1.674    -4.819 *  0.914    0.118    -1.032 *  12.315 ** 3.921    -0.828    1.125 ** -0.297    

s .e. 3.402    2.706    0.613    0.482    0.571    3.198    2.925    0.631    0.435    0.625    5.081    3.666    0.544    0.534    0.708    

Avg. Distance 0.515 *** 0.723 *** -0.158 *** 0.026    0.132 *** 0.393 ** 0.624 *** -0.132 *** 0.012    0.120 *** 1.389 *** 1.560 *** -0.235 *** 0.021    0.214 ***

s .e. 0.196    0.199    0.043    0.023    0.038    0.185    0.168    0.037    0.022    0.033    0.538    0.512    0.060    0.030    0.060    

SR -0.037    -0.034    0.008 *  -0.003    -0.005    -0.005    0.010    -0.001    -0.002    0.003    0.024    0.031    -0.005    0.000    0.005    

s .e. 0.028    0.025    0.005    0.004    0.006    0.023    0.020    0.004    0.003    0.004    0.034    0.028    0.004    0.003    0.005    

Research_int -1.429    -4.842    0.891    0.152    -1.043    20.431 *** 8.290    -2.923 ** 2.525 *** 0.399    -4.905    0.236    0.102    -0.618    0.517    

s .e. 5.643    4.876    1.024    0.858    1.105    6.874    6.261    1.348    0.916    1.333    10.400    3.792    0.601    1.203    1.135    

Ind_RD (%) 4.994    25.061 ** -4.416 *  -1.172    5.588 ** -14.039    -16.393    3.753    -0.895    -2.857    15.724    -9.038    0.724    2.766    -3.491    

s .e. 10.690    11.653    2.330    1.583    2.560    14.890    13.005    2.883    1.953    2.685    42.744    23.413    3.452    4.866    5.561    

No.pat/field (3y_avg) 0.044 ** 0.089 *** -0.018 *** 0.000    0.018 *** 0.058 ** 0.031    -0.009 *  0.007 *  0.003    0.023    -0.016    0.001    0.004    -0.006    

s .e. 0.021    0.017    0.004    0.003    0.004    0.029    0.025    0.005    0.004    0.005    0.038    0.030    0.004    0.004    0.006    

NPL_cit (0/1) -0.975 *** -0.756 ** 0.200 *** -0.096 *  -0.104    -1.162 *** -0.972 ** 0.248 *** -0.104 *  -0.143 *  -0.685    -1.306 *** 0.184 ** 0.040    -0.224 ** 

s .e. 0.355    0.307    0.066    0.051    0.066    0.424    0.378    0.082    0.055    0.079    0.615    0.479    0.073    0.067    0.094    

Publ_int (pub/cap) -0.003    -0.807    0.129    0.063    -0.192    1.798    0.876    -0.281    0.211    0.070    1.780    2.429    -0.356    -0.014    0.370    

s .e. 0.620    0.844    0.158    0.099    0.190    1.247    1.266    0.286    0.130    0.239    3.374    2.280    0.355    0.352    0.442    

Size (total staff) -0.336    -0.200    0.059    -0.038    -0.021    -0.538    -0.502 *  0.123 *  -0.044    -0.079    -0.567    -0.872 ** 0.126 ** 0.014    -0.139    

s .e. 0.235    0.224    0.048    0.033    0.048    0.343    0.293    0.064    0.047    0.062    0.685    0.353    0.053    0.081    0.089    

Reg_SME (%) -0.173 *  -0.010    0.016    -0.027 ** 0.011    -0.017    0.062    -0.009    -0.008    0.016 *  -0.091    -0.092 ** 0.014 ** -0.002    -0.012    

s .e. 0.089    0.044    0.011    0.014    0.011    0.090    0.039    0.011    0.013    0.010    0.071    0.046    0.006    0.008    0.010    

GDP/cap 0.005    0.012 *** -0.002 *** 0.000    0.002 *** 0.008 *  0.017 *** -0.003 *** 0.000    0.003 *** 0.001    0.021 *** -0.003 *** -0.002 ** 0.005 ***

s .e. 0.004    0.003    0.001    0.001    0.001    0.005    0.004    0.001    0.001    0.001    0.009    0.007    0.001    0.001    0.001    

Pop (totals) 0.005 *** 0.005 *** -0.001 *** 0.000 *  0.001 ** -0.001    0.001    0.000    0.000    0.000    0.001    -0.002    0.000    0.000    0.000    

s .e. 0.002    0.002    0.000    0.000    0.000    0.002    0.002    0.000    0.000    0.000    0.005    0.004    0.001    0.001    0.001    

Obs. 349 261    234    

P 0.000 *** 0.000 *** 0.000 ***

p-R² 0.195 *** 0.179 *** 0.219 ***

Life Sciences

m-logit 

(UNI = Baseoutcome)

d(V) = UNI / SME / MNE 

(MfX / (dy/dx) atmeans)

SME MNE d(UNI)/d(X) d(SME)/d(X) d(MNE)/d(X)

Chemicals

m-logit 

(UNI = Baseoutcome)

d(V) = UNI / SME / MNE 

(MfX / (dy/dx) atmeans)

SME MNE d(UNI)/d(X) d(SME)/d(X) d(MNE)/d(X)

Mechanical engineering

m-logit 

(UNI = Baseoutcome)

d(V) = UNI / SME / MNE 

(MfX / (dy/dx) atmeans)

SME MNE d(UNI)/d(X) d(SME)/d(X) d(MNE)/d(X)


