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Embeddedness of regions in European  knowledge 
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Technology (AIT), Vienna. 
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Abstract: 

This paper investigates the embeddedness of European regions in different types 
of inter-regional knowledge networks, namely project based R&D collaborations 
within the EU Framework Programmes (FPs), co-patent networks and co-
publication networks. Embeddedness refers to the network positioning of regions 
captured in terms of social network analytic (SNA) centrality measures. The objec-
tive is to estimate how region-internal and region-external factors influence net-
work embeddedness in the distinct network types, in order to identify differences 
in their driving factors at the regional level. In our modelling approach, we apply 
advanced spatial econometric techniques by means of a mixed effects panel ver-
sion of the Spatial Durbin Model (SDM), and introduce a set of variables account-
ing for a capacity-specific, a relational as well as a spatial dimension in regional 
knowledge production activities. The results reveal conspicuous differences be-
tween the knowledge networks. Internal capacity- and technology-related aspects 
but also spatial spillover impacts from surrounding regions prove to be particularly 
important for centrality in the co-patent network. We also find significant - region-
internal and region-external - impacts of general economic conditions on a re-
gion’s centrality in the FP network. However, we cannot observe substantial spill-
over effects of region-external factors on centrality in the co-publication network. 
Thus, the distinctive knowledge creation foci in each network seem to find expres-
sion in the network structure as well as its regional determinants. 
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gional knowledge production, panel Spatial Durbin model. 

 

JEL Classifications:  L14, N74, O33, R15 

                                                           
1 Corresponding Author: Iris Wanzenböck, Foresight and Policy Development Departement, 

Austrian Institute of Technology (AIT), Vienna, E-Mail: Iris.Wanzenboeck.fl@ait.ac.at. 

https://home.students.uni-marburg.de/imp/message.php?mailbox=SU5CT1g&uid=1030�


4 

 

1 Introduction 

The geography of knowledge networks has attracted much attention in theoretical and 

empirical scientific works in the recent past (see Scherngell and Barber 2009, Hoekman et al. 

2009, Autant-Bernard et al. 2007), related to considerations that networks of research actors 

are essential for the creation of new knowledge (see, for instance, Powell and Grodal 2005), 

and thus, fundamental for economic performance of firms as well as regions or countries 

(Romer 1990). Knowledge networks – defined as a set of actors jointly producing knowledge, 

for instance in form of joint R&D projects, joint publications or joint applications for patents 

– may constitute promising vehicles for research actors to tap knowledge that is widely 

dispersed in geographical space. This knowledge diffuses through networks not only via 

direct links but also through indirect allies. Thus, the embeddedness and strategic positioning 

in such knowledge networks is of central importance to enhance benefits of knowledge 

access.  

The focus of this study is on the embeddedness in different types of knowledge networks at 

the regional level. By taking a regional perspective, we assume that participation of 

organisations in networks enriches not only firm-internal knowledge creation processes, but 

has also significant influence on the innovation capacity of entire regions, particularly due to 

the presence of geographically localised knowledge spillovers (Ashheim et al. 2011, Karlsson 

and Manduchi 2001, Lagendijk 2001). Collaboration intensive organisations and their 

positioning in such knowledge networks are important levers for knowledge diffusion in their 

local, intra-regional environment, i.e knowledge gained by inter-regional network channels is 

likely to be injected to intra-regional knowledge diffusion mechanisms (see, for example, 

Breschi and Lissoni 2009, Bathelt et al. 2004, Varga 2001). In this sense, knowledge creation 

of regions depends not only on internal conditions, but also on the ability of localised actors 

to identify and quickly access region-external knowledge sources, and thus, on their ability to 

participate in collaborations as well as their positioning in inter-regional knowledge networks.  

The question that arises in this context is which factors affect the positioning of a region – 

referred to as a region’s embeddedness – in such inter-regional knowledge networks. Thus, in 

this study we aim to identify distinctive driving factors of regional network embeddedness 

from a comparative perspective on three different inter-regional knowledge networks across 

Europe. We define inter-regional knowledge networks as a system consisting of a set of 

regions (vertices in the network) that are connected to each other by collaborative research 
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endeavours (edges in the network) in the form of project based R&D collaborations funded by 

the EU Framework Programmes (FP), co-patens or co-publications. Network embeddedness 

is then defined in terms of centrality as used in Social Network Analysis (SNA). In SNA it is 

assumed that vertices having a central network position will more likely benefit from network 

advantages than actors that have a more de-central, peripheral position in the network (see, for 

instance, Wasserman and Faust 1994). Thus, a stronger embeddedness of a region may 

increase information and knowledge access within the network. Such a privileged position 

provides opportunity for regions to exploit knowledge flows passing through network ties and 

to faster realise relevant region-external knowledge sources. 

Following conventional regional knowledge production function approaches (Autant-Bernard 

2012), we employ a spatial econometric perspective to identify distinctive driving factors of 

regional network embeddedness, taking account of region-internal capacities and relational 

factors of knowledge production activities, as well as spatial, region-external characteristics. 

To distinguish and measure magnitude and significance of the direct and spatial spillover 

effects over space and time, we employ a mixed effects panel version of the Spatial Durbin 

Model (SDM) (see Elhorst 2003 and 2012). The dependent variable is measured in terms of a 

region’s centrality in the distinct inter-regional knowledge networks for the years 1999-2006, 

using a regional setting of 241 NUTS-2 regions of the EU-25 member states. We rely on two 

different centrality concepts, that are betweenness- and eigenvector centrality (see, 

Wasserman and Faust 1994), in order to regard network embeddedness from different 

network theoretical perspective.  

The study contributes to existing related literature (see Bergman and Maier 2009, 

Wanzenböck et al. 2012) by at least three respects: First, by focusing on three distinct 

network types, we are able to investigate the structural differences of different knowledge 

networks in both relational and spatial terms. Second, we analyse these knowledge networks 

in their European dimension, providing a comprehensive picture on the spatial spread of these 

networks across Europe, which is not least an important issue in light of current policy 

endeavours concerning a closer integration of the European science and R&D landscape. In 

this regard, third, the study will enrich our understanding on determinants that discriminate 

core regions from less dominant regions in Europe, delivering major contributions to the 

discussion on why certain regions are more efficient in creating new knowledge. 
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The remainder of the study is organised as follows. Section 2 sets forth the theoretical 

background, embeds the current study in related literature and derives the main hypotheses for 

the empirical analysis. Section 3 operationalises the concept of regional embeddedness in 

knowledge networks. Then, Section 4 deals with the major distinctive characteristics of the 

three knowledge networks under consideration. Section 5 introduces the data, gives a first 

descriptive analysis of our network centrality measures and presents exploratory spatial 

analysis on network centrality of European regions, before Section 6 describes the mixed 

effects panel version of the Spatial Durbin Model (SDM) and introduces the set of 

independent variables. Section 7 presents the panel SDM estimation results as well as the 

associated impact estimates for the three knowledge networks under consideration. Section 8 

concludes with the main results from a comparative perspective and ideas for a future 

research agenda. 

 

2 Regional positioning in knowledge networks 

Recent decades have seen a surge of collective efforts in knowledge production that are 

distributed across organisations and spanning distant locations (Wuchy et al. 2007, 

Hagedoorn et al. 2000, Hicks and Katz 1996). Scientific, research and innovation activities 

are increasingly inter-organisational processes among firms, universities and research 

organisations at the regional, national or even global level. Knowledge networks – manifested 

in form of collaborations to create new knowledge, for instance, in the form of joint R&D 

projects, joint assignment of patents or co-publications – connect localized actors to external 

knowledge bases that are dispersed in geographical space. Thus, such collaborations are 

regarded to be one of the main carriers of long-distance knowledge (Breschi and Lissoni 

2009, Ponds et al. 2007). A portfolio of external relations is widely considered to be a crucial 

asset in knowledge production processes, particularly due to the opportunity to learn from 

each other, to pool resources and skills as well as to get access to specific knowledge 

components in a flexible and purposeful way (Zucker and Darby 2007, Katz and Martin 

1997).  

Apart from the mentioned advantages of direct and bilateral relations, such knowledge 

networks provide wider opportunities to stimulate knowledge creation, particularly due to the 

facilitated access to information and knowledge distributed through network links, also 
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through indirect paths. Network relations accelerate the search for synergies between own 

intentions and the activities of others and eases selection and formation of new ties (Gilsing et 

al. 2008, Borgatti and Everett 2006, Sorenson et al. 2006). Likewise, attaching with core 

players and elite researchers may be more probable due to common acquaintances (in network 

theory such phenomena are often referred to as preferential attachment or friends-of-friends 

structures; see, for example, Ter Wal and Boschma 2009). Moreover, participation in 

networks enables to keep abreast with the state-of-the-art in the research field, as information 

on scientific and technological advances leaks more likely via network allies (Powell and 

Giannella 2010, Katz and Martin 1997). Along these channels, own ideas may also be carried 

forth to a wider community, enhancing an actor’s visibility in the network.   

From this perspective, actors intensively involved in several collaborative arrangements are 

directly interlinked with others, show short pathways to diverse sets of network nodes, and 

therefore, are highly embedded in the network structure. Central players act either as hubs for 

knowledge diffusion, spreading knowledge throughout several connected actors, or / and are 

in a position to enable but also control knowledge flows between various de facto 

unconnected allies, acting as a ‘gatekeeper’ for information and knowledge running through 

them. In both positions they exert influence on the process of knowledge transmission 

throughout the entire network (Borgatti and Everett 2006).  

With the above in mind, it seems appropriate to take a network perspective when analysing 

knowledge diffusion resulting from research collaborations, considering not only direct 

connections, but also access to ‘second-hand’ information and knowledge. One crucial 

question that arises in this context concerns the conditions that drive central positioning in 

such knowledge networks. In this study, we take a Regional Science perspective and focuse 

on inter-regional knowledge networks across Europe, composed of research actors located in 

one region and their region-external knowledge links. We consider region-internal and region-

external conditions that drive a region’s embeddededness in inter-regional knowledge 

networks. The following streams in the literature provide the theoretical foundations for our 

empirical study, leading to three main dimensions determining a region’s network 

embeddedness. 
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The capacity dimension 

Resource-based approaches on research and innovation emphasise that technological capacity 

and skills of actors are one of the most significant factors to absorb, exploit and assemble 

different types of knowledge produced by others (Cohen and Levinthal 1990). This involves 

also the resources and capacity to build up a variation of ties, which are required in order to 

receive and further transmit knowledge flowing through numerous network channels. We 

follow such resource-related approaches at the regional level (Broekel and Brenner 2011; 

Grossman and Helpman 1991), in that we consider a region’s strength in knowledge 

production, i.e. its endowment with tangible knowledge production inputs, to be one of the 

most crucial factors for a specific position in knowledge networks. In particular, knowledge-

intensive organisations (universities, large knowledge-intensive or small highly specialised 

firms) hold the necessary capacities, not only to engage in collaborations, but also to benefit 

from knowledge transmitted via network inter-linkages. Since, such organisations tend to be 

spatially concentrated in urban areas exposing them to a variety of experiences from other 

organisations, we further assume that regions with higher level of development and 

knowledge productivity, especially urban regions, are more centrally embedded in FP 

networks. We call this the capacity dimension in determining a region’s network 

embeddedness. 

 

The relational dimension 

Studies dealing with the geography of R&D collaboration have shown that there are important 

non-spatial demarcation mechanisms that influence the formation of R&D relations (Autant-

Bernard et al. 2007, Boschma 2005). In a regional context, Scherngell and Barber (2011) 

highlight that for project based R&D collaborations alternative forms of proximity, such as 

economic or technological, are even more crucial for establishing and maintaining cross-

regional knowledge alliances. For a region’s centrality in knowledge networks, this implies 

that such relational factors might influence network embeddedness in several ways:  

Division of labour and increasing need for specialisation in research and innovation, together 

with tendencies of regional technological clustering and specialisation, let us assume that 

specialised regions that supply very distinctive technologies and capabilities are in a more 

favourable position to establish a certain network reputation. They may gain strategic 
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advantages, especially if they are able to distribute those distinct pieces of knowledge 

required by many others, or attach to central network players due to their unique 

characteristics. Thus, strongly pronounced high-tech orientation as well as technological 

specialisation may positively influence a region’s strategic position in knowledge networks. 

However, innovation literature emphasises that a higher diversification in collaboration 

partners exposes own research activities to new perspectives, and to different research and 

application methods (Goetze 2010, Cowan and Jonard 2004). This would imply that regions 

with broader knowledge production structures more likely take advantage of knowledge 

pathways that range throughout the entire R&D network, being able to funnel external 

knowledge that pass through them. Thus, we argue that structural diversification may help to 

gain control over these divergent knowledge flows, and thus, to better exploit the potential 

involved in accessing direct and indirect network linkages. We therefore assume that 

economic and technological diversification places regions in a more central network position. 

This is referred to as a region’s range in knowledge production activities, or the relational 

dimension in determining a region’s network embeddedness. 

 

The spatial dimension 

The literature on regional knowledge production processes (see, for example, Fischer et al. 

2006 and 2009, Fischer und Varga 2003) provides evidence for the influence of properties in 

neighbouring regions on a region’s own knowledge production activity. Thus, we account for 

external characteristics in surrounding regions, assuming that spatial connectivity affects a 

region’s network position due to spillover mechanisms resulting from economic 

dependencies, agglomeration dynamics or core-periphery structures in nearby regions (see 

Feldmann and Kogler 2010, Breschi and Lissoni 2009). This is called the spatial dimension in 

determining a region’s network embeddedness. 

 

3 Measuring regional embeddedness in knowledge networks  
This section formally specifies the notion of regional network embeddedness from a Social 

Network Analysis (SNA) perspective. In SNA, it is basically assumed that network 

interactions act as channels to transmit information and knowledge between actors (Knoke 
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and Young 2008). However, scale and scope of this transmission process may differ 

considerably with regard to the type of knowledge concerned (Borgatti 2005). Analysing the 

global structure and dynamics of linkages enables a better understanding of the role that 

specific actors play in knowledge exchange throughout the network. SNA provides us with a 

rich analytical toolset to observe structural properties of the network in order to characterise 

the importance and positioning of specific actors. Actors’ centrality is a widely applied 

concept in this context (Borgatti and Everett 2006, Wassermann and Faust 1994). 

In this study, our focus is on different types of knowledge networks across Europe that are the 

project based R&D collaboration network within the European Framework Programmes 

(FPs), the co-patent network and the co-publication network. We broadly define network 

embeddedness in terms of a region’s centrality in European knowledge networks. Centrality 

in each individual network is captured by participations in R&D projects funded by the EU 

FPs, co-patents and co-publications, respectively. To obtain the regional focus in our analysis, 

we, first, aggregate individual collaborative activities in time period t to the corresponding 

regional level. For this purpose, we use a set of i, j = 1,., n=241 NUTS-2 regions (NUTS 

revision 2003). Second, we construct n-by-n collaboration matrices of the type employed by 

Scherngell and Barber (2009 and 2011) for FP networks that contain the number of R&D 

collaborations
1

It is worth noting in this context that organisations rather than regions are the essential actors 

in knowledge network, and thus, would constitute a more appropriate unit of observation for 

such kind of analyses. Instead of measuring network centrality at the regional level, an 

alternative approach would be to define network centrality by means of a bipartite graph 

directly at the organisational level in a first step (see Barber et al. 2011), and aggregate the 

observed organisation centralities to the regional level in a second step. However, since we do 

not have information on the network structures at the organisational for some knowledge 

 between two regions i and j, with i = 1,... , n regions in the rows and  

j = 1,... , n regions in the columns. Note that we construct and analyse the individual networks 

under consideration separately but introduce our methodological approach in general terms 

for purposes of readability. The empirical measurement of collaborations in the FPs, co-

patenting and co-publications is given in Section 6 of this study.  

                                                 
 
1 We use full counting procedures for the construction of our collaboration matrices, assigning links for each participating 

organisation that is located in a different region.  
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networks under consideration, we stick directly to the regional level. However, we have 

carried out statistical tests for the FP network – for which we have network structures also at 

the organisational level – to examine whether inter-regional collaboration matrices serve as 

appropriate proxies for the underlying network structure at the organisational level. Indeed, 

results show a high correlation between a region’s network centrality calculated at the 

regional and a region’s network centrality calculated at the organisational level and 

subsequently aggregated to regions
2

In terms of graph theory, the n-by-n collaboration matrix for a given knowledge network in 

year t may be considered as a symmetric n-by-n adjacency matrix of the type  

. This is a valuable finding, not only in the context of this 

study, confirming that inter-regional collaboration can serve as appropriate proxies for the 

underlying network structure at the organisational level, at least when calculating the 

centrality of a region in a specific network 
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such that the element aij contains the collaboration intensity between organisations located in 

region i and j,) constituting a weighted graph. The unweighted version of the adjacency 

matrix is given by 
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that is to be used for measuring specific types of centrality. Further we denote the number of 

edges incident on a vertex i=1, …, n as the degree kit in a given year t. A path is the 

alternating sequence of vertices and links, beginning and ending with a vertex, so that the 

shortest path or geodesic distance gijt between two regions i and j in time period t is defined as 

the number of vertices to be passed in the shortest possible path from one vertex to another 

(see Wassermann and Faust 1994 for further details).  

                                                 
 
2 For example, Spearmans rank correlation coefficient of eigenvector centrality in the FP network shows a statistically 

significant value of rs=0.938 (p < 0.01), for betweenness centrality it is rs=0.898 (p < 0.01). 
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Network embeddedness of region i as used in our estimation approach (see Section 6) is 

captured by two distinct centrality measures, namely betweenness and eigenvector centrality
3

We further explore these ideas by providing the mathematical specification of these concepts. 

For betweenness centrality we utilize the unweighted adjaceny matrix 

. 

Each centrality concept is based on different assumptions on how knowledge flows through 

the network, leading to different perspectives on the positioning of central actors in the 

networks (Borgatti 2005). The betweenness concept intends to capture the centrality of a node 

(in our case region) in terms of its position for controlling the flow of information within the 

network by focusing on the number of shortest paths through this node (region) (Freeman 

1979). Thus, central regions benefit from gaining access to various knowledge sources, and, 

at the same time, take up – independent of their degree – a significant position in influencing 

the transfer of knowledge within the whole network. In other words, they act as ‘gatekeepers’ 

by exerting control over the knowledge flowing through them. In contrast, according to 

eigenvector centrality a region’s centrality depends both on the number and the quality of its 

connections, assuming that prominent actors act as ‘hub’ for knowledge transmission and 

diffusion throughout the entire network. Calculation is based on centralities of all regions in 

the network in the form of assigning centrality weights that correspond to the average degree 

of all linked regions (see Bonacich 1987).  

( )bin
tA  for a given  

year t
4

( )

1
( ) /

n
b

it jqt jqt
j
j q

y g i g
=
<

=∑

. Thus, in our case, betweenness centrality yit
(b) measures how often a region is situated 

between other, not directly interlinked, regions, in time period t, as defined by  

 (3) 

where gjqt(i) is the shortest path between region j and q going through region i at time t,  

for i ≠ j ≠ q.  

                                                 
 
3 Further point centrality measures commonly used in SNA are degree and closeness centrality. Degree centrality only 

focuses on direct links of a vertex, measuring local centrality in particular (see, for example, Wasserman and Faust 1994). 
In contrast, closeness centrality is based on the shortest distance to all other vertices in the network, indicating how close a 
distinct vertex is to all other vertices in the network.  

4 We refrain using the weighted version of betweenness centrality, such as for instance defined by Newman (2001), since 
interpretation of shortest paths in terms of the weighted graphs that we use in this study, that is collaboration intensities 
between regions, is problematic.  
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Eigenvector centrality lays – as mentioned above – emphasis on the importance of direct 

linkages of a vertex in the network, but additionally takes the degree of all other connected 

vertices into account. Eigenvector centrality yit
(ei) of region i at time t is defined to be 

proportional to the sum of degrees of regions j to which it is connected, using the weighted 

adjacency matrix At: 

( )

1

1 n
ei

it ijt jt
j

y a k
λ =

= ∑  (4) 

where λ is the largest eigenvalue of At
5

                                                 
 
5 A common notation used in this context is the eigenvector equation as given by λ x = A x, where x is a vector of 

centralities x = (x1, x2, ....) denoting the eigenvector of the adjacency matrix A with eigenvalue λ (see Bonacich 1987). 

.  
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4 Three types of knowledge networks 
Our empirical analysis focuses on determinants of a region’s network embeddedness in 

distinct types of European knowledge networks, namely the project based R&D network 

constituted under the FPs, the co-patent network and the co-publication network. A 

comparative analysis of the regional determinants of network embeddedness allows us to 

explicitly take account of specific characteristics involved in the process of knowledge 

creation as well as the distinctive spatial structure of knowledge diffusion in each network 

type across Europe.  

The FP network is a policy-induced network funded by the EU that spreads over Europe, 

mainly representing R&D activities at the pre-competitive level (see, for instance, Breschi and 

Malerba 2009, CEC 2007)6

The co-patent network involves industrial research and technological development with a 

clear application and market orientation (Goetze 2010, Maggioni and Uberti 2009). The 

network consists of several, often small-scaled and fragmented, inventor communities that 

have been established for the purpose of sharing knowledge in the (technical) design and 

development of new technologies. A co-patent is defined as a patent developed by at least two 

inventors, who are often associated with organisations, representing the visible results of 

. Given the combination of basic and application-oriented research 

aspects, most FP projects involve research communities of considerable size, directly 

interlinking heterogeneous, functionally diverse actors across organisational boundaries and 

different institutional backgrounds (Scherngell and Barber 2011). These self-organised 

consortia are made up of individual researchers often tied to particular organisations, such as 

industrial and commercial firms, universities or research organisations, performing 

collaborative efforts with well-defined objectives in the form of joint R&D projects that are 

publicly funded on a multi-year basis.  

                                                 
 
6  Since their launch in 1984, the overall objectives of the FPs have been to strengthen the scientific and technological bases 

of the European scientific community and the European economy to foster international competitiveness, and the 
promotion of research activities in support of other EU policies (see, for instance, Scherngell and Barber 2009). Funding is 
open to all legal entities established in the Member States of the European Union – e.g. individuals, industrial and 
commercial firms, universities, research organisations, etc. – and can be applied by at least two independent legal entities 
established in different EU Member States or in an EU Member State and an Associated State. Proposals to be funded are 
selected on the basis of criteria including scientific excellence, added value for the European Community, the potential 
contribution to furthering the economic and social objectives of the Community, the innovative nature, the prospects for 
disseminating and exploiting the results, and effective transnational cooperation. 
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inventive R&D collaboration. In contrast to the policy-induced and project-based FP network, 

the properties of research partnerships regarding research purpose, time horizon and 

geographical range of joint inventive endeavours are subject to mechanisms of self-selection. 

In this sense, co-location of actors is a decisive factor for the first selection of partners. The 

exchange of tacit and sensitive knowledge components requires high amounts of face-to-face 

contact and trust, and this may lead in further consequence to path-dependent, persistent and 

repetitive collaboration structures (Powell and Giannella 2010, Singh 2005).  

Co-publications refer to scientific collaborations that mainly involve basic research activities 

in the academic sphere (Katz and Martin 1997). Co-publications are defined as the product of 

joint scientific work in the form of co-authored papers in scientific journals. Each listed co-

author typically has made substantial contributions to the paper, pointing to some kind of 

closer interaction during the research process. Due to the increasing specialisation in scientific 

fields, the need for pooling resources or the increasing importance of interdisciplinary 

research, researchers are compelled to tie together in research communities consisting of 

individuals – collaborating scholars and scientists – that are mainly associated with 

universities or research organisations from different geographical locations (Stephan 2010). In 

contrast to joint R&D and inventor activities, collaboration mainly takes place within the 

institutional boundaries of the academic sphere, easing the need for geographical proximity in 

collaborative efforts (Ponds et al. 2007, Mairesse and Turner 2005). In this sense, coherent 

scientific standards and codification schemes facilitate first partner selection, especially since 

mutual research interests and complementaries in knowledge bases could, in principle, be 

discovered and monitored from the literature. However, the scientific system is to a high 

degree based on reputation, spurring forces of community demarcation and hierarchical 

attachment of elite researchers in co-autorship efforts. This leads also to substantial 

concentration of elite researchers in geographical space (see, for example, Hoekman et al. 

2009). 
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5 Data and explorative analysis 

To observe the structure of these three network types, we use data from three different 

sources. For the FP network we draw on data from the EUPRO database which provides 

comprehensive information on project-based R&D collaborations funded within the EU FPs
7

Table 1 shows some general characteristics for the three types of knowledge networks. We 

can observe that the mean degree, i.e. the mean number of collaborations per region, increases 

in all three network types over the period from 1999 to 2006, but collaboration intensity 

increases by far more in the FP and co-publication networks than in the co-patent network. 

The number of nodes and (weighted) edges between them determines structural properties of 

a network. Thus, constant increase in both sum of links and number of edges within our set of 

241 regions or nodes reflects a process of increasing interactions between different regional 

pairs across Europe for all three networks. Particularly interesting is the comparison of the FP 

network and the co-publication network. Total link number is higher in the co-publication 

network, and so are average edge weights. The lower number of edges point to higher 

. 

One network link represents a joint R&D project between two organisations. Considering 

only inter-regional links gives rise to our European network of R&D collaboration at the 

regional level. In addition, we use the Regpat database to observe the co-patent network 

containing information on patent applications that have been issued at the European Patent 

Office (EPO). We use information on the inventor address of an EPO patent application to 

trace the origin of the invention. This allows us to construct our inter-regional co-patent 

network, assigning links if a patent application contains at least two inventors located in 

different regions. Information on co-publications has been obtained from the Web of Science 

(WoS) database, a bibliographical database indexing journal article worldwide produced by 

Thomson Reuters. It is one of the most comprehensive sources of information on basic 

research activities. The WoS contains the institutional addresses of the authors for most 

articles. In order to reflect inter-regional scientific collaboration, a link in the co-publication 

network is given when a publication contains two or more authors located in different regions.  

                                                 
 
7 EUPRO has been constructed and maintained by AIT Austrian Institute of Technology. It contains systematic information 

on project objectives and achievements, project costs, project funding and contract type as well as on the participating 
organisations including the full name, type of the organisation and geographical location for FP1 to FP7 (see, for instance, 
Scherngell and Barber 2011). 
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numbers of collaborations between the same partners in the co-publication than in the FP 

networks. Furthermore, high values of the standard deviation and degree point to superiority 

of large research facilities, i.e. research organisations and universities, in the co-publication 

network. Further, it is remarkable that the inter-regional co-patent network is not only 

considerably smaller than the FP and the co-publication network, but also much more 

fragmented
8

Table 1: Network characteristics for the FP, co-patent and co-publication network (1999-2006) 

. This let us assume that inter-regional co-patenting narrows down to only a few 

number of strongly tied core nodes in the centre of the network, and numerous weakly 

connected in the periphery.  

FP 1999 2000 2001 2002 2003 2004 2005 2006 
Sum of links 271,772 384,944 474,638 572,764 588,984 804,458 840,452 900,446 
No. of edges 14,148 15,837 17,163 17,925 18,221 19,229 19,409 19,602 
         

Mean degree 1,127.69 1,597.28 1,969.45 2,376.61 2,443.92 3,338.00 3,487.35 3,736.29 
SD 1,735.51 2,522.76 3,094.08 3,751.08 3,836.74 5,469.81 5,805.03 6,328.92 
Min 0 0 0 1 0 0 0 0 
Max 16,478 24,858 29,747 36,061 37,076 55,721 60,182 65,597 
         

Graph density 0.49 0.55 0.59 0.62 0.63 0.66 0.67 0.68 
Co-patent         
Sum of links 98,404 110,574 112,050 118,168 118,322 127,196 124,630 132,058 
No. of edges 3,337 3,656 3,639 3,763 3,770 3,778 3,882 4,018 
         

Mean degree 408.32 458.81 464.94 490.32 490.96 527.78 517.14 547.96 
SD 799.12 924.25 950.24 1,016.79 1,022.65 1,115.11 1,054.74 1,077.14 
Min 0 0 0 0 0 0 0 0 
Max 5,270 6,169 5,984 6,621 7,695 8,960 7,618 7,227 
         

Graph density 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.14 
Co-publications 
Sum of links 714,482 747,698 710,034 751,300 854,162 1,089,064 1,179,342 1,392,230 
No. of edges 12,611 13,273 13,904 13,956 14,784 15,604 15,708 16,384 
         

Mean degree 2,964.66 3,102.48 2,946.20 3,117.43 3,544.24 4,518.94 4,893.54 5,776.89 
SD 5,094.17 5,239.50 4,765.53 4,968.14 5,624.79 7,589.15 7,852.24 9,376.16 
Min 0 2 0 3 4 0 2 2 
Max 43,364 44,410 38,491 38,588 45,769 64,405 59,030 72,179 
         

Graph density 0.44 0.46 0.48 0.48 0.51 0.54 0.54 0.57 

 

We calculate betweenness and eigenvector centrality for each region i as defined in Section 3. 

Figure 1 visualizes the spatial distribution of the three types of centrality in the year 2006. We 

can observe considerable differences, on the one hand, between the three types of knowledge 

networks, and, on the other hand, between our two centrality measures. While spatial 

                                                 
 
8 Note that network fragmentation is much higher for the co-patenting network at the organizational level, leading to the fact 

that centrality measures calculated at the organizational level, especially measures of global network centrality as used in 
this study, would be subject to considerable bias.  
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clustering of centralities across neighbouring regions is less significant for the FP network, 

such spatial clustering becomes apparent in the co-publication network. This spatial 

concentration becomes even more striking for the co-patent network. Moreover, spatial 

concentration of network centralities is more pronounced for eigenvector centrality than for 

betweenness centrality, especially for the co-patent network. Co-inventorship is strongly 

localized and confined to national – even regional – borders, and, in terms of eigenvector 

centrality, spatially centred on a single core acting as strong hub for industrial knowledge.  
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Figure 1: Betweenness and eigenvector centrality for three knowledge networks (2006) 
 

 
Note: Centrality values have been normalised between 0 and 1; natural breaks have been used to classifying data into four categories. 

FP Network 

 
Co-patent network 

 

Co-publication network 
 

0.00 - 15.12 
15.13 - 42.25 
42.26 - 86.28 
more than 86.28 

Betweenness centrality Eigenvector centrality 
0.00 - 0.05 
0.06 - 0.17 
0.18 - 0.37 
more than 0.37 

0.00 - 15.12 
15.13 - 42.25 
42.26 - 86.28 
more than 86.28 

Betweenness centrality Eigenvector centrality 

0.00 - 0.05 
0.06 - 0.17 
0.18 - 0.37 
more than 0.37 

0.00 – 0.08 
0.08– 0.23 
0.23 – 0.48 
more than 0.48 

Betweenness centrality Eigenvector centrality 
0.00 - 0.06 
0.06 - 0.18 
0.18 - 0.51 
more than 0.51 

0.00 – 0.13 
0.13 – 0.32 
0.32 – 0.58 
more than 0.58 

Betweenness centrality Eigenvector centrality 
0.00 - 0.08 
0.08 - 0.21 
0.21 - 0.49 
more than 0.49 

0.00 - 15.12 
15.13 - 42.25 
42.26 - 86.28 
more than 86.28 

B t  t lit  
Eigenvector centrality 

0.00 - 0.05 
0.06 - 0.17 
0.18 - 0.37 
more than 0.37 

0.00 – 0.09 
0.09 – 0.26 
0.26 – 0.62 
more than 0.62 

Betweenness centrality Eigenvector centrality 

0.00 - 0.05 
0.05 - 0.25 
0.25 - 0.50 
more than 0.50 
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Table 2 provides some spatial autocorrelation analysis using Moran´s I for global spatial 

autocorrelation to confirm this observation, accompanied by some descriptive statistics. The 

Moran’s I statistically underscores the findings from the spatial visualisation, confirming 

rather weak and diminishing spatial autocorrelation in our centrality measures for the FP 

network as compared to the co-publication and especially the co-patent network. For the latter 

two, we can observe that eigenvector and betweenness centralities are significantly correlated 

with the centralities in nearby regions. This finding is to be seen in the context of previous 

studies dealing with spatial autocorrelation of knowledge flows (see, for example, Scherngell 

and Lata 2012). It is further noteworthy that spatial dependence considerably decreases in the 

FP network. Table 2 additionally shows that the distribution is highly skewed for both 

eigenvector and betweenness centrality, pointing to the fact that there are a few – spatially 

uncorrelated - regions with relatively high centrality values, while most regions show 

comparatively low centralities. 

Table 2: Descriptive Statistics of regional centrality by knowledge network 

Betweenness FP 
1999 

FP 
2006 

Co-patents 
1999 

Co-patents 
2006 

Co-pub 
1999 

Co-pub 
2006 

Morans’I 0.075** -0.006 0.370*** 0.316*** -0.046 -0.047 
Mean 57.56 53.63 123.47 112.83 68.86 67.73 
Median 27.71 29.47 29.26 26.26 34.71 35.20 
Stand. Dev. 73.86 67.87 230.15 210.99 88.53 83.35 
Skewness 2.10 2.24 3.59 3.54 2.07 2.00 
Kurtosis 5.22 6.07 17.26 16.51 5.19 4.62 
Eigenvector       
Morans’I 0.301*** 0.025 0.544*** 0.524*** 0.182*** 0.210*** 
Mean 0.07 0.07 0.03 0.03 0.04 0.05 
Median 0.03 0.03 0.00 0.00 0.01 0.01 
Stand. Dev. 0.11 0.11 0.11 0.13 0.10 0.10 
Skewness 3.69 3.89 6.41 5.89 5.52 5.55 
Kurtosis 21.40 23.83 45.20 36.11 40.36 40.26 

 

 

6 Modelling a region’s centrality in R&D networks 

The exploratory and descriptive analysis has revealed interesting spatial patterns of regional 

network centralities across Europe. However, the question that arises is which regional 

characteristics drive the observed spatial patterns. At this point of the study we are interested 

in measuring the regional determinants of embeddedness in European knowledge networks. In 

order to estimate the relationship between network embeddedness and region-internal and 
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region-external characteristics we implement a panel version of the Spatial Durbin Model 

(SDM)9

t t t t ty Wy X WX uδ β γ= + + +

 in the form of  

  t = 1,…, T=8 (5) 

with 

[ ]t t tX C Z=  (6) 

where yt=(y1t, …, ynT), Xt=(X1t, …., XnT) and ut =(u1t, …, unT). yt is a n-by-1 vector consisting 

of observations yit (i, …., n =241; t=1, ..., T=8) corresponding to the centrality of region i in a 

knowledge network at time t. Note that we have specified network centrality in terms of 

betweenness centrality yit
(b) (Eq. 3) or eigenvector centrality yit

(ei) (Eq. 4). Xt is an n-by-K 

matrix of observations on the explanatory variables, including sets of Ct (n-by-S; s=1, ..., S=4) 

variables indicating the capacity dimension of knowledge production within a region, and Zt 

(n-by-Q; q=1, ..., Q=3) indicating the relational dimension of knowledge production. β is a K-

by-1 vector of the regression parameters associated with the K explanatory variables.  

The non-stochastic, time-invariant n-by-n spatial weights matrix W gives the spatial 

configuration of our set of regions with wij being the (i,j)th element of W, such that it contains 

elements of the form wij = 1 if region i and region j are spatial neighbours and share a 

common border, and wij = 0 otherwise10

tWX

. Wyt is a n-by-1 vector representing the average of the 

spatially lagged network centrality values in neighbouring regions of i, δ is the spatial 

autoregressive coefficient measuring the strength of the spatial autoregressive relation 

between neighbouring regions. The n-by-K matrix  includes the spatially weighted 

observations on the K explanatory variables of neighbouring regions, with γ being a K-by-1 

vector of parameters capturing spatial interaction effects induced by region-external 

characteristics. ut is the disturbance term for time period t. 

  
                                                 
 
9 The spatial dependence relation in our observations on network centrality as indicated by the Moran’ I statistic provide strong 

motivation for the SDM. Note further that the SDM nests conventional spatial regression model specifications, such as spatial lag (SAR) 
or spatial error (SEM) models (see LeSage and Pace 2009 for details). In order to unravel the true data-generating process and decide on 
- besides the conceptual motivation – appropriate model specification, a general-to-specific approach has been applied confirming our 
SDM specification against more specific SAR or SEM specifications. 

10 We use a row standardized version of W allowing interpretation of the spatial lags of the independent variables being the weighted 
average impact on region i by their neighbouring regions. Note further that the meaning of neighbourhood is used in the sense of spatial 
relatedness throughout this study. 
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Given the panel nature of our model, two-way error component disturbances may be used to 

jointly account for unobservable space- and time-specific effects (Baltagi 2008). Thus, we 

specify the disturbance term ut in the form of  

t t tu µ τ ε= + +  (7) 

where μ denotes unobservable random time-invariant variability between regions, and τt is the 

counterpart for omitted time-specific region-invariant fixed effects. εt denotes a n-by-1 vector 

of the residual error term (iid) for time period t with zero mean and variance σ². Eq. (7) is 

labelled the mixed effects panel SDM specification, including time-specific fixed effects and 

region-specific random effects. We use within transformation to obtain time fixed effects 

estimates for our observations in yt and Xt that allows us to account for time-dependent but 

region-invariant variability in our model specification (see Park 2011, Baltagi 2008, Elhorst 

2003). Accounting for time-specific shocks is particularly important when analysing policy-

induced network structures such as given by the EU FPs. The region-specific effect μ is 

specified as a random component with μ ~ N(0, ) and independent of uit. The random 

effects approach seems to be appropriate given our extended set of explanatory variables that 

capture regional knowledge production in terms of its direction, structure and strength. In 

fixed effects models, region-specific effects tend to absorb significance of structure-

indicating, relatively time-variant variables11

The advantage of the SDM in terms of model specification is that - due to including spatial 

lags of both the dependent and explanatory variables - the risk of inconsistent and biased 

estimates caused by correlated but omitted explanatory variables is limited as compared to 

restricted SAR or SEM specifications (Le Sage and Pace 2009). The most noteworthy benefits 

of using SDM specification is that it allows disclosing the influence of various channels of 

. Moreover, in measuring knowledge network 

centrality at the regional level, unobservable effects are likely to be related with individual, 

organisation-specific decisions to engage in collaborations (see, for example, Paier and 

Scherngell 2011, Autant-Bernard et al. 2007), which we assume to follow a random pattern 

across European regions. We use Maximum Likelihood estimation procedures to estimate the 

parameters in the SDM specification (see Elhorst 2003 for details). 

                                                 
 
11  Note further that the spatial fixed effects model could not be estimated consistently due to relatively time-invariant independent 

variables. Further, the number of observations for n=241 regions, in contrast to t=8 time periods, is relatively large (Elhorst 2003, 
Baltagi 2008).  

2
µσ
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spatial spillovers effects from neighbouring regions, and thus, demarcating effects induced by 

each explanatory variable (Autant-Bernard 2012). However, interpretation and statistical 

inferences for direct and indirect effects are not straightforward since spatial dependence of 

regional observation may cause feedback loops that walk through the dependent and 

explanatory variables of neighbouring regions. Le Sage and Pace (2009) provide valuable 

approaches – also used in this study – for assessing the magnitude and statistical inferences 

for the direct, region-internal, and indirect, region-external spillover effects of the explanatory 

variables.  

Variables that explain a region’s embeddedness 

In modelling a region’s embeddedness in knowledge networks, we consider two different 

types of explanatory variables X=[C Z]. The variables in C (s=1, ..., S=4) account for aspects 

of a region’s knowledge production capacities (capacity dimension) in form of  

i. 1C  capturing total regional R&D expenditures (log of public and private R&D 

expenditures in % of GRP), used as a proxy for the magnitude of financial inputs in 

knowledge production. 

ii. 2C  being the logarithmic share of population with tertiary education (corresponding to 

levels 5 and 6 of the ISIC 1997 classification system), measuring a region’s endowment 

with human capital. Human capital not only indicates the potential of performing 

knowledge intensive R&D, but also conditions a region’s absorptive capacity that is 

regarded as one of the major necessities to collaborate and reap full benefits of joint 

R&D. 

iii. 3C  that is the logarithmic form of the gross regional product (GRP) per capita, proxying 

the economic development, productivity and general socio-economic potential of a region 

that are assumed to be decisive stimuli for a region’s R&D performance. 

iv. 4C  denoting the region’s population density as measured by the number of inhabitants 

per square kilometre, used as proxy variable for the degree of urbanisation and for 

agglomeration effects in urban areas.  
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Our set of Z variables (q=1, ..., Q=3) includes proxies for a region’s range of knowledge production 

activities (relational dimension). Here,  

i. 1Z  captures the degree of technological specialisation within region i, using an index of 

specialisation of a region’s patent portfolio12

ii. 

. The focus of a region’s knowledge 

production activities may range over a variation of different fields, or be very specific 

and specialised in a certain technology. As joint R&D means to pool, relate and assemble 

very different knowledge components, a region’s technological orientation may influence 

network embeddedness. High specialisation may probably facilitate achieving a hub 

position within a network, while technological diversification may determine the ability 

to engage in several networks, reflecting the opportunity to exploit and combine inputs 

from different knowledge sources.   

2Z denotes regional high-tech orientation measured by the number of high-tech patents 

per million employees, used in logarithmic form. This variable is a proxy for 

technological strength of a region’s knowledge base. We further assume that high-tech 

industry facilities contribute to higher absorptive capacity of knowledge transmitted via 

R&D collaborations. 

iii. 3Z  is the degree of industrial diversity within region i measured in terms of an industrial 

diversity index13

 

. We include this variable since we assume that knowledge production 

activity benefits from a diversified industrial structure. Inter-sectoral production chains 

and interdependencies between economic sectors affect the range of knowledge 

production activities, notably in terms of backward and forward linkages, 

interdisciplinarity and applicability of R&D. Moreover, a diverse economic structure may 

enhance a region’s attractiveness in a range of collaboration formations, extending 

opportunities to access different knowledge sources.   

Data on most independent variables have been drawn from the Eurostat regional database, 

while information on patents was taken from the European Patent Office (EPO) database.  

                                                 
 

12 The index is defined by 1(4)
2it ip pP

c s s= −∑ where sip is the region’s i share of patents in a specific IPC class p and ps  is the mean of IPC 

class p. Patents were taken into account at a three-digit level corresponding to the International Patent Classification (IPC). 
13 We include five different main economic sectors, namely agriculture, manufacturing, construction, private services and non-market 

service sector. The index of specialisation to account for industrial diversity is defined as 1(1)
2it ip pP

z o o= −∑  where oip is the region’s i 

share of gross value added in a specific sector p (indexed p = 1, …., 5) and po  is the mean of sector p for n=241 regions. 
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7 Estimation results 

This section discusses the estimation results for our regional network embeddedness models 

as specified by Eqs. (5)-(7). Table 3 reports the Maximum Likelihood (ML) parameter 

estimates and the associated t-statistics for the mixed effects panel version of the SDM. The 

first column contains results for betweenness centrality (BC), and the second column for 

eigenvector centrality (EC) for each network type.  

The bottom of Table 3 provides specification tests as well as various goodness-of-fit 

measures. Significant robust LM tests and Likelihood Ratio (LR) tests suggest the presence of 

spatial dependence in our empirical setting, confirming not only implementation of a spatial 

regression model, but also the SDM specification against spatial lag (SAR) or spatial error 

(SEM) specifications. Thus, geographical space in terms of regional interaction effects does 

matter in explaining embeddedness in European knowledge networks. In this context, a first 

remarkable finding is that estimates for the spatial autoregressive parameter (δ) are highly 

significant and positive for the FP network and the co-patent network but not for the co-

publication network.  

Tables 4, table 5 and table 6 present average impact estimates for each network on the 

magnitude and significance of direct, indirect and total impacts on a region’s network position 

that would arise from a change in one unit of our regional characteristics, averaged over space 

and time (note that most estimates of our explanatory variables are interpretable as 

elasticities). More specifically, the direct impacts give the effects of region-internal 

characteristics on a region’s network embeddedness, while the indirect impacts estimates 

report the sum of spatial spillover effects, i.e. influences of region-external characteristics, in 

our regional setting14

Table 4 presents scalar summary impact measures for the FP network. Concerning direct 

impacts, we can observe that a region’s capacity in knowledge production, in particular R&D 

expenditures and economic strength, is decisive for a region’s embeddedness in the FP 

network, in terms of both betweenness and eigenvector centrality. Direct impact estimates 

. Then, the overall influence of distinct characteristics on regional 

network embeddedness at the regional level is given by the total impact estimates.  

                                                 
 
14 Differences between SDM coefficient estimates and impact estimates give indication on the magnitude of the feedback effects. 
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further suggest that well-educated human capital is a significantly important capacity factor 

for achieving betweenness centrality, and thus, for performing a gatekeeper function in the 

network (note that for these impacts the confidence interval at the 95 percent level do not span 

zero).  

Table 3: ML estimation results for the mixed effects panel Spatial Durbin Model (SDM) 

 
FP Co-Patent Co-Publication 

BC EC BC EC BC EC 

RD expenditures  0.443** 
(-2.354) 

0.280*** 
(3.950) 

1.710*** 
(6.162) 

0.838*** 
(6.570) 

0.395*** 
(2.754) 

0.108** 
(2.305) 

Human capital  2.160*** 
(4.321) 

0.042 
(0.220) 

3.412*** 
(4.785) 

1.627*** 
(4.883) 

0.733* 
(1.915) 

0.242* 
(1.870) 

GRP p.c.  1.006** 
(2.400) 

1.291*** 
(7.492) 

0.826 
(1.475) 

0.308 
(1.143) 

-0.045 
(-0.141) 

0.082 
(0.652) 

Population density  0.001 
(1.393) 

0.001*** 
(3.683) 

0.000 
(0.960) 

0.000 
(0.915) 

0.001*** 
(2.672) 

0.001*** 
(3.480) 

Technol. specialisation  0.254*** 
(4.399) 

0.078*** 
(3.834) 

-0.415*** 
(-4.151) 

-0.168*** 
(-3.956) 

0.055 
(1.262) 

-0.005 
(-0.361) 

High-tech patents  0.056 *** 
(4.587) 

0.018*** 
(4.298) 

0.214*** 
(9.556) 

0.054*** 
(5.876) 

0.023** 
(2.517) 

0.006** 
(2.427) 

Industrial diversity  0.048** 
(1.378) 

0.036** 
(2.495) 

0.112*** 
(2.647) 

0.066*** 
(3.106) 

0.082*** 
(3.061) 

0.035*** 
(3.217) 

w. RD expenditures.  -0.928*** 
(-2.790) 

-0.286** 
(-2.233) 

0.697 
(1.427) 

0.015 
(0.067) 

-0.374 
(-1.468) 

-0.113 
(-1.294) 

w. Human capital  -1.314* 
(-1.893) 

0.074 
(0.273) 

-3.959*** 
(-4.136) 

-1.477*** 
(-3.251) 

-0.948* 
(-1.784) 

-0.148 
(-0.797) 

w. GRP p.c.  0.725*** 
(3.152) 

0.111 
(1.153) 

1.075 
(3.534) 

0.684*** 
(4.701) 

0.595*** 
(3.361) 

0.257*** 
(3.100) 

w. Pop. density  -0.001 
(-1.062) 

-0.001*** 
(-2.921) 

0.000 
(0.393) 

0.000 
(-1.243) 

-0.001 
(-1.044) 

0.000 
(-0.668) 

w. Technol. spec.  -0.071 
(-0.650) 

0.022 
(0.547) 

0.507*** 
(2.786) 

-0.176** 
(-2.216) 

-0.111 
(-1.338) 

-0.054** 
(-2.146) 

w. High-tech pat.  0.378 
(1.542) 

0.027*** 
(3.053) 

0.153*** 
(3.480) 

0.086*** 
(4.737) 

-0.004 
(-0.204) 

0.002 
(0.393) 

w. Ind. diversity  -0.069 
(-1.378) 

-0.080*** 
(-3.735) 

-0.049 
(-0.804) 

-0.042 
(-1.355) 

-0.068* 
(-1.731) 

0.008 
(0.464) 

SAR coefficient [ ]δ   
0.105*** 
(3.378) 

0.271*** 

(9.574) 
0.065* 
(2.070) 

0.190*** 
(6.377) 

-0.044 
(-1.353) 

0.029 
(0.907) 

Model diagnostics and model fit 

Teta 0.206 0.138 0.407 0.295 0.196 0.072 

Log Likelihood -4157.63 -2200.73 -5328.77 -3592.22 -3618.70 -1400.26 

LR Test for SAR  50.44*** 172.97*** 80.06*** 80.06*** 37.17*** 178.29*** 

 SEM 68.63*** 163.99*** 83.62*** 83.62*** 47.73*** 186.29*** 

Robust LM test for SAR  58.64*** 81.88*** 4.940** 28.32*** 51.43*** 23.29*** 

 SEM 65.89*** 127.72*** 0.150 135.40*** 48.34*** 138.95*** 

Note: t-values are given in brackets. Mixed effects refer to time-specific fixed effects and region-specific random effects estimation. 
BC denotes betweenness centrality, EC denotes eigenvector centrality. The independent variables are defined as given in the text. LR 
Test is the Likelihood Ratio Test for the SAR and SEM; robust LM Test is the Lagrange Multiplier Test for the SAR and SEM. We 
checked variance inflation factors (VIFs) for the variables range inferring that there are no multicollinearity problems. ***significant at 
the 0.01 significance level, **significant at the 0.05 significance level, *significant at the 0.1 significance level.  
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Concerning our set of variables reflecting relational aspects of regional knowledge 

production activities, all direct impact estimates are significant and slightly positive for 

eigenvector centrality. Industrial diversity, technological specialisation and, in particular, 

high-tech orientation seem to reinforce each other in promoting knowledge hubs in the FP 

network, Knowledge production capacities prove to be the primary condition though. The 

same holds true for betweenness centrality, even if industrial diversity has no direct impact.  

Table 4: Average impacts estimates for the FP network 

 Betweenness Centrality Eigenvector Centrality 
Direct impacts Lower Mean Upper Lower Mean Upper 
RD expenditures 0.052 0.424 0.797 0.125 0.267 0.408 
Human capital 1.172 2.142 3.112 -0.327 0.047 0.422 
GRP p.c. 0.190 1.019 1.847 0.982 1.316 1.650 
population density 0.000 0.000 0.001 0.000 0.000 0.001 
Technol. Spec. 0.141 0.251 0.361 0.040 0.080 0.120 
High-tech patents 0.032 0.056 0.081 0.012 0.021 0.029 
Industrial diversity -0.020 0.046 0.112 0.004 0.032 0.059 
Indirect impacts Lower Mean Upper Lower Mean Upper 
RD expenditures -1.618 -0.930 -0.242 -0.588 -0.266 0.056 
Human capital -2.513 -1.138 0.238 -0.512 0.107 0.727 
GRP p.c. 0.396 0.863 1.330 0.318 0.577 0.837 
population density -0.002 -0.001 0.001 -0.002 -0.001 0.000 
Technol. Spec. -0.275 -0.047 0.182 -0.047 0.054 0.155 
High-tech patents -0.004 0.045 0.095 0.018 0.040 0.061 
Industrial diversity -0.167 -0.069 0.028 -0.138 -0.089 -0.039 
Total impacts Lower Mean Upper Lower Mean Upper 
RD expenditures -1.298 -0.506 0.286 -0.364 0.001 0.366 
Human capital -0.237 1.004 2.245 -0.474 0.155 0.783 
GRP p.c. 1.023 1.881 2.739 1.455 1.894 2.332 
population density -0.001 0.000 0.001 -0.001 -0.001 0.000 
Technol. Spec. -0.054 0.204 0.463 0.018 0.134 0.251 
High-tech patents 0.047 0.102 0.157 0.035 0.060 0.085 
Industrial diversity -0.120 -0.023 0.073 -0.107 -0.057 -0.007 

Note: Significant estimates using 95 per cent confidence intervals are marked in bold. 

 

Moreover, positive spatial spillover impacts on a region’s network embeddedness can only be 

observed for the estimates for GRP per capita and for high-tech orientation of neighbouring 

regions. Thus, a region’s FP network embeddedness seems to benefit from inter-regional 

knowledge spillovers in high-tech industries. In contrast, spillover effects from R&D 

expenditures are significantly negative, and even of larger magnitude than their direct effect 

counterparts, pointing to negative dependencies of knowledge creation activities in 

geographic space that might be due to pulling and polarisation forces caused by the presence 

of important research facilities or knowledge-intensive firms.  
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Given the total impact estimates for our regional characteristics in the FP network model 

version, the pattern observed for direct effects partly has reversed when taking a pan-

European perspective. Apart from a region’s GRP per capita, only relational knowledge 

creation factors in terms of high-tech orientation for betweenness centrality, as well as 

technological and industrial specialisation for eigenvector centrality seem to significantly 

influence network positioning in the FP network.  

Table 5: Average impact estimates for the co-patent network 

 Betweenness Centrality Eigenvector Centrality 
Direct impacts Lower Mean Upper Lower Mean Upper 
RD expenditures 1.191 1.718 2.245 0.593 0.839 1.085 
Human capital 1.924 3.340 4.755 0.963 1.587 2.211 
GRP p.c. -0.257 0.851 1.959 -0.204 0.337 0.878 
Population density 0.000 0.000 0.001 0.000 0.000 0.000 
Technol. Spec. -0.604 -0.407 -0.209 -0.258 -0.176 -0.093 
High-tech patents 0.173 0.217 0.260 0.041 0.058 0.076 
Industrial diversity 0.033 0.111 0.189 0.026 0.065 0.104 
Indirect impacts Lower Mean Upper Lower Mean Upper 
RD expenditures -0.138 0.820 1.778 -0.284 0.201 0.686 
Human capital -5.748 -3.763 -1.779 -2.257 -1.337 -0.418 
GRP p.c. 1.750 1.140 0.530 0.550 0.852 1.154 
population density -0.001 0.000 0.002 -0.001 -0.001 0.000 
Technol. Spec. 0.119 0.480 0.842 -0.410 -0.241 -0.071 
High-tech patents 0.083 0.169 0.254 0.070 0.111 0.152 
Industrial diversity -0.164 -0.045 0.074 -0.098 -0.033 0.031 
Total impacts Lower Mean Upper Lower Mean Upper 
RD expenditures 1.451 2.538 3.625 0.471 1.041 1.610 
Human capital -1.976 -0.424 1.129 -0.587 0.250 1.086 
GRP p.c. 0.903 1.991 3.079 0.578 1.190 1.190 
population density -0.001 0.001 0.002 -0.001 0.000 0.000 
Technol. Spec. -0.309 0.074 0.456 -0.608 -0.416 -0.224 
High-tech patents 0.293 0.385 0.477 0.123 0.169 0.216 
Industrial diversity -0.046 0.066 0.178 -0.034 0.032 0.097 

Note: Significant estimates using 95 per cent confidence intervals are marked in bold. 

 

For the co-patent network (Table 5), the pattern is more homogenous for betweenness and 

eigenvector centrality, pointing to more pervasive regional determinants of network 

embeddedness in the inventor network. Here again two capacity factors are the most decisive 

region-internal drivers, namely financial and human resources. A well-educated labour force 

is even twice as important as internal R&D expenditures for regions to gain high reputation in 

inter-regional co-inventorship across Europe. Interestingly, the influence of a region’s GRP 

per capita is insignificant. These findings let us assume that centrality in the co-patent 

network is much more related with the factual strength in knowledge production activities, 

than with economic and agglomeration strength that, for example, highly determine centrality 

in the R&D collaboration network.  
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However, relational factors indicating a region’s range in knowledge creation activities is 

equally important for reaching high betweenness or eigenvector centrality in the co-patent 

network. More specifically, a region’s high-tech orientation and industrial diversity foster co-

patent network centrality, while technological specialisation will hamper it, and this holds true 

for both, acting as a hub or knowledge distributor in the network as well as performing 

gatekeeper or brokering activities for several weakly connected actors. In both positions 

diversification, and associated with this, the necessary ability to absorb and exploit very 

different pieces of knowledge seem to be of particular importance.  

The most interesting finding regarding the influence of spatial spillover effects on network 

centrality in the co-patent network concerns the negative estimate for region-external human 

capital, indicating that a high level of human capital in nearby regions decreases a region’s 

ability to gain network centrality. Such kind of spatial interaction effects in research and 

innovation activities are most likely due to spatial clustering of human capital and the 

restricted availability of human resources. Thus, concentration of highly educated people in 

neighbouring regions, for example due to the presence of research infrastructure or 

knowledge-intensive firms, seems to impede central positioning in co-patent networks. 

Table 6: Average impact estimates for the co-publication network 

 Betweenness Centrality Eigenvector Centrality 
Direct impacts Mean Lower Upper Mean Lower Upper 
RD expenditures 0.398 0.122 0.675 0.107 0.011 0.203 
Human capital 0.735 -0.021 1.491 0.241 -0.013 0.495 
GRP p.c. -0.044 -0.664 0.576 0.081 -0.180 0.342 
population density 0.001 0.000 0.001 0.001 0.000 0.001 
Technol. Spec. 0.057 -0.030 0.143 -0.005 -0.029 0.020 
High-tech patents 0.023 0.005 0.041 0.006 0.001 0.011 
Industrial diversity 0.084 0.030 0.138 0.034 0.013 0.055 
Indirect impacts Mean Lower Upper Mean Lower Upper 
RD expenditures -0.369 -0.829 0.091 -0.109 -0.276 0.058 
Human capital -0.888 -1.897 0.121 -0.135 -0.489 0.219 
GRP p.c. 0.549 0.207 0.890 0.257 0.092 0.422 
population density -0.001 -0.002 0.000 0.000 -0.001 0.000 
Technol. Spec. -0.108 -0.265 0.050 -0.053 -0.101 -0.005 
High-tech patents -0.005 -0.040 0.030 0.002 -0.008 0.013 
Industrial diversity -0.067 -0.142 0.009 0.009 -0.022 0.040 
Total impacts Mean Lower Upper Mean Lower Upper 
RD expenditures 0.030 -0.490 0.549 -0.002 -0.192 0.189 
Human capital -0.153 -0.960 0.654 0.106 -0.236 0.448 
GRP p.c. 0.505 -0.055 1.064 0.338 0.082 0.595 
population density 0.000 0.000 0.000 0.000 0.000 0.001 
Technol. Spec. -0.051 -0.217 0.115 -0.058 -0.110 -0.005 
High-tech patents 0.018 -0.021 0.056 0.009 -0.003 0.020 
Industrial diversity 0.017 -0.048 0.083 0.043 0.013 0.073 
Note: Significant estimates using 95 per cent confidence intervals are marked in bold. 
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For network embeddedness in the co-publication network we observe similar magnitude and 

significance between our impact estimates (Table 6) and our SDM coefficient estimates 

(Table 3), confirming the minor relevance of feedback effects in co-publication activity 

between nearby regions. Furthermore, embeddedness in inter-regional co-publication 

networks is only marginally determined by the set of capacity-specific or relational factors. 

While the significant impact exerted by financial R&D inputs is comparatively high in 

magnitude, a region’s high-tech orientation as well as its industrial diversification has only 

minor effects on a region’s position in the scientific collaboration network. Remarkable in this 

context is that human capital (measured by the share of labour force with tertiary education) 

does not affect a region’s embeddedness in co-publication networks. However, this 

observation might be due to relatively low employment intensity in the scientific sector as 

compared to other knowledge-intensive sectors (such as engineering or specific services).  

In addition, we find that spatial interaction effects arising from our explanatory variables are 

of minor significance for co-publication network embeddedness than for centrality in the FP 

or co-patent network. The sole exception is that economically powerful surrounding regions 

positively influence betweenness and eigenvector centrality, pointing to the significance of 

economically based spillover relations for centrality in scientific networks, for example due to 

cross-regional commuting.  

Total impact estimates for the co-publication model version show only significant and 

positive effects for a region’s GRP p.c. as well as its industrial and technological 

diversification structure. Thus, positive capacity-based effects due to the level of R&D 

expenditures will be removed when region-internal and counteracting external impacts are 

considered together in our regional arrangement. For betweenness centrality we do not 

observe any significant total impacts arising from regional characteristics at all. Thus, 

regional factors seem to be far more important in the FP and co-patenting network, and affect 

co-publication only marginally. This finding let us assume that scientific collaboration is 

more likely to be based on the relations of individual researchers, and thus, to a lesser degree 

determined by the characteristics of the regional environment where the scientists are 

embedded. Moreover, the results provide evidence that higher degree of codification in 

scientific knowledge makes spatial relations to be less significant in scientific collaboration. 

Furthermore, we find no significant direct or indirect impacts of population density on a 

region’s centrality in the different knowledge networks, providing evidence that urban 
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agglomeration is not a sufficient driving force for knowledge network embeddedness of a 

region.  

 

8 Discussion and concluding remarks 

This study focuses on a region’s embeddedness in European knowledge networks, taking a 

comparative perspective on the inter-regional R&D collaboration network as given by the 

European Framework Programmes (FPs), the inter-regional co-patent network and the inter-

regional co-publication network. We aimed at estimating how regional characteristics affect a 

region’s network centrality in each distinct network type. In order to take account of the 

distinctive structural properties of each network, we applied a Social Network Analysis 

(SNA) perspective, defining a region’s network embeddedness in terms of its centrality 

according to inter-regional collaboration intensities. By this, we used eigenvector centrality, 

placing the region in a central hub position, and betweenness centrality, assigning central 

regions the ability to control knowledge diffusion in the network. In modelling network 

centrality we distinguished between characteristics that reflect a region’s knowledge 

production capacities (capacity dimension), and a region’s range of knowledge production 

activities (relational dimension). Our empirical model specification in form of a mixed effects 

panel version of the Spatial Durbin Model (SDM) allows accounting for the spatial dimension 

in explaining network embeddedness by differentiating between region-internal and region-

external impacts arising from our set of explanatory characteristics.  

From a comparative perspective, our empirical analysis of the FP, the co-patent and the co-

publication network spanning across European regions produced interesting commonalities 

between these types of networks, but also striking differences that might be traced back to the 

very distinctive knowledge generation processes: 

First, we found evidence that network structure is highly determined by the spatial structure 

of inter-regional collaboration in each network type. While we can observe comparable 

patterns in terms of network size, regional collaboration intensity and the geographic location 

of the most central regions in the FP network and the co-publication network, structural 

properties of the co-patent network are strikingly different. Spatial distribution of network 

centrality, in particular eigenvector centrality, reflects the highly localised and fragmented 

knowledge creation structures in co-inventorship. Both phenomena, i.e. spatial concentration 
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of collaboration and network fragmentation, more likely restrict knowledge diffusion across 

Europe in the co-patent network than for the FP project and co-publication network. The less 

skewed distribution of centrality in the FP network seems to reflect EU policy goals related 

with the closer integration of R&D across Europe. Spatial distribution of co-publication 

network centrality seems to be as equally distributed across the European scientific landscape, 

though centrality is more concentrated on European scientific core regions, even more 

reflecting clustering tendencies of powerful scientific players with high reputation.  

Second, we revealed that regional characteristics in terms of capacity-specific (financial and 

human R&D resources, economic strength and urban agglomerations) and relational 

(technological specialisation, high-tech orientation and industrial diversity) factors deliver 

important insights for explaining knowledge network embeddedness at the regional level. 

Although a region’s own strength in knowledge production (direct impact) proves to be one of 

the most essential regional determinants, different aspects are addressed in order to achieve a 

central position in the distinct network types. While in the politically induced FP network a 

region’s economic potential is significantly important, it is human capital in the co-patent 

network and financial R&D resources in the co-publication network that accounted for the 

most significant impact. To explain these differences, the focus of knowledge creation in the 

distinct network types needs to be considered; the FP network combines basic with applied 

research inputs arising from several sources, in contrast to the co-patent network where 

industrial application-oriented, often tacit, elements determine inventive activities, while the 

co-publication network involves mainly basic research activities in the academic field. 

We further showed that relational factors are of minor significance for network centrality 

than capacity-indicating factors. High-tech orientation and industrial diversity seem to be 

almost equally conducive factors for all three types of knowledge networks, while 

technological specialisation seems not to be a significant criterion for centrality in the co-

publication network. In this regard again, distinctive knowledge creation foci seem to find 

expression.  

Third, we provided empirical evidence that the spatial dimension, i.e. indirect, spatial 

spillover impacts from neighbouring regions, significantly influence centrality in knowledge 

networks. Network embeddedness in the co-patent network is subject to spatial spillovers 

most likely due to higher localisation of knowledge creation in inventor activities. We found 

positive inter-regional interdependencies for economic strength and high-tech orientation, 
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while knowledge creation capacity seems to exert negative impacts in neighbouring regions’ 

network embeddedness. Thus, we can assume that positive extra-regional knowledge 

externalities might prevail over negative regional interaction effects as long as no 

considerable pulling forces are at work that directly address restriction in (financial or human) 

resource endowment. Moreover, we found significant spatial spillovers of knowledge creation 

capacities only for R&D collaboration or co-inventor activities, while centrality in the 

scientific collaboration network seems not to be affected by spatial dependencies in 

knowledge production structures of nearby regions.  

Some ideas for further research come to mind: First, sector- specific analyses as well as 

further statistical information on regional peculiarities will enrich our understanding of how 

regional conditions are related to inter-regional R&D network embeddedness. Second, from a 

methodological point of view, improvements regarding the quantification of spillovers (direct 

and indirect) passing through R&D networks may be valuable to enrich our understanding on 

the relational and spatial structure of knowledge diffusion. Third, it may be of particular 

interest how embeddedness in inter-regional research collaboration affects not only 

knowledge production but also economic performance of locations, requiring advanced 

theoretical and modelling approaches to establish the link between inter-regional knowledge 

diffusion, localised exploitation and economic impacts.  
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Appendix  

List of regions 

NUTS is an acronym of the French for the “nomenclature of territorial units for statistics", which is a 

hierarchical system of regions used by the statistical office of the European Community for the production of 

regional statistics. At the top of the hierarchy are NUTS-0 regions (countries) below which are NUTS-1 regions 

and then NUTS-2 regions. This study disaggregates Europe's territory into 241 NUTS-2 regions located in the 

EU-25 member states (except Cyprus and Malta). We exclude the Spanish North African territories of Ceuta y 

Melilla, the Portuguese non-continental territories Azores and Madeira, and the French Departments d'Outre-

Mer Guadeloupe, Martinique, French Guayana and Reunion. Thus, we include the following NUTS 2 regions: 

Austria:  Burgenland, Kärnten, Niederösterreich, Oberösterreich, Salzburg, Steiermark, Tirol, 

Vorarlberg, Wien 

Belgium:  Prov. Antwerpen, Prov. Brabant-Wallon, Prov. Hainaut, Prov. Limburg (B), Prov. 

Liège, Prov. Luxembourg (B), Prov. Namur, Prov. Oost-Vlaanderen, Prov. Vlaams-

Brabant, Prov. West-Vlaanderen, Région de Bruxelles-Capitale / Brussels 

Hoofdstedelijk Gewest 

Czech Republic: Jihovýchod, Jihozápad, Moravskoslezsko, Praha, Severovýchod, Severozápad, Střední 

Morava, Střední Čechy 

Denmark:  Danmark 

Estonia: Eesti 

Finland:  Åland, Etelä-Suomi, Itä-Suomi, Länsi-Suomi, Pohjois-Suomi 

France:  Alsace, Aquitaine, Auvergne, Basse-Normandie, Bourgogne, Bretagne, Centre, 

Champagne-Ardenne, Corse, Franche-Comté, Haute-Normandie, Île de France, 

Languedoc-Roussillon, Limousin, Lorraine, Midi-Pyrénées, Nord - Pas-de-Calais, Pays 

de la Loire, Picardie, Poitou-Charentes, Provence-Alpes-Côte d'Azur, Rhône-Alpes 

Germany:  Arnsberg, Berlin, Brandenburg, Braunschweig, Bremen, Chemnitz, Darmstadt, Dessau, 

Detmold, Dresden, Düsseldorf, Freiburg, Gießen, Halle, Hamburg, Hannover, 

Karlsruhe, Kassel, Koblenz, Köln, Leipzig, Lüneburg, Magdeburg, Mecklenburg-

Vorpommern, Mittelfranken, Münster, Niederbayern, Oberbayern, Oberfranken, 

Oberpfalz, Rheinhessen-Pfalz, Saarland, Schleswig-Holstein, Schwaben, Stuttgart, 

Thüringen, Trier, Tübingen, Unterfranken, Weser-Ems 

Greece:  Anatoliki Makedonia, Thraki; Attiki; Ipeiros; Voreio Aigaio; Dytiki Ellada; Dytiki 

Makedonia; Thessalia; Ionia Nisia; Kentriki Makedonia; Kriti; Notio Aigaio; 

Peloponnisos; Sterea Ellada 

Hungary: Dél-Alföld, Dél-Dunántúl, Észak-Alföld, Észak-Magyarország, Közép-Dunántúl, 

Közép-Magyarország, Nyugat-Dunántúl 

Ireland:  Border, Midland and Western; Southern and Eastern 
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Italy:  Abruzzo, Basilicata, Calabria, Campania, Emilia-Romagna, Friuli-Venezia Giulia, 

Lazio, Liguria, Lombardia, Marche, Molise, Piemonte, Puglia, Sardegna, Sicilia, 

Toscana, Trentino-Alto Adige, Umbria, Valle d'Aosta/Vallée d'Aoste, Veneto 

Latvia: Latvija 

Lithuania: Lietuva 

Luxembourg:  Luxembourg (Grand-Duché) 

Netherlands:  Drenthe, Flevoland, Friesland, Gelderland, Groningen, Limburg (NL), Noord-Brabant, 

Noord-Holland, Overijssel, Utrecht, Zeeland, Zuid-Holland  

Poland: Dolnośląskie, Kujawsko-Pomorskie, Lubelskie, Lubuskie, Łódzkie, Mazowieckie, 

Małopolskie, Opolskie, Podkarpackie, Podlaskie, Pomorskie, Śląskie, Świętokrzyskie, 

Warmińsko-Mazurskie, Wielkopolskie, Zachodniopomorskie 

Portugal:  Alentejo, Algarve, Centro (P), Lisboa, Norte 

Slovakia: Bratislavský kraj, Stredné Slovensko, Východné Slovensko, Západné Slovensko 

Slovenia: Slovenija 

Spain:  Andalucía, Aragón, Cantabria, Castilla y León, Castilla-La Mancha, Cataluña, 

Comunidad Foral de Navarra, Comunidad Valenciana, Comunidad de Madrid, 

Extremadura, Galicia, Illes Balears, La Rioja, País Vasco, Principado de Asturias, 

Región de Murcia 

Sweden:  Mellersta Norrland, Norra Mellansverige, Småland med öarna, Stockholm, Sydsverige, 

Västsverige, Östra Mellansverige, Övre Norrland 

United Kingdom:  Bedfordshire & Hertfordshire; Berkshire, Buckinghamshire & Oxfordshire; Cheshire; 

Cornwall & Isles of Scilly; Cumbria; Derbyshire & Nottinghamshire; Devon; Dorset & 

Somerset; East Anglia; East Riding & North Lincolnshire; East Wales; Eastern 

Scotland; Essex; Gloucestershire, Wiltshire & North Somerset; Greater Manchester; 

Hampshire & Isle of Wight; Herefordshire, Worcestershire & Warkwickshire; 

Highlands and Islands; Inner London; Kent; Lancashire; Leicestershire, Rutland and 

Northamptonshire; Lincolnshire; Merseyside; North Eastern Scotland; North Yorkshire; 

Northern Ireland; Northumberland and Tyne and Wear; Outer London; Shropshire & 

Staffordshire; South Western Scotland; South Yorkshire; Surrey, East & West Sussex; 

Tees Valley & Durham; West Midlands; West Wales & The Valleys; West Yorkshire 

 


