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Abstract

Recently, applications of cooperative game theory to economic allocation problems

have gained popularity. In many of these problems, players are organized according

to either a hierarchical structure or a levels structure that restrict players’ possibilities

to cooperate. In this paper, we propose three new solutions for games with hierarchical

structure and characterize them by properties that relate a player’s payoff to the payoffs of

other players located in specific positions in the structure relative to that player. To define

each of these solutions, we consider a certain mapping that transforms any hierarchical

structure into a levels structure, and then we apply the standard generalization of the

Shapley Value to the class of games with levels structure. The transformations that map

the set of hierarchical structures to the set of levels structures are also studied from an

axiomatic viewpoint by means of properties that relate a player’s position in both types

of structure.

Keywords: TU-game; hierarchical structure; levels structure; Shapley Value; axiom-

atization.
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1 Introduction

Many economic allocation problems are modeled by a TU-game. A cooperative game with

transferable utility, or simply a TU-game, is a pair consisting of a finite set of players and a

mapping that associates a real number with each subset (or coalition) of players. Each of these

numbers represents the aggregate benefit that players can obtain by cooperating within the

corresponding coalition. In many of these problems there is a natural “structure” according to

which players are arranged, which needs to be taken into account together with the information

contained in the TU-game. For instance, in water allocation problems (Ambec and Sprumont,

2002) or in polluted river cost allocation problems (Ni and Wang, 2007), a graph is used to

describe the agents’ location along the riverside. Examples in which there is an implicit order

of the players include Littlechild and Owen (1973), Curiel et al. (1989), Graham et al. (1990),

and Maniquet (2003).

In this paper, we deal with games with hierarchical structure. They consist of a TU-game

together with a directed graph in the form of a tree that describes the organizational design

of the set of players. Most political, economic or military organizations are organized in a

hierarchical structure, which turns the study of such structures a relevant topic in economic

theory, both from a normative and a positive viewpoint. In particular, the study of the

properties that certain solutions for games with hierarchical structure satisfy has received

great attention in the literature, and many important contributions to this model—and to

more general, closely related models—have been made to date.

The class of games with permission structure consists of all pairs made up of a TU-game

plus a directed graph, and hence it contains the class of games with hierarchical structure.

In the conjunctive approach, Gilles et al. (1992) considered a certain subclass of games with

permission structure containing all TU-games with cycle-free graphs, and they assumed that

every player needs permission from all her predecessors in the graph before she can cooperate

with other players. Therefore, a coalition of players can only cooperate if for every player who

is in the coalition, all her predecessors also belong to the coalition (see also van den Brink and

Gilles, 1996). In contrast, in the disjunctive approach of Gilles and Owen (1994), the subclass

of games with permission structure where the digraph is acyclic and quasi-strongly connected
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was considered, and it was assumed that every player needs permission from at least one of

her predecessors in the graph (see also van den Brink, 1997). According to this approach, a

coalition can cooperate if for every player, at least one of her predecessors—if any—is also in

the coalition. The two approaches yield the conjunctive, respectively disjunctive, permission

restricted games. To each game, the Conjunctive (Disjunctive) Permission Value assigns the

Shapley Value of the conjunctive (disjunctive) permission restricted game.1 More recently,

van den Brink et al. (2014) introduced another value for the class of games with permission

structure where the TU-game is totally positive by restricting the allocation of dividends. In

van den Brink et al. (2015), a value for games with hierarchical structure has been proposed,

the so-called Average Tree permission value. This value is obtained by taking the average

of all hierarchical outcomes (see Demange, 2004) of the permission restricted game on the

underlying undirected graph. Lastly, in Faigle and Kern (1992), restrictions on the coalition

formation process induced by a so-called precedence constraint, which includes directed trees,

are considered instead of direct restrictions on coalitions.

Another class of games with restricted cooperation that has long been studied is that of

games with a coalition structure introduced by Aumann and Drèze (1974) and studied later

on in Owen (1977) and Hart and Kurz (1983). In this model, the TU-game is enriched with

a partition of the player set that aims at describing situations where some players are more

closely related to each other than to other players. The class of games with levels structure

of cooperation introduced by Winter (1989) constitutes a natural generalization of the former

model. In a game with levels structure, there is an ordered set of partitions, with the first level

a partition of the player set consisting at least of two non-empty subsets, each level (except

the last one) being coarser than the next level, and the last level being equal to the partition

of all singletons. Hence, the latter games describe situations where also within each coalition

in some level, some players are closer to each other than to other players within that coalition.

This occurs when the former players are still together in one coalition in the next thinner level,

while the latter are not.

In this paper, we propose and characterize three new solutions for games with hierarchical
1When the graph is a directed tree, the conjunctive and disjunctive approaches coincide. In that case, we

simply refer to the Permission Value.
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structure. Our approach differs from the previous solutions proposed in the literature in that,

first, we convert the hierarchical structure (i.e., the tree) into a certain levels structure and,

second, we apply the Shapley Levels Value (Winter, 1989) to the game with levels structure,

with the levels structure induced by the hierarchical structure. Each of the three solutions

is obtained by choosing a specific conversion mapping that associates a levels structure to

every directed tree. Before defining and characterizing the new solutions, we propose several

properties that might be satisfied by a mapping that converts a hierarchical structure into a

levels structure and we show that there is a single class of mappings satisfying the required

properties.

By construction, our procedure mapping directed trees into levels structure of cooperation

may entail a certain loss of information when one leaf of the tree has no sibling, i.e., there

are no other players having the same predecessor in the hierarchy. When restricted to the

set of trees where each leaf has at least one sibling, our procedure establishes nonetheless a

bijection between the latter set and the set of levels structures. In any case, our procedure

will enable us to define three values that exhibit interesting features. First, they satisfy

some properties that relate a player’s payoff to the payoffs of certain groups of other players.

To any player in a hierarchical structure, we associate a team of players consisting of the

player herself, together with players who are below her in the hierarchy. Demange (2004)

argues that in a hierarchical structure, teams are the relevant units in the decision-making

process. More specifically, the properties satisfied by the new values relate the payoff of a

player to the payoffs of the other players in her team and/or the teams of her siblings in the

hierarchy. To the best of our knowledge, these properties have not been introduced before in

the literature. Second, compared to other values examined in the literature, our three solutions

seem to be more responsive to changes in the players’ position in the directed tree, at least

when restricting to unanimity games. The importance of how responsive should values be to

changes in the hierarchy seems to have been underestimated in the literature on games with

hierarchical structure. When the TU-game is the unanimity game of the grand coalition, the

payoff assigned by a value to a player in a game with hierarchical structure can be interpreted

as the player’s importance in the hierarchy. Our paper then adds to the knowledge regarding

how important each player is in a given directed tree.
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Both mathematical objects, directed trees and levels structures, are useful when capturing

the restrictions to players’ cooperation possibilities that may exist in an organization due to

its structure. On the one hand, a directed tree expresses a hierarchical configuration in a set

of players. In a firm, for instance, one employee might not be allowed to take some decision

without the approval of her superior. According to Demange (2004), a hierarchical structure

is the organizational form that maximizes stability. On the other hand, a levels structure

organizes a set of players into a series of nested partitions. For instance, a firm might be

organized in different divisions, which in turn might be divided in different departments, in

which employees work. To take a decision it might be that, first, all workers of each department

have to reach a consensus, second, all departments of each division have to reach a consensus,

and, third and last, all divisions have to reach an agreement so that the firm as a whole takes

the ultimate decision.

Any mapping from the set of directed trees to the set of levels structures can thus be

interpreted as a particular way to translate the hierarchical relation given by a directed tree

into a nested relation given by the corresponding levels structure. These mappings may be

useful when comparing organizations with different, yet non exclusive power structures.

The rest of the paper is organized as follows. Section 2 is a preliminary section on coop-

erative TU-games, directed graphs, and levels structures (including coalition structures). In

Section 3 we introduce and characterize a mapping that assigns a levels structure to every

hierarchical structure represented by a directed tree. In Section 4 we introduce and axiom-

atize our first new solution for games with hierarchical structure. This solution uses all the

information contained in the levels structure obtained from the conversion mapping of Section

3. In Section 5 we define and axiomatize two alternative solutions for these games. These

solutions use proper subsets of the aforesaid transformed information. In Section 6 we com-

pare our three solutions with other existing values from the literature. Section 7 contains the

concluding remarks. Lastly, there are appendices containing some proofs of Sections 3 and 4

together with the logical independence of the axioms used in each characterization.
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2 Preliminaries

2.1 TU-games

Let a finite non-empty set Ω ⊂ N of potential players be given. Then, a cooperative game with

transferable utility, or simply a TU-game, is a pair (N, v), where ∅ 6= N ⊆ Ω is a finite set of

players and v : 2N = {S : S ⊆ N} → R is a characteristic function, with v(∅) = 0. For any

coalition S ⊆ N , v(S) represents the worth of coalition S, i.e., the total payoff that members

of the coalition can obtain by agreeing to cooperate. We denote the collection of all TU-games

by G. For the sake of readability, we henceforth abuse notation slightly and write T ∪ i and

T \ i instead of T ∪{i} and T \{i} for T ⊆ N and i ∈ N , respectively. We use the | · | operator

to denote the cardinality of a finite set.

Given (N, v) ∈ G and i ∈ N , we say that i is a null player in (N, v) if v(T ∪ i)− v(T ) = 0

for all T ⊆ N \ i, and we say that i is a necessary player in (N, v) if v(T ) = 0 for all T ⊆ N \ i.

A game (N, v) ∈ G is monotone if v(T ) ≤ v(R) for all T ⊆ R ⊆ N . We denote by GM ⊂ G

the class of all monotone TU-games. For each nonempty T ⊆ N , the unanimity game (N, uT )

is given by uT (R) = 1 if T ⊆ R, and uT (R) = 0 otherwise. It is well-known that every game

(N, v) ∈ G can be written in a unique way as a linear combination of unanimity games (N, uT )

by v =
∑
∅6=T⊆N ∆T (v)uT , where ∆T (v) =

∑
R⊆T (−1)|T |−|R|v(R) are the Harsanyi dividends

(Harsanyi, 1959).

A solution on G is a map, f , that assigns a unique vector f(N, v) ∈ RN to every (N, v) ∈ G,

where fi(N, v) represents the payoff to player i ∈ N . A permutation of N is a bijective map

π : N → N . Let Π(N) denote the set of permutations of N . Given π ∈ Π(N) and i ∈ N ,

let π−1[i] indicate the set of players ordered before i in permutation π, i.e., π−1[i] = {j ∈ N :

π(j) < π(i)}. The best-known solution on G is the Shapley Value (Shapley, 1953), which is

defined for every (N, v) ∈ G and i ∈ N by

Shi(N, v) =
1

|Π(N)|
∑

π∈Π(N)

(v
(
π−1[i] ∪ {i}

)
− v

(
π−1[i]

)
).
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2.2 Games with hierarchical structure

Given the set Ω of potential players, a directed graph or digraph is a pair (N,D), where

∅ 6= N ⊆ Ω is a finite set of nodes (representing the players) and D ⊆ N × N is a binary

relation on N (representing the hierarchy). Given (N,D) and T ⊆ N , the digraph (T,DT ) is

the induced subgraph on T given by DT = {(i, j) ∈ D : i, j ∈ T}. For a given digraph (N,D)

and i, j ∈ N , a (directed) path from i to j is a sequence of distinct nodes (i1, . . . , im) such that

i1 = i, im = j, and (ik, ik+1) ∈ D for k = 1, . . . ,m− 1. A digraph (N,D) is a (rooted) directed

tree with root i0 ∈ N if there does not exist a player j ∈ N with (j, i0) ∈ D and if there is

exactly one directed path from the top-node i0 to every other node. Note that, in particular,

(i, i) /∈ D for all i ∈ N if (N,D) is a directed tree. We denote the set of all directed trees by

D.

For every (N,D) ∈ D and i ∈ N , the nodes in SD(i) = {j ∈ N : (i, j) ∈ D} are called the

successors of i, and the nodes in PD(i) = {j ∈ N : (j, i) ∈ D} are called the predecessors of

i. For a directed tree (N,D) ∈ D with root i0, it holds that PD(i0) = ∅ and |PD(j)| = 1 for

every j ∈ N \ {i0} and, accordingly, we denote by pD(j) the unique predecessor of j 6= i0. Let(
N, D̂

)
be the transitive closure of a digraph (N,D), i.e., (i, j) ∈ D̂ if and only if there is a

directed path form i to j. The players in ŜD(i) = SD̂(i) are called the subordinates of i, and

the players in P̂D(i) = PD̂(i) are called the superiors of i.

For a directed tree, we follow Demange (2004) and call the set ŜD(i)∪ i the team of player

i, i.e. the team of i consists of i herself plus all her subordinates. We stress that the set

P̂D(i), with i 6= i0, is the set of nodes on the unique path from i0 to i, excluding i herself.

The rank of i in the hierarchy is the length of this path and is denoted by lD(i), i.e., for

every i ∈ N , lD(i) =
∣∣∣P̂D(i)

∣∣∣. When there is no possible confusion regarding (N,D), we

write l(i) instead of lD(i). For every (N,D) ∈ D, the depth of the hierarchy is given by

l(D) = maxi∈N l(i). Further, given (N,D) ∈ D and i ∈ N \ i0, the set of siblings of i is

denoted by A(i) and is the set of players with the same predecessor as i, including i herself,

i.e., A(i) = {j ∈ N : (pD(i), j) ∈ D}. Finally, for T ⊆ N we denote SD(T ) = ∪i∈TSD(i).

A game with hierarchical structure is a triple (N, v,D), where (N, v) ∈ G and (N,D) ∈ D.

We denote by GD the set of all games with hierarchical structure. A solution on GD is a map,

f , that assigns a vector f(N, v,D) ∈ RN to every triple (N, v,D) ∈ GD.
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2.3 Games with levels structure

A partition of a finite set N is a collection of subsets, P ⊆ 2N , such that T 6= ∅ for every T ∈ P ,

∪T∈PT = N , and for every T,R ∈ P with T 6= R, T ∩ R = ∅. Given Ω, a levels structure is

a pair (N,B) with ∅ 6= N ⊆ Ω, |N | ≥ 2 and, for some integer m ≥ 0, B = (B1, . . . , Bm+1)

is a sequence of m + 1 partitions of N such that (i) B1 is a proper partition, i.e. |B1| ≥ 2,

(ii) for each r ∈ {1, . . . ,m}, Br is coarser than Br+1, i.e., for each T ∈ Br, there is U ⊆ Br+1

such that T = ∪R∈UR, and (iii) Bm+1 = {{i} : i ∈ N}.2 The partition Bm+1 consisting of

all singleton coalitions is added for notational convenience. For each r ∈ {1, . . . ,m + 1}, the

partition Br is called the r-th level of B and each T ∈ Br is called a union (of the r-th level).

We denote by (N,B0) the trivial level structure with B0 = ({{i} : i ∈ N}). The collection of

all levels structures (N,B), with ∅ 6= N ⊆ Ω, is denoted by L.

Example 2.1. Let N = {1, 2, 3, 4, 5} and B = (B1, B2, B3) be given by B1 = {{1, 2}, {3, 4, 5}},

B2 = {{1, 2}, {3}, {4, 5}}, and B3 = {{1}, {2}, {3}, {4}, {5}}. Then, the pair (N,B) is a levels

structure, i.e., (N,B) ∈ L.

A game with levels structure is a triple (N, v,B), where (N, v) ∈ G and (N,B) ∈ L. We

denote by GL the set of all games with levels structure. A solution on GL is a map, f , that

assigns to every (N, v,B) ∈ GL a vector f(N, v,B) ∈ RN . The best-known solution on GL

is the Shapley Levels Value, introduced by Winter (1989).3 This solution is based on the

assumption that the levels structure imposes restrictions on the order in which players enter

when forming a coalition. For a levels structure (N,B) ∈ L with B = (B1, . . . , Bm+1), define

the sets of permutations Ωr(B), with r ∈ {0, . . . ,m}, starting with Ω0(B) = Π(N), and then

recursively for r = 1, . . . ,m,

Ωr(B) = {π ∈ Ωr−1(B) : ∀T ∈ Br, ∀i, j ∈ T and k ∈ N, if π(i) < π(k) < π(j) then k ∈ T}.

Therefore, Ωr(B), with r > 0, is the subset of permutations of Ωr−1(B) such that the elements

of each union of Br are consecutive. We let Ω(B) = Ωm(B) be the set of permutations that

keep the agents of every union of every level consecutive. Then, the Shapley Levels Value ShL

2Note that we do not exclude that Br = Br+1 for some r ∈ {1, . . . ,m}.
3Other solutions for games with levels structure can be found in Álvarez-Mozos and Tejada (2011).
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is the solution on GL defined for every (N, v,B) ∈ GL and i ∈ N by

ShLi (N, v,B) =
1

|Ω(B)|
∑

π∈Ω(B)

(v
(
π−1[i] ∪ i

)
− v

(
π−1[i]

)
). (2.1)

Note that the trivial levels structure (N,B0) does not put any restriction on the order of

players. Therefore, for every (N, v) ∈ G, ShL(N, v,B0) = Sh(N, v). A game with a levels

structure where r = 1 corresponds to a game with a coalition structure as introduced in

Aumann and Drèze (1974). It is easy to verify that in this case, the Shapley Levels Value is

equal to the Owen Value (Owen, 1977).

3 From Directed Trees to Levels Structures

Next, we turn to the first relevant question of this paper: How to convert a given hierarchical

structure into a levels structure? Accordingly, we abstract for the moment from the analysis

of how payoffs should be allocated in a game with hierarchical structure, and we only focus

on the relation between directed trees and levels structures. First, we propose a procedure to

convert a directed tree into a collection of nested partitions. Second, we show that a mapping

that converts any directed tree into a levels structure satisfies some required properties if and

only if any directed tree is mapped into a levels structure that is a subset of the collection of

nested partitions obtained from our procedure.

Accordingly, we next propose a specific way to map any directed tree into a levels structure.

Let H : D → L be such that for every (N,D) ∈ D, H(N,D) = (N,BD) with

BD =
(
BD

1,1, B
D
1,2, B

D
2,1, B

D
2,2, . . . , B

D
l(D),1, B

D
l(D),2

)
, (3.2)

defined for r ∈ {1, . . . , l(D)} by

BD
r,1 =

{
{i} : l(i) < r

}
∪
{
ŜD(j) : l(j) = r − 1

}
and (3.3)

BD
r,2 =

{
{i} : l(i) < r

}
∪
{
ŜD(j) ∪ j : l(j) = r

}
. (3.4)

By definition, (i) BD
1,1 is a proper partition of N , (ii) BD

1,2 is a refinement of BD
1,1, and (iii)

for every r ∈ {2, . . . , l(D)} the partition BD
r,1 is a refinement of BD

r−1,2, and partition BD
r,2 is a

9



refinement of BD
r,1. Further, note that BD

l(D),2 = {{i} : i ∈ N}, as ŜD(j) = ∅ for every j ∈ N

with l(j) = l(D).4 As a consequence, (N,BD) ∈ L.

We illustrate the above definitions by means of an example which will be used throughout

the paper.

Example 3.1. Consider the directed tree (N,D) ∈ D with N = {1, . . . , 8} and D = {(1, 2), (1, 3),

(2, 4), (2, 5), (3, 6), (5, 7), (5, 8)}—see the graph below. Then, (N,BD) ∈ L is given by BD =

(BD
1,1, . . . , B

D
3,2), where

u u
u

uu
u u

u

1

2 3

54 6

7 8
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@
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@
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BD
1,1 = {{1}, {2, 3, 4, 5, 6, 7, 8}},

BD
1,2 = {{1}, {2, 4, 5, 7, 8}, {3, 6}},

BD
2,1 = {{1}, {2}, {3}, {4, 5, 7, 8}, {6}},

BD
2,2 = {{1}, {2}, {3}, {4}, {5, 7, 8}, {6}},

BD
3,1 = {{1}, {2}, {3}, {4}, {5}, {6}, {7, 8}},

BD
3,2 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}

In the remaining part of this section we provide a justification for the mapping H defined

in Eqs. (3.2)—(3.4). First note that the conversion mapping H respects the important role of

the teams as highlighted by Demange (2004) in the following sense. At each even level BD
r,2,

every player i with l(i) < r is a singleton in the partition, while each player with rank l(i) = r

in the hierarchy forms a union with all other players in his team. Furthermore, at each odd

level BD
r,1, every player i with l(i) < r is a singleton in the partition, while the team of each

player with rank l(i) = r in the hierarchy forms a union together with the teams of all her

siblings. Accordingly, we shall call every even level a team level and every odd level a sibling

level.

In the following, we show that the mapping H can essentially be characterized by five

properties. These properties connect the position of agents in a directed tree with their

participation in a given union of a partition of the player set. Although we only consider

properties that apply to a single partition of the player set, these properties can be generalized

to a levels structure in a straightforward way.
4Note that two consecutive partitions of BD might coincide.
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The properties considered obey two principles. The first principle considers for a given

player in the directed tree her most natural companions in the partition. In order of preference,

these are: (i) her team, (ii) her siblings, and (iii) all other players. The second principle takes

a certain equality notion into account by requiring that under some additional conditions, two

agents with the same rank in the directed tree are treated equally in the partition. Given a

partition P of N and i ∈ N , let Pi denote the element of P to which player i belongs.

Definition 3.1. Given a directed tree (N,D) ∈ D, a partition P of N is said to respect (N,D)

when the following five properties hold:

p1 If (i, j) ∈ D, then [Pi 6= {i}] =⇒ [j ∈ Pi].

p2 If j ∈ A(i), then
[
Pi \ (ŜD(i) ∪ i) 6= ∅

]
=⇒ [j ∈ Pi].

p3 If l(i) = l(j), then [SD(i) 6= ∅ and Pi = {i}] =⇒ [Pj = {j}].

p4 If (i, j) ∈ D, then [Pi = {i}] =⇒
[
Pj ⊆ ŜD(i)

]
.

p5 If l(i) = l(j), A(i)\i 6= ∅, and A(j)\j 6= ∅, then
[
Pi ⊆ (ŜD(i) ∪ i)

]
⇐⇒

[
Pj ⊆ (ŜD(j) ∪ j

]
.

The first property, p1, states that if in the partition, a player depends on some other

player in the sense that she is in the same union with this other player, then she and all other

members of her team must be in the same union of the partition. This holds regardless of

whether a player depends within the partition on another player who is in her team or on a

player who is not in her team. p2 states that if a player i depends within the partition on some

player who is not in her team, then all i’s siblings must belong to the same union as i does.

p3 requires that if a player is a singleton in the partition while having at least one successor

in the directed tree, then any other player with the same rank should also be a singleton.

According to p4, when a player is a singleton in the partition, then none of the members of

her team depends on a player who does not belong to this team. Finally, p5 states that for

any two players with the same rank each having one sibling at least, it holds that either each

of them only depends within the partition on her team or each of them depends on a player

who is not in her team.

Next, we characterize the mappings that convert any directed tree (N,D) ∈ D into a

levels structure (N,B) where any partition P ∈ B respects (N,D), i.e., it satisfies the five

11



properties p1—p5. Recall that (N,BD) = H(N,D) denotes the levels structure defined by

Eqs. (3.2)—(3.4).

Theorem 3.2. Consider a directed tree (N,D) ∈ D. Then, a proper partition P of N respects

(N,D) if and only if P ∈ BD. Moreover, the five properties of Definition 3.1 are independent.

Proof. See Appendix A. �

Note that the mapping assigning the trivial partition {N} with N as its unique element to

every directed tree also satisfies the five properties. Since some properties become meaningless

for this partition, in the theorem we have only considered proper partitions. The next corollary

follows immediately from Theorem 3.2.

Corollary 3.1. Any mapping I : D → L, such that every partition in I(N,D) respects (N,D)

and has a maximal number of different partitions, can be built from the partitions in
(
N,BD

)
.

To sum up, in this section we have focused on a particular way to map a directed tree

into a levels structure, namely that every partition of the levels structure respects the tree

in the sense of Definition 3.1. The properties p1—p5 and Theorem 3.2 imply that in such a

levels structure, a player that is higher in the hierarchy is more independent from the other

players in the collection of nested partitions in the sense that such a player becomes a singleton

coalition at a lower-ranked partition in the levels structure than another player who is lower

in the hierarchy.5 While the proposed mapping between the set of directed trees and the set

of levels structures is reasonable both from the way it is constructed and from the properties

it satisfies, the values for games with hierarchical structure introduced in the remaining part

of the paper—all of which use such a mapping—add to its relevance.

4 A New Solution for Games with Hierarchical Structure

We are now ready to introduce and axiomatize a new type of solution for the class of games with

hierarchical structure GD. For each solution of this type, we follow a two-stage procedure.
5We stress that more independent does not mean better off, not even for monotone games. We elaborate

on this in Section 7.
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First, the hierarchical structure (N,D) is transformed into a levels structure (N,B), with

B being a subset of the collection BD of partitions generated by the conversion mapping

H. Second, the Shapley Levels Value is applied to the game with levels structure obtained

in the first stage. The first solution of this type is obtained by taking the levels structure

(N,BD) = H(N,D), i.e., by considering the entire collection of partitions that satisfy the five

properties of Theorem 3.2.

Definition 4.1. The solution ϕSL on the class of games with hierarchical structure GD is the

solution given by

ϕSL(N, v,D) = ShL
(
N, v,BD

)
, with (N, v,D) ∈ GD.

By definition, the first level of (N,BD) consists of two unions: the root player as a singleton

and the set of all other players, consisting of all teams of the players having the root player

as their predecessor. Consequently, because ϕSL is obtained by applying ShL to (N,BD),

besides receiving her singleton worth (dividend), the root player earns half the dividends of

all coalitions she belongs to. Any other player i having subordinates belongs to the same

union as the latter in any partition BD
r,l, with (r, l) ≤lex (l(i), 1), while i’s team is a union in

BD
l(i),2.

6 In the next level, namely the one corresponding to BD
l(i)+1,1, the player then becomes

a singleton and her subordinates form a union in the next level. Consequently, each player

obtains, according to ϕSL, a share equal to the sum of all shares of all her subordinates in the

dividends of any coalition to which she belongs together with at least one of her subordinates.

We illustrate the new value with an example.

Example 4.1. Consider (N, uN , D) ∈ GD with (N,D) the hierarchy given in Example 3.1.

Then,

ϕSL(N, uN , D) =

(
1

2
,
1

8
,
1

8
,

1

16
,

1

32
,
1

8
,

1

64
,

1

64

)
.

Note that the root of the tree obtains half the worth of the grand coalition. Then, the proposed

value assigns half the remainder to Player 2 and her subordinates, and half the remainder to

Player 3 and her subordinates. And so on, until the last level of the levels structure is reached.
6For (r, l), (r, l) ∈ N× N, we write (r, l) ≤lex (r′, l′) if either r < r′ or r = r′ and l ≤ l′.
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Next, we provide a set of axioms that will characterize the value ϕSL on the class GD.

The first three are natural generalizations of the classical efficiency, additivity, and null player

properties.

eff A solution f on GD satisfies efficiency if for every (N, v,D) ∈ GD,∑
i∈N

fi(N, v,D) = v(N).

add A solution f on GD satisfies additivity if for every (N, v,D), (N,w,D) ∈ GD,

f(N, v + w,D) = f(N, v,D) + f(N,w,D).

npp A solution f on GD satisfies the null player property if for every (N, v,D) ∈ GD and

i ∈ N null player in (N, v),

fi(N, v,D) = 0.

npp is stronger than the Inessential Player property used to axiomatize the Permission

Value in van den Brink and Gilles (1996) and van den Brink (1997). The latter property

demands that a null player in (N, v) whose subordinates in (N,D) are also all null players in

(N, v) earns zero payoff.

The following axioms describe how the solution behaves with respect to the hierarchical

structure. The first property states that merging all players in a team does not affect the

payoffs of the remaining players. Merging player j with the rest of her team ŜD(j) in game

(N, v,D) yields a new game
(
N \ ŜD(j), vj, DN\ŜD(j)

)
with vj defined for every T ⊆ N \ ŜD(j)

by

vj(T ) =

v(T ) if j 6∈ T,

v
(
T ∪ ŜD(j)

)
if j ∈ T.

We are now in a position to formally present this property.

imt A solution f on GD satisfies independence of merging teams if for every (N, v,D) ∈ GD,

j ∈ N , and i ∈ N \
(
ŜD(j) ∪ j

)
,

fi(N, v,D) = fi

(
N \ ŜD(j), vj, DN\ŜD(j)

)
.

14



Note that together with eff, imt implies that when all players in a team are merged into

the boss of the team, i.e. the player of the team who has the highest position in the hierarchy,

the payoff to this player in the new game has to be equal to the sum of the payoffs of all

members in the team in the original game.

Now, we present two lemmas that will prove to be helpful in the proofs of our characteri-

zation results. Given (N,D) ∈ D and i ∈ N , let Ni be given by

Ni = ŜD(i) ∪ P̂D(i) ∪ SD
(
P̂D(i)

)
, (4.5)

Note that i ∈ SD
(
P̂D(i)

)
and thus i ∈ Ni, and that Ni further consists of all subordinates

and superiors of i together with all successors of her superiors. We call the players in Ni \ i

the relatives of i.7 We next define the game (Ni, vi) ∈ G by, vi(T ) = v
(
TDi
)
for every T ⊆ Ni,

with

TDi = T ∪

 ⋃
j∈T\(ŜD(i)∪P̂D(i)∪i)

ŜD(j)

 . (4.6)

Lemma 4.2. If a solution on GD, f , satisfies independence of merging teams, then for every

(N, v,D) ∈ GD and i ∈ N , fi(N, v,D) = fi(Ni, vi, DNi
).

Proof. See Appendix B. �

When all players in N \ i are relatives of i, we have Ni = N and thus (Ni, vi, DNi
) =

(N, v,D). In that case, the statement of the lemma is trivial. When they are not relatives,

the lemma provides us with a property implied by imt requiring the payoff of a player not be

affected by changes in the position in the hierarchy of players who are not her relatives. As

the proof of Lemma 4.2 shows, (Ni, vi, DNi
) is obtained from the repeated application of imt.

Indeed, when Ni 6= N , there is an integer m > 0 and a sequence of games with hierarchical

structure
(
N (k), v(k), D(k)

)
, with k = 0, . . . ,m, such that (i)

(
N (0), v(0), D(0)

)
= (N, v,D), (ii)

for every k ∈ {1, . . .m}, N (k) = N (k−1) \ ŜD(j) for some j ∈ N (k−1), v(k) =
(
v(k−1)

)j, and
D(k) =

(
D(k−1)

)
N(k) , and (iii)

(
N (m), v(m), D(m)

)
= (Ni, vi, DNi

).

The next example illustrates the consequences of imt as stated in Lemma 4.2.
7Note that “being a relative” is not a symmetric relation.
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Figure 1: Directed trees DN4 and DN3 of Example 3.1

Example 4.3. Consider (N, uN , D) ∈ GD with D as given in Example 3.1. For i = 4, we

have N4 = {1, 2, 3, 4, 5} and (N4, DN4) the tree given by the left side of Figure 1. If a solution

f satisfies imt, then Lemma 4.2 implies that the payoff to Player 4 in (N, v,D) is equal to

the payoff of Player 4 in (N4, v4, DN4). Hence, ϕSL4 (N4, (uN)4, DN4) = ϕSL4 (N, uN , D) = 1
16
.

Taking i = 3 yields N3 = {1, 2, 3, 6} and (N3, DN3), given by the right side of Figure 1. By

Lemma 4.2, ϕSL3 (N3, (uN)3, DN3) = ϕSL3 (N, uN , D) = 1
8
.

The next lemma shows that for a unanimity game (N, uT ), the repeated application of imt

results in a new unanimity game.

Lemma 4.4. Consider (N, cuT , D) ∈ GD, where c > 0 and T ⊆ N . Then, for every i ∈ N ,

(Ni, (cuT )i) = (Ni, cuT (i)) with

T (i) = (T ∩Ni) ∪
{
j ∈ Ni \

(
ŜD(i) ∪ P̂D(i) ∪ i

)
: ŜD(j) ∩ T 6= ∅

}
.

Proof. See Appendix B. �

We stress that T (i) = T whenNi = N . The remaining three axioms apply to the subclass of

monotone games and impose bounds on players’ payoffs depending on the position of necessary

players in the tree.

nsp A solution f on GD satisfies the necessary sibling property if for every (N, v,D) ∈ GD

with (N, v) ∈ GM and for every two players i, j ∈ N such that SD(i) = SD(j) = ∅,

i ∈ A(j), and i is necessary player in (N, v), then

fi(N, v,D) ≥ fj(N, v,D).
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nsp requires that given two players who are siblings and endpoints in the tree, if one of

them is a necessary player in a monotone game, then she must earn at least as much as the

other agent. The next two axioms impose upper and lower bounds to the payoffs of a player

compared to the payoffs of her subordinates.

slb A solution f on GD satisfies superior lower bound if for every (N, v,D) ∈ GD with

(N, v) ∈ GM , if i ∈ N is necessary in (N, v), then

fi(N, v,D) ≥
∑

j∈ŜD(i)

fj(N, v,D).

sub A solution f on GD satisfies superior upper bound if for every (N, v,D) ∈ GD with

(N, v) ∈ GM , if some j ∈ ŜD(i) is necessary in (N, v) for some i ∈ N , then

fi(N, v,D) ≤
∑

h∈ŜD(i)

fh(N, v,D).

slb requires that a player i earns at least as much as all her subordinates together in the

case where i is a necessary player in a monotone game, and thus vetoes all her subordinates.

In the following, we state and prove a characterization of the solution ϕSL on the class GD of

games with hierarchical structure.

Theorem 4.5. A solution f on GD satisfies eff, add, npp, imt, nsp, slb, and sub, if and

only if f = ϕSL. Moreover, the seven axioms are independent.

Proof. We first prove that there is at most one solution on GD that satisfies all properties.

After that, we will prove that ϕSL satisfies them. The logical independence of the axioms is

shown in Appendix C.

Uniqueness: Suppose that f satisfies the seven axioms. For every (N, v0, D), with (N, v0)

the null game given by v0(S) = 0 for all S ⊆ N , npp implies that fi(N, v0, D) = 0 for all

i ∈ N .

Next, let (N, cuT , D) ∈ GD, where ∅ 6= T ⊆ N and c > 0. We prove uniqueness of

f(N, cuT , D) by induction on the depth l(D) of the directed tree (N,D). If l(D) = 0, we have

that N = T = {i0}. Then eff implies that fi0(N, cuT , D) = c. Proceeding by induction,

assume that for every N ′ ⊆ N , every T ′ ⊆ N ′, and every (N ′, D′), f(N ′, cuT ′ , D
′) is uniquely
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determined whenever l(D′) < l(D).8 For every i ∈ N , we define the set of subordinates of i

with rank equal to the depth of the directed tree, i.e.,

HD(i) =
{
j ∈ ŜD(i) : l(j) = l(D)

}
.

We distinguish five cases with respect to i ∈ N .

Case I: i ∈ N \ T . By npp, fi(N, cuT , D) = 0.

Case II: i ∈ T , SD(i) 6= ∅, and HD(i) = ∅. By imt, fi(N, cuT , D) = fi(Ni, (cuT )i, DNi
).9

Due to Lemma 4.4, (Ni, (cuT )i) is a scaled unanimity game and, by definition of Ni, l(DNi
) <

l(D). Then, it follows from the induction hypothesis that fi(Ni, (cuT )i, DNi
), and thus fi(N, cuT , D),

is uniquely determined.

Case III: i ∈ T , SD(i) = ∅, and l(i) < l(D). Following exactly the same argumentation

as in Case II, it can be shown that fi(N, cuT , D) is uniquely determined.

Case IV: i ∈ T and HD(i) 6= ∅. Note that HD(i) 6= ∅ implies SD(i) 6= ∅. By imt, we

have fi(N, cuT , D) = fi(Ni, (cuT )i, DNi
). However, unlike in Case II, we have l(DNi

) = l(D).

Define Qi = SD

(
P̂D(i)

)
\
(
P̂D(i) ∪ i

)
as the set of subordinates of superiors of i, except i and

all her superiors. Note that
{
ŜD(i), {i}, P̂D(i), Qi

}
is a partition of Ni. Therefore, by eff,

fi(Ni, (cuT )i, DNi
)

= c−
∑

j∈ŜD(i)

fj(Ni, (cuT )i, DNi
)−

∑
j∈P̂D(i)

fj(Ni, (cuT )i, DNi
)−

∑
j∈Qi

fj(Ni, (cuT )i, DNi
).

(4.7)

For each j ∈ Qi, by Lemma 4.4 we have that
(
(Ni)j, ((cuT )i)j, D(Ni)j

)
is also a unanimity

game and, by construction of (Ni)j, we obtain that l
(
D(Ni)j

)
< l(DNi

) = l(D). The latter

holds since SD(i) 6= ∅ and lD(j) ≤ lD(i) for any j ∈ Qi ⊆ Ni. Then, by applying imt

to (Ni, (cuT )i, DNi
) we obtain that fj (Ni, (cuT )i, DNi

) = fj
(
(Ni)j, ((cuT )i)j, D(Ni)j

)
for each

j ∈ Qi. From the induction hypothesis, it then follows that

fj (Ni, (cuT )i, DNi
) is uniquely determined for j ∈ Qi. (4.8)

8Note that we assume the induction hypothesis for every subset N ′ of N and the (scaled) unanimity game

on every subset T ′ of N ′.
9Throughout the proof, every time we apply imt, we are actually using the result from Lemma 4.2.
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We note that (Ni)j ∩ ŜD(i) = ∅ for j ∈ Qi. By npp, slb, and sub, we have that

∑
j∈ŜD(i)

fj(Ni, (cuT )i, DNi
) =

fi(Ni, (cuT )i, DNi
) if ŜD(i) ∩ T 6= ∅,

0 otherwise.
(4.9)

Let Xi = 1 if ŜD(i)∩T 6= ∅ and Xi = 0 otherwise. Next, we show uniqueness of fi(Ni, (cuT )i, DNi
)

by a second induction on
∣∣∣P̂D(i) ∩ T

∣∣∣. First, assume that
∣∣∣P̂D(i) ∩ T

∣∣∣ = 0. Then, Eq. (4.7)

reduces to

(1 + Xi) · fi(Ni, (cuT )i, DNi
) = c−

∑
j∈Qi

fj(Ni, (cuT )i, DNi
).

Hence, fi(Ni, (cuT )i, DNi
) is uniquely determined.

Second, suppose that for some integer t > 0, fi(Ni, (cuT )i, DNi
) is uniquely determined for

every i′ ∈ T with HD(i′) 6= ∅ and
∣∣∣P̂D(i′) ∩ T

∣∣∣ < t, and let i ∈ T be such that HD(i) 6= ∅ and∣∣∣P̂D(i) ∩ T
∣∣∣ = t. Take k ∈ P̂D(i) ∩ T such that for every j ∈ P̂D(i) ∩ T we have l(k) ≥ l(j),

i.e., k is the predecessor of i who is closest to the latter in the tree among those superiors of i

that belong to T . By slb and sub, and the fact that i ∈ T ∩ ŜD(k), we obtain

fk(Ni, (cuT )i, DNi
) = fi(Ni, (cuT )i, DNi

) +
∑

j∈ŜD(i)

fj(Ni, (cuT )i, DNi
) (4.10)

+
∑

j∈Qi∩ŜD(k)

fj(Ni, (cuT )i, DNi
) +

∑
j∈P̂D(i)∩ŜD(k)

fj(Ni, (cuT )i, DNi
).

Moreover, due to npp and the definition of k, Eq. (4.10) reduces to

fi(Ni, (cuT )i, DNi
) = fk(Ni, (cuT )i, DNi

)−
∑

j∈ŜD(i)

fj(Ni, (cuT )i, DNi
)

−
∑

j∈Qi∩ŜD(k)

fj(Ni, (cuT )i, DNi
). (4.11)

By definition of k, we also have
∣∣∣P̂D(k) ∩ T

∣∣∣ < ∣∣∣P̂D(i) ∩ T
∣∣∣ = t. Hence, by the second induction

hypothesis, fk(Ni, (cuT )i, DNi
) is uniquely determined. Then, using Eq. (4.9), we can rewrite

Eq. (4.11) as

(1 + Xi) · fi(Ni, (cuT )i, DNi
) = fk(Ni, (cuT )i, DNi

)−
∑

j∈Qi∩ŜD(k)

fj(Ni, (cuT )i, DNi
).
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Therefore, fi(Ni, (cuT )i, DNi
) is uniquely determined.

Case V: i ∈ T , SD(i) = ∅, and l(i) = l(D). Note that SD(i) = ∅ implies HD(i) = ∅. By

imt,

fi(N, cuT , D) = fi(Ni, (cuT )i, DNi
). (4.12)

Note that every j ∈ Ni\A(i) belongs to one of the four cases above with respect to (Ni, (cuT )i, DNi
).

Then, from the previous cases, the fact that l(DNi
) = l(D), and the induction hypothesis

fj (Ni, (cuT )i, DNi
) is uniquely determined for j ∈ Ni \ A(i). (4.13)

Next, by eff, ∑
j∈A(i)

fj(Ni, (cuT )i, DNi
) = c−

∑
j∈Ni\A(i)

fj(Ni, (cuT )i, DNi
).

Further, by npp and nsp, for each j ∈ A(i)

fj(Ni, (cuT )i, DNi
) =

fi(Ni, (cuT )i, DNi
) if j ∈ T,

0 otherwise.

Let Yj = 1 if j ∈ T and Yj = 0 otherwise. Then, from the two above equations, it follows that

fi(Ni, (cuT )i, DNi
) ·
∑
j∈A(i)

Yj = c−
∑

j∈Ni\A(i)

fj(Ni, (cuT )i, DNi
).

Uniqueness of fi(N, cuT , D) is obtained straightforwardly by applying Eq. (4.13) to the above

equation, as Yi = 1.

We conclude from Cases I–V that f(N, cuT , D) is uniquely determined if c > 0. Now, con-

sider (N, cuT , D) with c < 0.10 We have already mentioned that npp implies that fi(N, v0, D) =

0 for all i ∈ N , where (N, v0) is the null game. Since cuT + (−cuT ) = v0, add implies that

f(N, cuT , D) = f(N, v0, D)− f(N,−cuT , D) = −f(N,−cuT , D).

Since −c > 0, f(N,−cuT , D) is uniquely determined. Thus, f(N, cuT , S) = −f(N,−cuT , S)

is also uniquely determined if c < 0.
10Note that we cannot apply the superior upper and lower bound properties, since cuT is not monotone if

c < 0.
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Finally, by add we have that f(N, v,D) =
∑

∅6=T⊆N
f(N,∆v(T )uT , D) is uniquely determined

for all (N, v) ∈ G.

Existence: First, solution ϕSL satisfying eff, add, and npp follows from the fact that

for a given (N, v,D) ∈ GD, the levels structure (N,BD) does not depend on the TU-game

(N, v), and from the properties Efficiency, Additivity, and Dummy Player Property satisfied

by the Shapley Levels Value (see Winter, 1989).

To show that ϕSL also satisfies imt, let (N, v,D) ∈ GD and i ∈ N . Let also U i
r,s ∈ BD

r,s be

such that i ∈ U i
r,s, with (r, s) ∈ {1, . . . , l(D)} × {1, 2}. Then,

U i
r,l =


U ⊇ ŜD(i) ∪ i if r < l(i) or (r, s) = (l(i), 1),

ŜD(i) ∪ i if (r, l) = (l(i), 2),

{i} if r > l(i).

(4.14)

Moreover, ŜD(i) ∈ BD
l(i)+1,1. That is, i and her subordinates belong to the same union in all

levels of (N,BD) prior to level (l(i), 2), at which point the union that contains i is exactly

ŜD(i) ∪ i, with ŜD(i) and {i} being unions of the next level. From then on, {i} is always a

union herself.

In Álvarez-Mozos et al. (2013), a Multiplication Property satisfied by the Shapley Levels

Value is identified. Here, we only provide an informal description of the property to avoid the

introduction of further notation.11 The property requires the share of v(N)—prescribed by the

Shapley Levels Value—that a player obtains in a game with a levels structure be obtained by

multiplying each of the shares received according to the Shapley Value by each of the unions

U i
r,l in certain internal games defined for each player and each level of the levels structure. The

internal game that corresponds to level (r, l) only uses the information contained in the unions

of the coarser levels to which the unions of the game belong, i.e. U i
k,h, with (k, h) ≤lex (r, l),

and disregards any other information. For example, with only one level of cooperation there

is an internal game played by all unions and then, there are as many internal games as unions

in the partition, and the player set of each of these games is the corresponding union. For

every union, the internal game then describes the prospects of a coalition that defects from
11For a formal description, we refer to Álvarez-Mozos et al. (2013).
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the union to form a union itself. From the fact that the Shapley Levels Value satisfies the

Multiplication Property, it follows from Eq. (4.14) that, due to the way it is constructed, ϕSL

satisfies imt.

To show that ϕSL satisfies nsp, let (N, v,D) ∈ GD and i ∈ N with SD(i) = ∅. Then, it can

be easily verified that every j ∈ A(i) with SD(j) = ∅ has a completely symmetric position in

the structure (N,BD) w.r.t. player i, meaning that for every level, both i and j either belong

to the same union or each of them forms a union as a singleton. From this observation, it

follows that in exactly half of the permutations in Ω(BD), i comes before j and vice versa.

Then, whenever j is a necessary player and (N, v) ∈ GM , we obtain from Eq. (2.1) and the

definition of ϕSL that fi(N, v,D) ≤ fj(N, v,D).

Finally, to show that ϕSL satisfies slb and sub, we use the Level game property fulfilled

by the Shapley Levels Value (Álvarez-Mozos and Tejada, 2011). Let (N, v,B) be a game with

levels structure of cooperation and let T ∈ Br ∈ B. This property states that the joint payoff

to the members of T according to the Shapley Levels Value is precisely the payoff to the

union T in a game with levels structure where the players are the unions at level r and the

structure is obtained from B by truncating its levels at level r. That is,
∑

i∈T Sh
L
i (N, v,B) =

ShLT (Br, v
r, (B1, . . . , Br)), where for every Q ⊆ Br, vr(Q) = v (∪R∈QR).

Let (N, v,D) ∈ GD and i ∈ N . Then, note that Eq. (4.14) implies that among the

admissible permutations of Ω(BD), i comes before her subordinates in half of them and in the

other half, all her subordinates come before player i. By the Level game property described

above, it is enough to study the payoffs to the unions up to level (l(i) + 1, 1). Following a

reasoning similar to the one used for nsp, we can conclude that if i is a necessary player in

a monotone game, then she earns as much as all her subordinates together and vice versa.

Thus, ϕSL satisfies both slb and sub. �

5 Two Alternative Solutions for Games with Hierarchical

Structure

The solution we proposed in the previous section uses the most refined levels structure char-

acterized in Section 3, and therefore uses the most information in relation to a directed tree
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that can be modeled by a levels structure obtained by our procedure. In this section, we

propose two alternative solutions for games with hierarchical structure. Both alternatives are

obtained by the same procedure used to construct ϕSL. First the hierarchical structure (N,D)

is transformed into a levels structure (N,B), with B being a subset of the collection BD of

partitions generated by the conversion mapping H. Second, the Shapley Levels Value is ap-

plied to the game with levels structure obtained in the first stage. The difference is that for

the two alternatives, a certain proper subset of the collection of partitions BD defined in Eq.

(3.2) is considered instead of the entire collection.

5.1 First alternative solution

For the first alternative solution, we consider the levels structure
(
N,B

D
)

given by B
D

=(
B
D

1 , B
D

2 , . . . , B
D

l(D)

)
, where

B
D

k = BD
k,2 for k ∈ {1, . . . , l(D)},

with BD
k,2 as given in Section 3—see Eq. (3.4). Compared with the original levels structure

(N,BD), we now disregard all partitions BD
k,1, with k ∈ {1, . . . , l(D)}. Hence, we only take all

the team levels and disregard all the sibling levels. Note that BD

l(D) is the trivial partition of

singletons. To every (N, v,D) ∈ GD, the first alternative solution assigns the Shapley Levels

Value of the game with levels structure
(
N, v,B

D
)
.

Definition 5.1. The solution ϕSL on the class of games with hierarchical structure GD is the

solution given by

ϕSL(N, v,D) = ShL
(
N, v,B

D
)
, with (N, v,D) ∈ GD.

Example 5.1. Consider (N, uN , D) ∈ GD, with (N,D) being the hierarchy given in Example

3.1. Then, the level structure consists of the three even levels given in Example 3.1. Note that

compared to the level structure used for solution ϕSL, the first level’s partition of this structure

immediately consists of the top player as a singleton union and of the teams of each of her two

successors. This yields the payoff vector given by

ϕSL(N, uN , D) =

(
1

3
,
1

9
,
1

6
,
1

9
,

1

27
,
1

6
,

1

27
,

1

27

)
.
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From an inspection of the payoffs in the example above, we conclude that ϕSL does not

satisfy slb because although player 1 is necessary in (N, uN), she earns less that her subordi-

nates jointly. For necessary players and when the game is monotone, the properties slb and

sub satisfied by the first solution ϕSL establish a relation between the payoff of a player and

the sum of the payoffs of all other players in her team or, equivalently, the sum of the payoffs

of all her successors’ teams. Thus, all these teams are considered at once. Nevertheless, from

the perspective that teams are autonomous, it may be equally interesting to relate the payoff

of a player to the sum of the payoffs of only one of her successors’ teams. We do so in the

following two properties.

tlb A solution on GD, f , satisfies team lower bound if for every (N, v,D) ∈ GD with (N, v) ∈

GM , and if i ∈ N is necessary in (N, v), then for every j ∈ SD(i),

fi(N, v,D) ≥
∑

k∈ŜD(j)∪j

fk(N, v,D).

tub A solution on GD, f , satisfies team upper bound if for every (N, v,D) ∈ GD with (N, v) ∈

GM , and if some j ∈ ŜD(i) is necessary in (N, v) for some i ∈ N , then for h ∈ SD(i) ∩(
P̂D(j) ∪ j

)
,12

fi(N, v,D) ≤
∑

k∈ŜD(h)∪h

fk(N, v,D).

Compared to slb and sub, the bounds for the payoff of player i are now determined by

the team of any successor of i instead of all her subordinates together. Moreover, it is easy to

verify that slb ⇒ tlb and sub ⇐ tub. Next, we show that substituting slb and sub with

tlb and tub in Theorem 4.5 singles out solution ϕSL as the unique solution for games with

hierarchical structure.

Theorem 5.2. A solution f on GD satisfies eff, add, npp, imt, nsp, tlb, and tub if and

only if f = ϕSL. Moreover, the seven axioms are independent.

Proof. We first show uniqueness and then existence. The logical independence of the

axioms is shown in Appendix C.
12Note that h is uniquely determined.
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Uniqueness: The proof follows the same steps as in the proof of Theorem 4.5, except for

Case IV, where we use tlb and tub instead of slb and sub. Therefore, we only show how

to adapt Case IV. Accordingly, let i ∈ T be such that HD(i) 6= ∅. Proceeding as in the proof

of Theorem 4.5, Eqs. (4.7) and (4.8) follow. Then, by applying npp, tlb, and tub, instead

of Eq. (4.9) we obtain for all j ∈ SD(i)

∑
h∈ŜD(j)∪j

fh(Ni, (cuT )i, DNi
) =

fi(Ni, (cuT )i, DNi
) if (ŜD(j) ∪ j) ∩ T 6= ∅,

0 otherwise.
(5.15)

Now, for each j ∈ SD(i), let Zj = 1 if
(
ŜD(j) ∪ j

)
∩ T 6= ∅ and Zj = 0 otherwise. Next, we

conduct a second induction on
∣∣∣P̂D(i) ∩ T

∣∣∣ as in the proof of Theorem 4.5. When
∣∣∣P̂D(i) ∩ T

∣∣∣ =

0, Eq. (4.7) now reduces to1 +
∑

j∈SD(i)

Zj

 · fi(Ni, (cuT )i, DNi
) = c−

∑
j∈Qi

fj(Ni, (cuT )i, DNi
),

so fi(Ni, (cuT )i, DNi
) is uniquely determined.

Now, suppose that for some integer t > 0, fi(Ni, (cuT )i, DNi
) is uniquely determined for

every i′ ∈ T with HD(i′) 6= ∅ and
∣∣∣P̂D(i′) ∩ T

∣∣∣ < t, and assume that
∣∣∣P̂D(i) ∩ T

∣∣∣ = t. Take

k ∈ P̂D(i) ∩ T such that for every j ∈ P̂D(i) ∩ T , we have l(k) ≥ l(j), i.e., k is the superior of

i who is closest to the latter in the tree among those superiors of i that belong to T . Let also

p ∈ SD(k) ∩
(
P̂D(i) ∪ i

)
, and note that p is uniquely defined. By tlb and tub, and the fact

that i ∈ T , we obtain

fk(Ni, (cuT )i, DNi
) = fi(Ni, (cuT )i, DNi

) +
∑

j∈ŜD(i)

fj(Ni, (cuT )i, DNi
)

+
∑

j∈Qi∩ŜD(p)

fj(Ni, (cuT )i, DNi
) +

∑
j∈P̂D(i)∩(ŜD(p)∪p)

fj(Ni, (cuT )i, DNi
).

(5.16)
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Moreover, due to npp, Eq. (5.16) reduces to

fi(Ni, (cuT )i, DNi
)

=fk(Ni, (cuT )i, DNi
)−

∑
j∈ŜD(i)

fj(Ni, (cuT )i, DNi
)−

∑
j∈Qi∩ŜD(k)

fj(Ni, (cuT )i, DNi
)

=fk(Ni, (cuT )i, DNi
)−

∑
j∈SD(i)

∑
h∈(ŜD(j)∪j)

fh(Ni, (cuT )i, DNi
)−

∑
j∈Qi∩ŜD(k)

fj(Ni, (cuT )i, DNi
).

(5.17)

By definition of k, we have
∣∣∣P̂D(k) ∩ T

∣∣∣ < ∣∣∣P̂D(i) ∩ T
∣∣∣ = t. Hence, by the second induction

hypothesis, fk(Ni, (cuT )i, DNi
) is uniquely determined. By using Eq. (5.15), we can rewrite

Eq. (5.17) as1 +
∑

j∈SD(i)

Zj

 · fi(Ni, (cuT )i, DNi
) = fk(Ni, (cuT )i, DNi

)−
∑

j∈Qi∩ŜD(k)

fj(Ni, (cuT )i, DNi
).

Therefore, fi(Ni, (cuT )i, DNi
) is uniquely determined. This completes Case IV. The rest of the

uniqueness part of the proof is done in the same way as the proof of Theorem 4.5.

Existence: Solution ϕSL satisfying eff, add, and npp can be shown as in the proof of

Theorem 4.5. To prove that ϕSL also satisfies imt, let (N, v,D) ∈ GD and i ∈ N . Note that

when l(i) < l(D), it holds that

ŜD(i) ∪ i ∈ BD
l(i),2 and for every j ∈ SD(i),

ŜD(j) ∪ j ∈ BD
l(i)+1,2.

(5.18)

That is, i and her subordinates belong to the same union in all levels of
(
N,B

D
)

prior to

level l(i), at which point i and her successors’ teams form separate unions. From then on, i

is always a singleton. From the fact that the Shapley Levels Value satisfies the multiplication

property (Álvarez-Mozos et al., 2013), it can be verified due to Eq. (5.18) that because of the

way it is constructed, ϕSL satisfies imt. To show that ϕSL satisfies nsp, we can repeat the

argument used in the proof of Theorem 4.5, since two siblings with no successors also have a

symmetric position in the levels structure
(
N,B

D
)
. Finally, to show that ϕSL satisfies tlb

and tub we can replicate the argument used in Theorem 4.5 to show the subordinate bounds

using Eq. (5.18) instead of Eq. (4.14). �
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5.2 Second alternative solution

Both solutions ϕSL and ϕSL are obtained in a similar way. First, the hierarchical structure

is mapped into a levels structure and, second, the Shapley Levels Value is applied. While for

ϕSL, all levels in the set BD obtained by the mapping H are used, the levels structure used

for ϕSL only contains the even levels of BD, i.e. the team levels.

A third solution for games with hierarchical structure reached by applying the Shapley

Levels Value is next obtained by considering the odd levels of BD, i.e. the sibling levels. More

precisely, for this solution, we delete from BD all partitions BD
k,2 except the trivial partition

of singletons BD
l(D),2. Hence, this third solution can be considered as the “complement” of

ϕSL, in the sense that both solutions use disjoint subsets of the information contained in

the levels structure obtained by applying H to the original hierarchical structure: While the

second solution uses the team levels, this third solution is obtained by using the sibling levels.

By so doing, we obtain the levels structure (N, B̃D) with B̃D =
(
B̃D

1 , B̃
D
l(D), B̃

D
l(D)+1

)
, where

B̃D
k = BD

k,1 for k ∈ {1, . . . , l(D)} and B̃D
l(D)+1 = BD

l(D),2 = {{i} : i ∈ N}.

Definition 5.2. The solution ϕ̃SL on the class of games with hierarchical structure GD is the

solution given by

ϕ̃SL(N, v,D) = ShL
(
N, v, B̃D

)
, with (N, v,D) ∈ GD.

Example 5.3. Consider again (N, uN , D) ∈ GD, with (N,D) the hierarchy given in Example

3.1. Then, the level structure consists of the three odd levels given in Example 3.1 and the

level BD
3,2 of singletons. In that case, the first level consists of two unions, the top player being

a singleton union and all other players, i.e., all her successors together with all their team

members, being in the other union. Applying the Shapley Levels Value yields the payoff vector

ϕ̃SL(N, uN , D) =

(
1

2
,
1

8
,
1

8
,

1

24
,

1

24
,
1

8
,

1

48
,

1

48

)
.

From an inspection of the payoffs in the example above, it is easy to verify that ϕ̃SL does

not satisfy tub. Take i = 2 and j = h = 4, for instance. Then, {4} is a team that contains

a necessary player in (N, uN), but the payoff to 2 is greater than the payoff to 4. It can be

checked that among the properties considered so far, solution ϕ̃SL does not satisfy imt either.

However, it satisfies stronger versions of nsp, sub, and slb, which are introduced next.
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First, we consider a property that relates, in monotone games, the payoff of two players—

some of them being necessary in the game—who are siblings but who may have successors.

snsp A solution on GD, f , satisfies the strong necessary sibling property if for every (N, v,D) ∈

GD with (N, v) ∈ GM and every i ∈ N , and if i is necessary, then for each j ∈ A(i)

fi(N, v,D) ≥ fj(N, v,D).

Note that snsp ⇒ nsp. Second, we consider two properties that relate the payoff of a

player to the joint payoff of the subordinates of one of her siblings in a monotone game where

either i is a necessary player or the set of subordinates contains necessary players.

sslb A solution on GD, f , satisfies strong superior lower bound if for every (N, v,D) ∈ GD

with (N, v) ∈ GM , and if i ∈ N is necessary in (N, v), then for each j ∈ A(i)

fi(N, v,D) ≥
∑

h∈ŜD(j)

fh(N, v,D).

ssub A solution on GD, f , satisfies strong superior upper bound if for every (N, v,D) ∈ GD

with (N, v) ∈ GM and every i ∈ N , and if h ∈ A(i) and some j ∈ ŜD(h) is necessary in

(N, v), then

fi(N, v,D) ≤
∑

p∈ŜD(h)

fp(N, v,D).

We note that sslb ⇒ slb and ssub ⇒ sub. Third, we also consider a property that

connects the payoff of the subordinates of two players when the former contain necessary

players. Together with eff, add, npp and the latter three properties, this additional property

is needed to single out a unique solution for games with hierarchical structure.

nop A solution on GD, f , satisfies the necessary offspring property if for every (N, v,D) ∈ GD

and every i ∈ N such that ŜD(i) contains necessary players, it holds that for every

j ∈ A(i) ∑
h∈ŜD(i)

fh(N, v,D) ≥
∑

h∈ŜD(j)

fh(N, v,D).

We are now in a position to characterize ϕ̃SL.
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Theorem 5.4. A solution f on GD satisfies eff, add, npp, snsp, sslb, ssub, and nop if

and only if f = ϕ̃SL. Moreover, the seven properties are independent.

Proof. We first show uniqueness and then existence. The logical independence of the

axioms is shown in Appendix C.

Uniqueness: Suppose that f satisfies the seven axioms. For every (N, v0, D), with (N, v0)

being the null game, npp implies that fi(N, v0, D) = 0 for all i ∈ N . Next, let (N, cuT , D) ∈

GD, where ∅ 6= T ⊆ N and c > 0. For every i ∈ N \ T , by npp, fi(N, cuT , D) = 0.

Let i ∈ T henceforth. If |T | = 1, npp and eff imply that fi(N, v,D) = c. Hence, assume

that |T | ≥ 2. We show uniqueness of fi(N, cuT , D) by induction on her rank, l(i). If l(i) = 0,

by using eff, sslb, and ssub, we easily obtain that fi(N, cuT , D) = c
2
. Then, assume that

for every j ∈ T with l(j) < l, fj(N, cuT , D) is uniquely determined, and consider that l(i) = l

for some integer l ∈ {1, . . . , l(D)}. For each j ∈ N , let Xj = 1 if ŜD(j) ∩ T 6= ∅ and Xj = 0

otherwise. Also, for each j ∈ N , let Yj = 1 if j ∈ T and Yj = 0 otherwise.

By npp, sslb, and ssub, we have that for each j ∈ A(i)∑
h∈ŜD(j)

fh(N, v,D) = Xj · fi(N, v,D). (5.19)

Similarly, by npp and snsp, we have that∑
j∈A(i)

fj(N, v,D) =
∑
j∈A(i)

Yj · fi(N, v,D). (5.20)

Next, we distinguish two cases, depending on whether l = 1 or l > 1.

Case I: l = 1. Note that we have i0 = pD(i). By eff, we obtain

c = fi0(N, v,D) +
∑
j∈A(i)

fj(N, v,D) +
∑

h∈ŜD(j)

fh(N, v,D)

 .

By using Eqs. (5.19) and (5.20), the above equation reduces to

c = fi0(N, v,D) +
∑
j∈A(i)

(Yj + Xj) · fi(N, v,D).

By the induction hypothesis, fi0(N, v,D) is determined. Moreover, the coefficient of fi(N, v,D)

in the above equation is strictly positive. Thus, fi(N, v,D) is determined.
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Case II: l > 1. For every r ∈ {0, . . . , l}, let ir ∈
(
P̂D(i) ∪ i

)
be such that l(ir) = r. Note

that, in particular, we have il = i. Also note that Yil = 1 and Xir = 1 for all r ∈ {0, . . . , l−1}.

First, by npp and nop, for each r ∈ {1, . . . , l − 1},∑
j∈A(ir)

∑
h∈ŜD(j)

fh(N, v,D) =
∑

j∈A(ir)

Xj ·
∑

j∈ŜD(ir)

fj(N, v,D). (5.21)

Second, we claim that for r ∈ {0, . . . , l},13

c =
r∑
s=0

s−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈A(is)

fj(N, v,D)

+
r∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈ŜD(ir)

fj(N, v,D). (5.22)

We prove Eq. (5.22) by induction on r. The case r = 0 is straightforward, since due to eff,

c = fi0(N, v,D) +
∑

j∈ŜD(i0) fj(N, v,D). Hence, assume that Eq. (5.22) holds if we substitute

r by r − 1. To facilitate the presentation of the calculations, we denote fj = fj(N, v,D) for

all j ∈ N . Then,

r∑
s=0

s−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈A(is)

fj

+
r∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈ŜD(ir)

fj

=
r−1∑
s=0

s−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈A(is)

fj

+
r−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈ŜD(ir−1)

fj

+
r−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈A(ir)

fj +
r∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈ŜD(ir)

fj −
r−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈ŜD(ir−1)

fj

=c+
r−1∏
p=0

∑
j∈A(ip)

Xj ·

 ∑
j∈A(ir)

fj +
∑

j∈A(ir)

Xj ·
∑

j∈ŜD(ir)

fj −
∑

j∈ŜD(ir−1)

fj

 = c,

where the second equality holds from the second induction hypothesis and the last equality is

explained as follows. Indeed, note that for every r ∈ {1, . . . , l − 1}∑
j∈A(ir)

fj +
∑

j∈A(ir)

Xj ·
∑

j∈ŜD(ir)

fj −
∑

j∈ŜD(ir−1)

fj

=
∑

j∈A(ir)

fj +
∑

j∈A(ir)

Xj ·
∑

j∈ŜD(ir)

fj −
∑

j∈A(ir)

fj −
∑

j∈A(ir)

∑
h∈ŜD(j)

fh = 0,

where the last equality holds by Eq. (5.21).
13The multiplication over an empty set is 1.
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Third, by using Eq. (5.22) when r = l, Eq. (5.22) reduces to

c =
l−1∑
s=0

s−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈A(is)

fj

+
l−1∏
p=0

∑
j∈A(ip)

Xj ·
∑
j∈A(i)

fj +
l∏

p=0

∑
j∈A(ip)

Xj ·
∑

j∈ŜD(i)

fj. (5.23)

Fourth, applying Eqs. (5.19) and (5.20) to Eq. (5.23) yields

c =
l−1∑
s=0

s−1∏
p=0

∑
j∈A(ip)

Xj ·
∑

j∈A(is)

fj

+

 l−1∏
p=0

∑
j∈A(ip)

Xj ·
∑
j∈A(i)

Yj +
l∏

p=0

∑
j∈A(ip)

Xj · Xi

 · fi(N, v,D).

(5.24)

By the first induction hypothesis, the first term in the right-hand side of Eq. (5.24) is deter-

mined. Moreover, the coefficient of fi(N, v,D) in Eq. (5.24) is strictly positive. Therefore,

fi(N, v,D) is unique.

Thus, we have shown that f(N, cuT , D) is uniquely determined. Following the lines of the

proof of Theorem 4.5, it can also be verified that f(N, cuT , D) is uniquely determined if c < 0,

hence implying by add that f(N, v,D) =
∑
∅6=T⊆N f(N,∆v(T )uT , D) is uniquely determined

for all (N, v) ∈ G.

Existence: First, solution ϕ̃SL satisfying eff, add, and npp can be shown as in the

proof of Theorem 4.5. To prove that ϕ̃SL also satisfies snsp, sslb, ssub, and nop, let

(N, v,D) ∈ GD, i ∈ N , and j ∈ A(i). Then for every l < l(i),

ŜD(i) ∪ ŜD(j) ∪ {i, j} ⊆ T ∈ BD
l,1 and

ŜD(i), ŜD(j), {i}, {j} ∈ BD
l(i),1.

(5.25)

That is, i and her siblings (as well as all their subordinates) belong to the same union in

all levels of
(
N, B̃D

)
prior to level l(i), at which point i and her siblings are all singletons,

while the subordinates of each sibling of i (including i herself) constitute a union of that level.

To show that ϕ̃SL satisfies snsp, we can repeat the argument used in the proof of Theorem

4.5 since, by Eq. (5.25), two siblings have a symmetric position in the structure
(
N, B̃D

)
,

even if they have successors. A similar reasoning shows that ϕ̃SL satisfies sslb, ssub, and

nop. Indeed, from Eq. (5.25), it is easy to verify that for every i ∈ N and j ∈ A(i), coalitions

{i} and ŜD(j) have a symmetric position in the structure
(
N, B̃D

)
because they are in the

same union up to certain level at which both coalitions became a union of the partition.

Consequently, there are as many admissible permutations in Ω(B̃D) in which i comes before
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coalition ŜD(j) than admissible permutations in which i comes after coalition ŜD(j). From

this observation, it follows that ϕ̃SL satisfies sslb and ssub. Finally, to show that ϕ̃SL satisfies

nop, we note that the reasoning above also applies to the coalitions ŜD(i) and ŜD(j), given

that they also have a symmetric position in the structure
(
N, B̃D

)
. �

6 Comparison to Other Values

As mentioned in the Introduction, the literature on games with hierarchical structure offers a

series of values, including the Precedence Shapley Value (PSV ) of Faigle and Kern (1992), the

Permission Value (PV ) of van den Brink and Gilles (1996), the Hierachical Outcome (HO)

of Demange (2004), and the Average Tree Permission Value (ATPV ) of van den Brink et al.

(2015). In this paper, we have proposed three new values and characterized them by means

of certain properties. Many of these properties are new in the literature. In particular, we

compared the new solutions based on bound properties that specify lower and upper bounds

for the payoffs of players with respect to certain of their relatives. The purpose of this section

is to study which of our new properties do satisfy the aforesaid classic values. By doing so,

we will be able to compare the different solutions from an axiomatic perspective and then to

sort out the features that they share and those in which they differ. It can be easily verified

that all the solutions considered in this section, as well as our three values, satisfy eff, add,

and nsp. For the remaining properties, we present Table 1, which summarizes the situation.

In particular, our three values satisfy npp. Several further comments are in order. First,

compared to the first solution ϕSL, which uses the most refined levels structure among the

three solutions, the alternative solution ϕSL only considers the team levels and satisfies imt

and sub, but does not satisfy slb, while the alternative ϕ̃SL only considers the sibling levels

and satisfies slb and sub, but does not satisfy imt. To axiomatize ϕSL and ϕ̃SL, we have

considered tlb and tub on the one hand, and sslb, ssub, snsp, and nop on the other hand.

Second, the properties introduced in this paper are satisfied by at least one of the values

on GD that can be found in the literature. Second, among the latter, the HO seems to be

the value which has more features in common with the solutions based on levels structures.

Third, we point out that except for eff, add, and nsp, the ATPV solution does not satisfy
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npp imt slb sub tlb tub sslb ssub snsp nop

ϕSL ∗ ∗ ∗ ∗ + − − − − −

ϕSL ∗ ∗ − + ∗ ∗ − − − −

ϕ̃SL ∗ − + + + − ∗ ∗ ∗ ∗

Sh + − − + + − − + + −

PSV + − + − + − − − − −

PV − − − + − + − + + −

HO − + + − + − + − + +

ATPV − − − − − − − − − −

Table 1: The + sign means that the property is satisfied, the − sign that it is not satisfied,

and ∗ indicates each of the properties used to characterize the corresponding value.

any of the other properties considered in this paper.

Finally, it is worth studying the payoffs that the five values considered in the table propose

in the case of the example used throughout the paper (see Example 3.1). There are two polar

cases: either they divide the spoils equally or they allocate everything to the root of the tree.

Indeed,

Sh(N, uN) = PV (N, uN , D) = ATPV (N, uN , D) =

(
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8

)
,

PSV (N, uN , D) = HO(N, uN , D) = (1, 0, 0, 0, 0, 0, 0, 0).

Accordingly, the three values proposed in the paper, namely ϕSL, ϕSL, and ϕ̃SL, can all be

considered to be a compromise between the two extreme proposals above. The reason is that

the values based on the Shapley levels value are more sensitive to the agents’ position in the

hierarchy. Depending on the context, one of the values might be more suitable than the others.

Our characterization results, together with Table 1, allow us to select the most appropriate

value.
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7 Concluding Remarks

In this paper, we have defined and characterized three new solutions for games with hierarchical

structure based on (i) certain mappings that transform hierarchical structures into levels

structures; (ii) the Shapley Levels Value for games with levels structure of cooperation. We

have also studied the transformations between the set of hierarchical structures and the set of

levels structures from an axiomatic viewpoint.

Regarding the latter issue, when mapping a directed tree into a levels structure, we have

required that every partition of the levels structure respect the directed tree in the sense of

properties p1–p5. Theorem 3.2 implies that in such a levels structure, a player that is higher in

the hierarchy is more independent from the other players in the collection of nested partitions,

in the sense that such a player becomes a singleton coalition at a lower-ranked partition than

a player that is lower in the hierarchy. We stress that we do not claim that, when coupling

either a directed tree or a levels structure with a cooperative game, “higher in the hierarchy” or

“being more independent” is beneficial for a player. To verify whether such a statement is true

or not, we would need to specify (i) how to modify the original cooperative game (possibly

into a number of different games), with the information contained in either the directed tree

or the levels structure and (ii) to specify which solution concept to apply to the resulting

modified game(s). For instance, take N = {1, 2, 3}, (N,B0) being the trivial levels structure

and (N,B′) the level structure with the non-trivial level given by B′1 = {{1}, {2, 3}}. For the

trivial levels structure, the Shapley Levels Value reduces to the Shapley Value, and for (N,B′)

the Shapley levels Value reduces to the Owen Value. From these two facts, it is easy to derive

that ShL1 (N, v,B′) − ShL1 (N, v,B0) = 1
6

(
v(N) +

∑3
i=1(v(i)− v(N \ i)

)
. Since the difference

can be either positive or negative, it cannot be unambiguously predicted whether players 2

and 3 benefit from forming the union {2, 3} or not.

To sum up, we have advanced a new way to exploit the information contained in a hierar-

chical structure by mapping it into a levels structure, without any loss of information in many

settings. By so doing, we have defined three new values for games with hierarchical informa-

tion which seem to be more sensitive to the agents’ position in the hierarchy than other values

in the literature in various interesting circumstances. Of course, a full understanding of the
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usefulness of our procedure will require further examination. For instance, it seems interesting

to answer a research question that can be seen as the reversal of what we do in this paper:

Which are all values that can be obtained according to our procedure?
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Appendix A Proofs of Section 3

Proof of Theorem 3.2 We note that |N | ≥ 2. We first prove that for each (N,D) ∈ D, every

partition P ∈ BD satisfies p1–p5. Second, we prove that if a partition P 6= {N} respects a given

directed tree (N,D) ∈ D (i.e., the partition satisfies p1–p5 with respect to (N,D)), then P must

belong to BD.

Existence: Let (N,D) ∈ D, i ∈ N and P be any proper partition of the levels structureH(N,D).

We assume that P 6= {{j}}j∈N , for if not it is immediate to verify that P satisfies all properties with

respect to any D. We distinguish two cases, depending on whether P = BD
s,1 as defined in Eq. (3.3)

or P = BD
s,2 as defined in Eq. (3.4), where s ≥ 0 is an integer.

Case 1: T = BD
s,1. In this case, we have

P =
{
{i} : l(i) ≤ s− 1

}
∪
{
ŜD(i) : l(i) = s− 1

}
. (A.26)

First, let i, j ∈ N be such that (i, j) ∈ D and Pi 6= {i}.14 Then, by Eq. (A.26), we obtain

l(i) ≥ s and then ŜD(i) ⊆ Pi. In particular, p1 is satisfied. Second, let i, j, k ∈ N be such that

(k, i), (k, j) ∈ D and Pi \ ŜD(i) 6= ∅. By Eq. (A.26), we have l(i) > s. Since l(j) = l(i), Pi = Pj and

p2 holds. Third, let i, j ∈ N be such that l(i) = l(j) ≥ 1, SD(i) 6= ∅, and Pi = {i}. From Eq. (A.26),

it follows that l(i) ≤ s − 1, so Pj = {j} and p3 is met. Fourth, let i, j ∈ N be such that (i, j) ∈ D

and Pi = {i}. Note in particular that SD(i) 6= ∅. Then, l(i) ≤ s− 1 and l(j) ≤ s. If l(i) < s− 1, we

have Pj = {j}. If l(i) = s − 1, we have Pj = ŜD(i). In any case, p4 is satisfied. Fifth, let i, j ∈ N

be such that l(i) = l(j), A(i) \ i 6= ∅, and A(j) \ j 6= ∅. If l(i) < s, we have Pi = {i} and Pj = {j},

whereas if l(i) ≥ s, we have A(i) ⊆ Pi and A(j) ⊆ Pj . In any case, p5 is satisfied.

Case 2: P = BD
s,2. In this case, we have

P =
{
{i} : l(i) ≤ s− 1

}
∪
{
ŜD(j) ∪ j : l(j) = s

}
. (A.27)

First, let i, j ∈ N be such that (i, j) ∈ D and Pi 6= {i}. Then, by Eq. (A.27), we have l(i) ≥ s+ 1

and Pi = Pj , so p1 is satisfied. Second, let i, j ∈ N be such that j ∈ A(i) and Pi \
(
ŜD(i) ∪ i

)
6= ∅.

By Eq. (A.26), we have l(i) > s + 1. Then, Pi = Pj and p2 holds. Third, let i, j ∈ N be such that

l(i) = l(j), SD(i) 6= ∅, and Pi = {i}. Then, Eq. (A.27) implies that l(i) ≤ s+ 1 and hence Pj = {j}.

Therefore, p3 is met. Fourth, let i, j ∈ N be such that (i, j) ∈ D and Pi = {i}. Note in particular

that SD(i) 6= ∅ and then, l(i) ≤ s + 1. If l(i) = s + 1, we have Pj = ŜD(i). If l(i) < s + 1, we

14Recall that for a given partition of N , P and i ∈ N , we denote by Pi the element of P that contains player

i.
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have Pj = {j}. In any case, p4 is satisfied. Fifth, let i, j ∈ N , with i 6= j, be such that l(i) = l(j),

A(i)\ i 6= ∅, and A(j)\ j 6= ∅. If l(i) ≤ s, we obtain Pi = {i} and Pj = {j}. Otherwise, if l(i) = s+ 1,

we obtain Pi = ŜD(i)∪i and Pj = ŜD(j)∪j, and if l(i) < s+1, we obtain Pi * ŜD(i) and Pj * ŜD(j).

In any case, p5 holds.

Uniqueness: Let P be a proper partition of N that satisfies p1—p5. First, let i ∈ N be such

that Pi 6= {i}. By p1, Pi = Pj for every j ∈ SD(i). Thus, also P−j 6= ∅, and applying p1 again yields

Pk = Pj for every k ∈ SD(j). By repeating the same procedure until there is no more agent with

successors, we obtain that Pl = Pi for every l ∈ ŜD(i). Hence the next implication holds for every

i ∈ N :

[Pi 6= {i}] =⇒
[
ŜD(i) ⊆ Pi

]
. (A.28)

Next, for given i and j ∈ P̂D(i), suppose that Pj 6= {j}. Then by Eq. (A.28) it holds that i ∈ Pj ,

and thus Pi 6= {i}. From this, we obtain the implication below for every i ∈ N

[Pi = {i}] =⇒
[
∀j ∈ P̂D(i), Pj = {j}

]
. (A.29)

We can assume that there is at least one player who is a singleton in P . Conversely, suppose that

for every l ∈ N , Pl 6= {l}. In particular, Pi0 6= {i0}. Since ŜD(i0) = N \ {i0}, from Eq. (A.28) it

follows that P = {N}, and thus P is not a proper partition of N .

Define the set KD(P ) ⊆ N by

KD(P ) = {i ∈ N : Pi = {i}, SD(i) 6= ∅, and ∃j ∈ SD(i) such that Pj 6= {j}} . (A.30)

We show that either KD(P ) 6= ∅ or

P = {{i} : i ∈ N}. (A.31)

In the latter case, P = BD
l(D),2 and thus P ∈ BD, which concludes the proof.

If KD(P ) = ∅, suppose there is a player i with Pi = {i} and SD(i) 6= ∅. Then p3 implies that

Pj = {j} for every j ∈ N , where l(j) = l(i). By Eq. (A.29), it then follows that Pk = {k} for every

k ∈ N where l(k) < l(i). Further, for every j ∈ N such that l(j) = l(i) and SD(j) 6= ∅, we have

that Pk = {k} for every k ∈ SD(j), since otherwise j ∈ KD(P ), which contradicts that KD(P ) = ∅.

Hence, Pk = {k} for every k ∈ N with l(k) = l(i) + 1. By repeating the latter step iteratively, it

follows that Eq. (A.31) holds. It remains to consider the case where SD(i) = ∅ for all i ∈ N , with

Pi = {i}. Since there is at least one player i with Pi = {i}, from Eq. (A.29) it follows that Pi0 = {i0}.

As |N | ≥ 2 and KD(P ) = ∅, we obtain again following an iterative argument that Eq. (A.31) holds,

hence completing the proof.
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In the remaining, we consider the case where KD(P ) is nonempty. We first prove that

l(i) = l(j) for i, j ∈ KD(P ), (A.32)

i.e., all players of KD(P ) are at the same distance from the root. Suppose this is not the case, and

let i, j ∈ KD(P ) be such that l(i) < l(j). Let k ∈ SD(i) be a successor of i such that Pk 6= {k}. The

existence of such a player is guaranteed, as i ∈ KD(P ). When l(i) + 1 = l(j), we obtain l(k) = l(j).

Since j ∈ KD(P ), and so SD(j) 6= ∅ and Pj = {j}, p3 implies that Pk = {k}, which is a contradiction.

When l(i) + 1 < l(j), let h ∈ P̂D(j) be such that l(h) = l(i) + 1. Since j ∈ KTD, Ph = {h} by Eq.

(A.29). By p3, also Pk = {k}, again contradicting the hypothesis above. Therefore, Eq. (A.32) holds.

Next, we consider the set of all players who are subordinates of some player in KD(P ), i.e.,

S(KD(P )) =
{
i ∈ N : ∃j ∈ KD(P ) such that i ∈ ŜD(j)

}
.

We deal with the players in this set and the players in its complement separately.

First, we consider the set N \ S(KD(P )). Since KD(P ) 6= ∅, it follows by p3 that Pi = {i} for

every i ∈ N \KD(P ) with l(i) = s, and consequently, Pi = {i} for every i ∈ N with l(i) = s. Further,

by Eq. (A.29), we obtain that Pi = {i} for every i ∈ N with l(i) < s. Next, consider a player

i ∈ N \ KD(P ) such that l(i) = s and SD(i) 6= ∅ and take j ∈ SD(i). Since, i /∈ KD(P ), it holds that

Pj = {j}. By repeating the latter argument for every k ∈ SD(j) and so forth, it follows that Pk = {k}

for all k ∈ ŜD(i). Taking everything together, we have shown that for every j ∈ N \ S(KD(P )),

Pj = {j}. (A.33)

Second, we consider the set S(KD(P )). Take some i ∈ KD(P ) and suppose that for some j ∈

SD(i), it holds that Pj\
(
ŜD(j) ∪ j

)
6= ∅, and thus Pj 6= {j}. By Eq. (A.28), it holds that ŜD(j) ⊆ Pj .

Then, since Pi 6= {i}, by p4, we have

Pj ⊆ ŜD(i).

On the other hand, when A(j) = {j}, it holds trivially that⋃
k∈SD(i)

(
ŜD(k) ∪ k

)
= ŜD(i) ⊆ Pj ,

and thus Pj = ŜD(i). Also, if A(j) \ j 6= ∅, then, by p2, k ∈ Pj for all k ∈ A(j) \ j and Eq. (A.28)

implies that ŜD(l) ⊆ Pj for all k ∈ A(j) \ j. Therefore,⋃
k∈SD(i)

(
ŜD(k) ∪ k

)
= ŜD(i) ⊆ Pj
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and then, Pj = ŜD(i). Hence, when there exists j ∈ SD(i) such that Pj \
(
ŜD(j) ∪ j

)
6= ∅, it holds

that Pj includes all subordinates of i, and thus for every k ∈ SD(i),

Pk = ŜD(i). (A.34)

Next, suppose that for some i ∈ KD(P ), it holds that Pj ⊆ ŜD(j) for every j ∈ SD(i). If Pj 6= {j},

then Eq. (A.28) implies that ŜD(j) ⊆ Pj and thus Pj = ŜD(j). When Pj = {j} and SD(j) 6= ∅, we

obtain by p3 that Pk = {k} for every k ∈ SD(i), which contradicts that i ∈ KD(P ). Hence, when

Pj = {j}, SD(j) = ∅. Therefore, Pj = ŜD(j) ∪ j. In both cases, we have that Pj = ŜD(j) ∪ j. It

follows that for every i ∈ KD(P ), either Eq. (A.34) holds, or for all j ∈ SD(i),

Pj = ŜD(j) ∪ j. (A.35)

Finally, let i1, i2 ∈ KD(P ) be two different players and suppose that Eq. (A.35) holds when we

take i = i1, but it does not hold when we take i = i2, that Eq. (A.34) holds when we take i = i2,

but that it does not hold when we take i = i1. It follows, in particular, that A(i1) \ {i1} 6= ∅ and

A(i2) \ {i2} 6= ∅. However, this leads to a contradiction with p5.

As a consequence of all the above steps, we have proved that either

P =
⋃

i∈N :l(i)=s

{{i}} ∪
 ⋃
j∈P̂D(i)

{{j}}

 ∪ {ŜD(i)}

 , (A.36)

or

P =
⋃

i∈N :l(i)=s

{{i}} ∪
 ⋃
j∈P̂D(i)

{{j}}

 ∪
 ⋃
j∈SD(i)

{ŜD(j) ∪ {j}}

 . (A.37)

Note that Eqs. (A.36) and (A.37) are equivalent to P = BD
1,s and P = BD

2,s respectively, so that

P ∈ BD.

Independence of the properties used in Theorem 3.2

Consider the following triples composed of a finite set N , a rooted tree D ∈ GN , and a partition

T ∈ PN :

1. N = {1, 2, 3}, D = {(1, 2), (2, 3)} and T = {{1, 2}, {3}}.

In this case, D and T satisfy p2, p3, p4, and p5 but fail to satisfy p1.

2. N = {1, 2, 3, 4, 5}, D = {(1, 2), (1, 3), (1, 4), (1, 5)} and T = {{1}, {2, 3}, {4, 5}}.

In this case, D and T satisfy p1, p3, p4, and p5 but fail to satisfy p2.
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3. Case 3: N = {1, 2, 3, 4, 5}, D = {(1, 2), (1, 3), (2, 4), (3, 5)} and

T = {{1}, {2, 4}, {3}, {5}}.

In this case, D and T satisfy p1, p2, p4, and p5 but fail to satisfy p3.

4. N = {1, 2, 3, 4, 5}, D = {(1, 2), (1, 3), (2, 4), (3, 5)} and T = {{1}, {2}, {3}, {4, 5}}.

In this case, D and T satisfy p1, p2, p3, and p5 but fail to satisfy p4.

5. N = {1, 2, 3, 4, 5, 6, 7}, D = {(1, 2), (2, 4), (2, 5), (1, 3), (3, 6), (3, 7)} and

T = {{1}, {2}, {3}, {4, 5}, {6}, {7}}.

In this case, D and T satisfy p1, p2, p3, and p4 but fail to satisfy p5.

Appendix B Proofs of Section 4

Proof of Lemma 4.2

Let (N, v,D) ∈ GD and i ∈ N , and consider (Ni, vi, DNi) as defined in Eqs. (4.5) and (4.6). If

Ni = N , then DNi = D and TDi = T for all T , so that vi = v. Hence fi(Ni, vi, DNi) = fi(N, v,D).

Hence, consider the case in which Ni 6= N . Then, for some integer m > 0, there is a sequence of

games (N (k), v(k), D(k)), k = 0, . . . ,m, such that (i) (N (0), v(0), D(0)) = (N, v,D), (ii) for k = 1, . . .m,

N (k) = N (k−1) \ ŜD(j) for some j ∈ N (k−1), v(k) =
(
v(k−1)

)k and D(k) =
(
D(k−1)

)
N(k) , and (iii)

N (m) = Ni and so D(m) = DNi . The existence of such a sequence is guaranteed by Eq. (4.5). Then,

by imt, for all k ∈ {1, . . . ,m},

fi(N
(k), v(k), D(k)) = fi(N

(k−1), v(k−1), D(k−1)) for all i ∈ N (m) = Ni.

Moreover, for each T ⊆ Ni,

v(m)(S) = v(0)

 ⋃
j∈T\(ŜD(i)∪P̂D(i)∪i)

ŜD(j)

 .

Since v(0) = v, it follows that v(m) = vi, which completes the proof.

Proof of Lemma 4.4

Let (N, cuT , D) ∈ GD, with c > 0 and T ⊆ N , and let i ∈ N . For each R ⊆ Ni, we have

(uT )i(R) = uT (RDi ) =


1 if T ⊆ RDi ,

0 otherwise,
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where RDi is defined according to Eq. (4.6). Note that

T ⊆ RDi ⇐⇒ T ⊆ R ∪

 ⋃
j∈R\(ŜD(i)∪P̂D(i)∪i)

ŜD(j)


⇐⇒ [T ∩Ni ⊆ R] and

T \Ni ⊆
⋃

j∈R\(ŜD(i)∪P̂D(i)∪i)

ŜD(j)

 .
We claim that T \Ni ⊆

⋃
j∈R\(ŜD(i)∪P̂D(i)∪i)

ŜD(j)


⇐⇒

[{
j ∈ Ni \

(
ŜD(i) ∪ P̂D(i) ∪ i

)
: ŜD(j) ∩ T 6= ∅

}
⊆ R

]
.

(B.38)

Then, (cuT )i = cuT (i) with

T (i) = (T ∩Ni) ∪
{
j ∈ Ni \

(
ŜD(i) ∪ P̂D(i) ∪ i

)
: ŜD(j) ∩ T 6= ∅

}
.

Therefore, it only remains to prove the claim in Eq. (B.38). On the one hand, let j ∈ Ni \(
ŜD(i) ∪ P̂D(i) ∪ i

)
be such that ŜD(j) ∩ T 6= ∅ and j /∈ R. Take k ∈ ŜD(j) ∩ T . Then, by

construction of Ni—note that j ∈ Ni \
(
ŜD(i) ∪ P̂D(i) ∪ i

)
—, we have k ∈ T and k /∈ Ni, but

k /∈
⋃

h∈R\(ŜD(i)∪P̂D(i)∪i)

ŜD(h). (B.39)

On the other hand, let k ∈ T \Ni such that Eq. (B.39) holds. Then, let j ∈ Ni \
(
ŜD(i) ∪ P̂D(i) ∪ i

)
be such that k ∈ ŜD(j). The existence of j is guaranteed by construction of Ni. Hence,

j ∈
{
h ∈ Ni \

(
ŜD(i) ∪ P̂D(i) ∪ i

)
: ŜD(h) ∩ T 6= ∅

}
\R.

Appendix C Logical independence of the axioms

Independence of the axioms of Theorem 4.5

1. The solution fi(N, v,D) = 0 for all (N, v,D) ∈ GD and i ∈ N satisfies add, npp, imt, nsp,

slb, and sub. It does not satisfy eff.

2. The solution f(N, v,D) = v(N)ϕSL(N, uE(N,v), D) for all (N, v,D) ∈ GD, with E(N, v) being

the set of all non-null players in (N, v), satisfies eff, npp, imt, nsp, slb, and sub. It does not

satisfy add.
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3. Let ω ∈ RΩ
++ be an exogenous vector. For a given (N, v,D) ∈ GD, let

R = {i ∈ N : i is not a null player and SD(A(i)) = ∅} .

Then, consider the solution f defined for each (N, v,D) ∈ GD and each i ∈ N as follows. First,

if v = uT for some T ⊆ N ,

fi(N, v,D) =


ωi∑

j∈A(i)∩R ωj

∑
j∈A(i) ϕ

SL
i (N, v,D) if N = Ω and i ∈ R,

ϕSLi (N, v,D) otherwise.

Second, for an arbitrary (N, v) ∈ G, f(N, v,D) =
∑
∅6=T⊆N f(N,∆v(T )uT , D). Then f satisfies

add, eff, npp, imt, slb, and sub. Moreover, f does not satisfy nsp.

4. The solution f(N, v,D) = v(N)ϕSL(N, uN , D) for all (N, v,D) ∈ GD satisfies add, eff, imt,

nsp, slb, and sub. It does not satisfy npp.

5. The solution ϕ̃SL introduced in Definition 5.2 satisfies add, eff, npp, nsp, slb, and sub. It

does not satisfy imt.

6. Recall that i0 denotes the root of the tree. The solution given by fi0(N, v,D) = v(N)− v(N \

{i0}), and fi(N, v,D) = ϕSL(N, v |N\{i0}, D) if i ∈ N \{i0}, satisfies eff, add, npp, imt, nsp,

and slb. It does not satisfy sub.

7. The solution ϕSL defined Definition 5.1 satisfies eff, add, npp, imt, nsp, and sub. It does

not satisfy slb.

Independence of the axioms of Theorem 5.2

1. The solution fi(N, v,D) = 0 for all (N, v,D) ∈ GD and i ∈ N satisfies add, npp, imt, nsp,

tlb, and tub. It does not satisfy eff.

2. The solution f(N, v,D) = v(N)ϕSL(N, uE(N,v), D) for all (N, v,D) ∈ GD, with E(N, v) being

the set of all non-null players in (N, v), satisfies eff, npp, imt, nsp, tlb, and tub. It does

not satisfy add.

3. The solution f(N, v,D) = v(N)ϕSL(N, uN , D) for all (N, v,D) ∈ GD satisfies add, eff, imt,

nsp, tlb, and tub. It does not satisfy npp.
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4. Let ω ∈ RΩ
++ be an exogenous vector. For a given (N, v,D) ∈ GD, let

R = {i ∈ N : i is not a null player and SD(A(i)) = ∅} .

Then, consider the solution f defined for each (N, v,D) ∈ GD and each i ∈ N as follows. First,

if v = uT for some T ⊆ N ,

fi(N, v,D) =


ωi∑

j∈A(i)∩R ωj

∑
j∈A(i) ϕ

SL
i (N, v,D) if N = Ω and i ∈ R,

ϕSLi (N, v,D) otherwise.

Second, for an arbitrary (N, v) ∈ G, f(N, v,D) =
∑
∅6=T⊆N f(N,∆v(T )uT , D). Then f satisfies

add, eff, npp, imt, tlb, and tub. Moreover, f does not satisfy nsp.

5. Let N∗ = {1, 2, 3, 4, 5} and D∗ = {(1, 2), (1, 3), (2, 4), (3, 5)}. Let also α ∈ [0, 1] \ {0.5}. Then,

consider the solution f defined for each (N, uT , D) ∈ GD, with T ⊆ N , and i ∈ N as follows:

fi(N, u{3,4}, D) =


α if (N, v,D) = (N∗, u{3,4}, D

∗) and i = 3,

1− α if (N, v,D) = (N∗, u{3,4}, D
∗) and i = 4,

ϕSLi (N, uT , D) otherwise.

The solution f on GD is then simply obtained as the additive extension on the whole class of

games with hierarchical structure, and it satisfies add, eff, npp, nsp, tlb, and tub. Moreover,

f does not satisfy imt.

6. The solution f(N, v,D) = Sh(N, v) satisfies add, eff, npp, imt, nsp, and tub. It does not

satisfy tlb.

7. The solution ϕSL satisfies add, eff, npp, imt, nsp, and tlb. It does not satisfy tub.

Independence of the axioms of Theorem 5.4

1. The solution fi(N, v,D) = 0 for all (N, v,D) ∈ GD and i ∈ N satisfies add, npp, snsp, sslb,

ssub, and nop. It does not satisfy eff.

2. The solution f(N, v,D) = v(N)ϕ̃SL(N, uE(N,v), D) for all (N, v,D) ∈ GD, with E(N, v) being

the set of all non-null players in (N, v), satisfies eff, npp, snsp, sslb, ssub, and nop. It does

not satisfy add.
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3. The solution f(N, v,D) = v(N)ϕ̃SL(N, uN , D) for all (N, v,D) ∈ GD satisfies eff, add, snsp,

sslb, ssub, and nop. It does not satisfy npp.

4. Let N∗ = {1, 2} and D∗ = {(1, 2)}, and consider the solution f defined for each (N, uT , D) ∈

GD, with T ⊆ N , and i ∈ N as follows:

fi(N, uT , D) =


i
3 if (N, v,D) = (N∗, u{1,2}, D

∗) and i ∈ {1, 2},

ϕ̃SLi (N, uT , D) otherwise.

The solution f on GD is then simply obtained as the additive extension on the entire class of

games with hierarchical structure and it satisfies eff, add, npp, snsp, ssub, and nop. It does

not satisfy sslb.

5. Let N∗ = {1, 2} and D∗ = {(1, 2)}, and consider the solution f defined for each (N, uT , D) ∈

GD, with T ⊆ N , and i ∈ N as follows:

fi(N, ut, D) =


3−i

3 if (N, v,D) = (N∗, u{1,2}, D
∗) and i ∈ {1, 2},

ϕ̃SLi (N, uT , D) otherwise.

The solution f on GD is then simply obtained as the additive extension on the whole class of

games with hierarchical structure and it satisfies eff, add, npp, snsp, sslb, and nop. It does

not satisfy ssub.

6. Let N∗ = {1, 2, 3} and D∗ = {(1, 2), (1, 3)}, and consider the solution f defined for each

(N, uT , D) ∈ GD, with T ⊆ N , and i ∈ N as follows:

fi(N, v,D) =


i
5 if (N, v,D) = (N∗, u{2,3}, D

∗) and i ∈ {2, 3},

ϕ̃SLi (N, uT , D) otherwise.

Then, solution f on GD is then simply obtained as the additive extension on the whole class

of games with hierarchical structure and it satisfies eff, add, npp, ssub, sslb, and nop. It

does not satisfy snsp.

7. Let N∗ = {1, 2, 3, 4, 5} andD∗ = {(1, 2), (1, 3), (2, 4), (3, 5)}, and consider the solution f defined

for each (N, uT , D) ∈ GD, with T ⊆ N , and i ∈ N as follows:

fi(N, v,D) =


i
9 if (N, v,D) = (N∗, u{4,5}, D

∗) and i ∈ {4, 5},

ϕ̃SLi (N, uT , D) otherwise.
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Then, solution f on GD is then simply obtained as the additive extension on the whole class

of games with hierarchical structure and it satisfies eff, add, npp, snsp, ssub, and sslb. It

does not satisfy nop.
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