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Abstract 

‘Robot cars’ are cars that allow for automated driving. By allowing cars to safely drive closer together 

than human driven ‘normal cars’ do, robot cars raise road capacity. By allowing drivers to perform other 

activities in the vehicle, they lower the value of travel time delays (VOT). We investigate the social welfare 

effect of robot cars using a dynamic equilibrium model of congestion that captures the following 

mechanisms: the resulting increase in capacity, the decrease in VOT and the implications for the 

heterogeneity in the VOT. We do so for a number of market organizations: private monopoly, perfect 

competition and public supply. Increasing the share of robot cars raises average capacity, but may hurt 

existing robot car users as the switchers, through their altered departure time behaviour, will impose 

higher bottleneck-congestion externalities. Depending on which effect dominates, buying a robot imposes a 

net negative or positive externality. Numerical analysis suggests that a net positive externality is more 

likely; nevertheless, for a small, but still plausible, capacity effect a net negative externality results. With a 

positive (negative) externality, marginal cost provision under perfect competition tends to lead to an 

undersupply (oversupply) of robot cars, and a public supplier needs to subsidise (tax) robot car purchase in 

order to maximise welfare. A monopolist supplier ignores the externality and tends to add a mark-up to its 

price. This almost always leads to a substantial undersupply.  
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1. Introduction 

‘Robot cars’—also referred to as self-driving or autonomous cars—are cars that drive themselves. 

Robot cars have automated speed choice, based on the own speed and the speed of and distance to 

surrounding vehicles, and can thus drive closer together and at a more uniform speed than human 

driven ‘normal cars’. All else equal, a group of robot cars can move at a greater density for any 

given speed than normal cars, and thus raise the flow (speed times density) capacity of roads 

(Chang and Lai, 1997). Besides this capacity effect, people using a robot car instead of a ‘normal 

car’ may gain a decrease in their value of travel time losses (VOT), as the time in the car can be 

spent on other activities besides driving and this makes travel time more useful and lowers its 

costliness. As a result, the VOT may become (more) heterogeneous for a mix of drivers using 

normal and robot cars. Such heterogeneity may strongly affect the overall welfare effects of 

policies such as congestion pricing and capacity expansion, and enforces the relevance of 

distributional effects of policies (see, e.g., Arnott et al. (1993, 1994), Lindsey (2004) and Van den 

Berg and Verhoef (2011ab) all of whom only consider ‘normal cars’).  

 Furthermore, robot cars may lead to fewer accidents, to fewer cars and parking spots if robot 

cars could drive around and pick-up other (paying) passengers, to higher (safe) speed limits, and to 

reduced fuel use. If only robot cars use a road, it may become possible to redesign it: e.g., to 

reduce the lane widths and turn a 2-lane motorway into a 3-lane one. There are also possible 

problems, including the question of liability if something goes wrong, software and hardware 

reliability, loss of privacy, and hacking of and virus intrusion into robot cars. 

Clearly, therefore, robot cars can be expected to have a large influence on urban transport and 

the layout of cities, explaining the strong interest of policymakers, media and general public in 

robot cars as a solution to transport problems. This paper focusses on the effects of robot cars on 

(the social cost of) congestion, focussing on the following mechanisms: the resulting increase in 

capacity, the decrease in VOT, and the implications for the heterogeneity in the VOT. We are the 

first to consider the effects via the VOT and heterogeneity therein, as well as to consider robot cars 

while making departure time choices endogenous following a dynamic user equilibrium condition. 

We do not consider sources of heterogeneity other than from the decisions to obtain a robot car or 

not, so that the VOT is homogeneous if everyone has the same car.
3
 We use the Vickrey (1969) 

bottleneck model to capture the effects in a stylised setting that permits analysis using closed-form 

solutions, while also capturing the important behavioural aspects sketched above.  

                                                
3 Pre-existing heterogeneity seems a natural extension of our paper. Vickrey (1969) already included heterogeneity in the preferred 

arrival time. Arnott et al. (1988, 1994) studied three cases: heterogeneity in the preferred arrival time, heterogeneity between the 
value of time and values of schedule delay, and heterogeneity between values of schedule delay early and late. Vickrey (1973)  
introduced proportional heterogeneity in values of time and schedule delay where all three values vary in fixed proportions. This 
heterogeneity was also used by Xiao et al. (2011) and Van den Berg (2014). Arnott and Kraus (1995) and Van den Berg and 
Verhoef (2011b) combined proportional heterogeneity with heterogeneity between the value of time and the values of schedule 
delay. Newell (1987), Lindsey (2004), Börjesson and Kristoffersson (2014) and Liu et al. (2014) looked at general heterogeneity.  
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With a heterogeneous VOT, as Arnott et al. (1988, 1993) show, users self-select over time. In 

an equilibrium with queuing, the users with the highest VOTs travel in the edges of the peak when 

queuing delays are short; users with the lowest VOTs travel in the centre peak thus accepting long 

travel times in exchange for a convenient arrival moment. If a user obtains a lower VOT after 

buying a robot car, this increases the congestion cost that she imposes on all users who arrive 

closer to preferred arrival time than she does. The reason is that she now cares less about travel 

times and hence needs a steeper travel time development over time to remain in user equilibrium 

(Lindsey, 2004). Consequently, the marginal external cost (MEC) of a user decreases with her 

VOT (Van den Berg and Verhoef, 2011a) and when her VOT decreases due to getting a robot car 

this raises her MEC. 

Total social cost includes travel costs but also automobile costs due to depreciation and fuel 

use. Robot cars are likely to be more expensive than normal cars and may become obsolete 

quicker, which implies higher depreciation costs. At the same time, robot cars may use less fuel as 

they drive at more uniform speeds. The ‘heterogeneity effect’ via the MEC means that, ignoring 

the capacity effect, an increase in the share of robot cars raises travel times and costs for existing 

robot car users. If the capacity effect is strong enough, total social cost is minimised when 

everyone has a robot car; but if not, it may be socially best when not everyone has a robot car. 

Gubins and Verhoef (2011) find a similar result when considering the impact of teleworking 

technology on the social cost and benefits of commuting.  

With public interest in congestion being high, and the development of robot cars in private 

hands, it is an interesting question if the supply of robot cars should be left to the market or if it 

should be publicly guided or even controlled. We therefore examine three provision schemes of 

robot cars: socially-optimal ‘public provision’, the benchmark perfectly competitive case of 

‘marginal cost provision’, and provision by a profit-maximising ‘monopolist’. The effects of 

provision regimes of robot cars have not been studied before. Public and marginal cost provision 

can be expected to differ as using a robot car instead of a normal car imposes a different 

externality. When the capacity effect is stronger than the heterogeneity effect, there is a net 

positive externality and thus robot cars need to be priced below marginal production cost when 

roads are not priced optimally.
4
 If the heterogeneity effect dominates, which the numerical 

analysis suggests may occur, marginal cost provision leads to overconsumption of robot cars. 

Private supply would approach the marginal cost case as the provision market becomes more 

competitive. Provision by a monopolist private firm typically leads to a substantially lower supply 

of robot cars than marginal cost provision, since it uses its market power to maximise profits. This 

also leads to a large welfare loss. 

                                                
4 We only consider settings with unpriced congestion. With an optimal congestion charge, marginal production cost pricing of the 

cars is optimal. Still, the congestion charge would need to be different for normal and robot cars, as robot cars impose lower 
schedule delays due to their higher capacity. If this differentiation is impossible, one may still need to subsidise robot cars. 
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 For our results, a critical parameter is the size of the capacity effect. A literature overview in 

Section 2 shows large variations in predictions from engineering studies. The major determinant 

seems to be how well robot cars communicate and cooperate. The average prediction is that 

capacity would increase by around 100% when we go from all normal cars to all robot cars. 

VanderWerf et al. (2002) find that capacity may be only 7% higher with only ‘uncooperative robot 

cars’ than with only normal cars, while it may be 200% higher with efficient cooperation. Another 

important parameter is the effect on the VOT, and its size is an even more open question than the 

size of the capacity effect. A final question is how much higher (or lower) other automobile cost 

(i.e. depreciation and fuel cost) of robot cars will be compared to normal cars. The effects of the 

provision regimes and the question of whether second-best social optimum needs a corrective 

subsidy or tax are sensitive to these three parameters. Hence, it is vital to do extensive sensitivity 

analyses, as we will do in Section 5. Finally, Section 6 studies modelling extensions such as pre-

existing heterogeneity and a non-linear capacity effect. For ease of reference, the below 

Nomenclature box summarises the notation as also explained in text. 

 

Nomenclature  

α Value of time (VOT) for normal car users: the cost of an hour of travel time. 

β Value of schedule delay early: the cost of an hour earlier arrival than the preferred arrival time t*. 

γ Value of schedule delay late: the cost of an hour later arrival than the preferred arrival time t*. 

δ Compound preference parameter: δ≡βγ/(β+γ) . 

θ VOT reduction parameter for a robot car: the VOT for a robot car is θ∙α with β/α<θ<1. 

∆C Change in travel cost when switching from a normal car to a robot car: ∆C=Cr−Cn. 

Ci Travel cost for car type i={r, n} with r indicating a robot car and n the normal car. Travel cost is the sum of free-flow 

travel time cost and bottleneck cost where the bottleneck cost equals queuing time cost plus schedule delay cost.  

CTT Travel time cost. 

CSD Schedule delay cost, i.e. the cost of arriving at a different time than the preferred arrival time 

F Fraction of users that has a robot car. 

rMC  Marginal automobile cost of the robot car. The corresponding cost for a normal car is normalised to zero, and hence 

rMC  gives how much higher or lower for the robot car the sum is of fuel cost and per trip marginal production cost. 

MEB Marginal external benefit of marginally increasing number of users with a robot car, it equals the change in travel cost 

minus change in average social cost: MEB=∆C−(∂TTC/∂F)/N. 

rMU  Per trip mark-up on the robot car. The mark-up on the normal car is (normalised to) zero. 

N Total number of users. 

P (Generalised) price equals travel cost plus per trip marginal automobile cost and mark-up.  

r Capacity parameter for the robot car: this car faces a bottleneck capacity of r∙s. 

s Bottleneck capacity for a normal car.  

t Arrival time. 

t* Preferred arrival time. 

te Moment that the last car arrives and thus the peak ends. 

ts Moment that the first car arrives and thus the peak starts. 

TT Travel time which equals free-flow travel time plus queueing time. 

TTff Free-flow travel time. 

TTC Total travel cost which equals N(F∙Cr+(1−F)Cn). 

TC Total cost which equals TTC+F∙N∙MCr. 
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2. Overview of the research on the effect of robot cars on road capacity 

It difficult to determine the possible effect of robot cars on the capacity of a road bottleneck. It not 

only depends on how good the robot technology is, but also on how well the cars communicate 

and cooperate, on the choice of headway between robot cars, on current traffic conditions (without 

initial congestion, the capacity effect would bring no benefit) and on how efficiently normal car 

users drive.  

There is a large engineering literature on this question, but it remains an open and debated 

question. Zwaneveld and Van Arem (1997) review the early literature and argue that a doubling or 

tripling of capacity seems likely. However, in more recent literature, the increase in effective 

capacity can be as low as 7% for robot cars that do not communicate (VanderWerf et al., 2002) 

and as high as 270% for very efficiently communicating/cooperating cars (Tientrakool et al. 

2011).
5
 The predictions thus vary from almost no effect to a quadrupling of capacity. Table 1 gives 

an overview of the predictions in the literature. All results refer to switching from 100% normal 

cars to 100% robot cars, which seems most relevant for our study as in our setting normal and 

robot car users travel fully separated over time. If car types would travel mixed, the effects would 

be much less beneficial as, for an increasing level of penetration, most gains occur when going 

from a majority of robot cars (e.g. 80-90%) to only robot cars (e.g. Tientrakool et al. 2011). Van 

Arem et al. (1996, 2006) find that introducing uncooperative robot cars may even lessen capacity 

especially when the fraction with a robot car is low. 

Table 1: Percentage increase in capacity from going from only normal cars to only robot 

cars 

Study Uncooperative robot cars Cooperative robot cars 

Chang and Lai (1997) 33% x 

Shladover et al. (2001) & 

    VanderWerf et al. (2002) 
7% About 220% 

Shladover (2011) x 80% for cars (much smaller effect for trucks) 

Ni et al. (2010) x 20%-50% 

Tientrakool et al. (2011) 90% at 50 km/h, 40% at 100km/h 200% at 50 km/h, 270% at 100km/h 

3. The model 

3.1. Set-up 

We model the effects of robot cars using Vickrey’s (1969) point-queue bottleneck model. We 

focus on how introducing robot cars changes the outcome, and will hence be brief in our 

description of the standard bottleneck model. For a complete overview see, for instance, Arnott et 

                                                
5 Yet, even if cooperation is technically possible, it may not occur in practice because users and/or producers choose not to. Just as 

in the prisoners’ dilemma, all actors cooperating may make everyone better off, but from this cooperative outcome each actor 
could increase its pay-off by unilaterally playing an uncooperative strategy. 
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al. (1988, 1990, 1993, 1994) or Small and Verhoef (2007). We assume that demand is fixed and 

thus ignore that if robot cars lower costs this increases demand and thereby increase congestion. 

We also ignore other transport modes such as public transport and taxis. 

Travel time, TT, is the sum of free-flow travel time, TTff, and delays from queueing at the 

bottleneck. When there is no queue and the arrival rate at the bottleneck is below its capacity, 

travel time equals TTff. The queuing delay equals the number of cars in the queue at the instance of 

joining it divided by the capacity of the bottleneck during the queuing time. When normal cars are 

passing the bottleneck, the capacity is s. When robot cars are passing the bottleneck, capacity 

equals r∙s where the capacity-increase parameter, r, is at least one: r≥1. The review in Section 2 

suggests that r may be close to 1 or as high as 4. The value of travel time losses (VOT) with a 

normal car is α, with a robot car the VOT is θ∙α with θ<1 being the VOT decrease parameter. 

Travel time cost, CTT, of a user equals her travel time, TT, multiplied by her value of time. 

A person’s bottleneck cost equals queuing time cost plus schedule delay cost, CSD. Schedule 

delay cost is the cost due to arriving on a different time than the most preferred arrival time, t
*
. We 

assume that t
* 

is the same for all, and normalize it to 0 for convenience. We follow Small (1982) 

and most of the literature and use schedule delay costs that are linear in the time difference 

between t
*
 and the actual arrival time, t. The cost per hour earlier arrival than t

*
, also referred to as 

an hour of early schedule, is β; per hour late arrival the cost is γ. Travel cost equals bottleneck cost 

plus free-flow travel time cost: 

[ ] [ ] [ ] [ ] ( , ),                    with a normal car,nC t CTT t CSD t TT t Max t t            (1) 

[ ] [ ] [ ] [ ] ( , ),           with a robot car.rC t CTT t CSD t TT t Max t t             (2)  

where subscript n indicates a normal car and r a robot car. As Arnott el al. (1988) show, users with 

a lower VOT self-select to arrival times in the centre peak where travel times are long and 

schedule delays are small: these users care little about travel times losses and can thus enjoy the 

small schedule delays in the centre peak. Drivers with a larger VOT self-select to the early and late 

edges of the peak. This means that normal and robot cars will travel separated over time, and do 

not share the bottleneck. Therefore, the bottleneck capacity is either s or r∙s. If traffic would be 

mixed, the capacity at each moment would depend on the shares of the car types passing the 

bottleneck then.  

The generalised price per trip (or price for brevity) is the sum of travel cost, automobile cost 

and mark-up per trip on the car. Generalised cost (or cost for brevity) is price minus the mark-up 

per trip. Automobile cost includes fuel cost (which are assumed a fixed amount per trip) and 

depreciation per trip due to the (long-run) marginal production cost of the car.
6
 The mark-up on 

                                                
6 It seems more accurate that the depreciation also considers the rest value when selling the car. For brevity, we will 

use marginal production cost. 
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the car is also reworked to an amount per trip. Total profit on a car type equals the number of this 

type times the mark-up. Robot cars will probably be more expensive to produce; robot cars may 

also become obsolete more quickly, which raises the depreciation cost. This will be partly 

compensated by robot cars having a lower fuel cost. Nevertheless, it seems likely that robot cars 

will have a higher per-trip automobile cost. Still, we do not impose this, and our numerical 

analyses also study robot cars having lower automobile costs.  

For normal cars, we normalise automobile cost and mark-up to zero. Accordingly, the (extra) 

marginal automobile cost for a robot car, MCr, is how much higher (or lower) this cost is for robot 

cars. The MUr is the (extra) mark-up per trip on robot cars, where this mark-up may be negative.   

For equilibrium, travel cost for each type of car needs to be constant over the arrival times used 

by its users and no lower on other times: otherwise someone could lower her travel cost by 

changing arrival time and thus the system would not be in equilibrium. Therefore, we can leave 

out the arrival time indicator and equilibrium prices are  

n nP C , (3) 

r r r rP C MC MU   . (4) 

3.2. Standard bottleneck model without robot cars 

We now briefly reintroduce the bottleneck model without robot cars, and thus with homogeneous 

users. The three subsections hereafter look at when robot cars only affect capacity, only the VOT, 

and finally at the full model when they affect both. This order of presentation helps in identifying 

the different effects of robot cars.  

In equilibrium, travel cost as in (1) should be constant over time as longs as arrivals occur. This 

implies / / 0TT t CSD t       . From this, we derive that travel time must grow linearly over 

arrival time by α/β before t
*
, and shrink by −α/γ after t

*
. In equilibrium, the bottleneck is used at 

capacity throughout the peak. This means that the total number of users, N, can just pass the 

bottleneck during the peak and the peak lasts N/s. The first driver arrives at the starting time, ts , of 

the peak and faces a zero queuing time as there is no queue yet. The last driver to arrive at te also 

incurs no queuing, otherwise he could lower his cost by departing slightly later. It is simple to 

show that a fraction γ/(β+γ) of users arrives early and the remainder late, so that equilibrium travel 

cost is:  

, with .ff

N β γ
C δ a TT δ

s β γ


    


 (5) 

Here, N is the fixed number of users and δ is a compound preference parameter.  

Fig. 1 illustrates the equilibrium. It shows the travel-time pattern over arrival times which leads 

to constant costs. The curve can be interpreted as an iso-cost function as costs are constant along 
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it; shifting it upwards (downwards) would mean a higher (lower) cost level. This iso-cost 

interpretation will prove useful later on in this paper.  

Fig. 1: Equilibrium queuing times without robot cars  

 

3.3. Special case 1: robot cars only increase capacity 

This first special case assumes that robot cars only affect the capacity and not the VOTs. A 

fraction F of users has a robot car and faces a capacity of s∙r>s when passing the bottleneck. The 

others have normal cars and face a capacity of s. For now, F is treated as a given; Section 4 will 

derive the equilibrium shares for our provision regimes. Without an effect on the VOT, 

equilibrium travel cost is:
7
  

 
1

1r n ff

N
C C δ F F a TT

s r

 
       

 
. (6) 

This is the same cost function as for the standard bottleneck model in (5) except for that a fraction 

F of users a higher capacity of r∙s applies. Travel cost does not vary over car type, as all users have 

the same preferences. The higher capacity for robot cars is equally beneficial for both types. 

Fig. 2 illustrates all this. The thin dashed line shows the equilibrium travel times without robot 

cars; the thick black line represents a positive fraction, 1≥F>0, with a robot car. The increased 

capacity shifts all users to the lower thick iso-cost curve, and hence everyone gains a lower cost. 

The slope of the equilibrium travel times remains the same for both types of users as α, β and γ are 

equal across users. All users therefore have the same iso-cost curve and thus the same cost.   

  

                                                
7 We assume that also in this setting normal and robot cars travel separated over time, and thus that capacity varies discretely over 

time. If car types have different VOTs, types will automatically travel separated over time. With a homogeneous VOT, it is 
equally possible that types travel mixed, but in that case the capacity at a certain moment would depend on the fraction with a 
robot car at the bottleneck then. This would complicate the model and make this subsection incomparable with the later ones.  
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Fig. 2: Equilibrium queuing times when robot cars only affect capacity  

 

             Queuing time with robot cars               Queuing time without robot cars 
  

 

Total travel cost, TTC, equals: 

 
2

( (1 ) )

1
1 .

n r

ff

TTC N C F C F

N
δ F F a TT N

s r

      

 
       

 

 (7) 

The higher the fraction with a robot car, the higher total capacity and the lower travel cost. Since 

total travel cost in (7) decreases linearly in F, we have a corner solution for the optimum where 

everyone has a robot car if the extra automobile cost of robot cars is not too large. Otherwise, total 

social cost is minimised when nobody has a robot car.  

Because normal and robot cars have the same travel costs, a marginal user switching car type 

faces a zero change in travel cost, ∆C: 

0r nC C C    .  (8) 

So that nobody would get a robot car if they are more expensive to buy than a normal car. Yet, 

total travel cost decreases with F. Buying a robot car instead of a normal car imposes a positive 

externality, and there is a positive ‘marginal external benefit’ (MEB): 

/ 1
1 0.

TTC F N
MEB C δ

N s r

   
       

 
 (9) 

To conclude, when robot cars only affect capacity, all users have the same cost and everyone 

gains by the same amount if the share with a robot car increases. Therefore, getting a robot car 

causes a positive externality, because it lessens the negative congestion externality. If cars are 

priced at marginal production costs, users will ignore the positive externality and there is 
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underconsumption of robot cars (unless robot cars are cheaper to buy than normal cars and thus 

everyone still gets a robot car even though they ignore the externality). 

3.4. Special case 2: having a robot car only lowers the value of time  

Now we turn to robot cars only affecting the VOT while capacity remains unaffected. Users of a 

normal car have a VOT of α, and in a robot car this becomes θ∙α. The following constraint must 

hold: β/α<θ<1.
8
 When some users have a robot car and others not, this means that the VOT is 

heterogeneous. As Arnott et al. (1998) and Van den Berg (2011ab) show, more VOT heterogeneity 

lowers total bottleneck cost (ceteris paribus). In our setting, the degree of heterogeneity is 

maximised when the robot car share is 50%. Bottleneck cost is queuing time cost plus schedule 

delay cost, and travel cost is bottleneck cost plus free-flow travel time cost. A user who switches 

from a normal car to a robot car not only gains a lower free-flow travel-time cost due the lowered 

VOT, but often also gains a lower bottleneck congestion cost. 

Fig. 3: Equilibrium queuing times when robot cars only affect the value of time 

 

             Case 1: no robot cars               Case 2: 50% has a robot car          Case 3: everyone has a  robot car 

Note: For the 50% robot car case, trs is the moment robot cars start to pass the bottleneck and thus arrive at the destination; tre is the moment the last 

robot car arrives. The t1 and t2 are the moments the iso-cost function of the robot car intersects the Y-axis (note that, at this moment, they do not 

arrive, but it is the moment they would have the same cost as in equilibrium if the travel time were zero then which it is not). Therefore, the thin 

dashed lines are out-of-equilibrium continuations of the iso-cost function for robot cars in the 50% robot car setting.  

 

Fig. 3 illustrates this subsection by depicting three outcomes: when nobody has a robot car 

(solid lines), when 50% does (dashed lines), and when everybody does (dotted lines). For the 50% 

robot car case, the thin dashed lines are an out-of-equilibrium continuation of the iso-cost function 

                                                
8 The θ  has to be above β/α as in the dynamic congestion models the VOT must be above the value of schedule delay early (β). If 

the VOT equals the β, then the departure rate would be infinite and a mass departure results (Arnott et al., 1990). The constraint is 

also intuitive: a VOT below β would imply that people prefer sitting in the car over getting out and reaching the destination (to 
work, see a movie, visit family, etc.). It would also imply that, in the early morning, people get a higher utility from being in the 
car than being at home. This would mean that a rational person, in the morning, would wake up, get out of the car to go to the 
toilet, wash and make breakfast, and then return to the car. The empirical evidence for such behaviour seems scant.  

  Similarly, we assume that using a robot car will decrease the VOT and thus θ<1. A θ equal to 1 leads to the uninteresting case 
with no effect on the VOT. We ignore θ>1: firstly, because an increased VOT would be strange if only because you could still 
switch off the robot driving and, secondly, because this would complicate the modelling. 
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for robot cars. Robot cars arrive between trs and tre and the thin dashed lines outside this period 

indicate what the travel times would need to be, but are not in equilibrium, for them to have the 

same cost. Consistent with the literature, when we have both car types, robot car users (with the 

lower VOT) self-select to the centre peak, and normal car users to the edges of the peak. The 

decreased VOT of the robot car users means that they can enjoy the lower schedule delays in the 

centre peak, as they care less about the longer travel times there than normal car users.
9
  

As we show below, when both car types are present, normal car users impose lower 

externalities than robot car users. The lower VOT in the robot cars means that its users need a 

steeper travel time development over time to be in user equilibrium, and hence impose longer 

travel times on those who travel closer to the central peak (Lindsey, 2004). Consequently, the 

marginal external cost (MEC) of a user decreases with his VOT (Van den Berg and Verhoef, 

2011a); and when a driver’s VOT decreases because he acquires a robot car, this raises his MEC. 

Increasing the share of robot cars thus hurts existing robot car users, as there are fewer users who 

impose a lower queuing externality on them. Without a capacity effect, there is no effect on 

normal car users who always travel closer to shoulders of the peak than robot car users and 

therefore will not face an upward pressure of equilibrium queuing times. Phrased differently, robot 

cars only impose schedule delays on them, and this external effect is independent of the VOT. 

Normal car users always have the same travel cost, and thus iso-cost curve, as with homogeneity, 

and this cost is independent of the share of robot car users.  

During the early arrival window of normal car users, the queuing time increases at a rate of β/α 

by arrival time; it decreases by −γ/α for late arrivals. These arrival rates are needed to keep the 

travel cost constant over time. For robot car users to be in equilibrium, these slopes need to be 

steeper, and should be β/(θ∙α) before t
*
 and −γ/(θ∙α) thereafter. In Fig 3, with 50% robot cars, the 

equilibrium bottleneck cost of robot car users is β(t
*
−t1)= γ(t2−t

*
); it is β(t

*
−ts)= γ(te−t

*
) for normal 

cars, which is the same as without robot cars.  

Normal car users impose less steep travel time changes over arrival time than robot cars users, 

and hence normal car users impose lower queuing time costs on them than fellow robot car users 

do. This, and their lowered VOT, shifts robot car users to a lower iso-cost curve. This also means 

that normal car users cause a lower congestion externality with 50% robot cars than with 0%.  

The lower θ, and thus the more a robot car lowers a driver’s VOT, the larger the difference in 

external cost imposed by a normal and a robot car. When the share of robot car users, F, increases, 

there are fewer normal car users who impose relatively low queuing time costs on robot car users. 

Consequently, the queuing times increase for robot car users and they end up on a higher iso-cost 

curve. When we go from the 50% to 100% robot-car case in the diagram (but this argument holds 

                                                
9 Both normal and robot car users would be worse off when traveling with the other group. Hence, temporal separation of users is 

sustained as equilibrium.  
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for any two positive percentages), users who already had a robot car in the 50% case are hurt, and 

are shifted to a higher iso-cost curve. With 100% robot cars, the bottleneck cost is back at the level 

without robot cars: the length of the queue at any moment has then increased by a proportion 1/θ, 

just compensating the decrease in the VOT. In both cases, the VOT is homogeneous, and then the 

bottleneck cost is independent of the VOT (Arnott et al., 1988). Of course, travel cost is lower in 

the 100% case, as the free-flow travel time cost is lower. 

 Following Van den Berg and Verhoef (2011ab), travel costs for respectively normal and robot 

cars can be shown to be  

n ff
N

C TT
s

     , (10) 

  1r ff
N

C F F TT
s

          . (11) 

Increasing the share, F, has no effect on the travel cost of a normal car, but it increases the travel 

cost of a robot car. For a user who switches from a normal car to a robot car, travel cost decreases 

by 

     1 1 1 ,r n ff
N

C C C F TT
s

            
 (12) 

where, in the rightmost equation, the first term is the decrease in bottleneck cost and the second 

the decrease in free-flow travel-time cost.  

Total travel cost is  

    
2

( (1 ) )

1 1 1 (1 ) .

n r

ff

TTC N C F C F

N
F TT N F

s
   

   

       
 (13) 

The F affects total travel cost because it changes the heterogeneity in the VOT. Therefore, we will 

also refer to this as the heterogeneity effect. The derivative of total travel cost with respect to the 

share of robot car users is 

   1 2 1 .ff
TTC N

N F TT
F s

  
  

      
    (14)  

For F>1/2, the derivative is larger (i.e. total cost decreases less or increases more with F) when 

δ∙N/s is larger as then increasing F hurts current robot car users more. A larger δ∙N/s strengthens 

the heterogeneity effect, and this increases the difference between the external costs imposed by a 

normal car and a robot car. A higher F also increases ∂TTC/∂F: firstly, because there are more 

robot car users to hurt by turning a normal car user into a robot car user and, secondly, because the 
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marginal user who switches car type sees a smaller decrease, ∆C, in own travel cost. When α∙TTff 

increases, /TTC F   decreases: as free-flow travel time becomes more costly, it becomes more 

beneficial to lower the VOT by getting a robot car. Bottleneck and free-flow cost are both scaled 

by 1−θ, and thus θ has no effect on the sign of the derivate. 

Switching to a robot car lowers one’s own cost, but imposes a negative externality by 

increasing the travel cost of other robot car users. The implied MEB<0 is  

  
/

1 0.
TTC F N

MEB C F
N s

 
 

      
 (15) 

If cars are priced at marginal production costs, users will ignore this negative externality and 

there will be overconsumption of robot cars. Conversely, with only a capacity effect, we found a 

positive externality and marginal cost pricing resulted in underconsumption. There is no a priori 

reason why either effect would dominate. 

3.5. General case: robot cars affect capacity and value of time 

Now we turn to the full setting, where robot car ownership brings changes in capacity and VOT. 

The effects will prove to be a combination of the effects in the previous two subsections. 

Increasing the share with a robot car hurts existing robot car users due to the heterogeneity effect, 

as the new robot car users will now cause a steeper travel time pattern. Yet, increasing F also 

increases total capacity and this lowers travel cost for everyone. If the heterogeneity effect 

dominates, there is a net negative externality. In the reverse case, there is a net positive externality. 

 Travel costs are a combination of those in the previous two subsections:   

  1 / ,n ff
N

C F F r TT
s

        (16) 

  1 /r ff
N

C F F r TT
s

          . (17) 

Setting θ=1 would make (16) and (17) equal cost function (6) that only had a capacity effect; 

setting r=1 would result in eqs. (10)-(11) that reflect the case with an effect on the VOT only.  

The iso-cost curves of Fig. 4 are also combinations of those in Figs. 2 and 3. The left panel of 

Fig. 4 indicates the equilibrium with a relatively small effect on capacity for three penetration 

levels: 0% robot cars, 50% robot cars, 100% robot cars. The right panel does this for a relatively 

large capacity effect. The only difference between the two panels is that, in the left panel, going 

from 50% to 100% robot cars hurts those that already had a robot car by shifting them to a higher 

iso-cost curve while, in the right panel, existing robot car users then gain a cost decrease because 

the capacity effect dominates.   
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Fig. 4: Equilibrium travel-times when self-driving cars affect values of time and capacity 

Left panel: small capacity effect  

 

 Right panel: larger capacity effect  

 
         

              Case 1: no robot cars             Case 2: 50% has a robot car                 Case 3: everyone has a robot car 
Note: with 50% robot cars, the thin dashed lines are an out-of-equilibrium continuation of the iso-cost function for robot cars: robot cars do not 

arrive here, but the thin lines indicate what the travel times would need to be, but are not, for them to have the same cost then. 

 

When a user switches from a normal to a robot car, her travel cost decreases by 

     1 1 1 .r n ff
N

C C C F TT
s

            
 (18) 

This cost decrease falls with F: a higher F means that there is less to gain in lowered bottleneck 

congestion cost since there are fewer normal car users who impose the lower externality.   

 Total travel cost is: 

   
2

2

( (1 ) )

1
1 1 2 1 (1 ) .

n r

ff

TTC N C F C F

N
F F TT N F

s r
    

   

  
            

    (19) 

In the lower equation, the first part is the total bottleneck cost and the second is the cost due to 

free-flow travel time. The derivative of TTC w.r.t. F is  

   
2 1

2 1 2 1 .ff
TTC N

F TT N
F s r

    
   

           
      (20) 

The effects of the parameters are as in the previous two subsections with the exception of θ. A 

larger θ (i.e. a smaller VOT reduction due to getting a robot car) has two opposing effects on 

derivative (20), and the net effect is ambiguous. The first effect is that a higher θ makes switching 

to a robot car reduce own cost less and thus /TTC F   becomes less negative or more positive. 

The second effect is via the bottleneck externality. A normal car user imposes a smaller cost on 

robot car users than a robot car user, but, with a larger θ, this difference is smaller and thus a 

person switching to a robot car imposes smaller cost increases. When F<1/2, there are few existing 

robot car users that are harmed by increasing F, and the first effect via own cost always dominates 

and /TTC F   increases with θ. When F>1/2, there are relatively many robot car users that are 
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harmed and the effect of θ on /TTC F   becomes ambiguous. As we will see in the next section, 

this means that the effect of θ on equilibrium shares is also ambiguous.   

The marginal external benefit due to switching to a robot car can be negative or positive: 

 
/ 1

1 1 .
TTC F N

MEB C F
N s r

 
    

         
     (21) 

 It is negative when the heterogeneity effect dominates the capacity effect which occurs when 

 1 1 1/ .F r  
 The MEB is more likely to be negative when F is larger as then there are more 

robot car users that are hurt by increasing the share. A smaller θ means getting a robot car 

decreases the VOT more and this strengthens the heterogeneity effect and thereby lowers the 

marginal external benefit. When r is larger, switching to a robot car brings a larger capacity gain  

and thus the MEB is higher. Eq. (21) hence shows how these different forces jointly determine the 

overall MEB.  

4. Provision regimes for the full model 

Now we turn to determining the equilibrium outcome under three provision regimes: 1) marginal 

cost pricing, 2) socially-optimal public supply, and 3) profit-maximising monopoly provision. The 

provision of robot cars at (long-run) marginal production cost leads to overconsumption of robot 

cars if there is a negative externality from robot car purchase (MEB<0), and to underconsumption 

under a positive externality (MEB>0). Under private provision, as the market becomes more 

competitive the outcome would approach marginal cost provision. The other extreme of private 

provision is our monopoly.  

Total cost, TC, equals total travel cost, TTC, plus total automobile cost due to buying robot cars 

instead of normal cars, MCr∙F∙N, as the automobile cost of normal cars is normalised to zero: 

TC= TTC + MCr∙F∙N. (22) 

With an interior solution of the car market, the travel cost reduction, ∆C, due to a robot car is 

exactly offset by the sum of per trip extra marginal cost and mark-up of a robot car: 

 ∆C+MCr+MUr=0, (23) 

such that no user would like to switch car type. For a corner solution with no robot cars, the 

generalised price of robot cars should be above that of normal cars and thus ∆C+MCr+MUr >0, 

and vice versa when there are no normal cars. As we will see in our numerical analysis, corner 

outcomes are likely to occur, which is partly due to our assumption of homogeneous individuals 

and a homogeneous effect of robot cars on VOTs. 
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4.1 Marginal cost provision 

Perfect competition leads to marginal cost provision of robot cars at marginal production cost, and 

thus a zero mark-up. Assuming an interior solution, (23) then leads to an equilibrium share of 

robot car users, F
MC

, of 

  

1
1

1
1 1 .

1

MC r
ff

r ff

MCs
F TT

N

s
MC TT

N


 

 
 

 
    

 

   


 (24) 

However, often there is a corner solution. It can be that nobody has a robot car, F
MC

=0, because 

the extra marginal cost of a robot car, MCr, is excessive. It can also be that everyone has a robot 

car because MCr is low, or because free-flow travel time is very costly (i.e. a large α∙TTff), or 

because θ is very small making a robot car very effective at lowering travel time costs. The term 

s/(δ∙N) is the inverse of the term δ∙N/s that scales the bottleneck cost. Assuming F
MC

<1 and thus 

 / 1 0r ffMC TT     , a higher δ∙N/s increases bottleneck costs and not surprisingly a larger 

share of users then wants a robot car in order to lower these cost.  

4.2 Public provision 

Public provision minimises total cost under the second-best limitation that there is no direct 

congestion pricing. In optimum and ignoring corner solutions, the derivative of total cost w.r.t. F 

should be zero: 

 

0.r
TC TTC

MC N
F F

 
   

   (25) 

Combining f.o.c. (25) with condition (23) for the auto-market equilibrium implies a mark-up of 

/
.r

TTC F
MU C MEB

N

 
    

 (26) 

Therefore, the public operator imposes a negative or positive mark-up to correct for the externality 

from getting a robot car, where naturally a subsidy applies when MEB is positive.  

For an interior solution, the second order condition for minimization is fulfilled and we find 

   

 
  

1
2

2 1 2 1

1 1
1 2 .

2 1

pub r
ff

ff r

MCs r
F TT

N

s
TT MC

N r




  

  
 

 
     

       

 
      

  

 (27) 



16 

 

Just as with marginal cost pricing, the cost-minimizing F
pub

 increases with ffTT  and decreases 

with MCr. The F
pub

 also increases with the capacity-effect parameter r. The effect of θ is 

ambiguous since, as discussed, there are two counteracting effects: the first via the own travel cost 

and the second via the externality.   

One may often expect F
pub 

to exceed F
mc

, because of a dominating positive externality. Yet, this 

is not always true, as we will also see in our numerical analysis, if r is small, the heterogeneity 

effect may dominate and there is a negative externality due to robot car purchase. Alternatively, 

we may be in a corner solution with 0% or 100% robot car in both regimes. Assuming interior 

solutions, the difference in equilibrium shares of marginal cost and public provision is 

 
  

1 1
1 ,

2 1

pub MC
r ff

s
F F MC TT

N r
  

 

 
      

  
 if 0<Fpub<1 and 0<FMC<1.  (28) 

The public supplier has a larger share comparted to the marginal cost supplier when r is higher as 

the public supplier wants to take advantage of the capacity effect, whereas under marginal cost 

provision car buyers ignore the capacity effect. When rMC  is smaller or  1 ffTT   larger, the 

robot car reduces own cost more and the equilibrium share in both regimes is larger, but this effect 

is smaller with a public supplier as it also considers the car purchase externality. The effects of θ is 

ambiguous.  

4.3. Provision by a monopolist 

The monopolist maximizes its profit, which (under the assumption of constant marginal 

production cost) equals the mark-up per trip multiplied by the number of robot cars:  

  ,r rMU F C MC FN N          (29) 

where C  gives how much lower the travel cost of a robot car is than of a normal one, and thus 

C  measures the willingness to pay for a robot car. Maximisation of profit gives: 

 

      

    

0

           1 1 1 1

           1 2 1 1 .

r

ff r

ff r

C
C MC N F

F F

N N
F TT MC N F

s s

N
F TT MC N

s

N

N     

   

 
     

 

   
              

   

 
      
 

 

  (30) 

Consistent with the aviation literature (e.g. Brueckner, 2002; Brueckner and Van Dender, 2008) 

and private road literature (e.g. Edelson, 1971; Verhoef, 2007; Wu et al. 2011), the monopolist 

internalises the externality that robot cars impose on each other. In (30), it considers that 

increasing F raises the travel cost of existing robot car users, which lowers their willingness to pay 
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the mark-up. Still, the monopolist ignores the capacity effect as this affects normal and robot car 

users equally and does not affect the willingness to pay for the robot car. 

For interior solutions, the second order condition holds and the optimal share for a monopolist 

is half of that under marginal cost provision, where the later already often leads to undersupply: 

 
  

1 1
1 1

2 1

1
.

2

mon
r ff

MC

s
F MC TT

N

F

 
 

 
       



 (31) 

The corner solution F
mon

=F
MC

=0 occurs in both regimes when the travel cost reduction due to a 

robot car is so small that nobody wants one (unless it is subsidised):  0 0rC F MC    .  

The monopolist supplies fewer robot cars than the public supplier does (unless we are in a 

corner outcome F
mon

=F
pub

=0 or F
mon

=F
pub

=1): 

 

1
,

2 1

Mon pub r
F F

r 


  


         if 0<Fpub<1 and 0<Fmon<1. (32) 

As the numerical analysis will also show, both corner outcomes are unlikely. F
mon

 =1 needs a 

rather negative MCr and, as fuel savings can only be so large, this may require that robot cars must 

be cheaper than normal cars, which seems unlikely. F
pub

=0 needs a small r and an unrealistically 

large MCr. Ignoring the implausible corner outcomes, the monopolist supplies too few robot cars 

and there thus is an undersupply. For interior solutions, the degree of undersupply of a monopoly 

compared to the public case decreases with θ and increases with r.  

5. Numerical example 

This section presents results using two base-calibrations: one for the USA and one for the 

Netherlands, where the latter may be viewed as being representative for European countries. After 

discussing the calibration and the results for these base cases, this section finally turns to 

sensitivity analyses.  

Compared with the USA, The Netherlands has a lower VOT and fewer driven kilometres before 

a car is sold second-hand. The Netherlands also has a much higher fuel price, which is partly offset 

by a higher fuel efficiency. These differences in country specific parameterisation will turn out to 

be important: we will find that for the USA calibration, marginal cost and public provision lead to 

the same outcome F
MC

=F
pub

=1, while for Dutch case marginal pricing supply leads to an 

underconsumption of robot cars. 

 The model outcome is sensitive to the parameterisation, and hence it is important to do 

sensitivity analyses. We focus on the effects of the MCr, θ, and r. These parameters are specific to 
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the trade-off between a robot vs a normal car. Moreover, for the other parameters, we have more 

guidance for their values from the theoretical or empirical literature.    

5.1. Calibration of the numerical models 

We focus on petrol passenger cars. For both countries, the schedule delay parameters will be based 

on the ratios β/α and γ/α from Small (1982) as is common in the literature. As in Van den Berg and 

Verhoef (2011ab), we use N=9000 and s=3600. We consider a trip of 20km, with a free-flow 

travel time of 20 minutes. The VOT with a robot car must be larger than the value of schedule 

delay early: θ>β/α=39/64≈0.61. Therefore, the sensitivity analyses will vary θ between 39/64 and 

1. Our base value is θ=0.8, which means that, when switching to a robot car, the VOT is decreased 

by about half of what it can be decreased (before the regular equilibrium is replaced by one with a 

mass departure). Our base calibration assumes that robot cars lead to a doubling of capacity: r =2; 

the sensitivity analyses will make r vary from 1 to 5. This seems reasonable, as our literature 

review found an average effect of about r=2 and predictions ranging from 1.07 to 3.7.  

For the USA our value of time is $18.82/h, which is the recommended VOT (US department of 

transportation, 2011) updated using 2013 income data (U.S. Census Bureau, 2014). Our base-case 

USA value of MCr is 1.13. For the USA in 2013, the fuel expenditure per mile was
10

 $0.13, 

implying a fuel efficiency of 26 miles-per-gallon
11

 or 11km-per-litre. Let us assume that a robot 

car has a 20% higher fuel efficiency. This implies a fuel cost saving of a robot car of $0.31 per 

trip. We further assume that the extra cost of a robot car is $7500. We use that in 2013 a car was 

on average driven 13476 miles per year
12

 and assume that a new car is sold after 4.5 years. Then, 

the extra depreciation cost for a robot car becomes $1.54 per trip. This results in the extra 

automobile cost per trip of $1.13. 

For The Netherlands, the recommended VOT is €10 (Kouwenhoven et al., 2014) and, following 

a similar calculation as for the USA, a MCr of €1.51 seems reasonable.
13,14

   

                                                
10 www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_03_17.html accessed on 

24 February 2015. 
11 Using a 2014 average price of $3.43/gallon (www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_a.htm accessed on 14 February 2015) 
12 www.fhwa.dot.gov/ohim/onh00/bar8.htm accessed on 24 February 2015.  
13 The average daily km for people with a car is 41km (CBS, 2015a). We assume an extra purchase cost minus rest value of €5000 

and people selling the car after 3.5 years (which is lower than for the USA as a large part of new Dutch cars are lease cars (leased 
by employers for their employees due to tax advantages) and are leased for a few years only). This results in a depreciation cost 
per trip of €1.91. Fuel savings would be €0.40 per trip, using an average fuel price for 2014 of €1.695/litre (CBS, 2015b) and 
14km/litre fuel efficiency (http://gemiddeldgezien.nl/meer-gemiddelden/68-gemiddeld-verbruik-auto accessed on 14 February 

2015) and again a 20% higher fuel efficiency for a robot car.  
14 In our numerical welfare evaluation we ignore that a part of the fuel price is tax. Including this would complicate the modelling 

but would not change the individual’s choice. It may affect the choice of the public supplier, but in our bases cases it does not as 
the fuel part in the automobile cost is small and in both bases cases public optimum will turn out to far into the corner solution of 
100% robot cars anyway. Ignoring the tax part does affect the cost savings but even there the effect is small. For instance, in The 
Netherlands, taxes form about 64% of the fuel price (www.nl.wikipedia.org/wiki/Benzineaccijns accessed on 15 April 2015), 
removing the reduction in tax payments from the cost saving would reduce these cost savings in the public case by only 3.7%.  

http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_03_17.html
http://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_a.htm
http://www.fhwa.dot.gov/ohim/onh00/bar8.htm
http://gemiddeldgezien.nl/meer-gemiddelden/68-gemiddeld-verbruik-auto
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5.2. Base-case 

Table 2 tabulates the outcomes for the base calibrations for the USA and The Netherlands. It 

shows four cases: no robot cars, perfectly competitive provision at marginal production cost, 

second-best public provision that minimises total cost, and monopoly provision that maximises the 

profit of the robot car manufacturer. TTC is the total travel cost and TC is the total cost including 

automobile cost; %∆TTC and %∆TC are the corresponding percentage changes in totals from the 

case without robot cars. Relative efficiency is
 
the total cost saving of a policy from the case 

without robot cars divided by the corresponding cost reduction due to public provision.  

Table 2: Outcomes under the base calibrations for the USA and The Netherlands 

 USA The Netherlands 

 
No robot 

cars 

Marginal 

cost 
Public Monopoly 

No robot 

cars 

Marginal 

cost 
Public Monopoly 

Share with a robot car 0 1 1 0.51 0 0.65 1 0.33 

Total travel cost (TTC) 261839 147857 147857 193030 139128 94675 78563.9 114580 

%∆TTC - −44% −44% −26% - −32% −44% −18% 

Total cost (TC) 261839 158027 158027 198254 139128 103539 92153.9 119012 

%∆TC - −40% −40% −24% - −26% −34% −14% 

Relative efficiency# 0 1 1 0.61 0 0.76 1 0.43 

Price per trip for a robot car - 17.56 10.71 24.37 - 11.50 6.60 14.01 

Price per trip for a normal  

   car 
29.09 17.68 17.68 24.37 15.46 11.50 9.40 14.01 

Mark-up - 0 −6.85* 2.34 - 0 −3.64* 0.79 

Marginal external benefit - 6.85 6.85 9.07 - 4.48 3.64 5.27 

Difference in cost between   

   robot car and normal car 
- -0.12 -0.12 -2.34 - 0 0.84 -0.79 

Corner solution? - yes yes no - no yes no 

Note:
*
 As there is a corner solution, the public agency could ask any mark-up that it not higher than the difference in cost between the normal and 

robot car. The table assumes that the mark-up equals the negative of the Marginal External Benefit.  
#
Relative efficiency is

 
the welfare gain of a policy from the case without robot cars divided by the gain from public provision.  

 

The introduction of robot cars substantially lowers costs and even with a monopolist users are 

better off than without robot cars (as they can always choose to continue to use normal cars). This 

is even though the monopolist asks a substantial mark-up per trip of $2.34, which implies a 60% 

profit rate (i.e. profit over revenue). Costs are higher for the USA than for the Netherlands as the 

USA has a higher value of time, which also increases the values of schedule delay in our 

calibration.  

For the USA, marginal cost provision leads to the same corner solution of 100% robot cars as 

under public provision. The robot car has a lower cost (i.e. travel cost plus automobile cost) than 

the normal car, and hence everybody wants one. For the Netherlands, marginal cost provision 
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results in too few robot cars as users ignore the positive externality. This MC regime attains only 

76% of the cost savings due to public provision (relative to the case without robot cars).
15

  

For the USA, a realistic lower bound for MCr seems −$0.75 (using a fuel efficiency gain of 

50%, an extra purchase cost of $1000, and a usage of 5.5 years). A reasonable upper bound seems 

MCr=$4 (using a 5% higher fuel efficiency, an extra purchase cost of $15000, and 3 years of 

usage). Under the lower bound case for the USA of MCr=−$0.75, the outcome is similar as in the 

main case: both marginal cost pricing and public provision lead to 100% robot cars. Monopoly 

supply has a similar relative efficiency as in Table 2, although the fraction with a robot car is 

larger. For the upper-bound case of MCr=$4, public supply still leads to 100% robot cars but this 

requires a very large subsidy. Accordingly, robot cars need to be very costly for it not to be 

socially worthwhile for everyone to get one if the capacity effect is as large as r=2. As we will see 

later on, when r is lower, it will be optimal that only some, or even no, users get a robot car. In the 

upper-bound case, marginal cost and monopoly provision lead to a small fraction with a robot car 

and these regimes have low relative efficiencies. 

5.3 Sensitivity with respect to θ and MCr.  

The previous subsection looked at two base calibrations. Now, we will turn to the outcome over 

wider ranges of the parameters. The focus will be on the effect of the parameters on the share with 

a robot car under the different provision regimes. This subsection varies the VOT reduction 

parameter, θ, and it varies the extra marginal automobile cost of a robot car, MCr, from −2 to 8. A 

MCr below −1 will tend to imply that robot cars are cheaper to produce than normal cars, as fuel 

savings can only be so large. Subsection 5.4 will vary r and θ. The effects of the other parameters 

were in-line with the theoretical discussion (see the appendix for the numerical sensitivity 

analysis). 

Fig. 5 shows the equilibrium share with a robot car for marginal cost (left panel), public 

(middle panel) and monopoly provision (right panel). The graph is for the Dutch VOT of €10, 

where the other parameters are the same for the USA and The Netherlands. Using the VOT for the 

USA leads to very similar pictures but that for public supply the MCr needs to be above 7 for the 

share to be below one; therefore, to get an interesting picture instead of only just white, we would 

need to consider very unrealistic parameter values. The darker the area of a contourplot is, the 

lower the share with a robot car; a white area is for the corner solution F=1, and a black area for 

F=0.  

                                                
15 The table assumes that the public supplier always adds a mark-up equal to –MEB. Yet, if there is a corner solution, it could add 

any mark-up below the difference in cost between car types. For the USA, the public agency could even ask a positive mark-up of 
$0.12 and make a profit; for the Netherlands, the mark-up must be below -0.84 and could hence be much less negative than −3.64. 
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Fig. 5 shows that, when the capacity effect is large enough with r=2, public supply leads to 100% 

robot cars for reasonable values of θ and MCr. Marginal cost supply tends to lead to a large share 

with a robot car as well. If MCr and θ are low enough, marginal cost pricing and public provision 

both lead to 100% robot cars. Still, for higher, but plausible, values of MCr, marginal cost 

provision leads to a below-optimal share with a robot car. Monopoly provision of robot cars leads 

to an even larger undersupply, and hence even larger welfare loss. Only when MCr<0 (which 

means that the robot car has a lower automobile cost than a normal car) and when θ is large 

enough (which means that the effect on the VOT of a robot car is limited) does the monopoly not 

lead to too few robot cars, as then all regimes lead to 100% robot cars. For interior solutions, the 

monopoly leads to half as few rbot cars as marginal cost pricing. Marginal cost and monopoly 

provision lead to 0% robot cars for the exactly same black parameter range, as in this range it 

always raises own cost to get a robot car.    

As argued, the effect of θ on the equilibrium share is ambiguous as there are two opposing 

effects: a higher θ means that a robot car reduces free-flow travel time costs less and this lowers 

the equilibrium  F, but it also lessens the heterogeneity effect and this may raise the equilibrium F.  

Fig. 5: Effect on share of robot cars of MCr and θ: the left panel is for marginal cost provision, the middle 

panel for public provision and the right panel for monopoly provision 

   
Note: The darker the area of a contourplot is, the lower the share with a robot car; a white area is for F=1, and a black area for F=0. 

 

Figs. 6 and 7 compare the welfare effects of the regimes. Monopoly supply can clearly lead to a 

large welfare loss compared to public supply. But also marginal cost supply, when it does not 

result in the same fraction as public supply, can lead to substantial welfare losses even when the 

difference in equilibrium fractions is not that large. In this sensitivity analysis, marginal cost and 

public provision only lead to the same outcome when there are corner solutions, otherwise 

marginal cost provision leads to an undersupply as the positive capacity externality dominates. 

  



22 

 

Fig. 6: Effects of MCr and θ on percentage change in total cost (from with only normal cars) of marginal 

cost provision (left panel), public provision (middle panel) and monopoly provision (right panel) 

Left: %∆TC for marginal cost 

provision 
Middle: %∆TC for public provision Right: %∆TC for monopoly provision 

   

Fig. 7: Effects of MCr and θ on the relative efficiency, Ω, of marginal cost provision (left panel) and the 

monopoly provision (right panel) 

Left: relative efficiency of 

marginal cost provision 

Right: relative efficiency of 

monopoly provision 

  
Note: Relative efficiency is

 
the cost reduction of a policy from the case without robot cars divided by the reduction from public provision. The 

relative efficiency of the public regime is by definition 1. 

5.4. Sensitivity analysis with respect to θ and r.  

Next, we look at the impact of the capacity-increase parameter, r. We range r from 1 to 5 while 

varying θ over all possible values. Fig. 8 depicts the shares with a robot car for the three regimes. 

Consistent with the analytics, r has no effect on the share of robot cars under marginal cost 

provision or monopoly provision, as the share is then solely determined by MCr and the cost gain, 

∆C, that a user gets when switching car type and these are independent of the capacity effect. 

Therefore, users ignore the external capacity effect. The value of r does affect F
pub

. For most of the 

range of r, the public supplier ensures that everyone gets a robot car. Only when, the capacity 

effect is relatively small (e.g. a 50% increase in capacity), is it optimal for not everyone to be 

equipped. It should, however, be noted that r=1.5 is within the plausible range for this parameter.  

Fig. 9 (left panel) compares the share under marginal cost provision and public provision. It 

does this for a smaller range of r than Fig. 8 as the pattern for r>2 looks the same as for r=2, while 

for lower values of r there are interesting effects. The difference in shares is largest when θ is large 

and the r is not too small. Then, marginal cost provision leads to 0% robot cars as the individual 
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gains little from getting one; conversely, the public supplier will ensure that the share is large as 

there is a net positive externality. In the bottom left corner of the figure (for instance when θ=0.7 

and r=1.25), there is a net negative externality and marginal cost provision leads to 

overconsumption of robot cars. In this area, θ is small and getting a robot car thus leads to a large 

reduction in own cost, whereas r is small and hence society hardly gains in terms of increased 

capacity. As the right panel of Fig. 9 shows, monopoly provision never leads to overconsumption 

and only leads to the similar share as public provision when r is very small.  

Fig. 8: Effect of r and θ on equilibrium shares of robot cars: the left panel is for marginal cost provision, 

the middle panel for public provision and the right panel for monopoly provision 

   
Note: The darker the area of a contourplot is, the lower the share with a robot car; a white area is for F=1, and a black area for F=0. 

Fig. 9: Effect of r and θ on differences between equilibrium shares of robot cars: left panel is marginal cost 

vs public provision and the right panel monopoly vs public provision 

Left: Difference between shares with  

marginal cost and public provision 

Right: Difference between shares with  

monopoly and public provision 

  

 

We also repeated this analysis first with a lowered MCr of −2 and then with an increased MCr 

of 7 (see the appendix), whereas here MCr was 1.51. When MCr=−2, it always reduces own cost to 

get a robot car, as this always lowers automobile cost while it never increases travel cost. 

Consequently, marginal cost provision always leads to 100% robot cars. Conversely, when MCr=7, 

getting a robot car always increases own cost, and both marginal cost pricing and monopoly 

θ θ θ 
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supply lead to 0% robot cars. Still, if the capacity effect is not too small, there is a positive 

externality from getting a robot car and accordingly the socially optimal share may still be positive 

and needs a relatively large subsidy. Besides these changes, the effects of the parameters are 

qualitatively the same as in the main sensitivity analysis here. 

6. Model extensions 

We used the simplest possible dynamic model to investigate the effects of robot cars via increased 

capacity, a lower VOT, and the resulting VOT heterogeneity. There are number of logical 

extensions and it seems worthwhile to discuss how these might affect our results.   

First, it seems plausible that the extent to which the VOT is reduced by getting a robot car will 

differ over people. Some office workers may spend the freed-up time preparing documents or 

checking email becoming nearly as productive as in the office. Conversely, manual workers 

probably face some difficulty in using the freed-up time working, but may spent the travel time on 

leisure activities. A businessperson may already be using the time in a normal car in a productive 

way, and hence buying a robot car may bring only modest benefits. In any case, the parameter θ is 

likely to vary over individuals. This would then mean that users self-select: the users for whom a 

robot car reduces travel cost more (i.e. with a lower θ) are more likely to get one. This also means 

that increasing the share with a robot car may be less beneficial. For a high enough share, the 

marginal user who switches has a relatively small reduction in VOT and thus a small cost saving. 

Heterogeneity in θ may thus strengthen the VOT heterogeneity effect, as there will be more 

heterogeneity. Finally, a heterogeneous θ gives marginal cost and monopoly supply an extra 

disadvantage: these suppliers only consider the marginal user in deciding their F, whereas the 

public supplier also considers the average user who has a lower θi and thus lower VOT than the 

marginal user. Such an extra difference between public and private supply is common with 

heterogeneous users.  

  There may also be a pre-existing heterogeneity in the values of time and/or schedule delay. 

Then, users arrive ordered by the heterogeneous ratios βi/VOTi and γi/VOTi, which are now 

heterogeneous for two reasons: the pre-existing heterogeneity and the differences in car type. Pre-

existing heterogeneity may lessen the heterogeneity effect of robot cars, as robot cars may add 

relatively little in heterogeneity and heterogeneity always remains. It may also strengthen the 

heterogeneity effect, as the last users to switch to a robot car will often have the lowest own cost 

reduction. Pre-existing heterogeneity also means that some normal and robot car users may have 

the same ratio βi/VOTi or γi/VOTi, which would mean that they travel mixed, reach the bottleneck 

at the same time, and are on the same iso-cost curve.  

Many studies have found that the capacity effect increases with the share that has a robot car. 

Going from no robot cars to a few has little capacity benefit, as there are few robot cars to 
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cooperate with and they have to travel surrounded by normal cars. Going from mostly robot cars to 

100% robot cars bring large gains (Tientrakool et al., 2011). This consideration could be included 

by making r an increasing function of the share of robot cars in total or at the time of reaching the 

bottleneck. This may have limited effects on the marginal cost and monopoly regimes as these 

providers ignore the capacity effect anyway. It would affect the public optimum, but it may 

depend on the parameterization whether the share is higher or lower with the increasing r than 

with the fixed r. However, our model implies that robot cars may cluster in time (as their 

preferences are more similar), which would raise the capacity effect during their travel moments.  

7. Conclusion 

We investigated the effects of introducing robots cars (also referred to as autonomous or 

automated cars) on costs of travel via a number of distinct channels. These include the increase in 

capacity, the decrease in values of time (VOTs), and the resulting heterogeneity in VOTs. The 

share of users with a robot car was endogenous as we incorporated the equilibrium of the car 

purchase market. We considered three provision regimes: perfect competition leading to marginal 

cost pricing, second-best public provision and monopoly supply.  

Buying a robot car instead of a normal one raises road capacity and thus imposes a positive 

externality; but it also lowers the user’s VOT and, as the bottleneck congestion externality (under 

heterogeneity) decreases with the user’s VOT (see also Lindsey, 2004), buying a robot car thus 

also imposes a negative externality. The net externality may be positive or negative. The numerical 

analyses for the USA and The Netherlands suggest that a net positive externality is most likely and 

occurs unless the capacity effect is small with say a 25% increase in capacity from robot cars. In 

the engineering literature, the average predicted effect is about a 100% increase in capacity, still 

predictions around 25% or lower do occur. 

If there is a positive external benefit due to buying a robot car, this means that marginal cost 

pricing tends to lead to underconsumption of robot cars. To prevent this, and attain to the second-

best optimum, the public supplier needs to give a subsidy. However, it may also occur that there is 

a negative externality and then a corrective tax is needed to prevent overconsumption. The private 

monopolist is likely to lead to a large undersupply and welfare loss, unless robot car have lower 

automobile cost than normal cost, which seems unlikely. 

The results are sensitive to the model’s crucial parameters. For instance, in the USA base case, 

public and marginal cost supply both lead to a corner solution of 100% robot cars, whereas, for the 

Dutch base case, marginal cost supply leads to only 76% robot cars and public supply to a 100%. 

There is also great uncertainty about these parameter values, and this makes investigating them an 

important future research topic. 
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We already discussed interesting modelling extensions in the penultimate section. But there are 

also important and interesting policy and market structure extensions. We only analysed unpriced 

congestion. First-best pricing removes the negative heterogeneity externality, while the positive 

capacity externality remains unless we can differentiate the toll between normal and robot cars. 

However, what happens under step tolling? We only consider one supplier, but, in reality, there 

will be multiple suppliers of robot cars, which may also supply normal cars. Will these suppliers 

face incentives to let their robot cars cooperate or would it be more profitable to keep them 

incompatible? And what about supporting infrastructure for robot cars along the road? Will each 

car supplier need to build its own? Finally, the introduction of robot cars will have great effects on 

public transport and taxi transport, and in the long-run it may even affect the structure of the city. 

These questions deserve attention in future research efforts. 

 

Acknowledgements  

We thank the participants of the OPTION conference (2015) and Eureka seminar (2015) in 

Amsterdam (2015). We thank Sylvia Bleker for valuable comments. Financial support from the 

ERC (AdG Grant #246969 OPTION) is gratefully acknowledged. All mistakes are ours.  

Appendix. Further sensitivity analyses 

A.1. Effect of θ and r for different automobile costs  

This section of the appendix repeats the analysis of subsection 5.4 of changing θ and r but for 

a lower MCr of −1 and for a higher MCr of 7. The main text discusses the effects and the 

changes from the main sensitivity analysis. 

Fig. A.1: For MCR=−1, the shares of robot cars over r and θ: the left panel is for public provision and the 

right one for monopoly provision (marginal cost provision always has a share of one) 

Left: shares with public provision Right: shares with monopoly provision 

 
 

Note: We omit the figure for marginal cost provision. When MCr<0, marginal cost provision means that all users always get a robot 

car. 
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Fig. A.2: For MCR=7, equilibrium shares of robot cars over different values of r and θ (the shares with 

marginal cost and monopoly provision are always zero) 

 

A.2. Effects of changing δ∙N/s  

Sections A.2 and A.3 look at changing the other parameters besides those specific to the robot car 

setting by respectively changing δ∙N/s and α∙TTff. For the USA base case, α∙TTff was about 6.23 and 

δ∙N/s about 22.82; for the Dutch case, these respectively were approximately 3.33 and 12.13. It 

does not matter how we change δ∙N/s, what matters is the combined size of the term. Doubling δ 

and halving N keeps δ∙N/s constant and means that nothing really changes. Increasing δ∙N/s raises 

bottleneck cost, making it more attractive to get a robot car and thus, for an interior solution, F 

increases. If θ is high, however, there is still little to gain in reduction in own cost from getting a 

robot car and thus then marginal cost and monopoly provision lead to 0% robot cars, regardless of 

the size of δ∙N/s.  

Fig. A.3: Effect of δ∙N/s and θ on the shares of robot cars: the left panel is for marginal cost provision, the 

middle panel for public provision and the right panel for monopoly provision 

   

θ θ θ 

δ∙N/s δ∙N/s 
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A.3. Effects of changing α∙TTff 

When α or TTff increases, getting a robot car lowers free-flow travel cost more and thus the 

share with a robot car becomes higher. Public supply leads to 100% robot cars for almost the entire 

parameter range, only for when θ and α∙TTff are both very low does it not.    

Fig. A.4: Effect of α∙TTff and θ on the shares of robot cars: the left panel is for marginal cost provision, the 

middle panel for public provision and the right panel for monopoly provision 
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