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Abstract

We provide a nonparametric revealed preference approach to demand
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1 Introduction

Homotheticity of consumer preferences is an important and useful concept in
both theoretical and empirical work. If a consumer’s preferences are homothetic,
we can deduce his entire preference relation from a single indifference set. It
therefore allows to recover much more of the preferences from a limited data
set. Furthermore, testing data for homothetic utility maximisation can provide
substantially stronger discriminatory power against alternative hypothesis than
testing for utility maximisation alone. Homotheticity has important implications in
many different fields of economics; for examples, aggregation of consumer demand
and the existence of “community indifference curves”, modelling of separable
preference structures and its connection to two-stage budgeting, and as a common
assumption in the international trade literature.

1.1 Summary of Contributions

The purpose of this article is to provide measures for the homothetic efficiency
of a data set. We introduce the Homothetic Efficiency Index (Hei) which is a
homothetic analogue to the well known Afriat Efficiency Index (Aei, also known as
the Critical Cost Efficiency Index, Ccei) which can be interpreted as a measure of
wasted income. The Hei generalises the index proposed by Heufer (2013) for the
two-dimensional case. We also extend this measure by introducing the Homothetic
Efficiency Vector (Hev) which provides efficiency indices for each observed choice
and allows for a more detailed and robust data analysis.

Varian’s (1983) Homothetic Axiom of Revealed Preference (Harp) can be
easily tested with a set of data. It is a necessary and sufficient condition for
consistency with homothetic utility maximisation and therefore characterises the
hypothesis of homothetic preferences. However, it is a binary test: Either the
data satisfy Harp or not. When Harp is violated, the measures introduced here
show how close the data come to being consistent with Harp. Both the Hei and
the Hev provide the minimal adjustments which are required to make a data set
consistent with homothetic utility maximisation. The measures are motivated
by e- and h-rationalisation which is similar to a concept recently introduced by
Halevy et al. (2012). As Harp is a rather strong condition, it is often violated;
without efficiency measures the only conclusion is then that the data is not perfectly
consistent. Our measures allow us to go further by quantifying and interpreting
the extent of the inconsistency.

We show how the Hev can be used to recover more about a consumers’ preference
relation when a set of data comes reasonably close to homotheticity. This extends
Varian’s (1982) and Knoblauch’s (1993) approach to non-parametric recoverability
of preferences to a situation where data can be assumed to be the result of
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homothetic utility maximisation with minor errors.
A somewhat similar approach was taken by Blundell et al. (2003, 2008), who

combined revealed preference conditions with expansion paths estimated using
pooled household data. While their approach is indeed powerful, our approach has
several advantages. It lends itself to a very useful power analysis that does not
require much effort. It focusses on individuals and allows a very detailed analysis
of individual preferences. We do not need to pool data to estimate expansion paths
and do not require any assumptions about preference homogeneity or adjustments
for demographic characteristics. It can be applied equally well to household panel
data and experimental data. Besides these advantages, there is still the point that
homotheticity is a common—often only implicit—assumption. It should be tested
whenever possible but rarely is – in fact, the assumption is often not even discussed.
Our contribution makes it very easy for researchers to find out how consistent their
data are with homotheticity. Our efficiency index allows to settle the debate of
how plausible the assumption of homotheticity is – or rather, it allows to separate
the cases where the assumption is justified from cases where it is not.

To illustrate and motivate the methods put forward in this paper we apply them
to two data sets. The first application is to data from an experimental dictator game
conducted by Fisman et al. (2007). Using this data, we show how our methods can
recover detailed information about subjects’ preferences. The second application is
to a panel of expenditures on non-durable consumption categories for 3,134 Spanish
households. With this data, previously analysed in e.g. Browning and Collado
(2001), Crawford (2010) and Cherchye et al. (2015), we show that homothetic
efficiency can be very high and still have considerably higher discriminatory power
against irrational behaviour than standard utility maximisation. We also implement
a recent idea by Beatty and Crawford (2011) that combines efficiency and power
into a single measure, called predictive success. We find that homothetic utility
maximisation is considerably more successful in explaining the demand behaviour
of the households than standard utility maximisation.

1.2 Implications and Applications

The main empirical applications we see for our approach are
• a better way to test data for consistency with homotheticity;
• an increase of test power, with the potential of making formerly questionable

data useful;
• an improvement of bounds on revealed preferred and worse sets and the

money metric utility function which facilitates their practical use.
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Testing and Test Power

Non-parametric tests for homotheticity in consumption and production theory
have been considered in the literature before. Varian (1983) introduced Harp, an
easily testable axiom that characterises monotonic and convex homothetic utility
maximisation. Liu and Wong (2000) provided a stronger testable condition, which
characterises strictly convex homothetic utility maximisation.

Testing data for consistency with Varian’s (1982) Generalised Axiom of Revealed
Preference (Garp), which is a necessary and sufficient condition for non-satiated
utility maximisation, is a binary as the test for Harp. The data will either satisfy
Garp or not. In cases where the data does not satisfy Garp, studies usually
report an efficiency measure such as the Aei combined with various power measures.
The most frequently used power measure was introduced by Bronars (1987) who
suggested using Monte Carlo methods to compute the power of a test for Garp.
One can generate many sets of random choices, usually from a uniform distribution
on the budgets, and test these sets for consistency with Garp. The percentage of
sets which do not satisfy Garp is the approximate test power.

One problem with the revealed preference approach is that the test power is
sometimes very low. This is particuarly true when we wish to allow for small errors
in decision making or for measurement error. For example, we might deem an
Aei of 0.95 to be acceptable, but allowing for this extent of errors can lead to such
a low power that the empirical analysis becomes almost meaningless. Harp is a
stronger condition than Garp, and we can expect that it is far less likely that a set
of random choices satisfies Harp. However, Harp will often also not be satisfied
by the real data.1 But homothetic efficiency can be very high for consumer choice
data, as we demonstrate in the empirical part of the paper. Thus, homothetic
efficiency may provide for an empirical analysis that has substantial discriminatory
power against alternative hypothesis such as random behaviour, even when this is
not the case for standard efficiency, making previously useless data useful.

This is strongly supported by the results from our empirical applications.
Specifically, our main results can be summarized as follows: (i) Efficiency can be
very high for Harp, thus providing motivation to assume homothetic preferences.
(ii) Harp has considerably higher power than Garp for consumer choice data.
For example, while the power of Garp can be below 10 percent for consumer
choice data, the power of Harp is close to 100 percent. (iii) Adjusting expenditure
for homothetic efficiency has negligible effects on the power. Thus, Harp can
have substantially higher power than Garp even when expenditure is adjusted for
efficiency. (iv) Based on the measure of predictive success, homotheticity is a more

1Manser and McDonald (1988) is a notable exception. They analyse U.S. consumption data
from 1959 to 1985 on 101 commondities and find that homothetic preferences are consistent with
this data.
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suitable model than standard utility maximisation to explain demand behaviour of
households in our survey data application.

Using Heufer’s (2014a) method we also show that computer generated random
data sets which satisfy Garp are very unlikely to satisfy Harp. This shows that
Harp adds substantial test power.

Recoverability, Money Metric, and Parametric Estimates

Varian (1982) described in detail the ways in which a researcher can recover
everything that can be said about a consumer’s preference based on a finite set of
consumption data (see also Knoblauch 1992). Knoblauch (1993) extended Varian’s
approach to homothetic recoverability. Assuming homotheticity of preferences, if
justified, allows the researcher to recover more information about the consumer’s
preferences.

Our approach allows for this extended recoverability even when homotheticity
is violated by providing a way to adjust the data accordingly; with high homoth-
etic efficiency, only minor adjustments are necessary. Our empirical application
demonstrates the usefulness of this approach by showing examples of revealed
preferred and worse sets of subjects using data from the experiment carried out by
Fisman et al. (2005). We show how a simple graphical analysis provides substantial
information about the preferences of subjects – Figure 4 in Section 4.2 shows a few
examples that demonstrate how much more information about preferences can be
recovered using our approach.

Heufer (2014b) introduced a method to compare the risk aversion of two
investors using only revealed preference relation. A similar approach to interpersonal
comparisons was used by Becker et al. (2013a,b) to compare the strength of the sense
of justice of two individuals. These revealed preference approaches to comparability
of preferences can be improved if they are based on homothetic revealed preferred
and worse sets.

Empirical work often focusses on estimating parameters of particular functional
forms corresponding to homothetic utility functions, or demand systems (Cobb-
Douglas and CES are two notable examples which are widely used in the literature).
If the estimated utility function is homothetic, testing the data for consistency with
Harp and computing efficiency measures can be employed as a robustness check
or screening device. Consequently, it may be advisable not to estimate parameters
in homothetic demand systems using data with low homothetic efficiency.

Recently, Halevy et al. (2012) introduced methods for parametric recoverability,
where parameters are not estimated by minimising a statistical loss function but
rather by maximising the money metric utility of a consumer, which is bounded
by the revealed preference relation implicit in his set of choices. As the extended
homothetic recoverability we propose can lead to tighter bounds on the money
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metric utility function of a consumer, it allows for a better estimation of parameters,
in particular those of homothetic utility functions.

Other Applications

Eisenberg (1961) showed that homotheticity of utility is a sufficient condition for
the existence of “community indifference curves” or “average preferences” (see also
Gorman 1953). Thus, testing data for how close they come to homotheticity is
easily motivated by the important implications for aggregation. See also Chipman
(1965) for a discussion of demand aggregation in trade theory, Chipman (1974),
Mantel (1976), Polemarchakis (1983), and Varian (1984b) on further issues of
aggregation and homotheticity, and Shafer and Sonnenschein (1982) for a survey
on market demand.

Gorman (1959) showed that, in general, homothetic separability (i.e., when sub-
utility functions are homothetic) is a sufficient condition for two-stage budgeting.
Thus, our methods can be used as pre-tests to check whether homothetic separability
is a plausible assumption.

Theories of international trade typically assume that consumers have homothetic
preferences (see e.g. Krugman 1980, Melitz 2003, Helpman et al. 2008, Chaney
2008). Thus, our methods can be used to test the underlying assumptions in these
models.

Hanoch and Rothschild (1972) and Varian (1984a) described non-parametric
ways to test production for homotheticity.2 Because this theory is very similar
to testing for homotheticity in a consumer choice setting, our methods can be
easily adapted to calculate homothetic efficiency of allocating factor inputs in
production, and also recover detailed information about the underlying production
technology. Finally, it is important to note that homothetic production functions,
such as Cobb-Douglas and CES, are extensively used in, for example, empirical
macroeconomics when modelling the economy’s underlying production technology.

1.3 Outline

The rest of the paper is organised as follows. Section 2 introduces the notation,
recalls basic revealed preference theory and the non-parametric analysis based
on Varian (1982) and, for the particular case of homotheticity, the contribution
of Knoblauch (1993). Section 3 introduces the concept of homothetic efficiency
and shows how extended recoverability is still possible when Harp is violated but
homothetic efficiency is high. Section 4 uses two data sets to apply the proposed
method. Section 5 concludes. The appendix in Section A contains all proofs. A

2Silva and Stefanou (1996) provided a generalisation of these tests.
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supplementary “computable document” prepared with Wolfram Mathematica R©

that allows a graphical analysis of revealed preferred and worse sets recovered with
our method can be downloaded from the internet (see Section 4.2).

2 Preliminaries

2.1 Notation and Utility Maximisation

The commodity space is RL
+ and the price space is RL

++, where L ≥ 2 is the number
of different commodities.3 A (competitive) budget set is defined as Bi = B(pi) =
{x ∈ RL

+ : pixi ≤ 1}, where pi = (pi1, . . . , p
i
L)′ ∈ RL

++ is the price vector and wealth
is normalised to 1.4 A demand function D : RL

++×R++ → RL
+ of a consumer assigns

to each budget set the commodity bundle chosen by the consumer. Unless otherwise
noted, we assume that demand satisfies budget balancedness (i.e., pixi = 1). We
assume that the only observables of the model are N ≥ 1 different budgets and
the corresponding demand of a consumer. The entire set of N observations on a
consumer is denoted as Ω = {(xi,pi)}Ni=1.

The bundle xi is directly revealed preferred to a bundle x, written xi R0 x,
if pixi ≥ pix; it is strictly directly revealed preferred to x, written xi P0 x, if
pixi > pix; it is revealed preferred to x, written xi R x, if R is the transitive closure
of R0, that is, if there exists a sequence xj , . . ., xk, such that xi R0 xj R0 . . . xk R0 x.
The bundle xi is strictly revealed preferred to x, written xi P x, if xi R xj P0 xk R x
for some j, k = 1, . . . , N .

Definition 1 (Varian 1982) A set of observations Ω satisfies the Generalised
Axiom of Revealed Preference (Garp) if for all i, j = 1, . . . , N , it holds that
[not xi P0 xj] whenever xj R xi.

We say that a utility function u : RL
+ → R rationalises a set of observations Ω if

u(xi) ≥ u(y) whenever xi R0 y. Let U denote the set of all continuous, non-satiated,
monotonic, and concave utility functions. Garp is easily testable and a necessary
and sufficient condition for utility maximisation, as Theorem 1 (Afriat’s Theorem)
below shows.

Theorem 1 (Afriat 1967, Diewert 1973, Varian 1982) The following condi-
tions are equivalent:

3We use the following notation: For all x,y ∈ RL, x = y if xi ≥ yi for all i = 1, . . . , L; x ≥ y if
x = y and x 6= y; x > y if xi > yi for all i = 1, . . . , L. We denote RL

+ = {x ∈ RL : x = (0, . . . , 0)}
and RL

++ = {x ∈ RL : x > (0, . . . , 0)}.
4This normalisation is routinely applied in revealed preference analysis. The implicit assump-

tion is that demand is homogeneous.
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1. the set of observations Ω satisfies Garp;
2. there exist numbers U i, λi > 0 such that

U i ≤ U j + λjpj(xi − xj) (1)

for all i, j = 1, . . . , N ;
3. there exist numbers V i such that

V i ≥ V j whenever pixi ≥ pixj, and (2)

V i > V j whenever pixi > pixj (3)

for all i, j = 1, . . . , N ;
4. there exists a u ∈ U which rationalises the set of observations Ω.

While conditions 1 and 2 can be found in Varian (1982), condition 3 is rather
new in the literature. The intuition behind the inequalities in condition 3 is simple:
If a consumer chooses the bundle xi at prices pi when xj also was affordable, then
he gains more utility from consuming xi, which is reflected by V i > V j where V i

can be thought of utility indices at time i = 1, . . . , N . Cherchye et al. (2015) use
this condition to derive new non-parametric tests for weak separability based on
solving mixed-integer linear programming problems. We will use similar ideas to
formulate new methods to calculate efficiency indices.

2.2 Utility Maximisation and Efficiency

When a set of observations does not satisfy Garp, it is interesting to obtain a
measure of how severe the violation is. One of the most popular measures for the
severity of a violation is the Afriat Efficiency Index (Aei) due to Afriat (1972),
also called the critical cost efficiency index (Ccei).5 Define, for some e ∈ [0, 1],
the relation R0(e) as xi R0(e) xj if epixi ≥ pix, and let R(e) be the transitive
closure of R0(e); furthermore, define the relation P0(e) as epixi > pix. With these
concepts, we can define a new version of Garp, called Garp(e).

5Reporting the Aei has become a standard for empirical studies, in particular experimental
ones. See, for example, Sippel (1997), Mattei (2000), Harbaugh et al. (2001), Andreoni and Miller
(2002), Février and Visser (2004), Choi et al. (2007b), Fisman et al. (2007), Dickinson (2009),
Camille et al. (2011). See Gross (1995) for a survey of other measures. A common alternative to
the Aei is the Houtman-Maks-Index (Houtman and Maks 1985) which is based on the maximal
subset of a set of choices consistent with Garp; see also Heufer and Hjertstrand (2015) for a
computationally feasibale approach to compute this index. Echenique et al. (2011) provided a
new measure based on a money pump argument, and Dean and Martin (2015) provided a new
measure based on the minimum cost of breaking all cycles or money pumps. Apesteguia and
Ballester (2015) provided a measure based on welfare loss.
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Definition 2 A set of observations Ω satisfies Garp(e) for some e ∈ (0, 1] if for
all i, j = 1, . . . , N , it holds that [not xi P0(e) xj] whenever xj R(e) xi.

The Aei is the greatest number e such that Garp(e) is satisfied; it is a measure
of wasted income: If a consumer has an Aei of e < 1, then he could have obtained
the same level of utility by spending only a fraction of e of what he actually spent
to obtain this level. To compute the Aei when Garp is violated, Varian (1990)
describes a binary search routine which he attributes to Houtman and Maks (1987).

The Aei is a summary statistic but does not provide information about which
observed choices are causing the deviation from Garp. To get such information,
we first define a further generalisation of Garp(e):

Definition 3 A set of observations Ω satisfies Garp(v) for some v ∈ (0, 1]N if
for all i, j = 1, . . . , N , it holds that [not xi P0(vi) xj] whenever xj R(vj) xi.

Such a vector v can be a more disaggrated measure of efficiency. Varian
(1993) defines one such measure, the violation index v̄ = (v1, . . . , vN) with v̄i =
min{j:xj Rxi} p

ixj. If the data satisfy Garp, then v̄i = 1 for all i. Otherwise, v̄i < 1
for some i, and this provides information about which xi are problematic. Varian
(1993) then proves the following proposition.

Proposition 1 (Varian 1993) A set of observations Ω satisfies Garp(v̄).

Varian (1993) also notes that the vector v̄ does not, in general, give the minimum
perturbation of budgets required. He provides an improved violation index which
is computed using an iterative algorithm that determines the minimal vi for each i
required to break each revealed preference cycle in the data. See also Cox (1997)
for a discussion of the improved violation index.

The ’exact’ efficiency indices can be computed from the inequalities in Eqs. (2)
and (3) using a simple mixed integer programming problem. To formulate this
procedure, we initially make use of the fact that Garp(v) is equivalent to the
following inequalities:

V i ≥ V j whenever vip
ixi ≥ pixj, and (4)

V i > V j whenever vip
ixi > pixj. (5)

These inequalities are linear, and therefore suitable for empirical applications. Since
there are unknowns entering both the left-hand and right-hand sides, we suggest
using binary variables to link the two sides.6 Specifically, the inequalities in Eqs.

6See Cherchye et al. (2015) for a similar approach in the context of testing for weak separability
of the utility function.
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(4) and (5) are equivalent to that there exist numbers V i and X ij such that, for all
observations i, j = 1, . . . , N ,

V i − V j < X ij, (c.i)

(X ij − 1) ≤ V i − V j, (c.ii)

vip
ixi − pixj < X ijAi, (c.iii)

(X ij − 1)Aj ≤ pjxi − vjpjxj, (c.iv)

0 ≤ V i < 1, (c.v)

X ij ∈ {0, 1}, (c.vi)

where Ai > pixi is a fixed number. We suggest to calculate the efficiency indices v
by solving the following mixed integer linear programming (Milp) problem7 with
respect to V i, X ij and vi:

min
N∑
i=1

(1− vi) subject to (c.i)-(c.vi) and v ∈ (0, 1]N (6)

Since any solution to a Milp problem is a global solution, this problem is guaranteed
to find a global optimum (in the L1-norm) in the efficiency indices v. Given this
approach, we can formally define a vector efficiency index: We say that a vector ṽ
is a Varian Efficiency Vector (Vev) for Ω if Ω satisfies Garp(ṽ) and there does
not exist a v′ ≥ ṽ such that Ω satisfies Garp(v′). When v is computed using the
above Milp-approach, it will be a Vev.

2.3 Recoverability of Preferences

Preferences implicit in a set of data can be recovered with Varian’s (1982) method:
For some bundle x0 ∈ RL

+ which was not necessarily observed as a choice, the set
of prices which support x0 is defined as

S (x0) =
{
p0 ∈ RL

++ : {(xi,pi)}Ni=0 satisfies Garp and p0x0 = 1
}
. (7)

Varian (1982) uses S(x0) to describe the set of all bundles which are revealed worse
and revealed preferred to a bundle x0: The set of all bundles which are revealed
worse than x0 is given by

RW (x0) =
{
x ∈ RL

+ : for all p0 ∈ S(x0), x0 P x
}

(8)

7Cherchye et al. (2008) have introduced mixed integer programming to the revealed preference
literature.

10



and the set of all bundles which are revealed preferred to x0 is given by

RP(x0) =
{
x ∈ RL

+ : for all p ∈ S(x), x P x0
}
. (9)

The following fact follows directly from the definition; see also Varian (1982, Fact
3).

Fact 1 x ∈ RW(x0) if and only if x0 ∈ RP(x).

The convex monotonic hull CMH of a set of points Y = {yi}Mi=1 is

CMH (Y ) = convex hull of
({

x ∈ RL
+ : x ≥ yi for some i = 1, . . . ,M

})
.

(10)

Let intCMH (Y ) denote the interior of CMH (Y ). The following Proposition pro-
vides an easy way of determining whether x ∈ RP(x0) and, by Fact 1, also whether
x ∈ RW (x0) (see Varian (1982) and Knoblauch (1992) for a proof).

Proposition 2 Suppose Ω satisfies Garp. Then

intCMH({xi : xi R x0}) ⊆ RP(x0) ⊆ CMH({xi : xi R x0}).

Finally, note that variations of the sets RP and RW can still be constructed
if Garp is violated. Obviously, S (x0) will be empty in this case, but based on
Proposition 2, one can still compute the convex monotonic hulls and analyse the
result. However, this will necessarily lead to intersection of RP(x) and RW (x) for
some x. Thus, it would more appropriate to base the constructions on R(e) or
R(v), and to define S (x0) in terms of Garp(e) or Garp(v).

2.4 Homotheticity

2.4.1 Definition and Tests

Homotheticity is a restriction on preferences. We say that a utility function is
homothetic if it is a positive monotonic transformation of a linearly homogeneous
utility function; that is, if u(x) > u(y) then u(λx) > u(λy) for all λ > 0. Varian
(1983) provides the following axiom, which he shows is equivalent to homothetic
rationalisation (Theorem 2).

Definition 4 (Varian 1983) A set of observations Ω satisfies the Homothetic Ax-
iom of Revealed Preference (Harp) if for all distinct choices of indices i, j, k, . . . , `,
it holds that (pixj)(pjxk) · · · (p`xi) ≥ 1.
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Theorem 2 (Varian 1983) The following conditions are equivalent:
1. the set of observations Ω satisfies Harp;
2. there exist numbers U i > 0 such that

U i ≤ U jpjxi (11)

for i, j = 1, . . . , N ;
3. there exists a homothetic u ∈ U which rationalises the set of observations Ω.

2.4.2 Homothetic Recoverability of Preferences

Following Knoblauch (1993), define for a set of observations which satisfies Harp a
scalar

ti,♦ = min
{

(pixj)(pjxk) · · · (p`x♦)
}
, (12)

where the minimum is over all finite sequences i, j, . . . , ` between 1 and N inclusive,
and t♦,♦ = 1. Note that ♦ can be the index of an observed choice xm or be equal
to 0 for a bundle x0 which was not observed as a choice. We can compute ti,0 for
any arbitrary bundle x0 as we do not need a price vector p0. We say that ti,♦xi is
homothetically revealed preferred to x♦, written ti,♦xi H x♦. The scalar t = ti,♦ is the
smallest value such that txi H x♦. Note that if ti,♦ = (pixj) · · · (pkx`) · · · (pmx♦),
then ti,♦ = ti,kt`,♦.

Figure 1 illustrates the scalar factors in Eq. (12) with an example with three
observations. In (a), we see that t2,3 = p2x3. In (b), x1 can be scaled up so
that it still is homothetically revealed preferred to t2,3x

2, and we find that t1,3 =
(p1x2)(p2x3) = t1,2t2,3. This is not a coincidence, as in two dimensions budgets
can be sorted by their price ratio. If budgets are sorted and B1 and BN have the
lowest and highest price ratio, respectively, then t1,N = (p1x2)(p2x3) · · · (pN−1xN ),
as was shown in Heufer (2013).

Knoblauch (1993) also shows how to recover homothetic preferences implicit
in a set of observations which satisfies Harp. Define the set of bundles which are
homothetically revealed preferred to x♦ as

HRP(x♦) = intCMH

(
x♦ ∪

N⋃
i=0

ti,♦xi

)
. (13)

The set HRP(x♦) is very useful indeed, as Theorem 3 below shows that it describes
the set of bundles which any rationalising homothetic utility function must rank
higher than x0. Define the set of bundles which are homothetically revealed worse
to x♦ as

HRW (x♦) = {x ∈ RL
+ : x♦ ∈ HRP(x)}. (14)
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Figure 1: Illustration of the scalar factors.

As HRP can be easily computed as the convex hull of a finite number of points, it
is also easy to test for any bundle if x ∈ HRW (x♦).

Theorem 3 (Knoblauch 1993) Suppose Ω satisfies Harp. The following con-
ditions are equivalent:

1. x ∈ HRP(x♦);
2. every homothetic u ∈ U which rationalises Ω satisfies u(x) > u(x♦).

See Knoblauch (1993) for the proof. The following corollary is then straightforward,
and we omit the proof.

Corollary 1 Suppose Ω satisfies Harp. The following conditions are equivalent:
1. x ∈ HRW(x♦);
2. every homothetic u ∈ U which rationalises Ω satisfies u(x♦) > u(x).

It should also be obvious that RP(x♦) ⊆ HRP(x♦) and RW (x♦) ⊆ HRW (x♦) for
all x♦.

3 Homothetic Efficiency

3.1 A Lower Bound on Homothetic Efficiency

Suppose we have a set Ω = {(xi,pi)}2i=1. If the consumer had homothetic pref-
erences, then his demand when facing budget B(p1/t) would be tx1. Then the
smallest t for which tx1 would be revealed preferred to x2 is t = p1x2. Now
suppose Ω does not satisfy Harp such that (p1x2)(p2x1) < 1. Then the choice
(p1x2)x1 on B(p1/p1x2) would be revealed preferred to x2, but as Harp is violated,
p2x2 = 1 > [p2(p1x2)x1] = (p1x2)(p2x1), that is, x2 is strictly revealed preferred to
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(p1x2)x1, which would violate Garp. But if we relax Garp, as is done to compute
the Aei, we can find the greatest e ∈ (0, 1] such that ep2x2 = e ≤ [p2(p1x2)x1],
that is, e = (p1x2)(p2x1). This e has a similar economic interpretation as the Aei:
If the preferences of the consumer were homothetic but demand is specified with
errors, then e can be interpreted as a level of expenditure which the consumer
wasted due to the errors; in particular, he could have obtained the same utility
as he obtained from choosing x2 at an expenditure e < 1 rather than the actual
expenditure of 1.

However, if we use this approach, the multiplication of the scalars pixj can
lead to very low values of e. To illustrate the general problem with a hypothetical
scenario, suppose that a subject is asked to make ten choices from the same budget
set. Suppose we observe xi = xj for all i, j = 1, . . . , N , with pi = pj for all
i, j = 1, . . . , N as well. Suppose that pixi = .95 (i.e., budget balancedness is
violated). Then (p1x2)(p2x3) · · · (p10x1) ≈ 0.5987, even though only five percent
of the wealth level was wasted each time and even though the data would satisfy
Harp if the wi were set to .95. But even without violations of budget balancedness
and with different budgets, minor errors can lead to very low values of e if many
choices are observed.

We therefore suggest to use the following axiom, called Harp(e), which takes
into account the number of scalars which are multiplied.

Definition 5 A set of observations Ω satisfies Harp(e) for some e ∈ (0, 1] if for
all distinct choices of indices i, j, k, . . . , `, it holds that(

pixj

e

)(
pjxk

e

)
· · ·
(

p`xi

e

)
≥ 1.

Figure 2 illustrates the idea. Figure 2.(a) shows the two observations. The
dashed line shows the boundary of the shifted budget B1 which contains x2. The
intersection of the dashed line and the ray through the origin and x1, shown as
λx1, gives the demand on the shifted budget if preferences were homothetic. Here
λ is chosen to equal p1x2; note that, by Theorem 3, λx1 would be homothetically
revealed preferred to x2 if preferences were homothetic. But as λx1 is in the interior
of budget B2, x2 is strictly revealed preferred to λx1, thus Harp is violated. Also
note that there is a µ < 1 such that µx2 would be homothetically revealed preferred
to λx1. Then λ̃x1 with λ̃ < λ would be homothetically revealed preferred to µx2.
This process can be repeated ad infinitum.

Figure 2.(b) shows the two budgets shifted downwards by setting the wealth
level to e < 1. Figure 2.(c) shows that if x1 is scaled upwards by a factor equal to
λ/e, we find that while x2 is still strictly revealed preferred to it — x2 P0 (λx1/e)

— it is not strictly revealed preferred at efficiency level e — [not x2 P0(e) (λx1/e)].
This is indeed the smallest e for which Harp(e) is satisfied; as the example has
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only two observations, this e can be found by setting [(p1x2)/e][(p2x1)/e] = 1 and
solving for e.

x1

x2

B1

B2
λx1

x1

x2

(a)

B(p1/e)
B(p2/e)

x1

x2

(b)

λx1

e

ex2

x1

x2

(c)

Figure 2: An illustration of Harp(e) and the homothetic efficiency index. The example uses
x1 = (2, 4), p1 = (1/10, 1/5), x2 = (8, 4), and p2 = (1/10, 1/20). The greatest e for which
Harp(e) is satisfied is 4/5.

Given Harp(e), we propose the following definition, in analogy to the Aei:

Definition 6 For a set of observations Ω, the Homothetic Efficiency Index (Hei)
is the greatest e ∈ (0, 1] such that Ω satisfies Harp(e).

Note that the Hei cannot increase as the number of observations increase; it
can only decrease as more observations are added. This is because the Hei is the
minimum over all simple cycles in the data (such as going from xi to itself in the
definition of the axiom Harp(e)). The cycle that determined the old minimum
remains in the data as more observations are added.8

The Hei can be computed with the same binary search algorithm used for
calculating the Aei (simply exchange Garp(e) for Harp(e) in the algorithm). It
can be reported as a summary statistic. The next theorem will provide a good
motivation and justification to compute and report e. It is based on a concept we
call e-rationalisation, which is in the same spirit as the definitions proposed and
analysed by Halevy et al. (2012).

Definition 7 A utility function u ∈ U e-rationalises a set of observations Ω if
u(xi) ≥ u(y) whenever xi R0(e) y.

For e close to 1, a utility function which e-rationalises a set of data still
adequately explain choices as the result of utility maximisation with minor errors.

8Suppose there are only two observations, and Harp is violated. Then Hei = [(p1x2)(p2x1)]1/2.
If a third observation is introduced, then for example [(p1x3)(p3x2)(p2x1)]1/3 could be less that
the former Hei in which case efficiency decreases; but it cannot lead to an increase of the Hei as
the cycle from observation 1 to itself via observation 2 is still in the data.
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The following theorem shows that Harp(e) is necessary and sufficient for homothetic
e-rationalisation.

Theorem 4 For any e ∈ [0, 1] the following conditions are equivalent:
1. the set of observations Ω satisfies Harp(e);
2. there exist numbers U i > 0 such that

eU i ≤ U jpjxi (15)

for i, j = 1, . . . , N ;
3. there exists a homothetic u ∈ U which e-rationalises the set of observations

Ω.

Theorem 4 also shows why we can still interpret the Hei as a measure of wasted
income, just as we do with the Aei. Suppose a homothetic utility function u
e-rationalises Ω, but u(y) > u(xi) even though xi R y. This contradiction of the
ranking of bundles by u with R disappears if we assume that the consumer wasted
a fraction e of his income, because by e-rationalisation we must have xi R(e) y.

3.2 Improved Homothetic Efficiency Vector

Similar to the case of the Aei and Varian’s (1993) improved violation index, the
Hei is only a lower bound on homothetic efficiency. A homothetic efficiency vector
which provides information about how much each budget has to be perturbed to
achieve a meaningful kind of consistency while keeping the perturbations minimal
would be informative and useful for applied work. We suggest the following
straightforward generalisation of Harp(e).

Definition 8 A set of observations Ω satisfies Harp(h) for some h = (h1, . . . , hN ) ∈
(0, 1]N if for all i, j = 1, . . . , N , it holds that(

pixj

hi

)(
pjxk

hj

)
· · ·
(

p`xi

h`

)
≥ 1.

The problem with computing a vector h with maximal values is that “breaking
cycles” is not as easy as in the standard case in Varian (1993). It is not feasible to
consider breaking “homothetically revealed preference cycles”. If a set of data does
not satisfy Harp, then Knoblauch’s (1993) concept of “homothetically revealed
preferred to” is either ill defined or computationally infeasible for many observations.
If in the definition of the scalar factors in Eq. (12) we allow for multiple occurrences
of indices, then the minimum is not defined and the infimum is 0. For example,
if (p1x2)(p2x1) < 1, then limn→∞[(p1x2)(p2x1)]n = 0. If we restrict Eq. (12)
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to distinct vertices, then the problem of computing the scalars amounts to the
NP-hard problem of finding a simple shortest path in a weighted complete graph
(i.e., a path that visits each vertex at most once, except for the first vertex if the
path is a cycle). The complexity of this endeavour quickly approaches a level which
makes computation infeasible.9

We will therefore rely on a (mixed-integer) linear programming approach. The
basis for this approach will be provided by a theorem which is the analogue of
Theorem 4 (the proof is practically the same as for Theorem 4 and we omit it).

Definition 9 A utility function u ∈ U h-rationalises a set of observations Ω if
u(xi) ≥ u(y) whenever xi R0(hi) y.

Theorem 5 For any h = (h1, . . . , hN) ∈ [0, 1]N the following conditions are
equivalent:

1. the set of observations Ω satisfies Harp(h);
2. there exist numbers U i > 0 such that:

hj U
i ≤ U jpjxi (16)

for i, j = 1, . . . , N ;
3. there exists a homothetic u ∈ U which h-rationalises the set of observations

Ω.

We say that h̃ is a Homothetic Efficiency Vector (Hev) for Ω if Ω satisfies
Harp(h̃) and there does not exist a h′ ≥ h̃ such that Ω satisfies Harp(h′).

As explained above, calculating the Hev corresponds to solving a NP-hard
problem. However, it is possible to compute a first order approximation of the
Hev in polynomial time. To see how, we first define κi = log(hi) for all i = 1, . . . , N
and note that a first order Taylor expansion of log(hi) about the point 1 yields
log(hi) ' −(1− hi), so that

arg max
N∑
i=1

κi = arg max
N∑
i=1

log(hi)

' arg max
N∑
i=1

−(1− hi) = arg min
N∑
i=1

(1− hi). (17)

9In a complete graph with N ≥ 2 vertices, there are
∑N

i=2
(N−2)!
(N−i)! different simple paths

between two distinct vertices. For the 50 observations per subject collected in Fisman et al. (2007)
and Choi et al. (2007a), this would require to compare 3.37445 · 1061 different paths.
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Next to note is that the left hand side of the inequalities in Eq. (16) is positive,
implying that they can be equivalently rewritten as (by a log-linearisation):

κj + ui − uj ≤ log(pjxi), (18)

for all i, j = 1, . . . , N , where ui = log(U i) and κj = log(hj). Consider the following
linear programme (solved with respect to κi ∈ (−∞, 0] and ui ∈ (−∞,∞) for all
i = 1, . . . , N):

max
N∑
i=1

κi subject to (18), (19)

and define the optimal solutions from this problem as κ̂i for all i = 1, . . . , N . Given
the Taylor approximation in (17), the set of numbers ĥi = exp(κ̂i) is then a first
order approximation to the Hev (in the L1-norm).

There is an equivalent way to express the linear problem (19). This follows
from that

∑N
i=1 log(hi) is a monotonic log-transformation of

∏N
i=1 hi, in which case

(19) can be rephrased as:

max
N∏
i=1

hi subject to (16), (20)

This reformulation shows that the problem (19) does not compute the set
of indices closest to the unit vector in a ’true’ norm. Despite this, computing
the indices from (19) has several advantages over, for example, computing them
closest to the unit vector in the Minkowski norm.10 First, it is a computationally
tractable procedure for large data sets since it can be solved with elementary linear
programming techniques, i.e., in polynomial time (which is not the case for any
optimisation problem based on, for example, the Minkowski norm). Second, as
our empirical applications show, the problem (19) seems to provide a very good
approximation of the Hev, and the approximation becomes more accurate the
closer the Hev is to the unit vector. Third, rephrasing a potentially intractable
problem based on a first order approximation is a commonly used procedure to
find maximal elements in constrained optimisation problems.

As discussed in the introduction, our methods have a wide range of potential
applications. In the next section, we apply them to experimental and survey

10Computing the set of indices closest to the unit vector in the Minkowski norm would amount

to solving the problem: min
(∑N

i=1(1− hi)
ϕ
)1/ϕ

subject to (16) for some ϕ ≥ 1. Computing

the indices as close to 1 as possible in the L1-norm corresponds to solving this problem for ϕ = 1.
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data. This kind of data often comprise panels of a large number of subjects (in
controlled experiments) or households (in survey studies) which are observed over
a limited number of time periods. For example, our experimental data set consists
of choices of subjects over T = 50 decision rounds while the survey data consists
of household consumption allocations in up to T = 8 consecutive time periods.
Thus, the number of time observations encountered in experimental or survey data
applications generally does not pose any problems in applying our methods. The
panel dimension (i.e., the number of subjects or households) is usually not of any
concern since each subject or household is analysed and treated individually. More
precisely, the efficiency indices are calculated for every subject or household, which
allow us to avoid (debatable) preference homogeneity assumptions across subjects or
households. This approach effectively accounts for heterogeneity between subjects
and optimally exploits the panel structure of the data.

Some microeconomic applications may consist of cross-sections with thousands
of observations.11 One approach to working with these kinds of data is to split the
full sample into sub samples based on observable demographic factors, and apply
the proposed methods to the smaller sub samples. Although this does not allow to
analyse “between” group heterogeneity, it still allows for analysing “within” group
heterogeneity, which may be of more interest to the researcher.

3.3 Recoverability with Improved Homothetic Efficiency

Homothetic recoverability with data adjusted by efficiency indices is not as straight-
forward in the standard case described in Section 2.3. It is not sufficient to divide
the scalar factors ti,♦ in Eq. (12) by hi, or to divide each component in Eq. (12)
by hi to find new scalar factors. Figure 2.(c) already illustrates this: With only
two observations, we would have t1,2 = p1x2 if the data satisfied Harp. But here,
λ = p1x2, and clearly, x2 is still revealed preferred to λx1/e. We need to scale
down x1 by e as well to remove this contradiction, so λx1/e is only homothetically
revealed preferred to ex2.

Recoverability with adjustment by homothetic efficiency can be done for both
the Hei and the Hev. Both approaches are very similar, but the Hev is superior,
which is why we only present this case here. Let h̃ be an Hev of a set of observations
Ω. Define

t̃i,♦ = min

{(
pixj

h2i

)(
pjxk

h2j

)
· · ·
(

p`x♦

h2`

)}
, (21)

11Importantly, our methods also meet the data requirements for other types of applications.
For example, applications to macroeconomics and trade theory are often based on quarterly or
monthly time series or panel data that spans in general up to five or six decades, for which our
methods are computationally tractable.

19



where the minimum is over all finite sequences i, j, . . . , ` between 1 and N inclusive.
We say that t̃i,♦xi is homothetically revealed preferred at efficiency level hi to x♦,
written t̃i,♦xi H̃ x♦. To motivate this definition and show that it is useful, we first
need to define the set of bundles which are homothetically revealed preferred at
efficiency vector h̃ to x♦ as

H̃RP h̃(x♦) = intCMH

(
x♦ ∪

N⋃
i=1

t̃i,♦xi

)
, (22)

and

H̃RW h̃(x♦) = {x ∈ RL
+ : x♦ ∈ H̃RP h̃(x)}. (23)

Figure 3 shows an example of the sets H̃RP h̃(x0) and H̃RW h̃(x0). Figure 4 in
the next section shows four examples using experimental data by Fisman et al.
(2007).

x1 x2x0

H̃RW h̃(x
0)

RP(x0)

H̃RW h̃(x
0)

RW (x0)

x1

x2

Figure 3: (Homothetically) revealed preferred and worse sets for x0 = (x1 + x2)/2 with the

same data as in Figure 2 based on a Hev with h̃ = (1, 16/25). The hatched area shows ĤRP and

ĤRW , the filled area RP and RW .

While Theorem 4 provides the motivation to report the Hei as a summary statis-

tic, and Theorem 5 motivates the Hev, Theorem 6 below justifies the use of H̃RP h̃

and H̃RW h̃. Note that it is not necessarily the case that RP(x0) ⊆ HRP h̃(x0).
This can happen if homothetic efficiency is particularly low. However, as the
application in Section 4.2 demonstrates, this is not a problem for practical purposes
when homothetic efficiency is not unreasonably low. Furthermore, Theorem 6
provides a strong justification: It shows that every homothetic utility function
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which h-rationalises the data will agree with our construction of the homothetically
revealed preferred and worse sets.

Theorem 6 If Ω satisfies Harp(h), then for every homothetic u ∈ U which
h-rationalises Ω,

H̃RPh(x♦) ⊆
{
x ∈ RL

+ : u(x) ≥ u(x♦)
}
,

H̃RWh(x♦) ⊆
{
x ∈ RL

+ : u(x) ≤ u(x♦)
}
.

4 Applications

Our aim with this empirical exercise is threefold: First, we want to show that our
methods can recover detailed information about subjects’ preferences in experimen-
tal data sets. Second, we want to show that homothetic efficiency can be high for
consumer choice data. Finally, we want to show that data which is adjusted by the
Hev (Hei) can have much higher discriminatory power against random behaviour
than data adjusted by the Vev (Aei).

4.1 Test Power and Conditional Test Power

The standard approach to calculate the power for revealed preference tests is based
on Bronars (1987). In this paper, we follow Bronars’ approach and generate many
random choice sets uniformly distributed on the budget sets and compute the
fraction of sets that either violates Garp or Harp, which we refer to as the power
of Garp and Harp, respectively.

To analyse the loss in power for expenditure-adjusted data, we employ the
following three-step procedure: (i) We compute the efficiency index using the
observed data; (ii) Then, in a second step, we generate random data sets using
Bronars’ approach; (iii) Finally, we calculate the fraction of sets violating Garp or
Harp, where total expenditure is adjusted for efficiency. More precisely, we deflate
expenditure by the efficiency index computed in the first step when testing whether
the randomly generated data sets satisfies Garp or Harp. Repeating the three-
step procedure for all four efficiency indices Aei, Vev, Hei, and Hev allow us to
compare the loss in discriminatory power across the indices.

A potential issue with calculating the power for Harp in Bronars’ framework
is that Garp is a necessary condition for Harp, and the Hei can never exceed
the Aei. It would therefore be interesting to know the probability that a set of
random choices satisfying Garp also satisfies Harp, or that such a set has at
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least the same Hei. This would provide the homothetic test power conditional on
Garp being satisfied. Heufer (2014a) provides an efficient method to generate sets
of random choices which satisfy Garp. The conditional test power is the fraction
of generated data sets that satisfies Harp.

4.2 Experimental Data: Preferences for Giving

Fisman et al. (2007, FKM) analyse data obtained in a laboratory experiment. They
employ the same setup as Andreoni and Miller (2002, AM), that is, a generalised
dictator game in which one subject (the dictator) allocates token endowments
between himself and an anonymous other subject with different transfer rates. The
payoffs of the dictator and the beneficiary are interpreted as two distinct goods,
and the transfer rates as the price ratio. In both papers, the authors estimate
a CES utility function, so they implicitly maintain the hypothesis that choices
are homothetic. Testing how “close” the choices are to homotheticity is therefore
important and should be conducted at least as a pretest to screen out particularly
inefficient choices.

A simple two-dimensional version of homothetic efficiency has been computed
for both the FKM and the AM data by Heufer (2013). We only focus on the FKM
data here, as they contain 50 choices per subject as opposed to 8 in the AM data.

This also allows for an informative graphical analysis based on the sets H̃RP and

H̃RW .
We begin the analysis by calculating the Aei, Hei, Vev and Hev for all

subjects.12 These results are presented in Table 1, where each row reports the
mean, minimum, the first, second (median) and third quartiles and the maximum
calculated across all 76 subjects. Looking at the first two rows, we find that the
Aei is noticably higher than the Hei for most subjects. However, as discussed
above, the Aei and Hei are summary statistics, and may be uninformative in
describing the entire distribution of the indices. In fact, looking at the third and
fourth rows of Table 1, which provides the results for the Vev and Hev, gives a
different picture. These results show that homothetic efficiency is, in fact, close to
utility maximisation efficiency.13 In particular, the Hev displays the same pattern

12For each subject, the Hev is computed by solving the problem (19). To aid comparisons
with the Vev we calculated the Vev in the L0-norm by slightly modifying the problem (6). This
corresponds to how the Hev is computed and is achieved by first log-linearising the constraints
(c.i)-(c.vi) and then maximise

∑N
i=1 ṽi where ṽi = log(vi). We also computed the Vev in the L1-

norm by solving the problem (6). Interestingly, we obtained practically identical solutions which
suggests that computing the indices in the L0-norm, in fact, provides a very good approximation
to the L1-problem (see the discussion in Section 3.2).

13The entries for the Vev and Hev in the third and fourth rows are averages across all
subjects. For example, to obtain the entry minimum we first computed min{v1, . . . , vN} and
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as the Vev: they are both characterised by one or a few observations with lower
values, while the remaining values in the vector are very close to one.

efficiency

Index mean min 1st quartile median 3rd quartile max

Aei 0.9407 0.5308 0.9173 0.9775 0.9972 1.0000
Hei 0.8821 0.4438 0.8118 0.9210 0.9786 1.0000
Vev 0.9959 0.9350 0.9982 1.0000 1.0000 1.0000
Hev 0.9788 0.8274 0.9742 0.9919 0.9986 1.0000

Table 1: Efficiency indices (FKM).

Table 2 report summary statistics for the unconditional power calculations.
We present the power of Garp and Harp for different configurations, depending
on how total expenditure is adjusted when applying these test procedures (see
the second column). The results from the last two rows show that Garp and
Harp have optimal power even when total expenditure is deflated by the Vev and
Hev, respectively. Thus, we can conclude that Garp and Harp have high
discriminatory power even for income-adjusted random data. However, as seen
from the third and fourth row, this is not always the case when deflating expenditure
by the Aei and Hei. In fact, the loss in power can be rather considerable for some
subjects as seen from the third and fourth rows in Table 2. Finally, Table 3 reports
the conditional power results. These results show that Harp has optimal power
against uniformly random data that satisfies Garp.

unconditional power

Income
Axiom deflated mean min 1st quartile median 3rd quartile max

Garp No 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Harp No 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Garp Aei 0.9759 0.2520 1.0000 1.0000 1.0000 1.0000
Harp Hei 0.9810 0.3720 1.0000 1.0000 1.0000 1.0000

Garp Vev 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Harp Hev 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2: Unconditional power for Garp and Harp (FKM).

min{h1, . . . , hN} for each subject and then calculated the mean of these values over all subjects.
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conditional power

Axiom mean min 1st quartile median 3rd quartile max

Harp 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3: Conditional power for Harp (FKM).

Finally, we show how our methods can recover detailed information about
subjects’ preferences. Figure 4 shows examples of subjects who reveal almost proto-
typical preferences. The differences between the homothetically revealed preferred
and worse sets and the regular revealed preferred and worse sets demonstrate
how much more we can learn about subjects’ preferences when deviations from
homotheticity are minor. The examples also illustrate that the theoretical problem
of disagreements between RP and HRP described in Section 3.3 is unlikely to
occur for large sets of real data. The figure is a nice illustration of the extend
of additional information recovered. Given that the bound on the money metric
utility function is based on the revealed preferred set, the figure shows how much
tighter the bounds can be when using homothetically revealed preference.

We also provide an interactive application prepared with Wolfram Mathematica R©

that allows users to analyse the data graphically and create figures as the ones in
Figure 4 for arbitrary subjects and bundles. This software is available on one of
the authors’ websites and can be run with the free Wolfram CDF Player.14

4.3 Survey Data: Household Expenditures

We now illustrate our methods using data from the Spanish Continuous Family
Expenditure Survey (Encuesta Continua de Presupuestos Familiares, abbreviated
ECPF). This data was obtained from Crawford (2010) and is a quarterly budget
survey, ranging from 1985-1997, that interviews Spanish households for up to a
maximum of eight consecutive quarters on their consumption expenditures.15 From
this data, we use a sub-sample of couples with and without children, where the
husband is employed full-time and the wife is outside the labor force.16 We exclude
durable goods and focus exclusively on consumption expenditures on non-durable

14The CDF file is available at https://sites.google.com/site/janheufer/

HomotheticRecoverability.cdf. To run the file, the free Wolfram CDF Player can be
obtained at http://www.wolfram.com/cdf-player/.

15The data can be downloaded from the supplementary material accompanying Crawford (2010).
See also Browning and Collado (2001) for a detailed discussion of the data.

16Households are randomly rotated at a rate of 12.5 percent per quarter.
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Figure 4: The dashed area shows H̃RP and H̃RW , the filled area shows RP and RW . (a)
Subject 18: Weak perfect substitute preferences. (b) Subject 26: Weak Nash preferences. (c)
Subject 25: Weak Rawlsian preferences. (d) Subject 19: Selfish preferences.

25



consumption categories.17 Overall, we use data containing 21,866 observations on
3,134 households.

Table 4 reports summary statistics for the calculated efficiency indices across
all households. As seen from this table, homothetic efficiency is very close to
utility maximisation efficiency. For example, the mean across all observations and
households of the Hev is 0.9960 (compared to the Vev which is 1.0000). Thus,
the consumption choices of the households’ seem to be very well explained by
homothetic preferences.

efficiency

Index mean min 1st quartile median 3rd quartile max

Aei 0.9998 0.9698 1.0000 1.0000 1.0000 1.0000
Hei 0.9917 0.9518 0.9890 0.9936 0.9965 1.0000
Vev 1.0000 0.9998 1.0000 1.0000 1.0000 1.0000
Hev 0.9960 0.9865 0.9936 0.9978 0.9996 1.0000

Table 4: Efficiency indices (ECPF).

Table 5 report results from the power analysis. As discussed in the Introduction,
allowing for errors in revealed preference tests often lead to a loss in power, which
may render the analysis practically meaningless. And as seen from Table 5, this
concern is clearly warranted. Indeed, the first, third and fifth rows show that
standard utility maximisation barely has any power against uniformly random
behaviour. This means that Garp is essentially unable to reject random consump-
tion behaviour. On the other hand, because Harp is a stronger condition than
Garp, we expect it to have higher power against random behaviour. The second,
fourth and sixth rows show that Harp indeed has substantially more power against
uniformly random behaviour than Garp. In fact, while the average power across
households never exceeds nine percent for Garp, the power of Harp is above 90
percent for all but a few households.

The current analysis also allow us to analyse the potential loss in power of
adjusting expenditure by efficiency in revealed preference tests. Consider once
again the second, fourth and sixth rows in Table 5. These results show that while
the loss in power can be considerable when adjusting income by the Hei, the loss
in power is negligible when adjusting income by the Hev. More precisely, adjusting

17The non-durables are aggregated into the following 15 consumption categories: (i) food and
non-alcoholic drinks at home, (ii) alcohol, (iii) tobacco, (iv) energy at home, (v) services at home,
(vi) non-durables at home, (vii) non-durable medicines, (viii) medical services, (ix) transportation,
(x) petrol, (xi) leisure, (xii) personal services, (xiii) personal non-durs, (xvi) restaurants and bars,
and (xv) travelling.
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unconditional power

Income
Axiom deflated mean min 1st quartile median 3rd quartile max

Garp No 0.0892 0.0000 0.0000 0.0280 0.1700 0.7080
Harp No 0.9974 0.9700 0.9980 1.0000 1.0000 1.0000

Garp Aei 0.0859 0.0000 0.0000 0.0260 0.1640 0.6480
Harp Hei 0.6382 0.0000 0.3760 0.7400 0.9280 1.0000

Garp Vev 0.0877 0.0000 0.0000 0.0260 0.1680 0.6760
Harp Hev 0.9558 0.1300 0.9480 0.9840 0.9960 1.0000

Table 5: Unconditional power for Garp and Harp (ECPF).

income by the Hev have small effects on the power, which, in our view, rather
forcefully addresses the concern that adjusting expenditure by efficiency in revealed
preference testing renders the analysis meaningless.

Table 6 reports the conditional power results. These results show that Harp has
very good power against uniformly random data that satisfies Garp.

conditional power

Axiom mean min 1st quartile median 3rd quartile max

Harp 0.9776 0.7400 0.9800 0.9900 1.0000 1.0000

Table 6: Conditional power for Harp (ECPF).

The main conclusions that can be drawn from our results so far are that: (i) The
consumption choices of the households are very close to satisfying homothetic pref-
erences (i.e., the households have high homothetic efficiency) and (ii) Homotheticity
has much higher discriminatory power against random behaviour than standard
utility maximisation. In fact, the vast majority of households have optimal power
against random behaviour even when income is adjusted by homothetic efficiency.
But this is a sequential analysis, and as such, fails to give any indication of the
trade-off between efficiency and power. Beatty and Crawford (2011) and Heufer
(2012)18 suggested to combine efficiency and power into one single measure based on
the idea of predictive success originally put forward by Selten (1991). Beatty and
Crawford’s (2011) measure is computed as the difference between pass rate and one
minus the power. The outcome of this measure is a value between minus one and

18See also Heufer (2008) for an early application of the trade-off approach to compare two
different efficiency indices.
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one. Negative values would suggest that the model fails to describe the preferences
of the household: The model does not pass the revealed preference axiom and
provides low discriminatory power against random behaviour. In contrast, a high
and positive predictive success indicates a potentially useful model: It passes the
revealed preference axiom and has high power against random behaviour.

As suggested by Beatty and Crawford (2011) and Heufer (2012), the predictive
success can be used to find the optimal level of efficiency. Suppose we want to find
the optimal efficiency level for Harp at the household level. For a given efficiency
level, we first calculate Harp(e) which gives the pass rate (either zero or one)
and then, in a second, we calculate the power using Harp(e). Doing this for an
arbitrarily fine grid gives the predictive success at each efficiency level. The optimal
efficiency level is the one that produces the highest predictive success. Figure 5
presents the results from this analysis. Figure 5.(a) shows the average predictive
success across all households for each efficiency level in the grid. As seen from this
plot, Garp obtains the maximal predictive success value at an efficiency level of
one where it is very close to zero. One interpretation of this is that the theory of
standard utility maximisation performs about as well as a theory that explains
consumer demand as purely random behaviour. The results for Harp are quite
different: We find that the maximal average predictive success across households
is 0.22 obtained at an efficiency level of 0.995. Thus, according to these results,
homotheticity provides a considerably better fit to the data than standard utility
maximisation at an efficiency level only slightly below one. Figures 5.(b)-(d) show
the median and the first and third quartile of the predictive success across all
households for each efficiency level. These plots show that the predictive success is
always higher for Harp at some efficiency level equal to or above 0.985. Focusing
on Figure 5.(b), we find that half of all households have a predictive success above
0.27 at efficiency level 0.99. Finally, looking at plot Figure 5.(d), we see that
25% of all households have a predictive success above 0.74 at efficiency level 0.99.
Assuming that an efficiency level of 0.985 is acceptable, we can then draw the
conclusion, based on the measure of predictive success, that homotheticity is a
more suitable model to describe the preferences of the households in this survey
data.

5 Conclusion

Consumer choice data often violates homothetic utility maximisation. In such
cases, it would be interesting to know how close the data comes to homothetic
utility maximisation. For this purpose, we introduced a non-parametric approach
to estimating homothetic efficiency of demand data by generalising Heufer’s (2013)
method. We introduced the Homothetic Efficiency Index (Hei) and the Homothetic
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Figure 5: Measure of predictive success across all households for each efficiency level in the grid
(ECPF).
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Efficiency Vector (Hev) in analogy to the standard Afriat Efficiency Index (Aei)
and Varian’s improved violation index or Varian Efficiency Vector (Vev). As
the Aei, the Hei can be interpreted as a measure of wasted income under the
assumption that violations of homotheticity were due to errors in decision making.
As a non-parametric approach, our method does not rely on any specific form of a
utility function.

Both the Hei and the Hev can be used to adjust data by deflating expenditure
to reconstruct bounds on preferred and worse sets. This is motivated by a concept
called e- and h-rationalisation which is similar to a concept used recently by Halevy
et al. (2012): For efficiency close to 100%, there still exists a utility function that
adequately explains the data as the result of homothetic utility maximisation with
minor errors.

We applied the method to two data sets. This empirical analysis illustrates how
recoverability based on adjusted homothetically revealed preferred relations allows
a detailed analysis of preferences at the individual level. It also demonstrates how
a data set that has very low power against the alternative hypothesis of random
behaviour can still be useful when testing for the stronger condition of homothetic
utility maximisation. We find that efficiency can be very high for homotheticy, that
tests for Harp have far greater power than tests for Garp, and that adjusting
choices by efficiency measures has negligible effects on test power. Using the
measure of predictive success applied to households consumer data, we find that
homothetic utility maximisation is considerably more successful in explaining the
demand behaviour for efficiency levels close to one.

We expect that our results help in analysing experimental, survery, and field data.
It will help to test the assumption of homotheticity before estimating homothetic
utility functions, to quantify the extent of the violation of homotheticity, to analyse
preferences in detail without the need of estimating parameters, and to increase test
power for data sets which have too litle power against the alternative hypothesis of
random behaviour.

The approach could easily be translated to production analysis. As homoth-
eticity of production is assumed in many applications, a non-parametric test that
provides a measure for homothetic efficiency independent of a specific production
function should at the very least be a useful screening device and robustness
check before parameters of a homothetic production function are estimated. Non-
parametric recoverability of technological information as suggested by Varian
(1984a) could also be carried out in analogy to the recoverability of preferences in
our paper.
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A Appendix

A.1 Proofs

A.1.1 Proof of Theorem 4

Proof For (1) ⇒ (2) and (3) ⇒ (1), Varian’s (1983) proof can be applied with
minor obvious adjustments. We will prove (2) ⇒ (3).

As in Varian (1983), define U(x) = mini{U ipix}. It can be easily verified that
U ∈ U and that U is homothetic; what remains to be shown is that U e-rationalises
Ω. Suppose Ω satisfies Harp(e) and there exists x such that U(x) ≥ U(xi)
and xi P0(e) x. Then epixi = e > pix. By continuity and monotonicity of U ,
there then exists y > x such that piy = e and U(y) > U(x). By Harp(e),
eU i ≤ minj{U jpjxi}, and with piy = e we obtain piyU i ≤ minj{U jpjxi}. Sup-
pose U(xi) = Ukpkxi; then piyU i ≤ Ukpkxi = U(xi) ≤ U(x). But U(y) =
minj{U jpjy}, so U(y) ≤ U ipiy. Then U(y) ≤ U(xi) ≤ U(x), but y > x, which
contradicts montonicity.

Suppose instead that there exists x such that U(x) > U(xi), and xi R0(e) x but
not xi P0(e) x. Then pix = e, and we obtain U(x) ≤ U(xi) ≤ U(x), which implies
U(x) = U(xi), a contradiction. Thus, U e-rationalises Ω.

A.1.2 Proof of Theorem 6

Proof By induction. Suppose u ∈ U is homothetic and h-rationalises the data.
By definition, we can assume without loss of generality that u is homogenous of
degree 1. Because u is concave, we only need to consider the vertices of the closure

of H̃RPh, that is, we only need to check if u(t̃i,♦xi) < u(x♦) is possible.

Step 1 By homogeneity of degree 1, u([pix♦/h2i ]x
i) = [pix♦/h2i ]u(xi). Let

y = [hix♦]/[pix♦]; then piy = hi, and therefore xi R0(hi) y. Suppose u(t̃i,♦xi) <
u(x♦). Then u(xi) < (h2i /[p

ix♦])u(x♦). But with hi ≤ 1, (h2i /[p
ix♦])u(x♦) ≤

(hi/[p
ix♦])u(x♦) = u(y). Then u(xi) < u(y), but xi R0(hi) y, so u cannot h-

rationalise Ω. Thus, ([pix♦]/h2i )u(xi) ≥ u(x♦).

Step 2 Assume without loss of generality that

t̃1,n =
p1x2

h2i

p2x3

h2i
. . .

pn−1xn

h2n−1

and that t̃1,♦ = t̃1,n[pnx♦]/h2n. Suppose t̃1,nu(x1) ≥ u(xn). Then

t̃1,♦u(x1) = t̃1,nu(x1)
pnx♦

h2n
≥ u(xn)

pnx♦

e2
≥ u(x0),
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where the last inequality follows from Step 1. Thus, t̃1,♦u(x1) ≥ u(x♦).
By induction, Steps 1 and 2 show that u(t̃i,♦xi) ≥ u(x♦) for all i and that all

homothetic u ∈ U which h-rationalise Ω. That concludes the proof for H̃RP . The

second part of the theorem then follows from the definition of H̃RW .
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