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Abstract

This paper shows that the parsimoniously time-varying methodology of Callot and Kris-
tensen (2015) can be applied to factor models. We apply this method to study macroeconomic
instability in the US from 1959:1 to 2006:4 with a particular focus on the Great Moderation.

Models with parsimoniously time-varying parameters are models with an unknown num-
ber of break points at unknown locations. The parameters are assumed to follow a random
walk with a positive probability that an increment is exactly equal to zero so that the parame-
ters do not vary at every point in time. The vector of increments, which is high dimensional
by construction and sparse by assumption, is estimated using the Lasso.

We apply this method to the estimation of static factor models and factor augmented
autoregressions using a set of 190 quarterly observations of 144 US macroeconomic series
from Stock and Watson (2009). We find that the parameters of both models exhibit a higher
degree of instability in the period from 1970:1 to 1984:4 relative to the following 15 years. In
our setting the Great Moderation appears as the gradual ending of a period of high structural
instability that took place in the 1970s and early 1980s.

JEL codes: C01, C13, C32, C38, E32.

Keywords: Parsimoniously time-varying parameters, factor models, structural break, Lasso.

1. Introduction

The Great Moderation is a period of macroeconomic stability in the United States thought
to have begun in the 1980s (Kim and Nelson, 1999; McConnell and Perez-Quiros, 2000; Stock
and Watson, 2003), or even in the 1950s (Blanchard and Simon, 2001) with an interruption
in the 1970s and early 1980s. This period is marked by a decline of inflation and by a relative
stabilisation of the business cycle and of monetary policy which can be attributed either
to a decline in output volatility or to changes in the dynamics of macroeconomic variables
(Stock and Watson, 2009). The decline in output volatility is well documented by the authors
cited previously, but this does not preclude the possibility of changes in the dynamics of
macroeconomic variables. This paper proposes to quantify parameter instability in factor
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models before and during the Great Moderation using the parsimoniously time-varying
(ptv) framework of Callot and Kristensen (2015) as it imposes minimal assumptions on the
dynamics of the parameters.

The contributions of this paper take both a methodological and an empirical form. From
a methodological point of view, we show that the ptv framework proposed by Callot and
Kristensen (2015) can be readily used with factor models. In this framework, the parameters
are assumed to follow a random walk with a positive probability that an increment is exactly
equal to zero, and the resulting parameter paths are estimated using the Lasso. The empirical
contribution of this paper consists in estimating a large number of factor models using US
macroeconomic data to get a picture of the parameter instability in the last 50 years. We
document that the instability is widespread, but that the majority of the breaks occur before
the Great Moderation. We also document that allowing for moderate time variation in the
parameters can substantially improve the fit of the model in a forecasting context suggest-
ing that improvements in forecasting performance could be possible by taking parameter
instability into account.

Factor models have been investigated and applied for more than a decade (for a general
review, see Stock and Watson (2011); Bai and Ng (2008)). The problem of breaks and structural
instability in the parameters of factor models remains a field open for exploration though. The
seminal work of Stock and Watson (2002) provides insights into the problem, they show that
the principal components (PC) factor estimator remains consistent if faced with moderate
structural instability in the factor loadings. More recently the literature has seen a number
of contributions related to testing for structural breaks in the loadings. The first formal test
was proposed by Breitung and Eickmeier (2011) who considered the problem of testing the
loadings associated with the individual variables. This has since been followed up by Chen,
Dolado, and Gonzalo (2014) and Han and Inoue (2014) who propose tests for breaks in all
loadings jointly, and Yamamoto and Tanaka (2013) who proposed a modified version of the
Breitung and Eickmeier (2011) test.

More closely related to the present paper, Cheng, Liao, and Schorfheide (2014) use shrink-
age methods to determine both the break points and the number of factors, and Corradi and
Swanson (2014) propose a test for the joint hypothesis of breaks in the factor loadings and
in the parameters of a factor augmented forecasting model. Although these contributions
take different approaches to the issue of structural instability, they do have characteristics in
common: They only consider a fixed number of breaks (often a single one) which are typically
assumed to be common to all factors and large in magnitude. Breitung and Eickmeier (2011)
show how such a setup will lead to overestimation of the number of factors. This is, in various
ways, exploited in the mentioned papers to detect breaks. For example, Cheng et al. (2014)
determine the break by minimizing the sum of the numbers of pre- and post-break factors
instead of using a traditional sum-of-squared residuals criterion; and Corradi and Swanson
(2014) utilize that the information criterion of Bai and Ng (2002) will overestimate the number
of factors when the loadings are subject to breaks in order to construct a test statistic.

Our approach to the problem is different from existing papers. Instead of considering
only a single or fixed number of breaks we allow for more general forms of instability in the
parameters of the model. The parameters associated with the factors, and those associated
with potential autoregressive terms, are allowed to change independently across variables
and time. Bates, Plagborg-Møller, Stock, and Watson (2013) shows that the PC factor estimator
is consistent under general forms of structural instability, including the forms of instability
assumed in the ptv framework. The benefit of this is that we can rely on standard results
regarding estimation of the factors and that e.g. the information criterion of Bai and Ng (2002)
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for selecting the number of factors is still valid.
Callot and Kristensen (2015) introduced the idea of ptv parameters for VAR models. This

framework allows for an unknown number of break points at unknown locations by estimat-
ing the vector of changes in the parameters, which is high dimensional by construction and
sparse by assumption, using the Lasso. In this paper we show that static factor models as well
as factor augmented autoregressive (FAAR) models can be estimated in the ptv framework.
The ptv models are well suited for our purpose of investigating the Great Moderation in terms
of parameter stability in factor models. The parameters are modelled non parametrically,
the estimation of the number of breaks and of their locations is data driven, and the pa-
rameters can remain stable for any duration or even the whole sample in which case our
estimator is equivalent to OLS. This allows for the parameters to remain constant, experience
a few changes (as in the structural breaks literature), or exhibit much more unstable paths,
independently across variables.

We conduct an empirical study of the US macroeconomy using the ptv methodology
with both static factor models and FAAR forecasting models. In particular we follow up on,
and expand upon, the empirical investigation of the Great Moderation by Stock and Watson
(2009). Stock and Watson (2009) finds that the Great Moderation was indeed associated with
breaks in both factor loadings and the parameters of FAAR forecasting models. Using the ptv
methodology of Callot and Kristensen (2015) we investigate structural instability throughout
the sample with a focus on the period of the Great Moderation, and investigate whether
accounting for structural instability in this fashion is helpful for forecasting.

The remainder of the paper is organized as follows, in the next section we present our
analytical framework and discuss the estimation of the time-varying parameters and of the
factors. Section 3 is dedicated to our empirical investigation of the Great Moderation and is
followed by a conclusion summarizing our findings.

2. Analytical framework

This section presents the theoretical framework for our investigation of the Great Modera-
tion. We begin by discussing the estimation of the static factor model, and FAAR model, with
time-varying parameters used in the empirical section. We introduce the process assumed to
drive the time-varying parameters, the parsimonious random walk, and present the results
established in Callot and Kristensen (2015) for the estimation of models with parsimoniously
time-varying parameters. This is followed by a discussion of the estimation of common factors
when part of their loadings on the observed variables is assumed to follow a parsimonious
random walk, and on the implications of using estimated factors instead of the unobserved
factors.

2.1. Models

We make use of two models in this paper. A static factor model is used to estimate the
factors and perform structural analysis. A FAAR model is also considered, with the primary
purpose of forecasting. In the static factor model we assume that the variables of interest, Xi t ,
t = 1, . . . ,T , i = 1, . . . ,n, are generated by a factor model with rF unknown factors, Ft :

Xi t =λ′
i t Ft +ei t , (1)

where λi t ∈RrF is the vector of factor loadings at time t for variable i . We also use this model
with a large number of variables n to estimate the factors using PC. We provide consistency
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results for the estimated factors below, and discuss the data used to estimate the factors in
the data section.

Factor models are frequently used for macroeconomic forecasting, in which context
the estimated factors are used as predictors in the forecasting models. In the case of linear
regression models, this is referred to as FAAR model. Such a model for a h-step ahead direct
forecast can be written as

X (h)
i t+h =µi +β′

i t Ft +
p−1∑
j=0

γi j t Xi t− j +εi t . (2)

To simplify the discussion on the estimation of these models, we write both of them in the
same compact form and drop the variable subscript i :

yt = ξ′t Zt +εt . (3)

Zt is a vector of dimension r ×1 containing the factors and, in the case of the FAAR model,
the lags of the dependent variable. The 1× r vector of parameters ξt is assumed to be time
varying, and yt is either Xi t or X (h)

i t+h .
If the parameters of both these models were assumed to be constant over time, and the

factors known or estimated, we could consistently estimate the models by OLS. Instead we
let the parameters of the models vary over time and, to be specific, we assume that the
parameters follow parsimonious random walks. This process is formalized in the following
assumption.

Assumption 1 (Parsimonious random walk). Assume that the parameters follow a parsimo-
nious random walk with ξ0 given.

ξt = ξt−1 +ζt ¯ηt .

ηt and ζt are vectors of length r with the following properties:

αT = kαT −a , 0 ≤ a ≤ 1, kα > 0

ζ j t =
1, w.p. αT

0, w.p. 1−αT
j ∈ 1, ...,r

ηt =N (0,Ωη)

E(η′tηu) = 0if t 6= u

E(η′tζu) = 0 ∀t ,u ∈ 1, ...,T

The vector of increment to the parameters is given by the element-by-element product
of the two vectors of mutually independent random variables ζt and ηt . ηt is a set of i .i .d .
random variables with mean zero and bounded variance. ζt is a vector of binary variables in
which each element takes value 1 with probability αT and zero otherwise.

The parsimonious random walk assumption implies that many of the increments to the
parameter vectors are equal to zero, the probability of a non zero increment is controlled by
αT = kαT −a . The constant kα scales the probability αT and must be such that 0 ≤αT ≤ 1. If
kα satisfies this restriction for some T0, it will satisfy it for any T ≥ T0 since a ≥ 0. Consistency
requirements for the Lasso estimator will impose a tighter lower bound on a. Note that we do
not set or estimate a (or αT ) but simply assume that a is larger than some quantity which we
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make explicit later.

2.2. Estimation of the parsimoniously time-varying parameter models

Assumption 1 implies that the vector of increments to the parameter vector is sparse, it
contains many zero, but is also high dimensional since it is at least as large as the sample size,
the number of parameters to estimate is of the order of r T .

Recall the compact model,

yt = ξ′t Zt +εt .

Define the following matrices:

Z D =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · ZT

 ,W =


Ir 0 · · · 0
Ir Ir · · · 0
...

...
. . .

...
Ir Ir · · · Ir

 , Z DW =


Z1 0 · 0
Z2 Z2 · 0
...

...
. . .

...
ZT ZT · · · ZT

 .

We can write the parsimoniously time-varying model (3) as a simple regression model

y = Z DW θ+ε

where the parameter vector θ′ = [ξ′0 + ζ′1 ¯ η′1,ζ′2 ¯ η′2, ...,ζ′T ¯ η′T ] has length r T , and y =
(y1, ..., yT )′, ε= (ε1, ...,εT )’. The matrix Z DW contains T observations for r T covariates con-
structed from the original r variables. The first r elements of θ are the sum of the initial value
of the parsimonious random walk ξ0 and the first increment ζ1¯η1. The subsequent elements
of θ are the increments of the parsimonious random walk ζt ¯ηt , t > 1 so that by cumulating
the entries of θ we can recover the full path of the parameters.

The parameter vector we seek to estimate, θ, is sparse and high dimensional, we estimate
θ using the Lasso as in Callot and Kristensen (2015). We make extra assumptions below
regarding the distribution of the innovations and of the factors, in particular to ensure that all
the variances involved are finite.

Assumption 2 (Covariates and innovations). Assume that:

i) εt ∼N (0,σ2
ε) is a sequence of i .i .d innovation terms, σ2

ε <∞.

ii) Ft ∼N (0,Ω2
F ). For all k = 1, ...,rF , Var(Fkt ) =σ2

F k <∞.

iii) E(ε′F ) = 0.

iv) Var(yt ) ≤ M <∞ for all t and some positive constant M.

Assumption 2(iv) ensures that the variance of yt is bounded from above at all points in
time. It is a high level assumption that we give here, a lower level assumption on the dynamics
of the model is used instead in Callot and Kristensen (2015) to which the interested reader is
referred.

Similarly we state the following assumption, the restricted eigenvalue condition, which is a
standard assumption in the Lasso literature, introduced by Bickel, Ritov, and Tsybakov (2009).
Define κ2

T as the restricted eigenvalue, we then assume the following restricted eigenvalue
condition to hold:
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Assumption 3 (Restricted eigenvalue condition). Assume that:

i) κ2
T > 0.

ii) κ2
T ∈Ωp (T d−1) for some d ∈ (0,1].1

The rate of decrease of κ2
T stems from technical assumptions on the rate at which the

distance between breaks increases asymptotically; the detail of the assumptions and proof of
the result can be found in Callot and Kristensen (2015).

We can now state the first theorem from Callot and Kristensen (2015) which provides upper

bounds on the prediction and parameter estimation errors. Let
[
σ2

1, ...,σ2
r T

]
= diag(Var(Z DW ))

and σ2
T = max

(
σ2
ε ,max1≤k≤r T σ

2
k

)
where σ2

ε is the variance of ε and σ2
k is the variance of the

k th column in Z DW . Define the active set ST as the set of indices corresponding to non-zero

parameters in θ, ST =
{

j ∈ (1, ...,r T )|θ j 6= 0
}

, and its cardinality |ST | = s. Finally, let λ̃T be the

Lasso penalty parameter. We then have the following result:

Theorem 1. For λ̃T =
√

8ln(1+T )5 ln(1+r )2 ln(r (T−r+1))σ4
T

T and some constant A > 0, under assump-

tions 1, 2, and 3, and on the set BT with probability at least equal to 1−πB
T we have the

following inequalities:

1

T

∥∥∥Z DW (θ̂−θ)
∥∥∥2 ≤ 16sλ̃2

T

κ2
T

, (4)

∥∥∥θ̂−θ∥∥∥
`1

≤ 16sλ̃T

κ2
T

, (5)

with πB
T = 2(1+T )−1/A +2(r (T − r +1))1−ln(1+T ).

The bounds given in theorem 1 are upper bounds on the `1 norm of the parameter
estimation error and on the mean squared estimation error of the Lasso. These bounds hold
on a set that has probability at least 1−πB

T for a given value of λ̃T . Nonetheless these bounds

are valid for any value of the penalty parameter as long as
∥∥∥T −1ε′Z DW

∥∥∥∞ ≤ λ̃T /2 is satisfied.

Holding everything else constant the probability of this inequality being satisfied decreases
with λ̃T as do the upper bounds in theorem 1; there is a trade-off between the tightness of the
bounds and the probability with which they hold.

Theorem 2 below provides an asymptotic counterpart to theorem 1.

Theorem 2. Let a and d be scalars with a,d ≤ 1, 1−a +d ≤ 1, and 3
2 −a −d < 0.Then under

assumptions 1, 2, and 3, and as T →∞ we have:

1

T

∥∥∥Z DW (θ̂−θ)
∥∥∥2→p 0 (6)∥∥∥θ̂−θ∥∥∥

`1
→p 0 (7)

This theorem establishes the consistency of the Lasso for our models. The parameter
estimation error, and the prediction error, both tend to zero with probability tending to one.

1 f (T ) ∈Ωp (g (T )) means that there exists a constant c > 0 such that f (T ) ≥ cg (T ) for T ≥ T0 for a certain T0

onwards with probability approaching one.
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Callot and Kristensen (2015) shows that, as is usual with the Lasso, the estimator correctly
sets many parameters to zero without setting non zero parameters to zero under the condition
that the smallest non zero parameter is not too small. They also show that the adaptive Lasso,
a second stage estimator using an adaptive penalty constructed using the Lasso estimates,
is sign consistent. This means that the adaptive Lasso set all zero parameters to zero while
retaining the non zero parameters with probability tending to 1. We refer to Callot and
Kristensen (2015) for details.

2.3. Factor estimation with parsimoniously time-varying loadings.

Until this point we have assumed the factors to be known, in this section we discuss the
issue of estimating the factors under the assumption that their loadings can be parsimoniously
time varying. We then discuss the effect of using estimated factors instead of the true factors
in the model.

If we assume that the factor loadings do not vary over time, then it is well known that the
factors can be consistently estimated by means of PC, see e.g. Bai and Ng (2002). Bates et al.
(2013) gives conditions under which the same holds in the case of time varying loadings. We
use the results of Bates et al. (2013) to show that factors can be consistently estimated when
the loadings a follow parsimonious random walk as in assumption 1. We follow the notation
of Bates et al. (2013) closely (which also corresponds to the notation of Bai and Ng (2002)).

Whereas Bates et al. (2013) give general results in the case of time-varying loadings we will
specifically make the following assumption:

Assumption 4 (Time-varying Factor Loadings). The loadings in (1) must satisfy the following:

i) With probabilityπn,T the loadings for variable i ,λi t , follow a parsimonious random walk
as defined in Assumption 1 with fixed initial value λi 0. Alternatively, with probability
1−πn,T the loadings are constant.

ii) The probability πn,T must satisfy: πn,T = O (1/min(n1/2T 1−a ,T 3/2−a)) where a is the
parameter controlling αT as defined in Assumption 1 with a ≥ 1/2.

iii) For all (i , j , s, t ), ei t , the factor model innovations, are independent of (ζ j s ¯η j s ,Fs), the
factor loading innovations and the factors. Furthermore, the factor loading innovations,
ζi p,tηi p,t , are independent across i , t , and p.

We should note that assumption 4(iii) implies that breaks occur independently across
variables. Although this does not necessarily correspond well with empirical observations,
where series tend to co-break, this assumption is needed to ensure that the factors can
be consistently estimated. Note, however, that independence is only needed for the factor
estimation, the results of theorem 1 hold under the more general requirements of assumption
1.

In addition to this we make the following standard assumptions (corresponding the
assumptions 1–3 in Bates et al. (2013) or assumptions A–C in Bai and Ng (2002)):

Assumption 5 (Factors). E
∥∥Ft

∥∥4 ≤ M and T −1 ∑T
t=1 Ft F ′

t→pΣF as T → ∞ for some positive
definite matrix ΣF .

Assumption 6 (Initial Factor Loadings).
∥∥λi 0

∥∥≤ λ̄<∞, and
∥∥Λ′

0Λ0/n −D
∥∥→ 0 as n →∞ for

some positive definite matrix D ∈RrF×rF .

Assumption 7 (Idiosyncratic Errors). The following conditions hold for all n and T .
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1. E(ei t ) = 0, E
∣∣ei t

∣∣8 ≤ M.

2. γn(s, t ) = E(e ′
set /n) exists for all (s, t ).

∣∣γn(s, s)
∣∣≤ M for all s, and T −1 ∑T

s,t=1

∣∣γn(s, t )
∣∣≤ M.

3. τi j ,t s = E(ei t e j s) exists for all (i , j , s, t).
∣∣τi j ,t t

∣∣ ≤ ∣∣τi j
∣∣ for some τi j and for all t , while

n−1 ∑n
i , j=1

∣∣τi j
∣∣≤ M. In addition, (nT )−1 ∑n

i , j=1

∑T
s,t=1

∣∣τi j ,t s
∣∣≤ M.

4. For every (s, t ), E
∣∣n−1/2 ∑n

i=1[ei sei t −E(ei sei t )]
∣∣4 ≤ M.

Under these assumptions we have the usual consistency result, the proof of which can be
found in the appendix.

Theorem 3. Let assumptions 4–7 hold, and n,T →∞ with T 1−a/n1/2 → k for some constant
k ≥ 0, then

C 2
nT

(
T −1

T∑
t=1

∥∥F̂t −H ′Ft
∥∥2

)
=Op (1) (8)

where C 2
nT = min(n,T ) and H is the usual rotation matrix as defined in e.g. Bates et al. (2013).

Note that Assumption 4 puts restrictions on the extent to which the variables are allowed
to have time-varying loadings through the probability πn,T . This is in contrast to the literature
on large breaks where it is typically assumed that the break affects all variables. However, the
results are comparable to Example 3 in Bates et al. (2013) which treats the case of a single
large break. The comparable case in terms of our results would be that of a fixed number of
breaks which occurs if we have a = 1 which implies that πn,T =O (1/min(n1/2,T 1/2)). Likewise,
Example 3 in Bates et al. (2013) requires that at most O (n1/2) variables undergo a break. In
cases where a < 1 we have a trade-off between the (expected) number of breaks in the loadings
(which is now increasing in T ) and the (expected) number of series which may be associated
with breaks as controlled by πn,T . It is important to note that in order to obtain the result we
must restrict the relative growth of n and T . However, by doing so we are able to recover the
usual rate of convergence. This is important because it ensures that we can apply the ICp

criterion of Bai and Ng (2002) to determine the number of factors (Bai and Ng, 2002, Corollary
2).

2.4. Estimation of the ptv model with estimated factors

From assumption 2 one can see that the covariates are required to be normally distributed
with finite variance. Since the estimated factors F̂ are a linear combination of the data X , it
suffice to ensure that X t is Gaussian to ensure that the estimated factors satisfy assumption
2. Bai and Ng (2006) show that using estimated factors does not invalidate consistency and
asymptotic normality of the OLS estimator provided

p
T /n → 0. Given that the objective

function used to estimate the ptv models is a penalized least squares criterion, and that
theorem 3 shows that the factor are estimated with the usual efficiency, we conjecture that
the same holds true for the ptv model.

3. Empirical Results

Stock and Watson (2009) set out to investigate the effect of a structural break on factor
models and in particular their ability to forecast. They consider a very specific case, namely the
Great Moderation, which they argue could have caused a break in the mid 1980s. Specifically,
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they test for a structural break in 1984:1 in both the loadings of the factor model and the
parameters of the FAAR forecasting model. We take the analysis, and the data, of Stock and
Watson (2009) as our starting point and investigate parameter instability over the entire
sample period.

This section contains a description of the data we use and practical details regarding the
implementation of the ptv method described above. We then present our empirical results;
first focusing on aggregate parameter instability, second investigating more closely some
particular variables of interest, and finally looking at the improvements in fit of the ptv model
relative to OLS.

3.1. Data

We use the same dataset as Stock and Watson (2009). It consists of 144 quarterly time series
for the United States spanning the period 1959:1–2006:4. As is customary in the literature the
series are transformed to be stationary and standardized prior to estimation. Appendix B pro-
vides details on the transformations and a complete variable list. Due to the transformations
we lose the first two observations, hence the effective sample period is 1959:3–2006:4, i.e. a
total of T = 190 quarterly observations.

A unique feature of this dataset, as discussed in Stock and Watson (2009), is the treatment
of disaggregation. The full dataset contains both aggregate and sub-aggregate series, and
as argued in their paper the inclusion of series related by identities (being the sum of sub-
aggregates) does not add useful information to the estimation problem. For this reason when
estimating the factors we only use a subset of the data consisting of 109 series that excludes
higher level aggregates related by identities to the lower level sub-aggregates. However, for
the analysis of the structural stability of the loadings below, we use all 144 series as they are
all related to the factors. Hence, in the first step we estimate the factors using the 109 series,
and in the second step we use the methodology described above to estimate the time-varying
loadings for all 144 series.

3.2. Estimation

Although we have described the estimation procedure in general there are a number
of details we must address before the estimation can be carried out in practice. As noted,
we estimate the factors by PC, however to do this we must decide on how many factors to
include in the model. A number of methods have been proposed for this, and one of the
most commonly used is undoubtedly the ICp information criterion of Bai and Ng (2002).
The authors provide three variants of their criterion, and the results for our dataset differ
substantially depending on which is used. Specifically, the criteria choose either 2, 4, or 10
factors. One could argue that the safe choice would then be to use 10 factors, but this could
lead to undesirable over-fitting, and hence we follow Stock and Watson (2009) and use 4
factors throughout the paper.

The 4 estimated factors we will use throughout this application are plotted in figure 1. The
first factor appears to decrease before, and reach a minimum during, each recession while
the second factor has an almost symmetrical pattern with droughts during recessions and
rapid increases at the end of each recession and during the recovery period. These factors
could be interpreted as capturing the business cycle. The third and fourth factors are much
more volatile than the first two, factor 3 exhibits a trend while factor 4 seems to have a higher
variance in the middle of the sample than on either end. These last two factors do not lend
themselves to an unambiguous economic interpretation. For a possible explanation of this
recall that one of the information criteria of Bai and Ng (2002) suggested that there may be
only two factors implying that factors 3 and 4 contain little if any relevant information.
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Figure 1: Estimated factors, NBER recessions in grey.

For the FAAR forecasting model we must be specific about the forecast target. We focus on
the stability of a four-quarter ahead relationship. For real activity variables the target, X (4)

i t+4, is
growth over the next four quarters. For inflation it is average quarterly inflation over the next
four quarters minus last quarter’s inflation. For variables in levels it is simply the value of the
variable four quarters ahead. For details, see Appendix B. Further, in order to fully specify (2)
we must choose the lag length p. As we are not concerned with computing actual forecasts,
this choice is of less importance, and we simply fix it at p = 4.

The actual estimation using the procedure of Callot and Kristensen (2015) is easily imple-
mented using the parsimonious package in R.2 As is generally the case the Lasso requires
selection of the penalty parameter. This can be done in a number of ways, however, we will
follow Callot and Kristensen (2015) and select it using the Bayesian Information Criterion
(BIC). As already noted all variables have been standardized, however, the estimated factors
will likely have a much larger variance making it difficult for the Lasso to simultaneous detect
breaks in the parameters associated with the factors and the parameters associated with
the autoregressive lags in (2) if they are all penalized equally. To avoid having to introduce
different penalty parameters for the factors and the autoregressive lags, we instead also stan-
dardize the estimated factors before the Lasso estimation. We will do this in both the case
of the factor model (1) and the FAAR forecasting model (2). The estimation procedure also
easily allows for the possibility of having a parsimoniously time-varying intercept by simply
including dummies. The need for taking into account instability in the mean of the variables
was documented by Stock and Watson (2012). They subtracted a local mean from the variables
prior to estimation and found that this mean changed substantially over the sample period.
All the presented results are based on models with parsimoniously time-varying intercepts.
Our results are, however, robust to this choice and qualitatively similar results are obtained if
the intercept is assumed constant. Finally, in the interest of space we only report results for
the Lasso and do not consider the adaptive Lasso.

3.3. Results

We begin by examining the stability of the loadings in the factor model (1). Figure 2 plots
the number of breaks in the loadings at every point in time for each factor. Recall that at each

2Replication files can be found at https://github.com/lcallot/ptv-fac.
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point in time for a given factor the vector of loadings is of length n = 144, hence if we observe,
say, 10 breaks, then that means that 10 out of the 144 variables experience a break.
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Figure 2: Breaks in the factor model, n = 144. The grey areas represent the NBER recessions.

The first impression given by figure 2 is that there is some degree of structural instability
over the entire sample period. Closer inspection reveals that in every panel there exists clusters
with a large number of breaks, and that outside of these clusters the loadings appear to be
relatively stable. This is in particular the case for the parameters associated with the first and
second factors where many breaks are detected from the early 1970s to the early 1980s, and
much fewer breaks outside this period. From this plot it is not clear whether the instability is
greater during recessions.

The parameters associated with the third factor experience breaks relatively uniformly
throughout the sample, with a surge in 1987 and after 2000. The breaks in the loadings
associated with the fourth factor are concentrated in the 1975 to early 1990s period. Figure C.9
(appendix) displays the number of breaks in the intercept at every point in time for the factor
and forecasting models. For both models the breaks in the intercept appear to be uniformly
spread across the sample in contrast to the clusters observed in the factor loadings.

In figure 3 we consider mean absolute change in the loadings defined as n−1 ∑n
i=1

∣∣λi t −λi t−1
∣∣

for a given point in time t where the mean is taken across all n = 144 variables. This illustrates
the large differences in the sizes of the breaks. It appears that most of the breaks are (relatively)
small, but few large changes occur from the mid 1970s to the mid 1980s in the loadings of
factors 1, 2, and 4. This plot provides further evidence in favour of the Great Moderation as a
period of stability following a period of structural instability in the 1970s and early 1980s.

In order to illustrate how allowing for breaks affects the fit of the model we turn to the
FAAR forecasting model. Figure 4 shows the cross-sectional root mean squared error (RMSE),
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Figure 3: Size of breaks in the factor model, n = 144. The grey areas represent the NBER recessions.
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Figure 4: Cross-sectional RMSE in the FAAR model.

that is,
√

1
144

∑144
i=1 ε̂

2
i t for all t = 1, ...,190. The gain in RMSE from allowing parsimoniously time-

varying parameters (relative to OLS) is particularly large in the early 1970s, corresponding to
the region with more and larger breaks in Figures 2 and 3 for the factor model. We will return
to results on the fit of the FAAR model in more detail later.

First, we now look into the detail of which variables are associated with the breaks in
table 1. In the table we consider both the factor model (1) and the FAAR forecasting model (2).
We report the number of breaks over the entire sample (denoted All), the period preceding
the Great Moderation from 1970:1 to 1984:4, and the period of the Great Moderation from
1985:1 to 1999:4. For the forecasting model we separately consider the number of breaks
in the parameters associated with the factors, β, and the parameters associated with the
autoregressive lags, γ. In the interest of space the table only includes a subset of the variables,
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Series Factor model Forecasting model
Coef. on factors Coef. on AR lags

All 1970:1 1985:1 All 1970:1 1985:1 All 1970:1 1985:1
1984:4 1999:4 1984:4 1999:4 1984:4 1999:4

RGDP 1 1
Cons 4 3 5 4
GPDInv 1 1 1 1
Exports
Imports
Gov
IP: total 5 3 1 1
NAPM prodn 4 3 1
Capacity Util 18 9 2 11 10 1 8 2
Emp: total 2 2
Help wanted indx 1 1
Emp CPS total 2 2
U: all 2 2
HStarts: Total 28 15 4 17 11 11 11
BuildPermits 45 17 11
PMI
NAPM new ordrs
NAPM vendor del 6 6 9 6 7 4
NAPM Invent 1 1 2 2 6 6
PGDP 17 13 3 8 8
PCED 8 7 1 1 1
CPI-All 3 3
PCED-Core 4 4
CPI-Core 41 29 1 15 15
PGPDI 24 18 6 5 5
PFI 23 18 5 4 4
PEXP 14 12 1 4 4
PIMP 17 16 1 5 5
PGOV 3 3
Com: spot price (real)
OilPrice (Real) 6 2 4 43 28 13 38 29
NAPM com price 10 5 3 2 2 3 3
Real AHE: goods 12 7 3 2 2 6 6
Labor Prod 1 1
Real Comp/Hour 1 1
Unit Labor Cost 2 2 7 7 3 3
FedFunds 4 4 7 5 1 8 8
6 mo T-bill 3 3 4 4 6 6
5 yr T-bond 2 2 4 3 1 2 2
Aaabond 1 1 1 1 3 3
Baa bond 2 2 6 5 1
M1 2 2
MZM 30 20 8 12 7 2 4 4
M2 1 1 9 5 3 4 3 1
MB 2 1 1 2 1
Reserves tot 29 11 7 5 3 1 4
Bus loans
Cons credit 1 1
Ex rate: avg 3 2 1
S&P 500 9 5 2 12 6 4 4 1 3
DJIA 1 1 2 2
Consumer expect 2 2 1 1

Table 1: Number of breaks in the loadings of the factor model and the parameters of the forecasting model
detailed by variable.
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most sub-aggregates have been removed, results for the remaining variables can be found in
Appendix C.

Regarding the timing of the breaks, table 1 clearly shows that the majority of the breaks, all
of them in some cases, occur in the period preceding the Great Moderation with both models.
There is a striking difference in the number of breaks between the two models though; many
more breaks are selected in the forecasting model than in the factor model, and the variables
with a large number of breaks are not systematically the same across models. Three possible
explanations for the difference between models are, first, the different target variables as
explained in section 3.2, second, the doubling of the number of variables, and third, the
potentially high degree of persistence of the extra variables.
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Figure 5: Time-varying loadings of the factor model, Money Zero Maturity.

Table 1 gives some interesting information as to which variables are subject to instability,
despite the differences between the two models. In the static factor model the breaks are
concentrated among monetary and financial variables: MZM (Money Zero Maturity) has 30
breaks and the total amount of reserve 29, interest rates (4, 3, and 2 breaks for the Fed fund
rate, the 6 month T-bill, and the 5 year T-bond respectively), exchange rates (3), and the Dow
Jones Industrial Average (1). Many breaks are also found among variables from the real sector
of the economy, housing start (28 breaks) and build permits (45), industrial production (5),
and the manufacturing indices (NAPM) with 6 and 1 breaks in two out of four variables.

The pattern is different for the FAAR models that have more breaks overall, mostly in the
factor loadings, and occurring within different groups of variables. Price variables experience
many breaks, up to 56 for CPI Core and 81 for Oil Price. Breaks are also frequently detected in
monetary and financial variables, up to 15 for the 5 year T-bond and around 10 for the other
variables of this type.

To illustrate the results discussed above we now take a close look at the estimated loadings
of four variables. While we will focus on models in which the estimated parameters vary
over time, it should be kept in mind that in a large fraction of loadings no break is found.
Furthermore, and as the plots below will make apparent, within models exhibiting breaks the
parameters associated with certain variables are still found to be constant.

Figure 5 shows the estimated loadings of the static factor model for Money Zero Maturity,
which is one of the variables with which the largest number of breaks is associated. Most of
these breaks, in particular the large ones, occur between the late 1970s and the early 1980s
which is consistent with important changes in monetary policy during that period. The few
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Figure 6: Time-varying loadings of the factor model, Industrial Production.

breaks occurring outside this period are for the most part very small changes to the estimated
loading.

Factor 1 Factor 2

Factor 3 Factor 4

X Lag 0 X Lag 1

X Lag 2 X Lag 3

−0.6

−0.4

−0.2

0.0

1.00
1.25
1.50
1.75
2.00

−0.45

−0.40

−0.35

0.4
0.5
0.6
0.7
0.8

3.50

3.75

4.00

4.25

−0.75

−0.50

−0.25

0.00

−0.50

−0.25

0.00

0.25

−2

−1

0

1

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Capacity utilization − manufacturing (sic)

Figure 7: Time-varying loadings of the forecasting model, Capacity Utilization.

Figure 6 shows the estimated loadings for industrial production, for which 5 breaks are
found. The loading on the first factor has a single large upward break in 1977 which could
be interpreted as indicating that industrial production reacts less to downturns from that
point onwards. The second factor has 2 large downward breaks in the early 1960s and two
smaller breaks in the second half of the 1970s, which could be interpreted as indicating that
industrial production recovers more slowly. The loadings for the last two factors are found to
be constant.

Figure 7 shows the estimated parameters of a forecasting model for the Capacity Utilization
variable, where 11 breaks are found in the factor loadings and 8 in the AR lags. Figure 7 shows
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Figure 8: Time-varying loadings of the forecasting model, CPI Core.

that 5 out of the 8 parameters experience a break and that the instability typically takes the
form of few large breaks with very little gradual adjustment.

Figure 8 is an example of a forecasting model with a large number of breaks with a total
of 56, 41 in the factor loadings and 15 in the AR parameters, 44 of these breaks are located
in the pre Great Moderation period. In this model, the breaks lead to many substantial and
persistent changes in the parameter value. The factor loadings have more breaks than the AR
parameters, this results in more jagged paths with several small adjustments in the parameter
path. The loadings on the factors could be interpreted as implying that the business cycle
has had little effect on CPI Core except for the middle of the 1970s, a period of low economic
growth and high inflation in the US.

In a forecasting context model instability is a concern, and as table 1 illustrates many
forecasting relationships do not appear to be stable over time. We do not view the applied
methodology as a means to obtain better forecasts, but as a tool to illustrate that there might
be issues when neglecting instabilities or breaks. Nonetheless it is still of interest to see how
much the fit of the forecasting model is improved when we allow for a moderate amount of
time variation in the parameters. For this purpose table 2 reports a number of useful statistics
for a subset of variables, the remaining results can be found in Appendix C.

The first column of the table gives the standard deviation of the series being forecast. The
second column gives the RMSE of the residuals of the forecasting model (2) when estimated
by the ptv methodology, i.e. allowing for breaks. The third column gives the RMSE of the
residuals of the forecasting model (2) when simply estimated by OLS, i.e. not allowing for
breaks. The fourth column gives the relative RMSE of these two approaches and the last
column the number of breaks in the corresponding model. The upper bound for the relative
RMSE statistic is 1 and corresponds to the case where no breaks were selected, in which case
our estimator is equal to OLS. Allowing for breaks must improve the fit to compensate for the
penalty in the Lasso estimation, therefore when breaks are estimated the relative RMSE is
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Series Std. dev. of X (4)
i t RMSE, ptv RMSE, OLS Relative RMSE # Breaks

RGDP 0.0217 0.0164 0.0174 0.9421 1
Cons 0.0175 0.0118 0.0144 0.8160 9
GPDInv 0.0979 0.0713 0.0736 0.9689 1
Exports 0.0608 0.0517 0.0517 1.0000 0
Imports 0.0694 0.0509 0.0509 1.0000 0
Gov 0.0245 0.0211 0.0211 1.0000 0
IP: total 0.0433 0.0293 0.0317 0.9237 1
NAPM prodn 6.9244 5.7070 6.1090 0.9342 0
Capacity Util 4.5537 1.6163 2.5634 0.6305 19
Emp: total 0.0202 0.0126 0.0134 0.9415 2
Help wanted indx 12.2287 8.2756 8.9425 0.9254 0
Emp CPS total 0.0133 0.0090 0.0098 0.9258 2
U: all 0.9700 0.6328 0.6604 0.9581 2
HStarts: Total 0.2094 0.0862 0.1579 0.5456 28
BuildPermits 0.2467 0.1747 0.1747 1.0000 0
PMI 6.5564 5.1061 5.7118 0.8940 0
NAPM new ordrs 7.3697 5.8167 6.4712 0.8989 0
NAPM vendor del 10.3401 5.2072 8.7598 0.5944 16
NAPM Invent 6.2786 3.6914 5.1907 0.7112 8
PGDP 0.0029 0.0012 0.0022 0.5716 25
PCED 0.0032 0.0022 0.0026 0.8514 9
CPI-All 0.0043 0.0029 0.0031 0.9434 3
PCED-Core 0.0025 0.0019 0.0021 0.9278 4
CPI-Core 0.0038 0.0009 0.0028 0.3157 56
PGPDI 0.0052 0.0021 0.0038 0.5614 29
PFI 0.0053 0.0023 0.0039 0.5984 27
PEXP 0.0102 0.0051 0.0080 0.6420 18
PIMP 0.0190 0.0097 0.0158 0.6167 22
PGOV 0.0051 0.0031 0.0032 0.9479 3
Com: spot price (real) 0.1136 0.0932 0.0932 1.0000 0
OilPrice (Real) 0.2485 0.0464 0.2396 0.1935 81
NAPM com price 14.2807 10.3370 12.1543 0.8505 5
Real AHE: goods 0.0144 0.0082 0.0113 0.7300 8
Labor Prod 0.0165 0.0123 0.0149 0.8216 1
Real Comp/Hour 0.0140 0.0115 0.0130 0.8819 1
Unit Labor Cost 0.0311 0.0152 0.0194 0.7814 10
FedFunds 2.2061 1.3908 1.8203 0.7640 15
6 mo T-bill 1.6417 1.1463 1.4092 0.8135 10
5 yr T-bond 1.3442 1.0934 1.2524 0.8730 6
Aaabond 1.0090 0.7926 0.9385 0.8445 4
Baa bond 1.1242 0.8188 1.0039 0.8156 8
M1 0.0095 0.0069 0.0072 0.9700 2
MZM 0.0183 0.0076 0.0117 0.6434 16
M2 0.0070 0.0035 0.0050 0.7044 13
MB 0.0066 0.0044 0.0050 0.8809 4
Reserves tot 0.0238 0.0125 0.0150 0.8345 9
Bus loans 0.0148 0.0118 0.0118 1.0000 0
Cons credit 0.0114 0.0091 0.0093 0.9770 1
Ex rate: avg 0.0660 0.0595 0.0595 1.0000 0
S&P 500 0.1435 0.1015 0.1357 0.7481 16
DJIA 0.1400 0.1163 0.1282 0.9067 2
Consumer expect 10.7688 8.5925 9.2908 0.9248 1

Table 2: Root mean squared errors (RMSE) of the residuals of the forecasting model when allowing for breaks of
not, and the relative RMSE of these two approaches.
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always below 1. We should stress that this is purely an in-sample comparison of the forecasting
models and not a pseudo out-of-sample forecasting experiment.

For certain variables the reduction in RMSE by allowing for breaks is quite substantial, for
example a reduction of roughly 70% for CPI-Core (the parameters of this model are plotted in
figure 8), and 80% for Oil Price. The presence of numerous relatively large breaks (despite the
small magnitude of the loadings) explains this reduction in the RMSE. The results in table 2
shows that reduction in RMSE relative to OLS is closely related, but not directly proportional,
to the number of breaks. Again this is to be expected as the penalty associated with each extra
parameter must be compensated with improvement in fit.

4. Conclusion

We have applied the parsimoniously time varying parameter framework of Callot and
Kristensen (2015) to factor models estimated using a set of data from Stock and Watson
(2009) containing 144 US macroeconomic variables observed from 1959:1 to 2006:4. The ptv
framework allows for an unknown number of breaks at unknown locations to be consistently
estimated using the Lasso. We take advantage of this flexibility to study the stability of the
parameters of macroeconomic models, and in particular we focus our investigation on the
Great Moderation.

We find that for a large share of variables the parameters of either the static factor model
or the dynamic forecasting FAAR model are unstable. The number of breaks, their locations,
and the resulting parameter paths are very diverse. Nonetheless common patterns emerge,
in particular a concentration of parametric instability in the period between 1970 and the
middle of the 1980s, and a relative stability of those parameters in the 15 years following.
Within our ptv framework, the Great Moderation appears to be a period of stability following
a period of instability of the process driving macroeconomic variables. Adequately modelling
this instability in time-varying parameter models appears to require more than a single break
towards the beginning of the Great Moderation.

Further research could usefully complement our results. On the methodological side,
obtaining confidence bands for the estimated parameters is a priority and refining break
detection by the introduction of thresholding a possibility. On the empirical side, it would be
useful to systematically assess the effect of allowing general forms of parametric instability
on the choice of the number of factors and lags, both in terms of model specification and of
forecasting performance.
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Appendix A. Proofs.

Proof of Theorem 3. The result follows by checking the conditions of Corollary 1 in Bates et al.
(2013). Define a random variable νi p that takes on the value 1 with probability πn,T and the
value 0 otherwise, and is independent from η and ζ and across i , p. Then the loadings for
variable i and factor p follows the process:

λi p,t =λi p,t−1 +νi pζi p,tηi p,t (A.1)

or rewritten:

λi p,t −λi p,0 = ξi p,t (A.2)

where ξi p,t = νi p
∑t

s=1 ζi p,sηi p,s and ζ, η satisfy the conditions in Assumption 1. Note that
compared to the expressions in Bates et al. (2013) we have explicitly set hnT = 1.

We need to bound two expressions, the first:

sup
s,t≤T

n∑
i , j=1

∣∣∣E(ξi p,sξ j q,t )
∣∣∣= sup

s,t≤T

n∑
i , j=1

∣∣∣∣∣E(νi p

s∑
u=1

ζi p,uηi p,uν j q

t∑
v=1

ζ j q,vη j q,v )

∣∣∣∣∣ (A.3)

Due to independence across factors the expression is trivially bounded for p 6= q , hence we
only need consider the case of p = q (and drop the factor index to ease notation). Furthermore,
due to independence across variables we get:

=πn,T n sup
s,t≤T

∣∣∣∣∣E(
min(s,t )∑

u=1
ζi ,uη

2
i ,u)

∣∣∣∣∣
=πn,T nαT sup

s,t≤T
min(s, t )E(η2

i ,1)

=πn,T nαT T E(η2
i ,1)

=πn,TαT O (nT ) =Q1(n,T ) (A.4)

The second expression:

T∑
t ,s=1

n∑
i , j=1

∣∣∣E(ξi p1,sξ j q1,sξi p2,tξ j q2,t

∣∣∣ (A.5)

=
T∑

t ,s=1

n∑
i , j=1

∣∣∣∣∣∣E
(
νi p1

s∑
u=1

ζi p1,uηi p1,uν j q1

s∑
v=1

ζ j q1,vη j q1,vνi p2

t∑
k=1

ζi p2,kηi p2,kν j q2

t∑
l=1

ζ j q2,lη j q2,l

)∣∣∣∣∣∣
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Again, due to independence across factors the expression is trivially bounded if all factor
indices differ or one index differs from the rest. The non-trivial cases are thus when all indices
are equal, i.e. p1 = p2 = q1 = q2, and when they are equal in pairs, say, p1 = p2 6= q1 = q2. We
start with the latter case:

=
T∑

t ,s=1

n∑
i , j=1

∣∣∣∣∣∣E
(
νi p1

s∑
u=1

ζi p1,uηi p1,u

t∑
k=1

ζi p1,kηi p1,k

)
E

(
ν j q1

s∑
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ζ j q1,vη j q1,v

t∑
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ζ j q1,lη j q1,l

)∣∣∣∣∣∣
=
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n∑
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∣∣∣πn,T min(s, t )αT E(η2
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j q1,1)
∣∣∣

=
T∑

t ,s=1

n∑
i , j=1

π2
n,Tα

2
T O (T 2) =π2

n,Tα
2
T O (n2T 4) (A.6)

Now consider the case where all factor indices are equal (again omitting the index to ease
notation):

T∑
t ,s=1

n∑
i , j=1

∣∣∣∣∣∣E
(
νi

s∑
u=1

ζi ,uηi ,uν j

s∑
v=1

ζ j ,vη j ,vνi

t∑
k=1

ζi ,kηi ,kν j

t∑
l=1

ζ j ,lη j ,l

)∣∣∣∣∣∣ (A.7)

Now, due to independence across variables, whenever i 6= j we can use the same argument
as above to show that the summand is π2

n,Tα
2
T O (T 2). However, when i = j the summand

becomes ∣∣∣∣∣∣E
(
νi

s∑
u=1

ζi ,uηi ,u

s∑
v=1

ζi ,vηi ,v

t∑
k=1

ζi ,kηi ,k

t∑
l=1

ζi ,lηi ,l

)∣∣∣∣∣∣ (A.8)

which is non-zero whenever all four time indices are equal, or they are equal in pairs. There are
min(s, t ) cases where they are all equal and the expression becomes E(νiζi ,1η

4
i ,1) =πn,TαT O (1).

When they are equal in pairs we get: E(νi )E(ζi ,1η
2
i ,1)E(ζi ,1η

2
i ,1) = πn,Tα

2
T O (1). In total there

are st +2min(s, t )2 non-zero summands and we get that (A.8) is πn,TαT O (T )+πn,Tα
2
T O (T 2)

implying that (A.7) is πn,TαT O (nT 3)+πn,Tα
2
T O (nT 4)+π2

n,Tα
2
T O (n2T 4) =Q3(n,T ).

According to Bates et al. (2013, Corollary 1) we need Q1(n,T ) =O (n) and C 2
nT Q3(n,T ) =

O (n2T 2). From (A.4) we have

Q1(n,T ) =πn,TαT O (nT ) (A.9)

=O (1/min(n1/2T 1−a ,T 3/2−a))O (T −a)O (nT )

=O (n)

We further have

C 2
nT Q3(n,T ) =C 2

nT [πn,TαT O (nT 3)+πn,Tα
2
T O (nT 4)+π2

n,Tα
2
T O (n2T 4)] (A.10)

= min(n,T )O (1/min(n1/2T 1−a ,T 3/2−a))O (T −a)O (nT 3) (A.11)

+min(n,T )O (1/min(n1/2T 1−a ,T 3/2−a))O (T −2a)O (nT 4) (A.12)

+min(n,T )O (1/min(nT 2−2a ,T 3−2a))O (T −2a)O (n2T 4) (A.13)

Under the assumption that a ≥ 1/2 and T 1−a/n1/2 → k ≥ 0 all three terms are O (n2T 2) and
the results follows.
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Appendix B. Data Description

The dataset used is from Stock and Watson (2009) and can be downloaded from Mark
Watson’s homepage. The full list of variables along with descriptions from Stock and Watson
(2009) has been reproduced below in table B.1. The majority of the variables are from the
Global Insights Basic Economics Database. The remaining variables are either from The
Conference Boards Indicators Database (TCB) or calculated by the authors using Global
Insights or TCB data (AC). Transforming the variables to be stationary is done according
to the transformation codes (TC), see table B.2 for details as well as details on how the h-
quarter ahead version of the variable used in the factor-augmented forecasting regressions is
constructed. In addition to this the following abbreviations are used: sa, seasonally adjusted;
nsa, not seasonally adjusted; saar, seasonally adjusted at an annual rate. The E.F. column
whether the variable was used to estimate the factors (= 1).

Short name Mnemonic TC E.F. Description

RGDP GDP251 5 0 Real gross domestic product, quantity index
(2000=100) , saar

Cons GDP252 5 0 Real personal consumption expenditures, quantity
index (2000=100) , saar

Cons-Dur GDP253 5 1 Real personal consumption expenditures - durable
goods , quantity index (2000=

Cons-NonDur GDP254 5 1 Real personal consumption expenditures - non-
durable goods, quantity index (200

Cons-Serv GDP255 5 1 Real personal consumption expenditures - services,
quantity index (2000=100) ,

GPDInv GDP256 5 0 Real gross private domestic investment, quantity
index (2000=100) , saar

FixedInv GDP257 5 0 Real gross private domestic investment - fixed invest-
ment, quantity index (200

NonResInv GDP258 5 0 Real gross private domestic investment - nonresiden-
tial , quantity index (2000

NonResInv-Struct GDP259 5 1 Real gross private domestic investment - nonresiden-
tial - structures, quantity

NonResInv-Bequip GDP260 5 1 Real gross private domestic investment - nonresiden-
tial - equipment & software

Res.Inv GDP261 5 1 Real gross private domestic investment - residential,
quantity index (2000=100

Exports GDP263 5 1 Real exports, quantity index (2000=100) , saar
Imports GDP264 5 1 Real imports, quantity index (2000=100) , saar
Gov GDP265 5 0 Real government consumption expenditures & gross

investment, quantity index (2
Gov Fed GDP266 5 1 Real government consumption expenditures & gross

investment - federal, quantit
Gov State/Loc GDP267 5 1 Real government consumption expenditures & gross

investment - state & local, q
IP: total IPS10 5 0 Industrial production index - total index
IP: products IPS11 5 0 Industrial production index - products, total
IP: final prod IPS299 5 0 Industrial production index - final products
IP: cons gds IPS12 5 0 Industrial production index - consumer goods
IP: cons dble IPS13 5 1 Industrial production index - durable consumer

goods
IP: cons nondble IPS18 5 1 Industrial production index - nondurable consumer

goods
IP: bus eqpt IPS25 5 1 Industrial production index - business equipment

Table B.1: Data description.
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Short name Mnemonic TC E.F. Description

IP: matls IPS32 5 0 Industrial production index - materials
IP: dble mats IPS34 5 1 Industrial production index - durable goods materials
IP: nondble mats IPS38 5 1 Industrial production index - nondurable goods

materials
IP: mfg IPS43 5 1 Industrial production index - manufacturing (sic)
IP: fuels IPS306 5 1 Industrial production index - fuels
NAPM prodn PMP 1 1 Napm production index (percent)
Capacity Util UTL11 1 1 Capacity utilization - manufacturing (sic)
Emp: total CES002 5 0 Employees, nonfarm - total private
Emp: gds prod CES003 5 0 Employees, nonfarm - goods-producing
Emp: mining CES006 5 1 Employees, nonfarm - mining
Emp: const CES011 5 1 Employees, nonfarm - construction
Emp: mfg CES015 5 0 Employees, nonfarm - mfg
Emp: dble gds CES017 5 1 Employees, nonfarm - durable goods
Emp: nondbles CES033 5 1 Employees, nonfarm - nondurable goods
Emp: services CES046 5 1 Employees, nonfarm - service-providing
Emp: TTU CES048 5 1 Employees, nonfarm - trade, transport, utilities
Emp: wholesale CES049 5 1 Employees, nonfarm - wholesale trade
Emp: retail CES053 5 1 Employees, nonfarm - retail trade
Emp: FIRE CES088 5 1 Employees, nonfarm - financial activities
Emp: Govt CES140 5 1 Employees, nonfarm - government
Help wanted indx LHEL 2 1 Index of help-wanted advertising in newspapers

(1967=100;sa)
Help wanted/emp LHELX 2 1 Employment: ratio; help-wanted ads:no. unemployed

clf
Emp CPS total LHEM 5 0 Civilian labor force: employed, total (thous.,sa)
Emp CPS nonag LHNAG 5 1 Civilian labor force: employed, nonagric.industries

(thous.,sa)
Emp. Hours LBMNU 5 1 Hours of all persons: nonfarm business sec

(1982=100,sa)
Avg hrs CES151 1 1 Avg wkly hours, prod wrkrs, nonfarm - goods-

producing
Overtime: mfg CES155 2 1 Avg wkly overtime hours, prod wrkrs, nonfarm - mfg
U: all LHUR 2 1 Unemployment rate: all workers, 16 years & over

(%,sa)
U: mean duration LHU680 2 1 Unemploy.by duration: average(mean)duration in

weeks (sa)
U < 5 wks LHU5 5 1 Unemploy.by duration: persons unempl.less than 5

wks (thous.,sa)
U 5–14 wks LHU14 5 1 Unemploy.by duration: persons unempl.5 to 14 wks

(thous.,sa)
U 15+ wks LHU15 5 1 Unemploy.by duration: persons unempl.15 wks +

(thous.,sa)
U 15–26 wks LHU26 5 1 Unemploy.by duration: persons unempl.15 to 26 wks

(thous.,sa)
U 27+ wks LHU27 5 1 Unemploy.by duration: persons unempl.27 wks +

(thous,sa)
BuildPermits HSBR 4 0 Housing authorized: total new priv housing units

(thous.,saar)
HStarts: Total HSFR 4 0 Housing starts:nonfarm(1947-58);total

farm&nonfarm(1959-)(thous.,sa
HStarts: NE HSNE 4 1 Housing starts:northeast (thous.u.)s.a.
HStarts: MW HSMW 4 1 Housing starts:midwest(thous.u.)s.a.
HStarts: South HSSOU 4 1 Housing starts:south (thous.u.)s.a.
HStarts: West HSWST 4 1 Housing starts:west (thous.u.)s.a.
PMI PMI 1 1 Purchasing managers’ index (sa)

Table B.1: Data description.
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Short name Mnemonic TC E.F. Description

NAPM new ordrs PMNO 1 1 Napm new orders index (percent)
NAPM vendor del PMDEL 1 1 Napm vendor deliveries index (percent)
NAPM Invent PMNV 1 1 Napm inventories index (percent)
Orders (ConsGoods) MOCMQ 5 1 New orders (net) - consumer goods & materials, 1996

dollars (bci)
Orders (NDCapGoods) MSONDQ 5 1 New orders, nondefense capital goods, in 1996 dollars

(bci)
PGDP GDP272A 6 0 Gross domestic product price index
PCED GDP273A 6 0 Personal consumption expenditures price index
CPI-All CPIAUCSL 6 0 Cpi all items (sa) fred
PCED-Core PCEPILFE 6 0 Pce price index less food and energy (sa) fred
CPI-Core CPILFESL 6 0 Cpi less food and energy (sa) fred
PCED-Dur GDP274A 6 0 Durable goods price index
PCED-motorveh GDP274_1 6 1 Motor vehicles and parts price index
PCED-hhequip GDP274_2 6 1 Furniture and household equipment price index
PCED-oth dur GDP274_3 6 1 Other price index
PCED-nondur GDP275A 6 0 Nondurable goods price index
PCED-food GDP275_1 6 1 Food price index
PCED-clothing GDP275_2 6 1 Clothing and shoes price index
PCED-energy GDP275_3 6 1 Gasoline, fuel oil, and other energy goods price index
PCED-oth nondur GDP275_4 6 1 Other price index
PCED-services GDP276A 6 0 Services price index
PCED-housing GDP276_1 6 1 Housing price index
PCED-hhops GDP276_2 6 0 Household operation price index
PCED-elect & gas GDP276_3 6 1 Electricity and gas price index
PCED-oth hhops GDP276_4 6 1 Other household operation price index
PCED-transport GDP276_5 6 1 Transportation price index
PCED-medical GDP276_6 6 1 Medical care price index
PCED-recreation GDP276_7 6 1 Recreation price index
PCED-oth serv GDP276_8 6 1 Other price index
PGPDI GDP277A 6 0 Gross private domestic investment price index
PFI GDP278A 6 0 Fixed investment price index
PFI-nonres GDP279A 6 0 Nonresidential price index
PFI-nonres struc Price
Index

GDP280A 6 1 Structures

PFI-nonres equip GDP281A 6 1 Equipment and software price index
PFI-residential GDP282A 6 1 Residential price index
PEXP GDP284A 6 1 Exports price index
PIMP GDP285A 6 1 Imports price index
PGOV GDP286A 6 0 Government consumption expenditures and gross

investment price index
PGOV-Federal GDP287A 6 1 Federal price index
PGOV-St & loc GDP288A 6 1 State and local price index
Com: spot price (real) PSCCOMR 5 1 Real spot market price index:bls & crb: all commodi-

ties(1967=100) (psccom/pcepilfe)
OilPrice (Real) PW561R 5 1 Ppi crude (relative to core pce) (pw561/pcepilfe)
NAPM com price PMCP 1 1 Napm commodity prices index (percent)
Real AHE: goods CES275R 5 0 Real avg hrly earnings, prod wrkrs, nonfarm - goods-

producing (ces275/pi071)
Real AHE: const CES277R 5 1 Real avg hrly earnings, prod wrkrs, nonfarm - con-

struction (ces277/pi071)
Real AHE: mfg CES278 R 5 1 Real avg hrly earnings, prod wrkrs, nonfarm - mfg

(ces278/pi071)
Labor Prod LBOUT 5 1 Output per hour all persons: business

sec(1982=100,sa)

Table B.1: Data description.
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Short name Mnemonic TC E.F. Description

Real Comp/Hour LBPUR7 5 1 Real compensation per hour,employees:nonfarm
business(82=100,sa)

Unit Labor Cost LBLCPU 5 1 Unit labor cost: nonfarm business sec (1982=100,sa)
FedFunds FYFF 2 1 Interest rate: federal funds (effective) (% per an-

num,nsa)
3 mo T-bill FYGM3 2 1 Interest rate: u.s.treasury bills,sec mkt,3-mo.(% per

ann,nsa)
6 mo T-bill FYGM6 2 0 Interest rate: u.s.treasury bills,sec mkt,6-mo.(% per

ann,nsa)
1 yr T-bond FYGT1 2 1 Interest rate: u.s.treasury const maturities,1-yr.(% per

ann,nsa)
5 yr T-bond FYGT5 2 0 Interest rate: u.s.treasury const maturities,5-yr.(% per

ann,nsa)
10 yr T-bond FYGT10 2 1 Interest rate: u.s.treasury const maturities,10-yr.(%

per ann,nsa)
Aaabond FYAAAC 2 0 Bond yield: moody’s aaa corporate (% per annum)
Baa bond FYBAAC 2 0 Bond yield: moody’s baa corporate (% per annum)
fygm6-fygm3 SFYGM6 1 1 fygm6-fygm3
fygt1-fygm3 SFYGT1 1 1 fygt1-fygm3
fygt10-fygm3 SFYGT10 1 1 fygt10-fygm3
fyaaac-fygt10 SFYAAAC 1 1 fyaaac-fygt10
fybaac-fygt10 SFYBAAC 1 1 fybaac-fygt10
M1 FM1 6 1 Money stock: m1(curr,trav.cks,dem dep,other ck’able

dep)(bil$,sa)
MZM MZMSL 6 1 Mzm (sa) frb st. louis
M2 FM2 6 1 Money stock:m2(m1+o’nite rps,euro$,g/p&b/d

mmmfs&sav&sm time dep(bil$,sa)
MB FMFBA 6 1 Monetary base, adj for reserve requirement

changes(mil$,sa)
Reserves tot FMRRA 6 1 Depository inst reserves:total,adj for reserve req

chgs(mil$,sa)
Reserves nonbor FMRNBA 6 1 Depository inst reserves:nonborrowed,adj res req

chgs(mil$,sa)
Bus loans BUSLOANS 6 1 Commercial and industrial loans at all commercial

banks (fred) billions $ (sa)
Cons credit CCINRV 6 1 Consumer credit outstanding - nonrevolving(g19)
Ex rate: avg EXRUS 5 1 United states;effective exchange rate(merm)(index

no.)
Ex rate: Switz EXRSW 5 1 Foreign exchange rate: switzerland (swiss franc per

u.s.$)
Ex rate: Japan EXRJAN 5 1 Foreign exchange rate: japan (yen per u.s.$)
Ex rate: UK EXRUK 5 1 Foreign exchange rate: united kingdom (cents per

pound)
EX rate: Canada EXRCAN 5 1 Foreign exchange rate: canada (canadian $ per u.s.$)
S&P 500 FSPCOM 5 1 S&P’s common stock price index: composite (1941-

43=10)
S&P: indust FSPIN 5 1 S&P’s common stock price index: industrials (1941-

43=10)
S&P div yield FSDXP 2 1 S&P’s composite common stock: dividend yield (% per

annum)
S&P PE ratio FSPXE 2 1 S&P’s composite common stock: price-earnings ratio

(%,nsa)
DJIA FSDJ 5 1 Common stock prices: dow jones industrial average
Consumer expect HHSNTN 2 1 U. of Mich. index of consumer expectations(bcd-83)

Table B.1: Data description.
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TC Transformation (Xi t ) h-quarter ahead variable X (h)
i t+h

1 Xi t = Yi t X (h)
i t+h = Yi t+h

2 Xi t =∆Yi t X (h)
i t+h = Yi t+h −Yi t

3 Xi t =∆2Yi t X (h)
i t+h = h−1 ∑h

j=1∆Yi t+h− j −∆Yi t

4 Xi t = logYi t X (h)
i t+h = logYi t+h

5 Xi t =∆ logYi t X (h)
i t+h = logYi t+h − logYi t

6 Xi t =∆2 logYi t X (h)
i t+h = h−1 ∑h

j=1∆ logYi t+h− j −∆ logYi t

Table B.2: Variable transformations.

Appendix C. Additional Results

Factor Model

Forecasting Model

0

5

10

0

5

10

15

20

25

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Number of breaks in the intercept of the models

Figure C.9: Breaks in the intercepts of the models. The grey areas represent the NBER recessions.
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Series Factor model Forecasting model
Coef. on factors Coef. on AR lags

All 1970:1 1985:1 All 1970:1 1985:1 All 1970:1 1985:1
All 1984:4 1999:4 All 1984:4 1999:4 All 1984:4 1999:4

Cons-Dur 6 3
Cons-NonDur
Cons-Serv 1 1 1 1
FixedInv 1 1
NonResInv 4 4 1 1
NonResInv-Struct 2 2 2 2
NonResInv-Bequip
Res.Inv 1 1
Gov Fed 53 17 12 48 15 14
Gov State/Loc 12 5 5 2 1 1
IP: products 1 1 2 2
IP: final prod 2 2 4 3
IP: cons gds 4 4
IP: cons dble 1 1
IP:cons nondble
IP:bus eqpt
IP: matls 42 20 8
IP: dble mats 11 6
IP:nondble mats 4 4
IP: mfg 6 3
IP: fuels 2 2
Emp: gds prod 4 3 1 3 3 2 1 1
Emp: mining 51 32 12 48 26 14 15 12 2
Emp: const 4 3
Emp: mfg 1 1 4 4 1 1
Emp: dble gds 2 2 1 1
Emp: nondbles 2 2 15 9 3 5 5
Emp: services 11 7 1 1 1
Emp: TTU 2 2 1 1
Emp: wholesale 2 2
Emp: retail 1 1
Emp: FIRE 27 12 11 1 1
Emp: Govt 1 1 2
Help wanted/emp 18 12
Emp CPS nonag
Emp. Hours 1 1 1 1 1
Avg hrs 9 7
Overtime: mfg 3 2 2 1 1
U: mean duration 2 2
U < 5 wks
U 5-14 wks 6 5 2 2
U 15+ wks 1 1 3 2
U 15-26 wks 1 1 1 1
U 27+ wks
HStarts: NE 4 1 3 4 4
HStarts: MW 12 8 1 14 6 2 24 24
HStarts: South 11 10 1
HStarts: West 38 22 6 31 17 2 22 12 3
Orders (ConsGoods)
Orders (NDCapGoods) 2 2
PCED-Dur 20 13 2 3 3
PCED-motorveh 12 8 2 2

Table C.3: Number of breaks in the loadings of the factor model and the parameters of the forecasting model
detailed by variable.
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Series Factor model Forecasting model
Coef. on factors Coef. on AR lags

All 1970:1 1985:1 All 1970:1 1985:1 All 1970:1 1985:1
All 1984:4 1999:4 All 1984:4 1999:4 All 1984:4 1999:4

PCED-hhequip 4 2 2 1 1
PCED-oth dur 1 1
PCED-nondur
PCED-food 5 4 5 5
PCED-clothing 3 3
PCED-energy 2 1 1
PCED-oth nondur 17 12 2 5 5
PCED-services
PCED-housing 1 1
PCED-hhops
PCED-elect & gas 7 1 4 5
PCED-oth hhops 1 1
PCED-transport 47 27 18 20 17 3 7 7
PCED-medical 10 6 1 7 7
PCED-recreation
PCED-oth serv 3 2 1
PFI-nonres 25 16 6 14 10 3
PFI-nonres struc 21 16 4 5 2 2
PFI-nonres equip 3 2 1 32 17 10 17 12 5
PFI-residential 1 1
PGOV-FED
PGOV-SL 3 1 2
Real AHE: const 3 2 1 6 5 5 5
Real AHE: mfg 9 5 3 2 2 3 2 1
3 mo T-bill 8 8 6 5 1 6 6
1 yr T-bond 3 2 1 3 3
10 yr T-bond 3 3 32 17 9 30 13 16
fygm6-fygm3 24 18 1 14 9 3 7 4 3
fygt1-fygm3 27 19 6 8 7 1 2 1 1
fygt10-fygm3 27 17 8 3 2 1
fyaaac-fygt10 10 5 3
fybaac-fygt10 15 7 5 1
Reserves nonbor 30 19 6 4 3 3 1 2
Ex rate: Switz
Ex rate: Japan
Ex rate: UK 4 2 2
EX rate: Canada 2 4 2 1
S&P: indust 11 6 3 1 1
S&P div yield 18 9 7 4 2 2 1 1
S&P PE ratio 13 2 6 2 2

Table C.3: Number of breaks in the loadings of the factor model and the parameters of the forecasting model
detailed by variable.

Series Std. dev. of X (4)
i t RMSE, ptv RMSE, OLS Relative RMSE # Breaks

Cons-Dur 0.0627 0.0440 0.0497 0.8856 6
Cons-NonDur 0.0166 0.0148 0.0148 1.0000 0
Cons-Serv 0.0122 0.0085 0.0102 0.8356 2

Table C.4: Root mean squared errors (RMSE) of the residuals of the forecasting model when allowing for breaks
of not, and the relative RMSE of these two approaches.27



Series Std. dev. of X (4)
i t RMSE, ptv RMSE, OLS Relative RMSE # Breaks

FixedInv 0.0664 0.0484 0.0506 0.9579 1
NonResInv 0.0686 0.0445 0.0505 0.8821 5
NonResInv-Struct 0.0790 0.0583 0.0634 0.9193 2
NonResInv-Bequip 0.0729 0.0531 0.0531 1.0000 0
Res.Inv 0.1310 0.0978 0.0978 1.0000 0
Gov Fed 0.0445 0.0047 0.0378 0.1250 101
Gov State/Loc 0.0216 0.0124 0.0173 0.7184 14
IP: products 0.0374 0.0242 0.0274 0.8851 2
IP: final prod 0.0368 0.0231 0.0277 0.8325 4
IP: cons gds 0.0318 0.0177 0.0231 0.7666 4
IP: cons dble 0.0756 0.0504 0.0553 0.9120 1
IP:cons nondble 0.0206 0.0162 0.0181 0.8951 0
IP:bus eqpt 0.0720 0.0504 0.0504 1.0000 0
IP: matls 0.0523 0.0379 0.0390 0.9701 0
IP: dble mats 0.0799 0.0573 0.0573 1.0000 0
IP:nondble mats 0.0494 0.0326 0.0387 0.8423 0
IP: mfg 0.0483 0.0342 0.0349 0.9781 0
IP: fuels 0.0449 0.0384 0.0432 0.8899 2
Emp: gds prod 0.0349 0.0210 0.0238 0.8839 5
Emp: mining 0.0706 0.0142 0.0636 0.2227 63
Emp: const 0.0477 0.0338 0.0338 1.0000 0
Emp: mfg 0.0361 0.0224 0.0254 0.8830 5
Emp: dble gds 0.0457 0.0292 0.0314 0.9290 3
Emp: nondbles 0.0239 0.0108 0.0179 0.6060 20
Emp: services 0.0132 0.0070 0.0077 0.9039 1
Emp: TTU 0.0180 0.0103 0.0116 0.8883 1
Emp: wholesale 0.0201 0.0129 0.0136 0.9484 0
Emp: retail 0.0189 0.0102 0.0125 0.8200 1
Emp: FIRE 0.0165 0.0094 0.0102 0.9171 1
Emp: Govt 0.0163 0.0094 0.0104 0.9060 2
Help wanted/emp 0.2971 0.2281 0.2281 1.0000 0
Emp CPS nonag 0.0138 0.0094 0.0100 0.9439 0
Emp. Hours 0.0238 0.0164 0.0174 0.9458 2
Avg hrs 0.5211 0.3246 0.3246 1.0000 0
Overtime: mfg 0.3996 0.2414 0.2873 0.8401 5
U: mean duration 2.0219 0.9627 1.0998 0.8753 2
U < 5 wks 0.0860 0.0713 0.0713 1.0000 0
U 5-14 wks 0.1710 0.1125 0.1279 0.8795 8
U 15+ wks 0.3188 0.1859 0.1968 0.9446 3
U 15-26 wks 0.2806 0.1892 0.1920 0.9856 1
U 27+ wks 0.3888 0.2247 0.2247 1.0000 0
HStarts: NE 0.3044 0.1628 0.1843 0.8833 4
HStarts: MW 0.2541 0.0909 0.1915 0.4743 38
HStarts: South 0.2433 0.1628 0.1628 1.0000 0
HStarts: West 0.2800 0.0626 0.1959 0.3198 53
Orders (ConsGoods) 0.0662 0.0467 0.0501 0.9310 0
Orders (NDCapGoods) 0.1274 0.0962 0.0992 0.9699 2
PCED-Dur 0.0050 0.0025 0.0041 0.6201 23
PCED-motorveh 0.0085 0.0041 0.0061 0.6662 14
PCED-hhequip 0.0046 0.0034 0.0038 0.9021 5
PCED-oth dur 0.0062 0.0049 0.0051 0.9779 1
PCED-nondur 0.0069 0.0049 0.0049 1.0000 0
PCED-food 0.0063 0.0038 0.0045 0.8401 10
PCED-clothing 0.0065 0.0038 0.0041 0.9425 3

Table C.4: Root mean squared errors (RMSE) of the residuals of the forecasting model when allowing for breaks
of not, and the relative RMSE of these two approaches.
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Series Std. dev. of X (4)
i t RMSE, ptv RMSE, OLS Relative RMSE # Breaks

PCED-energy 0.0540 0.0347 0.0363 0.9564 2
PCED-oth nondur 0.0052 0.0025 0.0042 0.6086 22
PCED-services 0.0026 0.0021 0.0021 1.0000 0
PCED-housing 0.0026 0.0020 0.0021 0.9512 1
PCED-hhops 0.0074 0.0054 0.0054 1.0000 0
PCED-elect & gas 0.0158 0.0083 0.0114 0.7343 12
PCED-oth hhops 0.0061 0.0045 0.0046 0.9836 1
PCED-transport 0.0202 0.0050 0.0084 0.5906 27
PCED-medical 0.0037 0.0023 0.0032 0.7357 17
PCED-recreation 0.0036 0.0025 0.0025 1.0000 0
PCED-oth serv 0.0066 0.0047 0.0051 0.9135 3
PFI-nonres 0.0052 0.0019 0.0042 0.4432 39
PFI-nonres struc 0.0076 0.0035 0.0062 0.5756 26
PFI-nonres equip 0.0056 0.0019 0.0045 0.4241 49
PFI-residential 0.0087 0.0045 0.0046 0.9858 1
PGOV-FED 0.0087 0.0042 0.0042 1.0000 0
PGOV-SL 0.0044 0.0032 0.0035 0.9251 3
Real AHE: const 0.0224 0.0115 0.0155 0.7441 11
Real AHE: mfg 0.0135 0.0092 0.0115 0.7970 5
3 mo T-bill 1.7145 1.1599 1.4675 0.7904 12
1 yr T-bond 1.7022 1.3617 1.4975 0.9093 3
10 yr T-bond 1.1865 0.3193 1.1098 0.2878 62
fygm6-fygm3 0.1847 0.1177 0.1770 0.6650 21
fygt1-fygm3 0.4063 0.2564 0.3702 0.6925 10
fygt10-fygm3 1.2283 0.8486 0.9174 0.9250 3
fyaaac-fygt10 0.4817 0.3101 0.3255 0.9527 0
fybaac-fygt10 0.6662 0.4236 0.4471 0.9476 1
Reserves nonbor 0.0397 0.0178 0.0220 0.8075 7
Ex rate: Switz 0.1122 0.1078 0.1078 1.0000 0
Ex rate: Japan 0.1071 0.0951 0.0992 0.9588 0
Ex rate: UK 0.0954 0.0905 0.0905 1.0000 0
EX rate: Canada 0.0466 0.0367 0.0407 0.9014 4
S&P: indust 0.1491 0.1374 0.1405 0.9779 1
S&P div yield 0.5481 0.4234 0.4616 0.9173 5
S&P PE ratio 3.9634 3.1941 3.2898 0.9709 2

Table C.4: Root mean squared errors (RMSE) of the residuals of the forecasting model when allowing for breaks
of not, and the relative RMSE of these two approaches.
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