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Abstract

Cyclicality in the losses of bank loans is important for bank risk management. Because loans

have a different risk profile than bonds, evidence of cyclicality in bond losses need not apply

to loans. Based on unique data we show that the default rate and loss given default of bank

loans share a cyclical component, related to the business cycle. We infer this cycle by a new

model that distinguishes loans with large and small losses, and links them to the default

rate and macro variables. The loss distributions within the groups stay constant, but the

fraction of loans with large losses increases during downturns. Our model implies substantial

time-variation in banks’ capital reserves, and helps predicting the losses.
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1 Introduction

We propose a new model and use it to analyze a unique sample of defaulted bank loans. The

central part of our model is a latent component that links the loss given default, the default rate

and business cycle variables. This setup allows us to analyze whether such a component shows

cyclical behavior, how the variables depend on it and how it is related to the macroeconomy.

Recent advances in the risk management of bank loans, such as the stress tests for the banking

sector, highlight that the risks on bank loans should not be investigated in isolation but in relation

to the macroeconomic environment. As stated in the Basel II Accord, risk measures should “reflect

economic downturn conditions where necessary to capture the relevant risks” (BCBS, 2005). Our

model is exactly tailored to these kind of analyses.

We think that our research is interesting for two reasons. First, research on bank loans is scarce

because data on defaulted bank loans are not easily available and typically constitute small samples

(Grunert and Weber, 2009). Second, the properties like cyclicality of bank loan losses might differ

from the more commonly studied bond losses. Banks monitor their loans more closely than bond

owners, which influences both the default rate and the loss given default. Bank loans are often

more senior than other forms of credit and are more often backed by collateral, which reduces the

loss given default. Banks can postpone the sale of a borrower’s assets until a favorable economic

state, hoping to receive a higher price. These effects can make the default rate and the loss given

default less cyclical and less interrelated.

We base our research on default data from the Global Credit Data Consortium.1 Several banks

formed this consortium to pool anonymized information on their defaulted loans for research on

credit risk. Currently, the consortium counts 47 banks, both inside and outside Europe. Each

member has access to a subsample of this pooled database. Our study uses approximately 22,000

defaults over the period 2003–2010, based on the large and representative proportion of the database

to which the Dutch NIBC Bank has access. As a consequence, our research is based on a larger

sample and cross section than existing research such as Grunert and Weber (2009), Calabrese and

Zenga (2010) and Hartmann-Wendels et al. (2014). They either use a smaller sample or focus on

a single country or loan type.

1In March 2015, the consortium changed its name to Global Credit Data Consortium. Its former name was Pan
European Credit Data Consortium.
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The loss of a portfolio of loans is typically split into three quantities: the default rate, the loss

given default and the exposure at default. The first two elements are usually treated as outcomes

of random processes, whereas the third is taken as given. An initial inspection of our data shows

that the loss given default on bank loans differs in an important aspect from bonds. Though both

distributions are bimodal, as either most of the loan is recovered or fully lost, the loss given default

on bank loans can exceed 100% or fall below 0%. In the first case, the bank loses more than the

initial loan, for example because of principal advances (the bank lends an additional amount to

the borrower for recovery). In the second case, the bank recovers more than the initial loan, for

example because it is entitled to penalty fees, additional interest or because of principal advances

that are also recovered.

To capture the time and cross-sectional variation in, and dependence between default rates and

loss given default, we construct a model that consists of four components. The first and central

component is a latent factor that follows an autoregressive process and which we interpret as the

credit cycle. The second component consists of a Bernoulli random variable for the default of a loan.

In the third component we model the loss given default as a mixture of two normal distributions

that differ in their means. The low-mean distribution corresponds to good loans with a high

recovery rate, whereas the high-mean distribution relates to bad loans with a low recovery rate.2

The loan being good or bad is determined by another latent Bernoulli variable. The parameters

of both Bernoulli variables can vary in relation to the latent factor, or according to characteristics

of the loans, such as seniority, security, and the industry to which the company belongs. Fourth,

we add macroeconomic variables, because research on bond defaults has found a relation between

the credit cycle and the state of the economy, see e.g. Allen and Saunders (2003), Pesaran et al.

(2006), Duffie et al. (2007), Azizpour et al. (2010) and Creal et al. (2014).

Our model is a state space model with nonlinear and non-Gaussian measurement equations.

Because it is not a standard linear Gaussian state space model, we can neither use the Kalman filter

to infer the latent process, nor use straightforward maximum likelihood estimation to determine

the parameters of our model. Instead, we derive how the simulation-based methods of Jungbacker

and Koopman (2007) can be used to infer the latent process, and the Expectation Maximization

2The distinction between good and bad loans is also exploited in Knaup and Wagner (2012). They use this
distinction to derive a bank’s credit risk indicator.
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algorithm of Dempster et al. (1977) to estimate the parameters.

Our results show that the default rate, the loss given default and the macro variables share

a common component. This component shows cyclical behavior that leads to default rates that

fluctuate between 0.2% and 7%, while loss given default fluctuates between 14% and 29%. High

values for the common component indicate a bad credit environment with high default rates and

high values for loss given default, and an economic downturn characterized by falling growth rates

of GDP and industrial production, and an increasing unemployment rate. Interestingly, the credit

cycle that we infer leads the unemployment rate by four quarters.

The time-variation in the loss given default is driven by time-variation in the probability of a

defaulted loan being good or bad. We do not find evidence that the average loss given default for

either good or bad loans varies over time. When the credit cycle deteriorates the fraction of loans

for which most is lost increases, but the LGD conditional on a defaulted loan being good or bad

does not vary. Monitoring should therefore concentrate on determining the loan type.

We use our model to determine the capital reserve required for a fictional loan portfolio as in

Miu and Ozdemir (2006). We calculate the economic capital as the difference between the portfolio

loss with a cumulative probability of 99.9% and the expected loss. From peak to bottom of the

cycle, the economic capital increases from 0.15% to 2.23% of the total value of the loan portfolios,

an increase of a factor 15. This increase shows the importance of incorporating cyclicality in risk

management models. We also show that our model can reduce the uncertainty in LGD predictions.

Because resolving loan defaults can take a couple of years, the macro variables in our model help

predicting LGD.

Our findings contribute to the literature on credit risk in three ways. First our study shows

that the losses on bank loans have a cyclical component that influences both their default rate and

loss given default, and is related to the macroeconomy. Altman et al. (2005), Allen and Saunders

(2003) and Schuermann (2004) document such a component for bonds. The loss given default for

a typical loan is much lower than for a typical bond, but fluctuations have the same magnitude.

We conclude that the cyclicality of loan losses resembles that of bonds despite the arguments for

less cyclicality.

Second, we develop a new model that captures the unique properties of bank loans, and deviates

from existing models. First, Creal et al. (2014) and Bruche and González-Aguado (2010) use

4



a standard Beta distribution which is bounded between zero and one for the loss given default,

while we propose a mixture of normal distributions. Second, in the model by Bruche and

González-Aguado (2010) the default rates of bonds and their loss given default jointly depend

on a latent Markov chain, whereas we use an autoregressive process. Though the switches in a

Markov chain can also give rise to a credit cycle, our inferred process can be more easily linked

to macroeconomic variables. Third, our model is more general than Calabrese (2014a), who only

models the loss given default. Her model accommodates a mixture of good and bad loans similar

to our model, but the mixture probability is constant, whereas we explicitly model its cyclical

behavior and link to the default rate and macro variables.

Third, our application shows the flexibility and the added value of our model for risk

management. We show how characteristics of the loan or the borrower such as its security,

size or industry influence the LGD and default rate. Our model can easily accommodate other

characteristics that banks may have on their borrowers to improve their assessments of the risk on

bank loans.

2 Data

In 2004, several banks cooperated to establish (what was later named) the Global Credit Data

Consortium, a cross border initiative to help measure credit risk to support statistical research

for the advanced internal ratings-based approach (IRB) under Basel II. The members pool their

resolved defaults to create a large anonymous database. A resolved default is a default that is

no longer in the recovery process and thus the final loss given default (LGD) is known. Every

member gets access to part of the database, depending on its contribution. We have access to the

subset available to NIBC, which contains 46,628 counterparties and 92,797 loans.3 Details such

as the default and resolution date are available, as well as loan characteristics such as seniority,

security, asset class and industry. We investigate the behavior of LGD for these groups separately.

The fraction of the total database available varies per asset class, but overall the NIBC subset

represents a large proportion of the Global Credit Data database.

In case of a default, the lender can incur losses, because the borrower is unable to meet its

3Members receive a new version semi-annually. Our sample is a subset of the June 2014 version.
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obligations. The LGD is the amount lost as a fraction of the exposure at default (EAD). The LGD

in the database is the economic LGD, defined as a sum of cash flows or payments discounted to

the default date. We follow industry practice by applying a discount rate that is a combination of

the risk free rate and a spread over it.

The default rate (DR) gives the number of defaulted loans as a fraction of the number of

loans at the start of the year. Whereas the Global Credit Data Consortium was founded to pool

observed defaults, not default rates, they expanded to include an observed DR database in 2009.4

The DR database contains default rates per asset class and industry, which we match to the LGD

observations of the groups.

2.1 Sample Selection

We apply filters to the LGD dataset, following mostly NIBC’s internal policy, to exclude

non-representative observations. For details, see appendix A.

The LGD on bank loans can fall outside the interval between 0 (no loss) and 1 (a total loss)

due to principal advances, legal costs or penalty fees. A principal advance is an additional amount

loaned to aid the recovery of the defaulted borrower. If none of it is paid back, the losses are larger

than EAD and LGD is larger than 1. If on the other hand the full debt is recovered, including

penalty fees, legal costs and principal advances, the amount received during recovery is larger than

EAD and the LGD is negative. We restrict the LGD between −0.5 and 1.5, similar to Höcht

and Zagst (2007) and Hartmann-Wendels et al. (2014). Figure 1(a) presents the empirical LGD

distribution, and shows that we can not ignore this, because over 10% of the LGDs lie outside the

[0, 1] interval.

We restrict our analysis to the period 2003–2010. The LGD database for resolved defaults

contains details of defaults from 1983 to 2014. Figure 2(a) shows the average LGD per year. The

number of defaults in the database is small until the early 2000s and the average LGD is noisy

because of it. The first defaults have been submitted by the banks in 2005. Not all banks might

have databases with all relevant details of many years ago and most observations in the years before

2000 are the substantial losses with a long workout period still in the books.

The workout period is the main difference between bonds and bank loans. Bond holders directly

4Members receive a new version annually. We use the June 2013 version.

6



observe a drop in value as trading continues and the price is discounted by the expected recovery

rate. For defaulted bank loans, a recovery process starts that should lead to debt repayment.

When no more payments can be obtained, the default is resolved and the recovery process ends.

The period from the default date to the resolved date is called the workout period. Most defaults

are resolved within one to three years after default, but figure 1(b) shows that the recovery process

can last more than five years.

Table I shows that the LGD is significantly higher for longer workout periods, which explains

the high average LGD in figure 2(a) before 2003. The higher LGD for loans with longer workout

periods is partly explained by discounting. The cash flows are discounted over a longer workout

period, thus reducing the recovery and increasing the LGD. Additionally, the workout period is an

indication of how hard it is to recover the outstanding debt. If the recovery takes time, it can be

due to issues with restructuring or selling of the assets. If demand for an asset is high, it will be

sold or restructured faster and its value will be higher.

The database only contains resolved defaults, for which the recovery process has ended, and

therefore, by definition, the later years of the database (2011 to 2014) only contain defaults with

shorter workout periods. Because a shorter workout period is related to a smaller LGD, the LGD

is underestimated in the final years. The average LGD and number of defaults in 2011 is small

compared to the previous years, see figure 2(a). Therefore, we restrict our analysis to the period

2003–2010.

Figure 2(b) shows the yearly default rate. In general, the default rate is relatively small with

values mostly around 1%. The default rate increases during the financial crises, peaking in 2009 at

a default rate of 2.2%, more than twice the default rate in the period 2003–2007. The figure shows

that the total number of loans is large in 2003 and increases over time. This is mostly because the

number of participating banks increases as well. To match the time period of the LGD dataset, we

use the period 2003–2010.

The LGD sample after applying the sample selection consists of 22,080 observations of mostly

European defaults, one of the most comprehensive datasets for bank loan LGD studied thus far.

Grunert and Weber (2009) summarize the empirical studies on bank loan recovery rates. The

largest dataset they found studies 5,782 observations over the period 1992–1995. More recently,

Calabrese and Zenga (2010), Calabrese (2014a) and Calabrese (2014b) study a portfolio of 149,378
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Italian bank loan recovery rates resolved in 1999 and Hartmann-Wendels et al. (2014) consider

14,322 defaulted German lease contracts from mainly 2001–2009. However, these studies focus on

defaults from a single country or a single type whereas our dataset is more extensive.

[Figure 1 about here.]

[Table 1 about here.]

[Figure 2 about here.]

2.2 Sample Characteristics

In this section, we discuss the empirical LGD distribution, the pattern over time and differences

across loan characteristics for our sample.

It is a stylized fact that LGD follows a bimodal distribution with most observations close to

0 or 1, see for example Schuermann (2004). In most cases, there is either no or a full loss on the

default. Figure 1(a) shows that this also holds for our sample. By far most losses are close to 0,

but there is an additional peak at 1. The data is limited to the interval −0.5 to 1.5. Still, 12.52%

of the observations are outside the [0, 1] interval.

In our analysis, defaults are aggregated per quarter to have both a sufficient number of time

periods and a sufficient number of observations per period. An advantage of aggregation by quarter

is that it matches the frequency of macroeconomic variables. Figure 2(a) shows the average LGD for

defaults per quarter. The LGD starts with a relatively large value in 2003 and gradually decreases

until 2007. From 2007, the average LGD increases due to the financial crisis. The level is back at

its pre-crisis average in 2009. We observe the same pattern for the default rate in figure 2(b).

Figure 3 provides a more in-depth view of the time-variation of the LGD. It shows how the

empirical distribution varies from quarter to quarter for the period 2003–2010. All quarters display

the bimodal shape with peaks at 0 and 1. The increased number of defaults due to the financial

crisis is visible, as well as the increase of the height of the peak around a LGD of 1 for the period

2007–2009. The large proportion of full losses explains the large average LGD in those years. Our

modeling framework exploits both the bimodality of and the time-variation in the LGD.

Summary statistics of the sample and subsets based on loan characteristics are presented in

table II. As expected, the LGD for unsecured loans is on average larger than for secured loans
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because the former are not backed by collateral or a guarantor. Also, the average LGD is larger

for subordinated loans than for senior loans. For some groups not many defaults are available.

Therefore, we limit our analysis of groups to those with on average at least 100 observations per

quarter.

Table II shows that unimodality is rejected by Hartigan and Hartigan’s (1985) dip test for the

full sample as well as for subsamples, unless the number of defaults is small. The fraction of defaults

with an LGD larger than 0.5 is reported to illustrate the close relation with the average LGD.

Because we want to compare multiple means and the LGD is not normally distributed, we use

the Kruskal-Wallis (KW) test to test for differences in location of multiple distributions. The KW

test is a nonparametric test based on ranks. It tests for the null hypothesis of identical distributions

against the alternative of at least two distributions differing in location.

A KW test on the selected groups shows a significant difference between the senior secured and

senior unsecured loans, with a p-value of 0.000. Even though the absolute difference between the

average of SME and large corporate seems small, the p-value of the KW test is 0.000, strongly

rejecting the null hypothesis of equal distributions. For the industries, the LGD for financials is

significantly larger than for the industrials and consumer staples industries.

[Figure 3 about here.]

[Table 2 about here.]

2.3 Macroeconomic Variables

Allen and Saunders (2003), Pesaran et al. (2006), Duffie et al. (2007), Azizpour et al. (2010), Creal

et al. (2014) and others show that bond defaults are related to the business cycle. We include

macroeconomic variables to analyze this behavior for bank loans. We consider the same set of

variables as Creal et al. (2014) to represent the state of the economy: the gross domestic product

(GDP), industrial production (IP) and the unemployment rate (UR). The series included are the

growth compared to the same quarter in the previous year, seasonally adjusted. To match the

mostly European default dataset, we use macro variables of European OECD countries or the

European union.
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3 Model specification

We propose a ‘mixed-measurement’ model (Creal et al., 2014), where the observations can follow

different distributions, but depend on the single latent factor αt. The latent factor follows an AR(1)

process,

αt+1 = γ + ραt + ηt, (1)

with ηt ∼ N(0, ω2). The initial state α1 follows the unconditional distribution of the latent proces,

α1 ∼ N
(
γ/(1− ρ), ω2/(1− ρ2)

)
.

3.1 Loss given default

Based on the empirical distribution in figure 1(a), we propose a mixture of two normals for the

LGD and define distributions 0 and 1 as the distributions for good and bad loans,5

yl
it ∼

 N
(
µj0, σ

2
j

)
if sit = 0 (good loan),

N
(
µj1, σ

2
j

)
if sit = 1 (bad loan),

(2)

with yl
it the LGD of loan i that defaulted at time t for i = 1, . . . , N l, j = 1, . . . , J and t = 1, . . . T .

We treat sit as the unobserved state that is 1 if loan i at time t is a bad loan and 0 otherwise. The

probability that LGD is a bad loan varies across loan characteristics, such as industry or seniority,

and across time. We define the sets of loans belonging to the categories of a loan characteristic

as Cj for j = 1, . . . , J . For example, we have the categories large corporate and SME for loan

characteristic asset class. If the loan i defaulted at time t belongs to the category Cj , then the

probability of a bad loan is

P (sit = 1|i ∈ Cj) = pjt = Λ
(
βl
j0 + βl

j1αt

)
, (3)

where Λ(x) = exp(x)/
(
1 + exp(x)

)
is the logistic function. The model has one factor αt, such that

differences between groups are due to coefficients βl
j0 and βl

j1.

The distribution can change in three ways, influencing the average LGD: (i) a change in the

5In section 7.3, we consider a mixture of Student’s t distributions.

10



mixture probability P (sit = 1), (ii) a change in the mean of good loans µj0 and/or (iii) a change

in the mean of bad loans µj1. Most LGDs are (close to) 0 or 1, see figure 1(a), so we do not expect

the means to vary much. This is supported by figure 3, where the modes stay at 0 and 1, but

the (relative) height of the peaks varies over time. Therefore, we propose that a larger (smaller)

average LGD in a time period is caused by an increase (decrease) in the proportion of bad to good

loans. We examine the alternative of time-varying means in section 7.2. We restrict the variance to

be equal across the mixture components for identification of the modes and µj0 < µj1 to interpret

good and bad loans.

3.2 Default rate

The default of loan i at time t follows a Bernoulli distribution. This implies that the number of

defaults in period t is a realization of a binomial distribution, as in Bruche and González-Aguado

(2010). The distribution depends on the latent signal αt through the probability of default qit,

yd
it ∼ Binomial(Lit, qit), (4)

qit = Λ
(
βd
i0 + βd

i1αt

)
, (5)

with yd
it the number of defaults and Lit the number of loans of group i at time t for i = 1, . . . , Nd

and t = 1, . . . T . If it is available from the DR database, we use the group specific default rate to

match the J groups in the LGD component, otherwise we use the full sample default rate. Hence,

Nd is either 1 or J , which is for example three for industries.

The defaults and loans are observed yearly, not quarterly. We set the third quarter equal to the

yearly observation, because this is approximately the middle of year, and define the other quarters

as missing.6 Using the same method, Bernanke et al. (1997) construct a monthly time series from

a quarterly observed variable.

6If we set the second quarter equal to the yearly observation, we get similar results.
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3.3 Macroeconomic variables

To relate the latent factor to the state of the economy, we add macroeconomic variables to the

model,

ym
t = βm

0 + βm
1 αt + νt, (6)

where ym
t is the Nm × 1 observation of the macro variables at time t and νt ∼ N(0,Σ) for t =

1, . . . , T . The macro variables are standardized to have zero mean and unit variance, such that we

can easily compare the relation with the latent factor across the macro variables.

3.4 Missing values and identification

We do not observe multiple defaults per loan. We treat the loans for which the default date is not

in period t as missing during that quarter. For each loan, we have one observed and T − 1 missing

values. One of the advantages of a state space model is its ability to easily handle missing values.

The densities are cross-sectionally independent given αt, such that

log p(yt|αt) =
N∑
i=1

δit log pi(yit|αt), (7)

where yt = (y1t, . . . , yNt)
′, N = N l +Nd +Nm is the number of observations and δit is an indicator

function which is 1 if yit is observed and 0 otherwise. Therefore, only the observed values determine

the loglikelihood. The loglikelihood consists of the sum of the model components. The different

components are given in appendix C.1.

Without restrictions, the latent factor α and the coefficients β0 and β1 are not identified. For

identification of β0, we set the intercept γ = 0 in equation (1). To make sure β1 is identified, we

standardize the signal variance ω2 = 1. Finally, we restrict one element of β1 to be positive to

identify the sign of the signal.
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4 Estimation

Estimation of the parameters, denoted by θ, is done using maximum likelihood. Analytical solutions

are not available and direct numerical optimization is infeasible, due to the dimensionality of the

optimization problem. Because it would be possible to optimize for the parameters θ if α were

known and vice versa, we employ the Expectation Maximization (EM) algorithm, introduced by

Dempster et al. (1977) and developed for state space models by Shumway and Stoffer (1982) and

Watson and Engle (1983). The algorithm is a well-known iterative procedure consisting of repeating

two steps, which is proven to increase the loglikelihood for every iteration.

The m-th iteration of the EM algorithm is

1. E-step: Given the estimate of the m-th iteration θ(m), take the expectation of the complete

data loglikelihood `c (θ|Y ,S,α),

Q(θ|θ(m)) = Eθ(m) [`c (θ|Y ,S,α)] . (8)

Evaluating the expected value of the complete data loglikelihood implies that we need

expected values for the states S and the latent signal α given the observed LGD, defaults and

macro variables. Because the mixed-measurement model is a nonlinear non-Gaussian state

space model, methods for linear Gaussian state space models like the Kalman filter are invalid.

Following Jungbacker and Koopman (2007), we therefore apply importance sampling to get a

smoothed estimate of the expected value, variance and autocovariance of α, the probability of

a bad loan P (sit = 1|Y ,α) and its cross-product. We draw from an approximating Gaussian

state space model as importance density. Appendix B provides an outline of the method.

The expected loglikelihood (8) is derived in appendix C.2 and C.3. Derivations for mode

estimation of α, used to get the approximating Gaussian state space model, are in appendix

C.4. We set the number of replications R = 1000 and employ four antithetic variables in the

importance sampling algorithm. Increasing R does not impact the results.

2. M-step: Obtain a new estimate θ(m+1) by maximizing the expected loglikelihood with respect
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to θ,

θ(m+1) = arg max
θ

Q(θ|θ(m)). (9)

Solving equation (9) involves the method of maximum likelihood. We use analytical solutions

for the parameters if possible because the EM algorithm is already an iterative optimization.

That is, we numerically optimize ρ, βl
j0 and βl

j1 for j = 1, . . . , J , and βd
i0 and βd

i1 for i =

1, . . . , Nd, and use analytical solutions for the other parameters. The analytical solutions are

conditional on the other parameters, which makes the two-step procedure an ECM algorithm

(Meng and Rubin, 1993).

These steps are repeated until the stopping criterion is met. If the loglikelihood increase after the

m-th step, denoted by `
(
θ(m)|Y

)
− `
(
θ(m−1)|Y

)
, is smaller than ε = 10−3, we switch to direct

numerical optimization of the loglikelihood until the loglikelihood increase is less than ε = 10−6.

Increasing the precision does not impact results.

Following Ho et al. (2012), we initialize the EM algorithm by 2-means clustering with random

starting values. Then, starting values for µj0 and µj1 are the sample mean of the two clusters and σ2
j

their average variance. We set Λ(βl
j0) equal to the group proportions from 2-means clustering and

Λ(βd
i0) to the average default rate. Finally, βl

j1 = 1 for all j = 1, . . . , J , βd
i1 = 1 for all i = 1, . . . , Nd,

and the factor is initialized at zero.

5 Results

5.1 LGD and DR

First, we discuss results for the model without cross-sectional variation, i.e. we do not use different

factors or coefficients for groups such as industries or asset classes. The LGD parameter estimates

are presented in the first column of table III.

The parameter estimates clearly distinguish two distributions. The estimate for the mean of

a good loan is 0.072 and for the mean of a bad loan 0.828. The estimates for the means confirm

our interpretation of the components as the distributions of good and bad loans and captures the

stylized fact that most LGDs are either close to 0 or 1. The mean for bad loans is not exactly 1,
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because of the observations between 0 and 1.7

We cannot directly compare the sensitivities towards the factor of LGD and the defaults via the

coefficients βl
1 and βd

1 because of the nonlinearity of the logistic function. Instead, we compare the

average marginal effect of the signal, given by the average of the first derivative of the probability

function with respect to the signal αt, 1/T
∑T

t=1 ∂pt/∂αt. We present these effects in panel F of

table III.

The coefficients βl
1 and βd

1 are both significantly positive, which means that the probabilities

of a bad loan pt and of a default qt move in the same direction. The significant effect of the factor

is strengthened by a large average marginal effect of 0.041 for pt, which means that a rise of the

factor by one standard deviation increases the probability of a bad loan by 4.1%. It indicates that

the factor has a stronger effect on the probability of a bad loan than for the default probability,

where the effect is 1.2%, so pt fluctuates more than qt. They follow the same pattern over time,

but at a different level, see figure 4. This is in line with research on losses on bonds, where DR and

LGD are time-varying through a common cyclical component.

The factor underlying the probability of a bad loan is presented in figure 4(a). Due to

the monotonicity of the logistic transformation, interpreting the factor and its coefficients is

straightforward. The positive estimate for βl
1 means that an increase of the factor corresponds

with an increase in the ex ante probability of a bad loan and a default.

The estimated factor resembles the average LGD. The first few years are characterized by a

downward trend until 2007. In 2007 the level increases, after which in 2009 it decreases slightly. It

differs however, for a couple of reasons. First, the factor is a combination of the LGD, the default

rates and macroeconomic variables and is estimated using all three sources of information. Second,

the factor is a smoothed estimate, which means that it is conditional on all information of the

complete sample period. It is not simply the average of the LGD at the particular point in time,

but contains information from the preceding and following observations.

Figure 5 shows the fit of the mixture for two quarters. The difference between the two panels

is the ex ante probability of a bad loan pt, which is larger in the second quarter of 2008, such that

7To fit the observations between the modes, the means are shrunk to 0.5. The shrinkage is stronger for µ1 because
the number of observations with an LGD near 1 is smaller than the number of defaults with an LGD near 0, see figure
5. The estimates of the means are closer to 0 and 1 if we replace the mixture of normals by a mixture of Student’s t
distributions, see section 7.3.
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the relative height of the mode for bad loans compared to good loans is higher. The relatively

high mode for bad loans corresponds with the relatively large fraction of high LGD observations

in the second quarter of 2008. Further, for both quarters, the location of the distribution of good

loans captures the large peak at 0 and the distribution of bad loans fits the high LGD observations.

It captures the stylized fact and the changes across time match what we observe in the empirical

distribution.

Similar to losses on bonds, the defaults show cyclical behavior. Higher default rates are

accompanied by a higher probability of a bad loan, hence aggravating the loss during bad times.

This time-variation should be taken into account. The claim that LGD estimates should “reflect

economic downturn conditions where necessary to capture the relevant risks” (BCBS, 2005) is

mostly motivated by research on bonds. We provide evidence that it holds for bank loans as well.

[Table 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

5.2 Relation with Macroeconomic Variables

Research on losses on bonds reports a link with macroeconomic variables, see e.g. Allen and

Saunders (2003). Here, we investigate this link for losses on bank loans. The coefficients in panel

D of table III indicate a relation between the state of the economy and credit conditions. They are

significantly different from zero and have the expected sign. GDP and IP are negatively related,

whereas the UR is positively related to the factor. Because a high factor implies more bad loans

and a high default rate, this finding implies that both the number of defaults and the proportion

of bad loans increase when the economy is in a bad state.

The first two columns of table III and figure 6 show that including the macro variables alters

the factor only slightly. The factor of the model with macro variables in figure 6 is almost identical

to the factor of the model without macro variables: the correlation between both factors is 0.996.

Further, the coefficients of the LGD and DR only vary slightly. The macro variables support the

shape of the factor we find, but do not drive the results.
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The model includes contemporaneous macro variables, but the actual relation between the

economy and the credit conditions may exhibit leading or lagging behavior. On the one hand, it

could be that if the economy deteriorates, it takes a few months before companies are affected

and go into default. On the other hand, the default of many companies could turn the economy

into distress. The workout period further distorts the relation. The LGD are grouped by default

date, but are a combination of cash flows in the recovery period, which depend on the state of the

economy during the recovery period. The workout period can be less than a year or take up to five

years.

Figure 7 presents the correlation of the factor for the model with default rate and macro

variables with the macroeconomic variables for different leads and lags. The correlations with

both GDP and IP show that the factor is contemporaneously related to the state of the economy.

The unemployment rate is strongly related to the factor lagged three or four periods, in line with

the other correlations because UR lags the state of the economy. Figure 7 confirms the significant

relation we find from the estimates in table III, but also shows that the link between macro variables

and credit conditions is more complicated than indicated by the model.

[Figure 6 about here.]

[Figure 7 about here.]

5.3 Loan Characteristics

We expect differences in credit conditions across loan characteristics, such as seniority and industry.

We examine two possibilities: (i) one factor is underlying all groups, but the parameters vary

depending on the characteristics, or (ii) every category has a different underlying factor. The first

model type implies that the underlying credit conditions change in the same way for all industries,

but the sensitivities towards it can vary. The second model type allows for different credit cycles

per group. Under this model type, it could be that industry A is in distress, whereas the credit

conditions in industry B are not irregular. We investigate how related the group-specific credit

conditions are. If there are differences, banks can exploit this to diversify their portfolio. The

characteristics we look into are security, seniority, asset class and industry, but only select categories

with on average at least 100 observations per quarter. For the different asset classes and industries,
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we use group-specific default rates. Macro variables are included to compare the relation with the

business cycle.

The parameter estimates for the first model type, with a single common factor for all groups,

are presented in the first column in tables IV–VI. The parameter estimates for the second model

type, with a different latent factor per group, are presented in the remaining columns. The main

differences in LGD across groups are the coefficients βl
j0 and βl

j1, which determine the relation

between the factor and the probability of a bad loan. The identification of the distributions of good

and bad loans holds for all subsamples. The means for good loans are estimated between 0.05 and

0.09 and for bad loans between 0.79 and 0.86.

First, consider the difference between senior secured and unsecured loans in table IV. The

intercept βl
j0 is more negative for senior secured loans than for unsecured loans which means that

the average LGD is smaller for secured loans. The average marginal effect is almost twice as

high for senior secured loans than for unsecured loans, which implies a higher sensitivity for the

time-variation in the latent factor. This is reflected in the high estimate for βl
j1 for senior secured

loans. Figure 8(a) shows that the pattern over time is much alike for the for the senior secured

and unsecured factors. The correlation between the factors is 0.84. The finding that senior secured

defaults are more time-varying than unsecured defaults is in contrast with the findings of Araten

et al. (2004). An explanation is that the values of the securities backing the loan are cyclical. For

example, demand for the collateral may vary depending on the state of the economy and its value

therefore changes substantially over time.

Second, we consider the asset classes large corporate (LC) and small and medium enterprises

(SME), where we have group-specific default rates. Table V presents the parameter estimates. If

we consider different factors per group, the mean marginal effect for the LGD is approximately

the same. However, the factor for SME is more connected with macroeconomic conditions. In

particular the difference in the relation with UR is substantial, see panel D of table V. Given the

estimates of βl
j0, βl

j1 and the average marginal effect in the model with one common factor, the

LGD for SME loans is slightly higher and more sensitive to changes in the factor. In contrast, the

mean marginal effect for the default rate of LC is much higher than for SME. The estimate for βd
j0

is higher for LC than for SME, which implies that bank loans on LC default relatively more often.

The time-variation of credit conditions for asset classes LC and SME differs in pattern and
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in size. The correlation between the factors for LC and SME in figure 8(b) is only 0.59. The

LGD for SME is slightly more time-varying than for LC, but the default rate for LC is much more

time-varying than for SME.

Third, we study the difference in cyclicality across industries, for which we also have the

industry-specific default rates. Consumer staples (CS) should be an industry with relatively stable

credit conditions over time, because it produces goods such as food and household supplies. Demand

will exist, independent of the economic situation. On the other hand, financials (FIN) are expected

to be volatile, especially because the time period includes the financial crisis of 2007–2009.

The estimate of coefficient βl
j1 in table VI is largest for FIN, which induces the high mean

marginal effect of 0.049. As expected, the LGD for FIN is most sensitive to changes in the factor.

The estimate of βl
j0 is smaller than that of the other industries. Hence, the probability of a bad

loan is in general smaller for FIN, but more sensitive to economic conditions. The time-variation

explains the significantly larger average LGD over the full sample in section 2.2.

If we consider industry-specific factors, the mean marginal effect is smallest for CS, both for the

LGD and the default rate. The estimates for the coefficients βl
j1 and βd

j1 are both approximately

0.05 in the second column of table VI. If we allow for a single factor, the mean marginal effects are

larger, but still small compared to FIN.

For industrials (IND), the LGD is less time-varying compared to other industries. The estimate

of βl
j1 for the model with a single factor is smaller than for CS. If all industries have a different

factor, the time-varying effect is stronger for IND. On the other hand, the default rate is sensitive

to credit conditions. The default rate has the highest mean marginal effect for IND, slightly higher

than for FIN, in both the model with an industry-specific factor and the model with a single factor.

The difference between industries is further illustrated by the relation with the macroeconomic

variables. Panel D of table VI shows that the factor underlying the industries FIN and IND is

closer related to the macroeconomic variables than for CS. The coefficients for GDP and IP are

estimated almost twice as high for FIN and IND. The credit conditions of CS are less related to

the macroeconomic variables than for the other industries.

Figure 8(c) presents the single factor and the industry-specific factors. The industry factors

move in the same direction over time, as the recent crisis hit all of the considered industries. But

they are far from identical, with correlations from 0.52 between the factors of CS and IND to 0.81
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between those of FIN and IND. The response of the factor of CS is lagged, but stronger than for the

other industries. The increase of the factor of CS is larger than for other industries, but the mean

marginal effect on the probability of a bad loan is only 0.007. This is due to the small estimate for

the coefficient βl
j1.

The results indicate that it is important to consider the portfolio composition of defaults. We

find that there is not a single credit cycle. The credit conditions across loan characteristics do

share a common component, but clear differences exist. The probability of a bad loan determines

most variation across groups, in terms of level and time-variation. Senior secured loans vary more

over time, whereas unsecured loans have a higher average probability of a bad loan. Especially the

time-variation across industries is important for banks focusing on a small set of sectors. Financials

are sensitive to macro conditions, while consumer staples are more stable over time.

Banks gain a more in-depth view of the risk of the loan portfolio and how sensitive it is to

macro conditions by taking the loan characteristics into account. For example, they can anticipate

industry-specific time-variations and adjust their risk parameters accordingly to more accurately

estimate the loan-specific risk. Further, they can diversify some of their time-varying risk by

investing in different industries or asset classes.

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Figure 8 about here.]

5.4 Relation with Financial Variables

The latent factor underlies both the default rates and the loss given default. Therefore, we interpret

the factor as a measure for credit conditions and we expect it to have a relation with other financial

variables. We examine this by adding financial variables to the vector ym
t in equation (6). We

select the long-term interest rate (LIR), the credit spread (CRS) and the yield spread (YLS). The

LIR is the yield on the Euro area 10-years government bond, the CRS is the difference between the

yield on the IBOXX European corporate 10+-years BBB-rated bond index and the LIR, and the
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YLS is the difference between the LIR and the yield on the 3-month Euro Interbank Offered Rate

(Euribor).

The last column of table III presents the estimates of the model including the financial variables.

The estimates in panel E of table III indicate a significant positive relation between the factor and

the financial variables. In particular, we observe a strong connection with the credit spread, given

the estimate of 0.578 for βm
1 . This strong connection is not surprising, because the credit spread

represents the market’s expectation of credit risk, in terms of default rate and LGD.

Further, adding the financial variables does not affect the relation of the LGD, defaults and

macro variables with the factor. The latent factor is virtually unchanged with a correlation of 0.997

with the factor from the model without financial variables.

The results validate our interpretation of the factor for credit conditions given the strong relation

with the credit spread.

6 Applications in Risk Management

Banks can apply the model to assess their risks. The model can be used in a stress testing exercise or

to formulate a downturn LGD (see e.g. Calabrese, 2014a). Below, we illustrate its use to determine

economic capital and show how we can predict future credit conditions.

6.1 Economic Capital

Economic capital is an internal risk measure used by banks. It represents the amount of capital

that the bank should hold in order to remain solvent, accounting for unexpected losses due to their

exposure to risks. Given an estimate for the latent factor, we simulate realizations of defaults and

LGD. In particular, it yields the economic capital, which is computed as the difference between the

loss at a particular quantile in the right tail, usually at 99.9%, and the expected loss. For a given

loan portfolio, based on simulated losses, we get the corresponding loss distribution.

We draw 50,000 times for every time period a portfolio of 2,000 loans, each with an exposure

at default (EAD) of e1, similar to the portfolio considered by Miu and Ozdemir (2006) in their

simulation exercise. Further, we consider the latent factor distributed as the one inferred in section

5.1, from the model including macro variables but without differences per group, such that we do
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not have to make assumptions on the portfolio composition over industry and asset class.

The results show that changes in credit conditions can have severe consequences for the portfolio

loss. First, figure 9(a) shows the loss distribution for two quarters. The two distributions are clearly

different, only due to a difference in credit conditions, given by the level of the latent factor. In

the fourth quarter of 2005, when the factor is low (see figure 4(a)), most losses are (close to) 0

and barely exceed 0.25% of the loan amount. On the other hand, in the second quarter of 2008,

when the factor is high, the losses are more dispersed and almost always larger than 1% of the loan

amount.

Figure 9(b) presents the loss distribution over time, and confirms the vast differences in loss

distribution. The expected loss is mostly between 0% and 0.25% of the loan amount, but increases

to 2% in 2008. The entire 95% confidence interval of losses in the second and fourth quarter of

2008 is larger than the maximum loss of the 95% interval for the period up to 2008, and 2010.

Finally, figure 9(c) presents the economic capital at 99.9% over time and shows that the right

tail becomes fatter during bad credit conditions. The economic capital varies much over time with

a maximum of 2.23% of the loan amount, approximately 15 times the minimum of 0.15%. Ignoring

the fluctuation induces large uncovered potential losses.

An advantage of our model is its easy adaptation to a specific portfolio, the composition of

loans over asset class, industry or other characteristics, because we can distinguish between different

groups as in section 5.3. The loss distribution and economic capital varies per portfolio and sampling

from a more tailored portfolio yields a more accurate loss distribution. Using a tailored model yields

insight in the bank’s risk and how it changes by adjusting the strategy, moving in or out a particular

sector.

[Figure 9 about here.]

6.2 Prediction

The previous section shows that we can calculate the economic capital based on simulations for the

estimation period, using information on the resolved defaults. It takes some time before all defaults

are resolved and the economic LGD is observed. Due to the workout period, the estimation period

excludes the most recent years, see section 2.1. We would like to have information on the losses on
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the unresolved defaults that occurred in the recent years, and predict future losses. Banks can form

an expectation of the write-offs for unresolved defaults and construct scenarios for future credit

conditions. In this section, we propose two methods to predict future credit conditions, such that

we can determine the economic capital out-of-sample.

The first method predicts the factor based on the autoregressive process in equation (1), such

that the factor predicted h periods ahead is given by αT+h|T = ρhαT |T . A disadvantage of this

method is that it ignores the available information in the recent years. The prediction of the factor

at time T +h, for forecast horizon h > 0, is only based on the information in the estimation period,

the period up to time T .

A second method uses the information available in the out-of-sample period. For example, we

can use the macroeconomic information to update the prediction of the latent factor. An advantage

of using macro variables is that they are reported quarterly, whereas credit data such as the default

rate is usually only available at the end of the year. Another advantage is that if we only use

the macro variables, the model reduces to a linear Gaussian state space model and we can apply

straightforward methods such as the Kalman filter to update the prediction.

The method involves updating the prediction of the factor at time T+h to get a filtered estimate,

based on the information up to time T + h. The factor estimate from the autoregressive process

at each one-step ahead forecast is adjusted based on the prediction error for the macroeconomic

variables, given the relation in equation (6).

We compare both prediction methods by considering the out-of-sample period 2011–2013, for

which macro information is available. Figure 10(a) shows that using the macro information strongly

decreases the variance of the forecasted factor. For period T + 1, the first quarter of 2011,

the variance of the filtered factor is only 56% of the variance of the predicted factor, based on

information up to and including 2010, time T . Further, the credit conditions are forecasted to be

worse, whereas we cannot infer anything on the direction of the factor from the prediction based

on information without out-of-sample macro information. The prediction of the first method is

not far from the long-run average partly because the factor is already close to 0 at the end of the

in-sample period. The prediction starts at the level of the factor at time T and converges to the

long-run average with the rate of the AR coefficient ρ as the forecast horizon increases.

Figure 10(b) illustrates the difference in terms of economic capital for a portfolio of 2,000 loans,
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each with an EAD of e1, simulated 50,000 times. The economic capital at 99.9% increases quickly

with the forecast horizon if the macro information is ignored, due to the added uncertainty. On the

other hand, if the macro information is taken into account, the economic capital does not explode.

The variance of the filtered estimate does not increase with the forecast horizon, such that the

difference in economic capital is only due to a change in the level of the factor.

Alternatively, we could have included financial variables, such as the credit spread, yield spread

and long-term interest rate from section 5.4. Macro variables are reported with a lag, whereas the

financial variables are available instantaneously and can be used to predict in real time. Further,

we could include lagged macro variables such that the information we need to predict the credit

conditions at time T + 1 is available at time T .

[Figure 10 about here.]

7 Alternative Specifications

The current model for LGD proposes time-variation in the probability of a bad loan in a mixture of

normals. In this section, we challenge the proposed model by considering alternative specifications.

First, we test whether the distribution is time-varying and consider time-varying means to introduce

time-variation into the mixture. Second, we check whether a mixture of Student’s t distributions

provides a better fit.

7.1 No Time-Variation

To test whether the time-variation is present in our sample, we estimate a mixture of normals on

the full set of LGD observations using a standard EM algorithm for mixtures.

The results in table VII confirm that the probability of a bad loan is time-varying. The large

difference in loglikelihood provides significant evidence of time-variation in our LGD sample. Even

if we account for the larger number of parameters, the model where the probability of a bad loan

can vary over time provides a better fit in terms of BIC. Hence, this time-variation should be taken

into account when constructing LGD estimates.

[Table 7 about here.]
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7.2 Time-Variation in the Mean

The model for the LGD includes a time-varying probability of a bad loan. Here, we introduce

time-variation through the mean of a good or bad loan. We replace equations (2) and (3) by a

mixture of normals with P (sit = 1) = p and µ0t = µ0 + βl
1αt and/or µ1t = µ1 + βl

1αt. To estimate

the parameters and the latent factor, we combine the state space methods for dynamic linear models

of Shumway and Stoffer (1991) and the univariate treatment of Durbin and Koopman (2012). The

univariate treatment can be applied because the observations are independent conditional on the

latent factor.

First, table VII shows that the parameter estimates for βl
1 are very small. This indicates that

the time-varying aspect in the means is not important. Second, table VII shows that the models

with time-varying mean are barely able to improve the fit in terms of loglikelihood, and are even

worse compared to the model without time-variation when accounting for the increased number of

parameters. Third, figure 6 shows that models with (one of) the means time-varying underestimate

the observed time-variation in the average LGD. The difference with the sample average is almost

0.1 on a scale of 0 to 1 during very good or bad times. An error of this size on the LGD leads

to under- or overestimation of the expected losses on a portfolio, especially during times when it

matters most. Only the model with time-varying probability of a bad loan is able to replicate the

pattern of the average LGD over time.

These results confirm that the time-variation is due to changes in the probability of a bad loan,

and not due to shifts of the location of the distributions.

[Figure 11 about here.]

7.3 Mixture of Student’s t Distributions

To test whether a different distribution than the normal provides a better fit, we replace the mixture

of normals in equation (2) by a mixture of Student’s t distributions. The probability of a bad loan

remains time-varying. To estimate the parameters and the latent factor, we use the ECM algorithm

of Basso et al. (2010)8 in combination with the importance sampling methods described in appendix

B.

8The ECM algorithm is implemented using a Matlab translation of the R package by Prates et al. (2011).
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The last column of table VII presents the parameter estimates. The peaks of the empirical

distribution are better identified compared to the mixture of normals with means equal to 0.03 and

0.99. The fit is improved, as reflected in a higher loglikelihood. Figure 12 shows the fit for the same

quarters as figure 5 and clearly illustrates that the empirical distribution is described better by a

mixture of Student’s t distributions. Not only the location, but also the peakedness of the modes

is captured. The improved identification could imply a more accurate estimate of the probability

of a bad loan and the latent factor. However, figure 13 shows that the factor is largely unaffected

by changes in distribution. The correlation between the factor with a mixture of normals and the

factor from the model with a mixture of Student’s t distributions is 0.99.

Using the model with the Student’s t distribution comes with some disadvantages. Due to the

large peakedness at 0 and 1 and the observations between the modes, the degrees of freedom are

estimated close to 1 for good loans and even below 1 for bad loans. None of the moments are

defined for a distribution with less than 1 degree of freedom, which makes it difficult to interpret µ0

and µ1. Further, a default observed with an LGD larger than 1 could be identified as a good loan

by the model, although it clearly is not because more than the full exposure is lost. Figure 14(b)

shows that this happens because the smoothed probabilities of a bad loan π̂it = P (sit = 1|yl
it, αt)

decrease (increase) for LGD values larger (smaller) than the mean of the distribution of bad (good)

loans due to the fat tails. None of the issues occur if we use the mixture of normals, see figure 14(a).

The model with the mixture of normals is preferred over the mixture of Student’s t distributions.

Even though the model with the fat-tailed distribution provides a better fit, it is difficult to interpret

due to the low degrees of freedom and because some loans are obviously misidentified by the model.

Further, the gains in terms of identification of the latent signal are limited, because the factor is

very similar to a specification with a mixture of normals.

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]
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8 Conclusion

The loss given default and the default rate on bank loans are both cyclical. We infer a common

underlying factor that is a measure for the credit conditions and related to the business cycle. The

time-variation in the loss given default is explained by changes in the probability of a bad loan.

Banks should take this into account when determining the risk parameters.

We propose a model that describes the stylized facts of the loss given default on bank loans

well. It captures the bimodal shape of the empirical distribution and provides an interpretation of

the components, by explicitly modeling the extremes of no and full loss. It is flexible enough to

include the differences across loan characteristics that we find. Further, the model has applications

in risk management, such as the calculation of the economic capital and the prediction of future

credit conditions.
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Appendix A Data Filter

Following Höcht and Zagst (2007), who also use data from the Global Credit Data Consortium,

and NIBC’s internal policy, we apply the following filters to the LGD database.

• EAD ≥ e100,000. The paper focuses on loans where there has been an actual (possible) loss,

so EAD should be at least larger than 0. Furthermore, there are some extreme LGD values

in the database for small EAD. To account for this noise, loans with EAD smaller than e

100,000 are excluded.

• −10% <
(
(CF + CO) − (EAD − EAR)

)
/(EAD + PA) < 10%, where CF cash flows, CO

charge-offs and PA principal advances. The cash flows that make up the LGD should be

plausible, because they are the major building blocks of the LGD. A way of checking this is

by looking at under-/overpayments. The difference between the EAD and the exposure at

resolution (EAR), where resolution is the moment where the default is resolved, should be

close to the sum of the cash flows and charge-offs. The cash flow is the money coming in and

the charge-off is the acknowledgement of a loss in the balance sheet, because the exposure

is expected not to be repaid. Both reduce the exposure and should explain the difference

between EAD and EAR. There might be an under- or overpayment, resulting in a difference.

To exclude implausible cash flows, these loans are excluded when they are more than or equal

to 10% of the EAD and principal advances (PA). The 10% is a choice of the Global Credit

Data Consortium.

• −0.5 ≤ LGD ≤ 1.5. Although theoretically, LGD is expected between 0 and 1, it is possible

to have an LGD outside this range, e.g. due to principal advances or a profit on the sale of

assets. Abnormally high or low values are excluded. They are implausible and influence LGD

statistics too much.

• No government guarantees. The database contains loans with special guarantees from the

government. Most of the loans are subordinated, but due to the guarantee, the average of the

subordinated LGD is lower than expected. Because the loans are very different from others

with the same seniority and to prevent underestimation of the subordinated LGD, these loans

are excluded from the dataset.
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Some consortium members also filter for high principle advances ratios, which is the sum of the

principal advances divided by the EAD. Even though high ratios are plausible, they are considered

to influence the data too much and therefore exclude loans with ratios larger than 100%. NIBC does

include these loans, because they are supposed to contain valuable information and the influence

of outliers is mitigated because they cap their LGD to 1.5. The data shows that the principal

advances ratio does not exceed 100%, so applying the filter does not affect the data and is therefore

not considered.

Appendix B Importance Sampling

We outline the simulation based method of importance sampling, which we use to evaluate the

non-Guassian state space model. For more information on importance sampling for state space

models, see for example Durbin and Koopman (2012).

Consider the following nonlinear non-Gaussian state space model with a linear and Gaussian

signal,

yt ∼ p(yt|αt), (10)

αt+1 = ραt + ηt, (11)

with ηt ∼ NID(0, ω2) for t = 1, . . . , T , where yt is an N × 1 observation vector and αt the signal

at time t. For notational convenience, we express the state space model in matrix form. We stack

the observations into an N × T observation matrix Y = (y1, . . . ,yT )′ and T × 1 signal vector

α = (α1, . . . , αT )′ such that we have

Y ∼ p(Y |α), (12)

α ∼ N(µ,Ψ). (13)

The method of importance sampling is a way of evaluating integrals by means of simulation.

It can be difficult or infeasible to sample directly from p(α|Y ), which is the case for non-Gaussian

state space models. Therefore, an importance density g(α|Y ) is used to approximate the p(α|Y )

from which it is easier to sample. In particular, consider the evaluation of the expected value of
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the function x(α),

x̄ = E [x(α)|Y ] =

∫
x(α)p(α|Y )dα =

∫
x(α)

p(α|Y )

g(α|Y )
g(α|Y )dα = Eg

[
x(α)

p(α|Y )

g(α|Y )

]
. (14)

For a non-Gaussian state space model with Gaussian signal, this can be rewritten into

x̄ =
Eg [x(α)w(α,Y )]

Eg [w(α,Y )]
, (15)

w(α,Y ) =
p(Y |α)

g(Y |α)
, (16)

which contains densities that are easy to sample from. Then x̄ is estimated by replacing the

expectations with its sample estimates.

The function to be estimated x(α) can be any function of α. For example, the mean is estimated

by setting x(α) = α. For the estimation of the likelihood L(θ|Y ) = p(Y |θ) we have

L(θ|Y ) =

∫
p(α,Y )

g(α|Y )
g(α|Y )dα = g(Y )

∫
p(α,Y )

g(α,Y )
g(α|Y )dα = Lg(θ|Y )Eg [w(α,Y )] , (17)

where Lg(θ|Y ) = g(Y ) is the likelihood of the approximating Gaussian model. This is

estimated by the sample analog L̂g(θ)w̄, with w̄ = (1/R)
∑R

r=1w(α(r),Y ) where α(r), r =

1, . . . , R, are independent draws from g(α|Y ), using the simulation smoother. Its log version

is log L̂(θ|Y ) = log L̂g(θ|Y ) + log w̄.

B.1 Mode Estimation

The importance density g(α|Y ) must be chosen such that it is easy to sample from and

approximates the target density well. If the importance density does not share the support of

the target density, the estimation will be inaccurate. An example of a suitable importance density

is to take a Gaussian density that has the same mean and variance as the target density.

It is possible to sample from p(α|Y ) for a Gaussian state space model using the simulation

smoother developed by De Jong and Shephard (1995). Therefore, we would like to get a Gaussian

model that approximates the non-Gaussian model, defined by equations (10) and (11).

The approximating Gaussian model can be obtained by mode estimation. It is a
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Newton-Raphson procedure to get the mode of signal α for a non-Gaussian state space model. The

procedure of mode estimation is outlined below, including how it results into an approximating

Gaussian state space model.

Given an initial guess g for the mode of α, for example based on knowledge of the data, we

have the following Newton-Raphson procedure to get a new estimate of the mode,

g+ = g − (p̈(α|Y )|α=g)
−1ṗ(α|Y )|α=g, (18)

with ṗ(·|·) = ∂ log p(·|·)/∂α, a T × 1 vector, and p̈(·|·) = ∂2 log p(·|·)/∂α∂α′, a T × T matrix. We

cannot directly apply the procedure because p(α|Y ) is unknown, but Bayes’ rule enables us to

rewrite the smoothed log density as

log p(α|Y ) = log p(Y |α) + log p(α)− log p(Y ), (19)

where log p(Y |α) =
∑T

t=1 log p(yt|αt) =
∑T

t=1

∑N
i=1 log pi(yit|αt), p(α) is given in equation (13)

and the last term does not depend on α and can thus be left unspecified. The distribution pi(yit|αt)

may vary over i, so observations are allowed have different distributions. We get

ṗ(α|Y ) = ṗ(Y |α)−Ψ−1(α− µ), (20)

p̈(α|Y ) = p̈(Y |α)−Ψ−1, (21)

where ṗ(Y |α) = (ṗ1(y1|α1), . . . , ṗT (yT |αT ))′ and p̈(Y |α) = diag(p̈1(y1|α1), . . . , p̈T (yT |αT )), with

ṗt(·|·) = ∂ log p(·|·)/∂αt and p̈t(·|·) = ∂2 log p(·|·)/∂αt∂α′t. If we plug in the expressions (20) and

(21) in equation (18), we get

g+ = g −
(
p̈(Y |α)|α=g −Ψ−1

)−1 (
ṗ(Y |α)|α=g −Ψ−1(α− µ)

)
= (Ψ−1 +A−1)−1(A−1z + Ψ−1µ), (22)

z = g +Aṗ(Y |α)|α=g, (23)

A = −(p̈(Y |α)|α=g)
−1, (24)

where z = (z1, . . . , zT )′ a T × 1 vector and A = diag(A1, . . . , AT ) a T × T matrix.
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It can be shown that equation (22) is the output from the Kalman filter and smoother for a

linear Gaussian model with ‘observation’ vector z and ‘variance’ matrix A. From mode estimation,

we have thus obtained the following approximating Gaussian model,

zt = αt + ut, (25)

αt+1 = ραt + ηt, (26)

where ut ∼ NID(0, At) and ηt ∼ NID(0, ω2) for t = 1, . . . , T , with zt and At defined in equations

(23) and (24). The Newton-Raphson procedure described above is equivalent to repeatedly applying

the Kalman filter and smoother to this model. The density p(α|z) from the model is Gaussian

and approximates the non-Gaussian target model well, because it has the same mean and variance.

Therefore, the density p(α|z) from equations (25) and (26) is suitable as an importance density.

Appendix C EM Equations

C.1 Observed Data Loglikelihood

The likelihood of the observed data Y , which includes the LGD, the defaults and the macro

variables, conditional on the latent factor α and the parameters θ is given by the product of the

densities,

L(Y |α,θ) =

T∏
t=1

N∏
i=1

(
pi(yit|α)

)δit , (27)
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where δit is 1 if yit is observed and 0 if it is missing or unobserved and N = N l + Nd + Nm the

total number of observations. The conditional loglikelihood is then given by

`(θ|Y ,α) =
T∑
t=1

N∑
i=1

δit log pi(yit|αt), (28)

log p(yl
it|αt) =

J∑
j=1

ζij log
(

(1− pjt)φj0(yl
it) + pjtφj1(yl

it)
)
, (29)

log p(yd
it|αt) = log

Lit
yd
it

+ yd
it log(qit) + (Lit − yd

it) log(1− qit), (30)

log p(ym
t |αt) = −N

m

2
log(2π)− 1

2
log |Σ| − 1

2
(ym

t − βm
0 − βm

1 αt)
′Σ−1(ym

t − βm
0 − βm

1 αt), (31)

where ζij is 1 if loan i belongs to group j and 0 otherwise, and φjk(·) is the normal density function

with mean µjk and variance σ2
j given that sit = k, for k = 0, 1. Groups are defined by the

characteristics of the loans, for example industry, country or seniority.

The observed data loglikelihood is obtained by integrating out the stochastic latent factor out

of the joint density of the observations and this latent factor,

p(Y |θ) =

∫
p(Y ,α|θ)dα =

∫
p(Y |α,θ)p(α|θ)dα. (32)

This observed data loglikelihood has no closed form expression because α enters the likelihood

non-linearly. The likelihood will be evaluated using the importance sampling methods of appendix

B.

C.2 Complete Data Loglikelihood

The joint density of the model is given by

p(Y ,S,α) = p(α1)

T∏
t=2

p(αt|αt−1)

T∏
t=1

N∏
i=1

δitp(yit, sit|αt), (33)
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where we have for the joint density of the observed LGD and the unobserved states

p(yl
it, sit|αt) = p(yl

it|αt, sit)p(sit) =
J∏
j=1

{
(pjtφj1)sit ((1− pjt)φj0)1−sit

}ζij

=
J∏
j=1


 exp

(
βl
j0 + βl

j1αt

)
1 + exp

(
βl
j0 + βl

j1αt

)φj1
sit 1

1 + exp
(
βl
j0 + βl

j1αt

)φj0
1−sit

ζij

. (34)

Further, we have a Gaussian signal following an AR(1) process. This means that the complete data

loglikelihood for the parameter vector θ is

`c(θ|Y ,S,α) = p(α1) +

T∑
t=2

log p(αt|αt−1) +

T∑
t=1

N∑
i=1

δit log pi(yit, sit|αt), (35)

log p(α1) = −1

2
log(2π)− 1

2
log(P1)− 1

2P1
(α1 − a1)2, (36)

log p(αt|αt−1) = −1

2
log(2π)− 1

2
log(ω2)− 1

2ω2
(αt − ραt−1)2, (37)

log p(yl
it, sit|αt) =

J∑
j=1

ζij

{
sit(β

l
j0 + βl

j1αt)− log
(

1 + exp(βl
j0 + βl

j1αt)
)

+ (1− sit)
(
− 1

2
log(2π)− 1

2
log(σ2

j )−
1

2σ2
j

(yl
it − µj0)2

)
+ sit

(
− 1

2
log(2π)− 1

2
log(σ2

j )−
1

2σ2
j

(yl
it − µj1)2

)}
,

(38)

and log p(yd
it, sit|αt) = log p(yd

it|αt) and log p(ym
t , sit|αt) = log p(ym

t |αt) given in equations (30) and

(31).
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C.3 Expected Loglikelihood

The expected loglikelihood, also known as the Q-function, given the m-th step estimate for θ(m)

for our model is given by

Q
(
θ|θ(m)

)
= constant− 1

2
log

(
1

1− ρ2

)
− 1− ρ2

2
(P1|T + α2

1|T )

− 1

2
(ê00 − 2ρê10 + ρ2ê11)

+
T∑
t=1

N l∑
i=1

δit

{
J∑
j=1

ζij

{
π̂itβ

l
j0 + βl

j1E[sitαt|Y ])

− Eα|Y

[
log
(

1 + exp(βl
j0 + βl

j1αt)
)]

+ (1− π̂it)
(
− 1

2
log(σ2

j )−
1

2σ2
j

(yl
it − µj0)2

)
+ π̂it

(
− 1

2
log(σ2

j )−
1

2σ2
j

(yl
it − µj1)2

)}}

+
T∑
t=1

N l+Nd∑
i=N l+1

δit

{
yd
it(β

d
i0 + βd

i1αt|T )

− LitEα|Y
[
log
(

1 + exp(βd
i0 + βd

i1αt)
)]}

+
T∑
t=1

{
− 1

2
log |Σ| − 1

2
tr{Σ−1βm

1 Pt|T (βm
1 )′}

− 1

2
tr{Σ−1(ym

t − βm
0 − βm

1 αt|T )(ym
t − βm

0 − βm
1 αt|T )′}

}
,

(39)

where the constant does not depend on any of the latent variables or parameters and we set the

parameters a1 = 0, P1 = 1/(1− ρ2) and ω2 = 1 for identification, see section 3.4. Further,

ê10 =
T∑
t=2

Pt−1,t|T + αt−1|Tαt|T , (40)

ê11 =
T∑
t=2

Pt−1|T + α2
t−1|T =

T−1∑
t=1

Pt|T + α2
t|T , (41)

with αt|T = E[αt|Y ] the smoothed factor and Pt|T = Var(αt|Y ) and Pt,t−1|T = Cov(αt, αt−1|Y )

its variance and autocovariance. The probability of the states sit depends on the mean and

variance of the mixture components and the ex ante mixture probability pjt, which is a function

of αt. Therefore, the posterior mixture probabilities π̂it = E[sit|yl
it, αt] = P (sit = 1|yl

it, αt) and the
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expectation of the cross-product of the states and the signal E[sitαt|yl
it] are computed using the law

of iterated expectations: E[sitαt|yl
it] = E

[
E[sit|αt, yl

it]αt|yl
it

]
. The expected values are calculated

using importance sampling, using that for the expectation of a function of the states and the latent

factor x(S,α) conditional on the observed data, we have

E[x(S,α)] =

∫ ∫
x(S,α)p(S,α|Y )dSdα

=

∫ ∫
x(S,α)p(S|Y ,α)p(α|Y )dSdα

=

∫ (∫
x(S,α)p(S|Y ,α)dS

)
p(α|Y )dα. (42)

Using moments of the log-normal distribution, a first order Taylor approximation E[log(X)] ≈

log(E[X])− 1
2Var(X)/(E[X])2 and define θit = βd

i0 + βd
i1αt for notational convenience, we get

Eα|Y

[
log
(

1 + exp(βd
i0 + βd

i1αt)
)]
≈ log

(
Eα|Y [1 + exp(θit)]

)
− 1

2

Var (1 + exp(θit))(
Eα|Y [1 + exp(θit)]

)2
= log(1 + exp(θi,t|T +

1

2
Var(θi,t|T )))

− 1

2

exp
(
2θi,t|T + Var(θi,t|T )

)(
1 + exp

(
θi,t|T + 1

2Var(θi,t|T )
))2

× (exp(Var(θi,t|T ))− 1)

= log

(
1 + exp(βd

i0 + βd
i1αt|T +

1

2
(βd
i1)2Pt|T )

)
− 1

2

exp
(
2(βd

i0 + βd
i1αt|T ) + (βd

i1)2Pt|T
)(

1 + exp(βd
i0 + βd

i1αt|T + 1
2(βd

i1)2Pt|T )
)2

×
(

exp((βd
i1)2Pt|T )− 1

)
,

(43)

and Eα|Y

[
log
(

1 + exp(βl
j0 + βl

j1αt)
)]

defined similarly.

C.4 Mode Estimation - Derivatives

For the mode estimation algorithm we need to derive the first and second derivative of the

distribution of the observed variable conditional on the signal. The log of the density of yit given αt

is given in equations (29)–(31). We rewrite the loglikelihood for the LGD observations in equation
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(29) as

log p(yl
it|αt) =

J∑
j=1

ζij

{
− log(1 + exp(βl

j0 + βl
j1αt))

+ log
(

exp(βl
j0 + βl

j1αt)φj1(yl
it) + φj0(yl

it)
)}

.

(44)

The first derivative is

ṗt(yt|αt) =

N∑
i=1

ṗt(yit|αt), (45)

ṗt(y
l
it|αt) =

J∑
j=1

ζij

{
−
βl
j1 exp(βl

j0 + βl
j1αt)

1 + exp(βl
j0 + βl

j1αt)

+
βl
j1 exp(βl

j0 + βl
j1αt)φj1(yl

it)

exp(βl
j0 + βl

j1αt)φj1(yl
it) + φj0(yl

it)

}
,

(46)

ṗt(y
d
it|αt) = yd

itβ
d
i1 − βd

i1Lit
exp(βd

i0 + βd
i1αt)

1 + exp(βd
i0 + βd

i1αt)
, (47)

ṗt(y
m
t |αt) = (βm

1 )′Σ−1(ym
t − βm

0 − βm
1 αt|T ), (48)

and the second derivative is

p̈t(yt|αt) =
N∑
i=1

p̈t(yit|αt), (49)

p̈t(y
l
it|αt) =

J∑
j=1

ζij

− (βl
j1)2 exp(βl

j0 + βl
j1αt)(

1 + exp(βl
j0 + βl

j1αt)
)2

+
(βl
j1)2 exp(βl

j0 + βl
j1αt)φj0(yl

it)φj1(yl
it)(

exp(βl
j0 + βl

j1αt)φj1(yl
it) + φj0(yl

it)
)2

 ,

(50)

p̈t(y
d
it|αt) = (βd

i1)2Lit
exp(βd

i0 + βd
i1αt)

(1 + exp(βd
i0 + βd

i1αt))
2
, (51)

p̈t(y
m
t |αt) = −(βm

1 )′Σ−1βm
1 , (52)

where we use ∂
∂x [exp(ax)/(c+ b exp(ax))] = exp(ax)ac/(c+ b exp(ax))2.
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C.5 Maximum Likelihood Estimates

The maximum likelihood estimator (MLE) of the means of the normal distributions in the mixture

of normals conditional on the other parameters are

µ̂j0 =

∑T
t=1

∑N l

i=1 δitζij(1− π̂it)yl
it∑T

t=1

∑N l

i=1 δitζij(1− π̂it)
, (53)

µ̂j1 =

∑T
t=1

∑N l

i=1 δitζij π̂ity
l
it∑T

t=1

∑N l

i=1 δitζij π̂it
, (54)

for all j = 1, . . . , J . The conditional MLE for the variance of the normal distributions is

σ̂2
j =

1

N l

T∑
t=1

N l∑
i=1

δit

{
ζij

{
(1− π̂it)

(
yl
it − µj0

)2
+ π̂it

(
yl
it − µj1

)2
}}

. (55)

The conditional MLE of the parameters for the macroeconomic variable are

β̂
m

0 =
1

T

T∑
t=1

ym
t − βm

1 αt|T , (56)

β̂
m

1 =
1

ê0

T∑
t=1

(ym
t − βm

0 )αt|T , (57)

Σ̂ =
1

T

T∑
t=1

{
βm

1 Pt|T (βm
1 )′ + (ym

t − βm
0 − βm

1 αt|T )(ym
t − βm

0 − βm
1 αt|T )′

}
, (58)

where ê0 =
∑T

t=1 Pt|T + α2
t|T .

For the other parameters, the MLE cannot be solved analytically and need to be optimized

numerically. We split the parameter space into independent subspaces over which we maximize.

Hence, we optimize the expected loglikelihood (39) for AR coefficient ρ in the state equation,

coefficients βl
j0 and βl

j1 and βd
i0 and βd

i1 separately.
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Figure 1. Empirical distribution LGD and workout period

(a) Loss given default
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The figures show the empirical distribution of the loss given default (a) and the workout period (b)
for the defaults from the period 2003–2010, after applying the data filter in appendix A.
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Figure 2. Default data time series

(a) Loss given default
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(b) Default rate
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Panel a presents the average loss given default and the number of observations per year for the
period 1983–2011 from the Global Credit Data LGD database, after applying the data filter in
appendix A. Panel b presents the number of loans and the observed default rate per year for the
period 2003–2012 from the Global Credit Data DR database.
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Figure 3. Empirical distribution LGD over time

(a) (b)

Panel a presents the empirical distribution of the LGD per quarter for the period 2003–2010 after
applying the data filter in appendix A. Panel b presents the standardized empirical distribution,
where every quarter is divided by the number of observations per period such that the distributions
are comparable across time. It is rotated by 90 degrees compared to panel a.
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Figure 4. Factor and ex ante probabilities

(a) Latent factor
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Panel a presents the smoothed factor α (solid line) with 95% confidence bounds (dashed
lines) for the general model, without cross-sectional variation but including default rates and
macroeconomic variables. Panel b presents the ex ante probabilities, defined as Λ

(
β0 + β1α

)
,

where Λ(x) = exp(x)/
(
1 + exp(x)

)
is the logistic function. They are based on the smoothed factor

α from panel a and the estimates from table III for the parameters βl
0 and βl

1 for the probability
of bad loan pt, and βd

0 and βd
1 for the default rate qt.
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Figure 5. Mixture fit
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The figures present the fit of the mixture of normals for the fourth quarter of 2005 (a) and the
second quarter of 2008 (b) for the model without cross-sectional variation but with default rates
and macro variables.

46



Figure 6. Latent factor with and without macro variables
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The figure presents the smoothed latent factor α, for the model with (orange line) and without
(blue line) the macroeconomic variables GDP, industrial production and unemployment rate.
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Figure 7. Correlation between factor and macroeconomic variables

(a) GDP
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(b) Industrial production
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(c) Unemployment rate
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The figures present the correlation of αt, the latent factor for the model with default rate
and macroeconomic variables, including 95% confidence intervals, with ym

t+k, the macroeconomic
variables GDP (a), industrial production (b) and unemployment rate (c), all in difference to the
same period in the previous year, for different leads and lags, k. The x-axis presents the leads and
lags of the macro variable, k, such that positive k reflects the correlation between the factor and
future macro conditions.
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Figure 8. Factors per loan characteristic

(a) Security/seniority

2003 2004 2005 2006 2007 2008 2009 2010 2011
−3

−2

−1

0

1

2

3

 

 
Single factor
Senior secured
Senior unsecured

(b) Asset class

2003 2004 2005 2006 2007 2008 2009 2010 2011
−3

−2

−1

0

1

2

3

 

 
Single factor
Large corporate
SME

(c) Industry

2003 2004 2005 2006 2007 2008 2009 2010 2011
−6

−4

−2

0

2

4

6

8

 

 
Single factor
Consumer staples
Financials
Industrials

The figures present the factor per loan characteristic, where we have (i) a single factor underlying
all categories with different coefficient or (ii) a different factor for category. Panel a shows the
factor per seniority and security. Panel b shows the factor per asset classes large corporate (LC)
and small and medium enterprises (SME). Panel c shows the factor per industries consumer staples
(CS), financials (FIN) and industrials (IND).
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Figure 9. Loss simulation

(a) Loss distribution
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(b) Losses over time
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(c) Economic capital over time
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Panel a presents the loss distribution from simulating 50,000 times a portfolio of 2,000 loans, each
with an EAD of e1, of the model defined by equations (1)–(6) for the fourth quarter of 2005 (blue
line) and the second quarter of 2008 (orange line). Panel b presents the expected loss (solid line),
including a 95% confidence interval (dashed lines), and panel c the economic capital at 99.9%.
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Figure 10. Prediction
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Panel a presents the predicted factor (solid line) for the period 2011–2013, including a 95%
confidence interval (dashed lines), given the information up to and including 2010, time T , (blue
line) and given the information up to and including 2010, time T , plus the macro variables at time
T+h, where h is the forecast horizon (orange line). Panel b presents the economic capital at 99.9%,
based on simulating 50,000 times a portfolio of 2,000 loans, each with an EAD of e1, given the
predicted and macro-filtered factor in panel a.
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Figure 11. Implied average LGD
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The figure presents the average LGD per quarter and the average LGD implied by the estimation
of the model defined by equations (1)–(3), with time-variation assumed in the probability of a bad
loan p, mean of a good loan µ0 and/or mean of a bad loan µ1.
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Figure 12. Mixture fit: mixture of Student’s t distributions
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The figures present the fit for the fourth quarter of 2005 (a) and the second quarter of 2008 (b) for
the model defined by equations (1)–(3), without the default rates and macro variables, with the
mixture of normals replaced by a mixture of Student’s t distributions.
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Figure 13. Latent factor: normal versus Student’s t distribution
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The figure presents the latent factor for the model defined by equations (1)–(3), without the default
rates and macro variables, with a mixture of normals (blue line) and with a mixture of Student’s t
distributions (orange line) for the LGD.

54



Figure 14. Smoothed state probability: normal versus Student’s t distribution
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(b) Student’s t
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The figures present the smoothed state probabilities P (sit = 0|yl
it, αt) (blue line) and

P (sit = 1|yl
it, αt) (orange line) for the model defined by equations (1)–(3), with a mixture of normals

(a) and with a mixture of Student’s t distributions (b) for the LGD. The probabilities are for the
first quarter of 2003.
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Table I. LGD versus workout period

The table presents the number of defaults and the average LGD for different workout periods from
the period 2003–2010, after applying the data filter in appendix A.

Workout period (years) Defaults Average LGD

0-1 10,464 0.119
1-2 6,258 0.232
2-3 2,794 0.284
3-5 2,208 0.383
>5 356 0.432
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Table II. Summary statistics

The table presents the number of defaults, the average, the fraction of defaults with an LGD
larger than 0.5 and the p-value of the Hartigan and Hartigan’s (1985) dip statistic (HDS) using
500 bootstraps, to test the null hypothesis of a unimodal distribution versus the alternative of a
multimodal distribution, for different subsets of the 2003–2010 sample after applying the data filter
in appendix A. Groups with on average at least 100 defaults per quarter, indicated by a ∗, are
selected for analysis with our model in section 5.3.

Group Defaults Average Fraction HDS
LGD > 0.5 p-value

Total 22,080 0.204 0.170 0.000

Panel A: Seniority and security

Senior unsecured∗ 12,011 0.222 0.191 0.000
Senior secured∗ 9,723 0.175 0.138 0.000

Subordinated 236 0.427 0.419 0.000
Subordinated Secured 110 0.289 0.255 0.002

Panel B: Asset class

SME∗ 12,028 0.193 0.164 0.000
Large Corporate∗ 6,496 0.199 0.159 0.000

Real Estate Finance 2,068 0.326 0.284 0.000
Aircraft Finance 556 0.088 0.045 0.000
Shipping Finance 331 0.077 0.054 0.100
Project Finance 302 0.177 0.132 0.002
Banks 276 0.286 0.286 0.000
Public Services 23 0.246 0.174 0.234

Panel C: Industries

Industrials∗ 6,944 0.178 0.150 0.000
Financials∗ 4,629 0.217 0.178 0.000
Consumer Staples∗ 3,232 0.186 0.162 0.000

Unknown 2,817 0.309 0.279 0.000
Information Technology 1,384 0.188 0.155 0.000
Consumer Discretionary 1,089 0.196 0.128 0.034
Other 606 0.147 0.102 0.000
Telecommunication Services 410 0.203 0.183 0.304
Utilities 391 0.145 0.079 0.280
Health Care 366 0.123 0.082 0.086
Materials 212 0.147 0.127 0.534
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Table III. Parameter estimates

The table presents the parameter estimates for the model defined by equations (1)–(6). The standard errors are
in parentheses next to the estimates. Panel A presents the parameter estimate of the factor component, the AR
coefficient ρ. Panel B presents the parameter estimates of the LGD components, a mixture of two normals with
the same variance σ2, for good (µ0) and bad (µ1) loans, where µ0 < µ1. The probability of a bad loan is given by
pt = Λ

(
βl
0 + βl

1αt

)
, where Λ(x) = exp(x)/

(
1 + exp(x)

)
is the logistic function. Panel C presents parameter estimates

of the default rate component where the number of defaults follows a binomial distribution with default probability
qt = Λ

(
βd
0 +βd

1αt

)
. Panel D presents the parameter estimates of the macroeconomic component, the intercepts β0 and

the coefficients β1, with the variables gross domestic product (GDP), industrial production (IP) and unemployment
rate (UR), all in difference to the same period in the previous year and standardized to have zero mean and unit
variance. Panel E presents the estimates of the the intercepts β0 and the coefficients β1 of the financial component,
with the variables long-term interest rate (LIR), credit spread (CRS) and the yield spread (YLS). Panel F presents
the mean marginal effects, defined as the average over the marginal effects ∂Λ(β0 + β1αt)/∂β1, for all t = 1, . . . , T ,
for the probability of a bad loan p and the probability of default q. Finally, the bottom of the table presents the
loglikelihood and the number of observations, given by the sum of the LGD, default rate, macroeconomic and financial
observations.

Parameter LGD + DR LGD + DR LGD + DR
+ Macro + Macro

+ Financial

Panel A: Factor

ρ 0.484 (0.162) 0.449 (0.167) 0.524 (0.156)

Panel B: Loss given default

µ0 0.072 (0.001) 0.072 (0.001) 0.072 (0.001)
µ1 0.828 (0.002) 0.828 (0.002) 0.828 (0.002)
σ 0.131 (0.001) 0.131 (0.001) 0.131 (0.001)

βl
0 −1.656 (0.102) −1.652 (0.100) −1.657 (0.107)

βl
1 0.299 (0.044) 0.311 (0.045) 0.291 (0.043)

Panel C: Default rate

βd
0 −4.526 (0.284) −4.545 (0.310) −4.505 (0.279)

βd
1 0.809 (0.181) 0.931 (0.248) 0.743 (0.149)

Panel D: Macro variables

βGDP
0 −0.005 (0.218) −0.003 (0.226)
βGDP
1 −0.499 (0.070) −0.491 (0.067)
βIP
0 −0.004 (0.204) −0.002 (0.210)
βIP
1 −0.408 (0.059) −0.403 (0.057)
βUR
0 0.004 (0.205) 0.003 (0.211)
βUR
1 0.415 (0.060) 0.411 (0.058)

Panel E: Financial variables

βLIR
0 0.002 (0.194)
βLIR
1 0.293 (0.043)
βCRS
0 0.004 (0.243)
βCRS
1 0.579 (0.075)
βYLS
0 0.001 (0.176)
βYLS
1 0.092 (0.014)

Panel F: Mean marginal effects

p 0.041 0.042 0.039
q 0.012 0.015 0.011

Loglikelihood 3,884 3,940 3,825
Observations 22,184 22,088 22,280
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Table IV. Parameter estimates: security/seniority

The table presents the parameter estimates for the model defined by equations (1)–(6) for senior secured (1) and
senior unsecured (2) loans, where we have (i) a single factor underlying all categories with different coefficient or
(ii) a different factor for category. The standard errors are in parentheses next to the estimates. Panel A presents
the parameter estimate of the factor component, the AR coefficient ρ. Panel B presents the parameter estimates
of the LGD components, a mixture of two normals with the same variance σ2

j , for good (µj0) and bad (µj1) loans,
where µj0 < µj1, for all groups j = 1, . . . , J . The probability of a bad loan is given by pjt = Λ

(
βl
j0 + βl

j1αt

)
,

where Λ(x) = exp(x)/
(
1 + exp(x)

)
is the logistic function. Panel C presents parameter estimates of the default rate

component where the number of defaults follows a binomial distribution with default probability qt = Λ
(
βd
0 + βd

1αt

)
.

Panel D presents the parameter estimates of the macroeconomic component, the intercepts β0 and the coefficients
β1, with the variables gross domestic product (GDP), industrial production (IP) and unemployment rate (UR), all
in difference to the same period in the previous year and standardized to have zero mean and unit variance. Panel
E presents the mean marginal effects, defined as the average over the marginal effects ∂Λ(β0 + β1αt)/∂β1, for all
t = 1, . . . , T , for the probabilities of a bad loan pj and the probability of default q. Finally, the bottom of the
table presents the loglikelihood and the number of observations, given by the sum of the LGD, default rate and
macroeconomic observations.

Parameter Single factor Senior secured Senior unsecured

Panel A: Factor

ρ 0.529 (0.157) 0.624 (0.144) 0.478 (0.184)

Panel B: Loss given default

µ10 0.070 (0.002) 0.070 (0.002)
µ11 0.766 (0.004) 0.765 (0.004)
σ1 0.129 (0.001) 0.129 (0.001)

βl
10 −1.927 (0.184) −1.937 (0.206)

βl
11 0.504 (0.075) 0.452 (0.071)

µ20 0.071 (0.001) 0.071 (0.001)
µ21 0.858 (0.003) 0.858 (0.003)
σ2 0.130 (0.001) 0.130 (0.001)

βl
20 −1.501 (0.067) −1.505 (0.065)

βl
21 0.172 (0.005) 0.182 (0.040)

Panel C: Default rate

βd
0 −4.463 (0.214) −4.403 (0.177) −4.618 (0.263)

βd
1 0.575 (0.076) 0.383 (0.030) 0.676 (0.164)

Panel D: Macro variables

βGDP
0 −0.013 (0.225) −0.016 (0.259) 0.004 (0.217)
βGDP
1 −0.505 (0.068) −0.497 (0.060) −0.501 (0.076)
βIP
0 −0.010 (0.206) −0.012 (0.229) 0.004 (0.210)
βIP
1 −0.395 (0.055) −0.384 (0.049) −0.454 (0.070)
βUR
0 0.012 (0.218) 0.015 (0.254) −0.003 (0.193)
βUR
1 0.461 (0.063) 0.477 (0.059) 0.322 (0.053)

Panel E: Mean marginal effects

p1 0.058 0.052
p2 0.026 0.027
q 0.008 0.005 0.008

Loglikelihood 4,208 2,317 1,763
Observations 21,838 9,827 12,115
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Table V. Parameter estimates: asset class

The table presents the parameter estimates for the model defined by equations (1)–(6) for loans of asset classes
large corporate (LC, 1) and small and medium enterprises (SME, 2), where we have (i) a single factor underlying
all categories with different coefficient or (ii) a different factor for category. The standard errors are in parentheses
next to the estimates. Panel A presents the parameter estimate of the factor component, the AR coefficient ρ.
Panel B presents the parameter estimates of the LGD components, a mixture of two normals with the same variance
σ2
j , for good (µj0) and bad (µj1) loans, where µj0 < µj1, for all groups j = 1, . . . , J . The probability of a bad

loan is given by pjt = Λ
(
βl
j0 + βl

j1αt

)
, where Λ(x) = exp(x)/

(
1 + exp(x)

)
is the logistic function. Panel C presents

parameter estimates of the default rate component where the number of defaults follows a binomial distribution with
default probability qit = Λ

(
βd
i0 + βd

i1αt

)
, for all groups i = 1, . . . , Nd. Panel D presents the parameter estimates of

the macroeconomic component, the intercepts β0 and the coefficients β1, with the variables gross domestic product
(GDP), industrial production (IP) and unemployment rate (UR), all in difference to the same period in the previous
year and standardized to have zero mean and unit variance. Panel E presents the mean marginal effects, defined
as the average over the marginal effects ∂Λ(β0 + β1αt)/∂β1, for all t = 1, . . . , T , for the probabilities of a bad loan
pj and the probabilities of default qi. Finally, the bottom of the table presents the loglikelihood and the number of
observations, given by the sum of the LGD, default rate and macroeconomic observations.

Parameter Single factor Large corporate SME

Panel A: Factor

ρ 0.406 (0.177) 0.358 (0.200) 0.604 (0.163)

Panel B: Loss given default

µ10 0.075 (0.002) 0.075 (0.002)
µ11 0.849 (0.005) 0.849 (0.005)
σ1 0.126 (0.001) 0.126 (0.001)

βl
10 −1.778 (0.094) −1.788 (0.094)

βl
11 0.289 (0.053) 0.312 (0.059)

µ20 0.062 (0.001) 0.062 (0.001)
µ21 0.849 (0.003) 0.849 (0.003)
σ2 0.124 (0.001) 0.124 (0.001)

βl
20 −1.643 (0.093) −1.635 (0.123)

βl
21 0.305 (0.014) 0.282 (0.050)

Panel C: Default rate

βd
10 −2.676 (0.296) −2.706 (0.230)

βd
11 0.948 (0.271) 0.739 (0.173)

βd
20 −6.690 (0.237) −6.665 (0.182)

βd
21 0.754 (0.178) 0.405 (0.053)

Panel D: Macro variables

βGDP
0 −0.006 (0.202) −0.005 (0.192) −0.015 (0.244)
βGDP
1 −0.469 (0.071) −0.414 (0.068) −0.469 (0.061)
βIP
0 −0.005 (0.194) −0.004 (0.185) −0.013 (0.226)
βIP
1 −0.388 (0.060) −0.328 (0.055) −0.397 (0.053)
βUR
0 0.005 (0.195) 0.003 (0.180) 0.015 (0.245)
βUR
1 0.399 (0.062) 0.243 (0.043) 0.473 (0.061)

Panel E: Mean marginal effects

p1 0.036 0.039
p2 0.042 0.039
q1 0.072 0.050
q2 0.001 0.001

Loglikelihood 4,287 1,435 2,801
Observations 18,636 6,600 12,132
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Table VI. Parameter estimates: industry

The table presents the parameter estimates for the model defined by equations (1)–(6) for loans of industries consumer
staples (CS, 1), financials (FIN, 2) and industrials (IND, 3), where we have (i) a single factor underlying all categories
with different coefficient or (ii) a different factor for category. The standard errors are in parentheses next to the
estimates. Panel A presents the parameter estimate of the factor component, the AR coefficient ρ. Panel B presents
the parameter estimates of the LGD components, a mixture of two normals with the same variance σ2

j , for good
(µj0) and bad (µj1) loans, where µj0 < µj1, for all groups j = 1, . . . , J . The probability of a bad loan is given
by pjt = Λ

(
βl
j0 + βl

j1αt

)
, where Λ(x) = exp(x)/

(
1 + exp(x)

)
is the logistic function. Panel C presents parameter

estimates of the default rate component where the number of defaults follows a binomial distribution with default
probability qit = Λ

(
βd
i0 + βd

i1αt

)
, for all groups i = 1, . . . , Nd. Panel D presents the parameter estimates of the

macroeconomic component, the intercepts β0 and the coefficients β1, with the variables gross domestic product
(GDP), industrial production (IP) and unemployment rate (UR), all in difference to the same period in the previous
year and standardized to have zero mean and unit variance. Panel E presents the mean marginal effects, defined
as the average over the marginal effects ∂Λ(β0 + β1αt)/∂β1, for all t = 1, . . . , T , for the probabilities of a bad loan
pj and the probabilities of default qi. Finally, the bottom of the table presents the loglikelihood and the number of
observations, given by the sum of the LGD, default rate and macroeconomic observations.

Parameter Single factor Consumer staples Financials Industrials

Panel A: Factor

ρ 0.491 (0.170) 0.933 (0.048) 0.742 (0.133) 0.373 (0.234)

Panel B: Loss given default

µ10 0.056 (0.002) 0.056 (0.002)
µ11 0.851 (0.006) 0.851 (0.006)
σ1 0.120 (0.002) 0.120 (0.002)
βl
10 −1.662 (0.106) −1.642 (0.113)
βl
11 0.276 (0.056) 0.052 (0.017)

µ20 0.085 (0.003) 0.084 (0.003)
µ21 0.796 (0.006) 0.795 (0.006)
σ2 0.144 (0.002) 0.144 (0.002)
βl
20 −1.796 (0.190) −1.824 (0.265)
βl
21 0.539 (0.049) 0.407 (0.090)

µ30 0.056 (0.002) 0.056 (0.002)
µ31 0.836 (0.004) 0.836 (0.004)
σ3 0.119 (0.001) 0.119 (0.001)
βl
30 −1.773 (0.092) −1.781 (0.089)
βl
31 0.248 (0.012) 0.288 (0.070)

Panel C: Default rate

βd
10 −4.561 (0.126) −4.484 (0.087)
βd
11 0.346 (0.035) 0.044 (0.000)
βd
20 −5.311 (0.393) −5.120 (0.314)
βd
21 1.092 (0.328) 0.481 (0.061)
βd
30 −4.268 (0.301) −4.463 (0.336)
βd
31 0.835 (0.192) 0.937 (0.352)

Panel D: Macro variables

βGDP
0 −0.016 (0.219) −0.104 (0.495) −0.062 (0.315) −0.001 (0.198)
βGDP
1 −0.498 (0.070) −0.248 (0.013) −0.452 (0.048) −0.467 (0.076)
βIP
0 −0.013 (0.204) −0.083 (0.410) −0.050 (0.273) −0.001 (0.190)
βIP
1 −0.402 (0.058) −0.199 (0.012) −0.362 (0.040) −0.376 (0.063)
βUR
0 0.014 (0.207) 0.123 (0.574) 0.056 (0.292) 0.001 (0.185)
βUR
1 0.419 (0.061) 0.293 (0.012) 0.404 (0.044) 0.319 (0.056)

Panel E: Mean marginal effects

p1 0.037 0.007
p2 0.068 0.049
p3 0.031 0.036
q1 0.004 0.000
q2 0.010 0.013
q3 0.016 0.016

Loglikelihood 3,145 781 329 1,922
Observations 14,925 3,336 4,733 7,048
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