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Abstract 

Various contributions to the recent literature on congestion pricing have demonstrated that when 

services at a congestible facility are provided by operators with market power, the case in point often 

being a few airlines jointly using a congested airport, optimal congestion pricing rules deviate from 

the familiar Pigouvian rule that tolls be equal to the marginal external costs. The reason is that an 

operator with market power has an incentive to internalize the congestion effects that its customers 

and vehicles impose upon one-another, so that Pigouvian tolling would lead to overpricing of 

congestion. More recent contributions to this literature, however, have brought to the fore that when 

congestion at the facility takes on the form of dynamic bottleneck congestion à la Vickrey (1969), 

where trip scheduling is the key behavioural margin, there may exist no Nash equilibrium in arrival 

schedules for oligopolistic operators also under rather plausible assumptions on parameters. This 

paper investigates whether in such cases, an equilibrium does exist for another congestion technology, 

namely the Henderson-Chu dynamic model of flow congestion. We find that a stable and unique 

equilibrium exists also in cases where it fails to exist under bottleneck congestion (notably when the 

value of schedule late exceeds the value of travel delays). Our results suggest that self-internalization 

with only two firms leads to a considerable efficiency gain compared to the atomistic equilibrium 

(83% or more of the gain from first-best pricing in our numerical exercises). 
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1. Introduction 

Congestion at airports has recently grown into an important theme in the economics literature. 

Early contributions by Daniel (1995), Brueckner (2002) and Pels and Verhoef (2004) have 

brought to the fore that models of road traffic congestion are not directly applicable to the 

economic analysis of airport congestion. In contrast to atomistic road users, airlines with 

market power would face an incentive to internalize self-imposed congestion. As a result, a 

traditional Pigouvian toll equal to the marginal external cost would lead to overcharging of 

congestion, and would have to be corrected by a certain term – one minus the airline’s market 

share in a basic Nash-Cournot setting – to secure a socially optimal outcome. Moreover, when 

airlines with market power have an incentive to also apply demand-related mark-ups in their 

pricing policies, a further downward adjustment compared to the Pigouvian rule is in order for 

efficiency reasons. 

 There is mixed evidence on the degree to which internalization of self-imposed 

congestion indeed occurs in reality. Mayer and Sinai (2003), for example, provide evidence 

supporting such “self-internalization”, while Daniel and Harback (2008) argue that traffic 

patterns at airports mostly follow patterns that one would expect with atomistic behaviour. 

Several theoretical contributions shed further light on this seemingly contradictory evidence. 

Notably, Brueckner and Van Dender (2008) show that a Stackelberg leader competing with a 

competitive fringe of atomistic players would not internalize self-imposed congestion if both 

products are perfect substitutes, as the leader would realize that unused capacity will be filled-

up with aircraft from the fringe, leaving congestion unaltered but reducing the leader’s profit. 

Silva and Verhoef (2013) consider Bertrand (rather than Cournot) behaviour of non-atomistic 

airlines offering imperfect substitutes, and find that also in this case self-internalization is 

limited, and more so when the products of the competing airlines become closer substitutes. 

Quite intuitively, a Bertrand player realizes that even when the other player keeps his fare 

fixed, his quantity will rise in response to a reduction in the player’s own fare. This makes 

self-internalization appear less attractive than what it seems under a Cournot assumption of a 

fixed quantity supplied by the competitor. 

 Apart from the nature of the game, also some other aspects of the problem have 

received attention. For example, Basso and Zhang (2007) consider the role of airport capacity 

choice, and Verhoef (2012) studies the design of self-financing mechanisms for congestible 

facilities with market power, motivated by the observation that the lowering of tolls under 

Cournot behaviour, to levels below the marginal external cost, makes the well-known 

Mohring-Harwitz (1962) theorem on self-financing of optimally priced and dimensioned 

infrastructure break down. 

More recently, the dynamics of congestion have been subject to analysis. Silva, 

Verhoef and Van den Berg (2014) proposed a dynamic model of airport congestion, 

combining the game-theoretic set-up of most of the earlier work with the bottleneck 

congestion technology proposed by Vickrey (1969) for the analysis of road pricing, and 

developed in various direction later on by Arnott, De Palma and Lindsey (1993). While Silva 

et al. (2014) could use this model to describe monopoly and leader-fringe cases, with the 
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latter showing that the leader is forced to schedule arrivals according to atomistic patterns in 

the peak center, they also reported a rather discomforting result, namely that the model seems 

to have no pure-strategies equilibrium in arrival schedules for the case of a Cournot 

oligopoly.
1
 

Silva, Lindsey, De Palma and Van den Berg (2014) confirmed the non-existence of 

equilibrium in the said setting for a duopoly, albeit that they demonstrate that it applies only 

when the so-called value of schedule delay late () exceeds the value of travel delays (). 

When the opposite applies, there is an equilibrium; however, it is one in which the strategies 

are such that no queuing occurs. Although this does not overturn the relevance of the 

particular case in any sense, it does suggest that this would make the model still unable to 

describe equilibrium on congested facilities with “visible” (queued) congestion. As a 

consequence, the model would also be unable to provide insights on optimal congestion 

pricing policies. 

The proof is, not surprisingly, lengthy, but the main idea is that an equilibrium should 

be robust against both marginal and non-marginal changes that a player can make in his 

arrival schedule. The former condition implies that the firm-internal marginal cost be equal 

across the arrival interval(s) that the airline actually uses. Equilibrium breaks down because 

the only arrival pattern that secures this condition to be met for all players, is not robust 

against a unilateral non-marginal deviation in a player’s arrival schedule. In particular, 

starting from that equilibrium, the player finds it profitable to reschedule some of its flights. 

Keeping the other players’ departure schedules fixed, their arrivals will have been completed 

before the end of the original candidate peak equilibrium, giving the deviating player the 

opportunity to use the freed up interval for unqueued arrivals, which will lower this player’s 

cost compared to the candidate equilibrium. 

 Given the widespread prevalence of congestion on airports and the presumed 

relevance of its dynamic “peak-hour” nature in many instances, combined with the rather 

extreme nature of leader-fringe competition – the only type of competition that does have an 

equilibrium in pure strategies with dynamic bottleneck congestion – it is probably not just an 

intellectual challenge to identify and possibly remedy the characteristic of the model that is 

responsible for the non-existence of equilibrium. It also seems to be a task with a clear 

societal relevance. Against that background, this paper investigates whether equilibrium is 

restored under alternative assumptions on the congestion technology and, if so, whether there 

is room for implementing optimal congestion pricing. In particular, we believe that the 

assumptions on the demand side – basically entailing the existence of a most-desired arrival 

moment and shadow costs of deviations from this moment ( for early arrivals,  for late 

ones), and the existence of a disutility of travel delays (with unit value ) – are too reasonable 

to drop. Although heterogeneity in consumer preferences or in airlines’ cost structures may 

also help to establish equilibrium, it remains a bit awkward that under (too much) 

                                                 
1
 Daniel (2009) studies in a similar setting the leader-fringe case finding also that the leader is forced to behave 

atomistically in the center. 
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homogeneity, no equilibrium would exist. The same is true for uncertainty in travel times. 

Hence, the specific congestion technology seems a first candidate to consider. 

 In this paper, we build upon the framework set out in Silva, Verhoef and Van den Berg 

(2014), but replace the bottleneck congestion technology with a model of flow congestion, 

and focus on simultaneous scheduling by firms. Again borrowing from classics in road 

congestion modelling, we consider the model originally proposed by Henderson (1974, 1981), 

and later refined by Chu (1995). The essential feature of the model is that it makes the travel 

delay associated with an arrival at a certain moment a function of the instantaneous arrival 

flow at that moment. The model may thus seem to give a reasonable description and 

approximation of dynamic equilibrium in terms of scheduling behaviour and travel delays 

when there is no strict and predictable FIFO (first-in-first-out) queuing discipline, and players 

instead have an unbiased but somewhat rough expectation of the travel delay that an arrival at 

a certain moment will bring. Another reason why the congestion technology may give a more 

accurate description of dynamic congestion patterns is when the facility operator has the 

possibility of opening additional but lower quality capacity at busier times, such as more 

remote terminals or runways, which bring additional on-the-ground travel delays. 

 We investigate whether under this alternative congestion technology, there is an 

equilibrium in pure strategies in terms of arrival flows, and if it does, we assess its efficiency 

for the case of duopoly relative to that of two natural benchmarks: the purely atomistic 

equilibrium, and the social optimum, which can be supported as an equilibrium by applying 

time-varying congestion charges. The paper proceeds as follows. Section 2 presents the model 

and the equilibrium conditions for the most general case in which none of the parameters is 

pinned down. We show that, in general, equilibrium can be expected to exist with this 

congestion technology. However, because this equilibrium cannot be given in closed-form, 

we proceed by discussing a number of special cases. A first case, in Section 3, uses a special 

congestion function, namely one that is linear in the aggregate arrival flow. For this case, we 

can present the equilibrium in closed form, independent of whether the two firms are 

symmetric. We next turn to a more general case in Section 4, in which the power of the 

congestion function is larger than one. By staying as close as possible to the numerical 

version of the linear model, we provide some further insights, even though there is no closed-

form solution. Finally, in Section 5, we simplify by imposing symmetry upon the two firms, 

and again obtain closed-form solutions but now also for non-linear congestion functions. 

Section 6 concludes. 

2. A dynamic model of operators with market power using the same facility with 

flow congestion 

2.1. The original Chu (1995) model
2
 

The congestion technology that we use in our analysis was originally proposed by Chu 

(1995), building on earlier work by Henderson (1974, 1981). What distinguishes this 

                                                 
2
 The exposition of the basic model in this sub-section 2.1 draws heavily from the one in Verhoef (2014). Literal 

citations are not marked as such and are taken to be acknowledged through this footnote. 
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congestion technology from others is that it assumes that a traveller’s speed will be constant 

over time throughout the trip, depending only on the arrival rate at the road’s exit at the 

instant that the trip is completed (in Chu’s version). The model thus ignores interactions 

between travellers who have departed at different instants, no matter how close. Lindsey and 

Verhoef (2008) therefore refer to this assumption as “no propagation”, to distinguish it from 

models where shock waves travel at finite speeds along a road. 

The basic model considers N identical travellers who use a single road for their trip in 

the morning commute. They have perfectly inelastic demand, a desired arrival time denoted 

t
*
, a value of time , and values of schedule delay of  for early arrivals and  for late ones. 

As is customary, we define  ≡ (∙)/(+) as a composite schedule delay cost coefficient. The 

capacity of the road is given, and is denoted K (there are some changes in notation compared 

to Chu’s), and the travel time T(t) associated with an arrival at time t depends on both K and 

on the instantaneous arrival rate f(t). To obtain closed-form solutions, a functional form for 

the travel time function T(f(t);K) needs to be specified. Chu uses a power-law or BPR (Bureau 

of Public Roads) type of function: 

( )
( ( ); ) f

f t
T f t K T

K


 

   
 

 (1) 

where  determines the curvature of T(·). Note that the regular BPR function pre-multiplies 

the second term with Tf∙b with b being a second parameter, but this can be dropped by 

choosing the appropriate units for K. Letting (t) denote a possibly time-varying toll,  the 

generalized price for an arrival at t can be written as the sum of (t), the travel time cost cT(t), 

and the schedule delay cost cSD(t): 

 

 

* *

* *

if 
( ) ( ) ( ) ( ) ( ) ( ( ); )

if 
T SD

t t t t
p t t c t c t t T f t K

t t t t


  



   
       

  

 (2) 

In the dynamic equilibrium, arrival rates for early (before t
*
) and late (after t

*
) arrivals should 

be such that p(t) remains constant over time. The timing of the peak then follows from the 

conditions that (i) the schedule delay cost for the very first driver, arriving at tq, and the very 

last driver, arriving at te, should be the same, and (ii) between tq and te, exactly N drivers 

should have arrived. For the travel time function of equation (1), the no-toll equilibrium is 

then characterized by (the subscript A stands for “atomistic no-toll equilibrium”): 

 

 

1

*

1

*

t: 

( )

t: 

qA qA

A

eA eA

K t t t t t

f t

K t t t t t














        

  
 
  

       
 

 (3) 

Using the short-hand parameter 

11N

K



 

 

 
    

 
 (4) 

and setting t
*
=0 without loss of generality, the peak’s start and end times can be written as: 
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qAt



    (5) 

eAt



    (6) 

The equilibrium in (3)-(6) is not efficient due to the uninternalized congestion externality, and 

Chu (1995) shows that the first-best optimum can be attained by setting a time-varying toll 

that each instant takes on the familiar Pigouvian form: 

( ( ))
( ) ( )

( )

Tc f t
t f t

f t



 


 (7) 

Applying this toll for the fixed-demand case widens the peak and flattens the arrival rate 

pattern, as is shown by the optimal counterparts of (3)-(6) (where O stands for “optimum”): 

 

 

1

*

1

*

1
t: 

1
( )

1
t: t

1

qO qO

O

eO eO

K t t t t t

f t

K t t t t







 



 


            

 
  
        

  

 (8) 

 
1

11qOt 





      (9) 

 
1

11eOt 





     (10) 

Integrating the equilibrium arrival rates confirms that the proportions of early and late drivers 

are such that a fraction /(+) of the N drivers arrive early, and a fraction /(+) late. This is 

true both in the no-toll equilibrium and in the first-best optimum.  

 

2.2. Operators with market power 

Now let us turn to the case of actual interest in this paper, where operators with market power 

provide services using the congestible facility. To keep the analysis tractable, we will be 

considering the case of two operators (i and j). Our focus on the internalization of self-

imposed congestion, and on the existence of a dynamic equilibrium, allows us to ignore firm 

interactions resulting from competition for the same passengers. We thus assume that the two 

operators serve different markets (which is why we will not refer to a duopoly). 

Congestion costs could accrue to passengers (their valuations of delays and scheduling 

disutilities), to the operators (e.g. fuel costs and costs related to crew costs), or to both. Silva 

and Verhoef (2013), among others, have argued that the two types of congestion costs would 

essentially enter a firm’s profit optimization problem in the same way when congestion costs 

incurred by passengers translate on a dollar-by-dollar basis into a lower willingness to pay 

fares. Under our assumptions, with travellers who are identical in terms of preferences, and 

with fares that may be freely differentiated over clock time to support a firm’s preferred 

arrival time pattern, this is indeed the case. This means that costs incurred by the passengers 

and by the firm enter the firm’s optimization problem symmetrically. More specifically, 

because we keep load factors fixed, we need not distinguish between the airline’s costs per 
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flight, the airline’s costs per passenger, and costs incurred by the airline’s passengers. 

Dropping all time-independent costs per-passenger as these provide no useful insight into the 

issues we study, and assuming symmetry in costs, we may define the following average (per 

passenger) costs for firms i and j:  

( ) ( ) ( ( ) ( ); ) ( )i j T i j SDac t ac t c f t f t K c t     (11a) 

For the more specific assumptions of “-preferences” (linear schedule delay costs and a 

constant value of time) and a BPR travel time function, the case that we will henceforth refer 

to as the “specific model” for the sake of brevity, this becomes:  

( ) ( ) if 0
( ) ( )

if 0

i j

i j

f t f t t t
ac t ac t

t tK







     
     

  
 (11b) 

(t
*
 is again set at 0). 

Under these assumptions, both firms face the incentive to fully internalize firm-

internal congestion externalities, just as in the static model Brueckner’s (2002). Also, and as a 

result, both firms will find it optimal to equalize over time, as long as it schedules arrivals, its 

firm-internal marginal cost mcx, defined as: 

( ) ( ( ) ( ); ) ( ) ( ) ( ) { , }x T i j x T SDmc t c f t f t K f t c c t x i j        (12a) 

or, for the specific model:  
1

( ) ( ) ( ) ( ) if 01
( ) ( ) { , }

if 0

i j i j

x x

f t f t f t f t t t
mc t f t x i j

t tK K K

 


 



        

          
    

 (12b) 

If a supplier’s firm-internal marginal cost were not constant over time, transferring a 

passenger to a moment with a lower mci would increase profit. Note that this is true 

independent of whether the lower mci would arise from lower costs incurred by the firm while 

the fare is kept constant, or from lower costs incurred by the passenger and the fare for that 

passenger is raised accordingly. Also note that this is independent of any demand-related 

mark-up that the firm may apply in its pricing policy. Given that mark-up and given the 

number of passengers it chooses to serve, it remains profit maximizing for firm x to equalize 

mcx as long as the firm schedules arrivals, and to choose not to use particular time intervals 

when mcx – then equal to ac – exceed mcx in used time intervals. For most of the paper we 

will therefore focus attention on the question of whether given a pair of chosen quantities Ni 

and Nj, a dynamic equilibrium exists, and how its efficiency compares to that of the two 

benchmarks of the atomistic no-toll equilibrium and the social optimum, without modelling 

explicitly how the firms choose Ni and Nj by equating marginal revenue to marginal cost. 

 To determine whether a Nash equilibrium in arrival flows exists, and if so what it 

looks like, it is convenient to first establish a number of features that characterize an 

equilibrium. 

 

F1: Equilibrium cannot entail two disjoint arrival intervals without any overlap 

Proof  This type of equilibrium would require the minimum of ac in i’s interval Si, aci,min, to 

exceed the (equalized) maximum of mcj in j’s interval Sj to keep j out. But aci,min > mcj 
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implies aci,min > acj(t) for all jt S , so that we also have mci > acj(t) for all jt S . But then 

firm i would find it profitable to invade j’s interval Sj.■ 

 

F2: In equilibrium there can be at most one early time interval and one late time interval in 

which only one operator schedules arrivals, and these intervals, if they exist, occur at both 

shoulder periods of the peak (i.e. earlier and later than a period around t
*
 during which both 

operators schedule services) 

Proof  Label the (larger) firm that is present in the two shoulder periods firm i, the shoulders 

where only i schedules arrivals Si and the interval where firm j (and hence both firms) has 

arrivals Sj. The reasoning is then as above, aci,min > mcj is needed so that firm j does not have 

an incentive to reschedule arrivals to Si, which again implies mci > acj ( jt S ) in the interval 

Sj where also j schedules arrivals. This can only occur if firm i schedules arrivals in Sj. Then, 

mci( it S )=mci( jt S )>acj( jt S ) is still possible and both firms can have a constant mcx 

over time when they schedule arrivals, so that they do not have any incentives to reschedule 

arrivals . Note that if firm i has an exclusive interval in the early shoulder, it also has one in 

the late shoulder. To see why, first assume that both firms have f equal to zero at their relevant 

tq and te (proof follows below). Firm i’s arrival interval stretches from tqi to tei, at which in 

both cases fi has dropped to zero so that mci equals cSD at both moments. Firm j faces the same 

mcj = cSD at tqi and tei, and because it sets tqj > tqi it has mcj(tqj) = ac(tqj) < mci(tqj) = ac(tqi). 

Firm j will therefore also not schedule arrivals at tei but instead terminates arrivals earlier at 

some tej for which mcj(tej) = ac(tej) < mci(tej) = ac(tei). 

The above reasoning rests on both firms having fx = 0 at the relevant tq and te, and this 

is the final part to be proven. For the large firm i, this is clearly profitable as otherwise 

mci(tqi–) = ac(tqi–) < mci(tqi); and similarly mci(tei+) = ac(tqi+) < mci(tqi) ( is a small 

positive constant). Intuitively, if firm i had fi > 0 at tqi and tei, it could reduce its costs by 

shifting the arrival to just before tqi or just after tei, completely eliminating travel delays and 

only increasing the schedule delay costs infinitesimally. For firm j, a non-zero fj at tqj and tej 

can only be consistent with equilibrium for firm i if also the latter has a discontinuity if fi at tqj 

and tej. Specifically, fi should jump down at tqj and up at tej. Because firm i will make the jump 

such that mci is equalized around tqj and around tej, and because firm i internalizes all 

congestion only outside Sj, the total flow right after tqj will be higher than right before it; and 

similarly right before tej it will be higher than right after it. But then it must be true that 

mcj(tqj–) = ac(tqj–) < ac(tqj) < mcj(tqj), where the final inequality results from the assumed 

discontinuity in fj at tqj. Therefore, this cannot be an equilibrium for firm j. A similar 

reasoning of course applies around tej.■ 

 

The two features, F1 and F2, greatly narrow down the set of candidate Nash 

equilibria, and simplify the task of deriving them. Either the two firms’ arrival intervals 

perfectly overlap, or we have an equilibrium at which from some tqi onwards, first firm i (the 

label is assigned without loss of generality) is the only to schedule arrivals; then from some tqj 

onwards, both firms schedule arrivals up until some tej; followed by a final period lasting until 
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tei in which again only firm i schedules arrivals. In the periods where firm i operates alone, the 

equilibrium arrival pattern matches the socially optimal rates of change as given in equation 

(8) for the specific model, since the firm internalizes all congestion. Formally, this means that 

we have for the general model:  

( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) 0 :i SD i T i i T qi qj ej eimc t c t f t c f t f t c t t t t t t t                  (13) 

where a dot denotes a time derivative and a (double) prime for cT represent the first (second) 

derivative with respect to the aggregate arrival rate: ∂cT/∂f  (∂
2
cT/∂f

2
). For the specific model, 

this translates into arrival rates:  

 

 

1

1

1
t: t 0

1
( )

1
t: 0 < t t

1

qi qi

i

ei ei

K t t t

f t

K t t







 



 


            

 
  
       

  

 (14) 

 

It is, of course, the period in which the firms are both present, for which the determination of 

equilibrium growth rates is the most challenging. The Nash equilibrium in arrival patterns, if 

it exists, follows as the solution of a system of two differential equations, that for the general 

case read: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 :

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 :

i SD T i T i T qj ej

j SD T j T j T qj ej

mc t c t f t c f t c f t f t c t t t t

mc t c t f t c f t c f t f t c t t t t

                

                

 (15) 

where we introduce f(t)≡ fi(t)+ fj(t) as shorthand for the aggregate arrival rate. 

Although there is no general closed-form solution for the system of equations in (15), 

the fact that the first two terms in the middle expressions are the same allows us to write down 

the following necessary condition for equilibrium:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) :i T i T j T j T qj ejf t c f t f t c f t c f t f t c t t t t                    (16) 

This means that, when ( ) and ( )T Tc c    are both unequal to zero, the firm with the larger flow 

has a smaller time-derivative (in absolute terms) of its flow. For the cases where fj starts and 

ends at zero at moments that fi is positive, it will then display a steeper growth or decline, 

approaching fi only asymptotically from below as t approaches t
*
=0. 

Since for the BPR function there is a convenient expression for the ratio of the second 

and first derivative of cT:  

( ) 1

( )

T

T

c

fc

  


 
 (17) 

we can rework (16), for the BPR function, into:  

   
( ) ( )

( ) ( ) ( ) ( ) 1 :
( ) ( )

i j

j i i j qj ej

i j

f t f t
f t f t f t f t t t t t

f t f t



        


 (18) 

Equation (18) shows that for a linear travel time function (=1), the growth rates will be 

equal. Quite intuitively, also when the flows are equally large – and the second term on the 
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right-hand side vanishes – the growth rates will be (and remain) equal. Furthermore, for >1, 

we can still relate the two growth rates at the moments tqj and tej where firm j starts and stops 

operations as follows: 

( ) ( ) for { , }
2

i j qj ejf t f t t t t



  


 (19) 

This shows that with a sufficiently curved travel time function for which >2, the arrival rate 

of firm i will fall when firm j commences operations, and will rise when firm j is close to 

termination. 

 Unfortunately, the system of equations in (15) does not seem to produce manageable 

closed-form solutions for the general case, and also not for the specific model in its most 

general form where  is left as an undetermined parameter and firms possibly differ in size. 

When making further assumptions, however, we can provide further insight into the 

properties of the solution. In Section 3, we will show that for a linear travel time function 

(=1), we can provide a closed-form solution for the equilibrium independent of whether 

firms are symmetric or asymmetric in size. We will also illustrate that solution numerically. 

Next, in Section 4 we will show that also for >1, we can still obtain a numerical solution, 

even though an analytical solution is outside reach. And finally, in Section 5, we will show 

that for firms that are symmetric in size, we can still find an analytical closed-form solution, 

even when we leave  as an undetermined parameter. 

 Before considering these cases, we address the important question of whether there 

will be a Nash-Cournot equilibrium in terms of departure time schedules for the most general 

version of the model. Because the firm sets a continuous time profile of fx(t), it is not 

straightforward to prove existence and uniqueness formally; for this version of the paper we 

only provide a sketch of proof. Consider the firm-internal marginal cost of (12a). It is, at 

every instant, strictly increasing in the firm’s own arrival rate. This implies that when mcx is 

equalized over Sx, and ac outside Sx exceeds the value of mcx inside Sx, there is indeed only 

one value of fx(t) that equates mcx(t) to that equilibrium value of mcx for any t in Sx, and none 

outside Sx. Moving any service, or set of services, to any other moment, be it inside or outside 

Sx, can only increase the firm-internal cost since it would imply an mcx above the equilibrium 

level at moments to which additional schedules are shifted, and reduce mcx below the 

equilibrium level at moments from which the shifted schedules were taken. Undoing the shift 

thus reduces the firm’s total cost. Furthermore, (12a) implies that the two outputs at any given 

instant are strategic substitutes, where the firm-internal marginal cost is more responsive (in 

absolute terms) to the own output than to the competitor’s output. This means that at any 

given instant t, there can be only one stable intersection of the two reaction functions 

(depicting for either firm the choice of fx(t) given the other firm’s flow at that instant, and 

given the firm’s instantaneous objective to equate mcx(t) to the equilibrium value of mcx). And 

finally, a firm’s arrival interval and therefore its firm-internal marginal cost is strictly 

increasing in its own output and in the other firm’s output, securing that also with price-

sensitive demands, there will be only one equilibrium in terms of total outputs when these 

would be price-sensitive. 
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 As discussed previously,  in the periods where only one firm operates alone, it 

internalizes all congestion. Therefore the Nash equilibrium, if it exists, will have inefficient 

scheduling only in the period where both firm schedule arrivals. An inspection of the firm-

internal marginal cost in equation (12) reveals that only one term is lacking to make it match 

the marginal social cost, and that is the instantaneous marginal external congestion cost 

imposed on the other firm and its customers – fully matching the insights from earlier static 

analysis (e.g. Brueckner, 2002). Therefore, by charging firm i ( ) ( ) ( )i j Tt f t c     during the 

period where firm j also schedules vehicles, firm i’s firm-internal marginal cost plus the toll it 

faces becomes equal to the marginal social cost (assuming firm i treats the toll as parametric; 

see also Bruckner and Verhoef, 2010). By charging the analogous expression to firm j, the 

sum of firm-internal marginal cost plus the toll faced for each firm becomes equal to the 

marginal social cost, and its equalization over time, the optimal strategy of each firm, thus 

decentralizes the social optimum. This toll is, at every instant, the fraction of the 

instantaneous marginal congestion cost that is not internalized. It can be interpreted as the 

application, at every instant t, of the standard congestion pricing result in static models of 

congestion with market power (e.g. Brueckner, 2002). 

3. A first specific model: linear travel delay function (=1) with possibly asymmetric 

firms 

3.1. Analytical solution 

It is instructive to start our exposition by giving the firm-internal marginal cost and its time 

derivative for the specific model (with -preferences and a BPR congestion function): 

 

   

1

1

2

2

if 01
( )

if 0

1
( ) 2

if 01
1

if 0

i j i j

i i

i j

i i j

i j

i i j

f f f f t t
mc t f

t tK K K

f f
mc t f f

K K

f f t
f f f

tK K

 






  



 


  









        
          

    

 
        

 

    
         

 

 (20) 

The corresponding expressions for firm j are isomorphic. It is the fact that the sum of flows 

appears in terms raised to powers of (–1) and (–2) that prevent us from finding an 

analytical solution. This complication vanishes for the linear model, since then we find:  

 
if 0

( )
if 0

i i j i

t t
mc t f f f

t tK K

 



  
      

 
 (21) 

so that: 

if 0
( ) 2

if 0
i i j

t t
mc t f f

t tK K

 



  
      

 
 (22a) 

and: 

if 0
( ) 2

if 0
j j i

t t
mc t f f

t tK K

 



  
      

 
 (22b) 
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The system of equations (22ab) can be solved to yield:  

1
0 :

2

1
: 0

3

1
: 0

3

1
0 :

2

i j qi qj

i j qj

i j ej

i j ej ei

f K f t t t t

f f K t t t

f f K t t t

f K f t t t t


















       


       


        


         


 (23) 

The time-derivatives of (3) and (8) for the atomistic equilibrium and the social optimum 

become, for =1:  

: 0

1
: 0

2

: 0

1
: 0

2

A qA

O qO

A eA

O eO

f K t t t

f K t t t

f K t t t

f K t t t


















    


      


      


       


 (23) 

It is easily checked that as long as firm i operates alone, the time derivative of aggregate 

arrivals equals that in the social optimum, reflecting that firm i internalizes all congestion 

externalities. When both firms are active, the slope of the aggregate arrivals is between that in 

the optimum and that in the atomistic equilibrium (2/3 is between 1/2 and 1). 

 After some algebra, we can derive the relevant starting and ending times of the two 

operators as a function of the two total quantities:  

2 2

2 3

2 3

2 2

i j

qi

j

qj

j

ej

i j

ei

N N
t

K

N
t

K

N
t

K

N N
t

K

 

  

 

  

 

  

 

  

     
  

  


   
 

  


   


  
     
 
   

 (24) 

We may compare also these times to those in the atomistic equilibrium and in the social 

optimum for the same aggregate number of travellers, as we can derive them from (5), (6), 

(9), and (10): 
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2 2 2
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2

2 2 2
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i j
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i j

eA
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eO
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t

K

N N
t

K

N N
t

K

N N
t

K

 

  

 

  

 

  

 

  

      
  

  


   
 

  


   


  
      
 
   

 (25) 

Quite intuitively, especially after what we found for the flows, the peak with two operators 

starts between the moments that would be observed in the optimum and the atomistic 

equilibrium; and the same is true for the ending. 

 Finally, we can derive the equilibrium levels of the firm-internal marginal cost where, 

not surprisingly, we find a higher value for mci than for mcj unless the two quantities Ni and Nj 

are equal:  

 

 

1
2 2

2

1
3 2

2

i j

i

j i j

j

N N

mc
K

N N N

mc
K

  

 

  

 


      


 


        



 

 (26) 

(the expression for mci is written such that it is most easily compared to that for mcj). 

 

3.2. A numerical illustration 

To illustrate the equilibrium outlined above, we consider the specific model with αβγ-

preferences and the BPR congestion technology with χ=1. We set the parameters as follows: 

α=10; β=5; γ=20; χ=1; K=1000; Ni=1000; Nj=500. The upper panel of Figure 1 shows the 

equilibrium in terms of arrival rates, and contrasts these with the atomistic equilibrium and 

the optimum for the same total number of travellers. The lower panel shows the firm-internal 

marginal cost, as well as the average cost (note that the former overlap with the latter when 

the firm does not provide services). 
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Figure 1. Arrival flows (upper panel) and firm-internal marginal costs (lower panel) with χ=1 

 

Figure 1 confirms that there is an equilibrium: the firm-internal mc’s are constant as long as 

the firm schedules arrivals and are higher (and equal to ac) otherwise. The upper panel 

furthermore confirms the above results that the peak with two operator starts and ends 

between the moments that apply in the atomistic equilibrium and the peak, and that the slope 

of aggregate arrivals is also between the slopes in these same two benchmarks. 

 A visual inspection of the upper panel suggests that the arrival pattern with two 

operators is already pretty close to the socially optimal pattern, even though the two firms 

only internalize self-imposed congestion. This is confirmed by the aggregate generalized cost 

levels, which amount to 16 432 in the atomistic equilibrium, 15 625 with two operators, and 

15 492 in the social optimum. This implies that, compared to the atomistic equilibrium, the 

self-internalization by two firms brings already 86% of the efficiency gain that a move to the 

optimum would bring.  

4. A second specific model: non-linear travel delay function (=4) with possibly 

asymmetric firms 

When the travel delay function is non-linear, as is the case for the conventional power of χ=4 

for the BPR function, no analytical closed-form solutions seem to exist, due to the appearance 
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of the sum of flows in terms raised to powers of (–1) and (–2) in the firm-internal marginal 

cost and especially its time derivative in (20). Still, we succeed to find a numerical solution, 

and we will briefly present it here. Apart from χ which is set at 4, the parameters remain the 

same compared to the linear model of Section 3.2. Figure 2 shows the results. 

 

 

 
 

Figure 2. Arrival flows (upper panel) and firm-internal marginal costs (lower panel) with χ=4 

 

Again, the lower panel confirms that equilibrium is reached. Note, in the upper panel, that 

indeed fi drops right after tqj and rises right before tej, as predicted by (19). Again, the 

aggregate arrival pattern with two operators appears to be relatively close to the optimal 

pattern, with the relative efficiency gain now being 0.95. And finally, as it was true for the 

linear case, we find that the start and ending of the peak, as well as the rate of change of the 

arrival rate, is, for the case with two operators, between what is found for the atomic 

equilibrium and what applies in the optimum. 
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5. A third special case: a possibly non-linear travel delay function ( undetermined) 

with symmetric firms 

Another way to avoid the lack of closed-form analytical results is to impose symmetry in 

terms of also the size of the two firms. When firms are of equal size, the only possible 

equilibrium has both firms scheduling arrivals in a perfectly overlapping interval and with 

equal flows (i.e., fully symmetric). An equilibrium with one firm operating in the shoulders 

cannot be supported because it requires a higher firm-internal marginal cost for the firm that 

has arrivals also in the shoulders. This can only be achieved if the arrival flow at every instant 

is higher for that firm in the period where both firms have arrival (see (15)), which is 

inconsistent with symmetry in firm size. In a perfectly overlapping period of arrivals, both 

firms have f(t)=0 at the beginning and end of the peak (see the proof in F2), which implies 

that the firm-internal marginal cost for both firms is the same and equal to the average cost in 

the borders. Therefore, the solution has fi(t)=fj(t)=fS(t), and tqi=tqj=tqS and tei=tej=teS, where 

subscript S stands for symmetric. Solving the system of equations yields:  

 

 
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1
2
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1
2

1
:  0

2 1
( )
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: 0 t

2 1
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t t t t t

f t

K
t t t t







 



 


             

 
  
        

   

 (27) 

 
1

1 1
2

1qSt 





       (28) 

 
1

1 1
2

1eSt 





      (29) 

As expected, (27)-(29) reveal that the peak again starts and ends between the moments 

applying in the atomistic case and in the optimum, whereas the growth rate of the aggregate 

arrival rate is again smaller than in the atomistic equilibrium in (3) (provided χ>1), but larger 

than in the optimum in (8). 

We can also solve for the total variable cost (TVC) of travel for the N users in this symmetric 

equilibrium, and compare it to that in the atomistic equilibrium and that in the optimum (both 

derived by Chu, 1995):  
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 

      
 

 (30) 

Although especially the second and third expression are not easily interpreted, it is clear from 

(30) that the ratios of total variable cost are a function of  alone. We exploit this in Figure 3 

where we can plot the relative efficiency of self-internalization by two symmetric firms, 

defined as S = (TVCA – TVCS)/(TVCA – TVCO), as a function of  alone. The figure shows 
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that as the curvature of the travel delay function becomes stronger, this relative efficiency 

increases, but that even at the lowest value of  = 1 that we consider, S is already around 

0.83. This confirms our earlier numerical results in the sense that again, the relative efficiency 

is substantial, and it increases with . 

 

 
 

Figure 3. The relative efficiency of self-internalization by two symmetric firms 

 

6. Conclusion 

We have investigated self-internalization of dynamic congestion by operators with market 

power. Earlier contributions using a bottleneck congestion technology found that no 

equilibrium may exist for Nash competitors. An important result of our analysis is that we do 

find a stable and unique Nash equilibrium when employing Henderson-Chu dynamic flow 

congestion. We also derive the first-best time-varying tolls that decentralize the social 

optimum. 

Our results suggest that the relative efficiency of self-internalization may be rather 

high for a setting in which only two firms are present; above 83% in our numerical exercises. 

Presumably, when more firms are present, and a larger share of congestion remains 

uninternalized, this relative efficiency will drop. This is one of the issues we will address in 

follow-up research. 

Our first research effort, however, will be to consider a second alternative congestion 

technology, in which interactions between travellers arriving at different instants are still 

present (unlike what is the case in the Henderson-Chu model), but the discontinuities of the 

pure bottleneck congestion technology are nevertheless avoided. This should allow us to 

identify better the cause of the non-existence of equilibrium in the bottleneck model; in 

particular whether this is an unavoidable consequence of having direct congestion interactions 

across arrival times, or whether it is due to some peculiarity of the bottleneck model. A 

possible and likely choice of congestion technology would be the model proposed by Agnew 

(1977), in which the speed for an individual user can vary during the trip as the instantaneous 

speed depends on the instantaneous total number of users present on the road. A downside of 
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Agnew’s model is its lack of analytical closed-form solutions. In the appendix of this paper, 

we present a simpler model with direct inter-temporal interactions between users, which is 

arguably the simplest possible variation of the model used above allowing for such 

interactions. What that model shows is that inclusion of direct inter-temporal interaction does 

not mean that equilibrium should necessarily break down. In other words, the non-existence 

of equilibrium in the Vickrey model is not exclusively due to the existence of direct inter-

temporal interactions between users. 
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Appendix A. Constant duration model. 

This section briefly presents a model of dynamic congestion in which there is inter-temporal 

interaction between users. The purpose is to show that also with a congestion technology that 

allows for interactions between travellers who depart at different moments, equilibrium can 

exist. This , in turn, reveals that the complete lack of inter-temporal interaction in our model is 

not a decisive aspect for the existence of equilibrium. 

The main features of the model are as follow: (i) users visit the congestible facility for 

an exogenously fixed amount of time, T, and choose the time of entry; (ii) the per-unit-of-time 

valuation of time spent at the facility varies over time and is highest at t
*
. We represent this as 

users incurring zero schedule delay costs at instant t
*
, while at other instants the schedule 

delay cost increases linearly in the same way as it does in the Chu model (see Eq. (2)); and 

(iii) there is a negative consumption externality in that at any moment of presence in the 

facility, t, there is a cost, cT(t), that depends both on K, the capacity of the facility, and on the 

amount of users present at the facility.
3
 We assume that the negative externality has the same 

functional form as the travel time in the Chu model. Under these assumptions, the 

instantaneous generalized price incurred by a user visiting the facility mirrors that in our main 

model. Yet, the user experiences costs during the entire visit and the generalized cost of the 

visit will, therefore, be the integral of the instantaneous generalized costs over the relevant 

duration T. The resulting model is arguably the smallest possible variation of the model in the 

main text that allows for inter-temporal interactions between users, which is why we chose it. 

It could describe a congestible facility such as a telecom network on which users want to 

spend some pre-determined time, where the desirability of using it varies over the day.  

Let t be the moment of entry to the facility, or the beginning of the visit (which 

therefore ends at t + T). The average (per passenger) costs for firms i and j is then simply: 

( ) ( ) ( ( ) ( ); ) ( )

t T

i j T i j SD

t

ac t ac t c Q y Q y K c y dy



            (31) 

where Qx(t) is the number of users of firm x present at the facility at time t, analogous to the 

instantaneous arrival rate fx(t) of the main model, and it is defined by the firm’s pattern of 

inflow rates rx in the following way:
4
 

( ) ( ) { , }

t

x x

t T

Q t r y dy x i j


             (32) 

Also under these assumptions, both firms face the incentive to fully internalize firm-

internal negative externalities, and to equalize over time their firm-internal marginal cost mx: 

                                                 
3
 Note that the duration of the visit is constant so that this negative externality cannot be interpreted as increased 

travel time. It can be discomfort due to crowding, decreased quality of the visit, etc. 

4
 As every visit lasts T, the rate of exit at time t is simply given by the entry T units of time earlier, r(t-T). 
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( ) ( ( ) ( ); ) ( ) ( ) ( ) ( ) { , }

t T t T

x T i j x T SD x

t t

m t c Q y Q y K Q y c c y dy mc y dy x i j

 

              (33) 

A simple inspection of the firm-internal marginal cost reveals that if a firm equalizes over 

time its instantaneous firm-internal marginal cost mcx during the period where its presence is 

positive,  its firm-internal marginal cost mx will be constant over the period where its inflow is 

positive. Therefore, any inflow pattern rx(·) that implies a presence pattern Qx(·) that makes 

mcx(·) constant over time is a best-response to any inflow pattern of the other firm. As a 

consequence, the inflow patterns that produce the presence pattern in terms of Qx(∙) that is 

equivalent to an equilibrium in terms of fx(∙) in the model from the main text, form an 

equilibrium also for the present model. However, as a firm controls the inflow over a period 

that is T units of time shorter than the period where it has presence on the facility (also the last 

user to enter stays in the facility T units of time), it is not straightforward that this candidate 

equilibrium presence pattern in terms of Qx(∙) can be replicated by an inflow rate pattern in 

terms of rx(·) over a shorter period of time. Nevertheless, we study a simple case where this 

can be achieved and, therefore, we show that a dynamic equilibrium at a congestible facility 

under market power can exist also when there is inter-temporal interaction between users.  

For this purpose, we turn to the symmetric-duopoly model of Section 5 with a linear 

travel delay function (=1). The inflow rate pattern rs that replicates the presence pattern fs 

defined in Eq. (27) in the period [tqS ; teS] will ensure that the firm-internal marginal cost mx is 

constant over [tqS; teS – T], which is the period where firms have users entering the facility. 

That inflow rate pattern will also make mx to be higher outside [tqS; teS-T], as the instantaneous 

firm-internal marginal cost mcx is, by construction of the equilibrium in the original model, 

higher outside [tqS; teS]. Therefore, the firms will have a positive inflow rate rs only in [tqS; teS – 

T] and it will be an equilibrium if the presence pattern of the original model is replicated. 

Assume that T is such that both tqS and teS are multiples of T (again t
*
 is normalized to zero) 

and let ηe = tqS/T and ηl = teS/T. The candidate equilibrium inflow rate can be obtained by 

differentiating Eq. (32): 

( ) ( ) ( )  ( ) ( ) ( )s s s ss sQ t r t r t T r t Q t r t T
 

               (34) 

where ( )sQ t


is the time-derivative of the equilibrium presence pattern of the original model, 

and it is thus obtained by taking the derivative of fs in Eq. (27) with respect to time. Using that 

=1, we get: 

:  0
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
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           (35) 

As the inflow rate should be zero at earlier moments than tqS, rs(t – T) is zero for times t in [tqS 

– T; tqS] and the inflow rate in that period is equal to ( )sQ t


. For later moments, the inflow rate 

can be determined recursively by using Eq. (34). The resulting candidate equilibrium inflow 

rate is the following piece-wise function: 
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Note that to replicate the equilibrium presence pattern of the original model, the inflow rate is 

uniquely determined in the period where it is supposed to be positive [tqS; teS – T], but also for 

the period [teS – T;teS], where it has to be zero to satisfy the equilibrium conditions. If it were 

positive in that last interval of duration T, there would be users present at the facility after tes, 

which is inconsistent with the equalization of firm-internal marginal cost. Nonetheless, in this 

case, we can show that the rate in the possibly conflicting interval [teS – T;teS] is zero and, 

therefore, the rate in Eq. (36) is an equilibrium. This is because tqS and teS are such that the 

(instantaneous) schedule delay cost is the same, so that –β∙tqS = γ∙teS holds. As ηe = tqS/T and ηl 

= teS/T hold by definition,  tqS/teS = –γ/β= ηe/ηl also holds, implying ηe∙β – ηl∙γ=0. Therefore, 

the inflow rate in Eq. (36), which replicates the equilibrium presence pattern is positive in [tqS; 

teS – T] and zero elsewhere. 

 To illustrate the equilibrium described above, we use a numerical example with the 

following parameters: α=10; β=5; γ=20; χ=1; K=1000; Ni=1825.74; Nj=1825.74; T=0.273861. 

The parameters α, β, γ, χ and K are the same as in the numerical illustration in Section 3.2, Ni 

and Nj are chosen to replicate the presence pattern of the small firm (firm j) in the numerical 

illustration of Section 3.2 and T is chosen such that ηe and ηl  are integers. The upper panel of 

Figure 4 shows the equilibrium in terms of inflow rates. The middle panel shows the implied 

(equilibrium) presence pattern, which is the same as the inflow rate of firm j in Figure 1. The 

lower panel shows the firm-internal marginal cost (m) for entries, as well as the firm-internal 

instantaneous marginal cost (mc), which again replicates the firm-internal marginal cost of the 

original model for firm j in Figure 1. 
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Figure 4. Inflow rate (upper panel),implied presence pattern (middle panel)and firm-internal 

marginal costs (lower panel) with χ=1. 

 

Figure 4 confirms that the rs in equation (36) is an equilibrium: the firm-internal m is constant 

for the period where it has a positive inflow and higher otherwise. 

 

Finally, the case with possibly asymmetric firms and possibly non-linear delays is under 

study, but outside the scope of this paper. 

 


