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Abstract

The estimation problem in this paper is motivated by maximum score estimation
of preference parameters in the binary choice model under uncertainty in which the
decision rule is a¤ected by conditional expectations. The preference parameters are
estimated in two stages: we estimate conditional expectations nonparametrically in
the �rst stage and then the preference parameters in the second stage based on
Manski (1975, 1985)�s maximum score estimator using the choice data and �rst stage
estimates. This setting can be extended to maximum score estimation with nonpara-
metrically generated regressors. The paper establishes consistency and derives rate
of convergence of the two-stage maximum score estimator. Moreover, the paper also
provides su¢ cient conditions under which the two-stage estimator is asymptotically
equivalent in distribution to the corresponding single-stage estimator that assumes
the �rst stage input is known. The paper also presents some Monte Carlo simulation
results for �nite-sample behavior of the two-stage estimator.

Keywords: discrete choice, maximum score estimation, generated regressor, prefer-
ence parameters, M-estimation, cube root asymptotics

JEL Codes: C12, C13, C14.



1 Introduction

This paper develops a semiparametric two-stage estimator of preference parame-

ters in the binary choice model where the agent�s decision rule is a¤ected by con-

ditional expectations of outcomes which are uncertain at the choice-making stage

and the preference shocks are nonparametrically distributed with unknown form of

heteroskedasticity. The pioneering papers of Manski (1991, 1993) established non-

parametric identi�cation of agents�expectations in the discrete choice model under

uncertainty when the expectations are ful�lled and conditioned only on observable

variables. Utilizing this result, Ahn and Manski (1993) proposed a two-stage estima-

tor for a binary choice model under uncertainty where agent�s utility was linear in

parameters and the unobserved preference shock had a known distribution. Speci�-

cally, they estimated the agent�s expectations nonparametrically in the �rst stage and

then the preference parameters in the second stage by maximum likelihood estima-

tion using the choice data and the expectation estimates. Ahn (1995, 1997) extended

the two-step approach further. On one hand, Ahn (1995) considered nonparamet-

ric estimation of conditional choice probabilities in the second stage. On the other

hand, Ahn (1997) retained the linear index structure of the Ahn-Manski model but

estimated the preference parameters in the second stage using average derivative

method hence allowing for unknown distribution of the unobservable. In principle,

alternative approaches accounting for nonparametric unobserved preference shock

can also be applied in the second step estimation of this framework. Well known

methods include Cosslett (1983), Powell et al. (1989), Ichimura (1993), Klein and

Spady (1993), and Coppejans (2001), among many others.

The aforementioned papers allow for nonparametric setting of the distribution of

the preference shock. But the unobserved shock is assumed either to be indepen-

dent of or to have speci�c dependence structure with the covariates. By contrast,

Manski (1975, 1985) considered a binary choice model under the conditional median

restriction and thus allowed for general form of heteroskedasticity for the unobserved

shock. It is particularly important, as shown in Brown and Walker (1989), to ac-

count for heteroskedasticity in random utility models. Therefore, this paper develops
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the semiparametric two-stage estimation method for the Ahn-Manski model where

the second stage is based on Manski (1975, 1985)�s maximum score estimator and

thus can accommodate nonparametric preference shock with unknown form of het-

eroskedasticity.

From a methodological perspective, this paper also contributes to the literature

on two-stage M-estimation method with non-smooth criterion functions. We provide

general theory for maximum score estimation with nonparametrically generated re-

gressors. When the true parameter value can be formulated as the unique root of

certain population moment equations, the problem of M-estimation can be reduced

to that of Z-estimation. Chen et al. (2003) considered semiparametric non-smooth

Z-estimation problem with estimated nuisance parameter, while allowing for over-

identifying restrictions. Chen and Pouzo (2009, 2012) developed general estimation

methods for semiparametric and nonparametric conditional moment models with

possibly non-smooth generalized residuals. For the general M-estimation problem,

Ichimura and Lee (2010) assumed some degree of second-order expansion of the un-

derlying objective function and established conditions under which one can obtain ap
N -consistent estimator of the �nite dimensional parameter where N is the sample

size when the nuisance parameter at the �rst stage is estimated at a slower rate.

For more recent papers on two-step semiparametric estimation, see Ackerberg et al.

(2012), Ackerberg et al. (2014), Chen et al. (2013), Escanciano et al. (2012, 2014),

Hahn and Ridder (2013), and Mammen et al. (2013), among others. None of the

aforementioned papers include the maximum score estimation in the second stage

estimation.

For this paper, the second stage maximum score estimation problem cannot be

reformulated as a Z-estimation problem. Furthermore, even in the absence of nui-

sance parameter, Kim and Pollard (1990) demonstrated that the maximum score

estimator can only have the cube root rate of convergence and its asymptotic distri-

bution is non-standard. The most closely related paper is Lee and Pun (2006) who

showed that m out of n bootstrapping can be used to consistently estimate sam-

pling distributions of nonstandard M-estimators with nuisance parameters. Their
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general framework includes the maximum score estimator as a special case, but al-

lowing for only parametric nuisance parameters. Therefore, established results in the

two-stage estimation literature are not immediately applicable and the asymptotic

theory developed in this paper may also be of independent interest for non-smooth

M-estimation with nonparametrically generated covariates.

The rest of the paper is organized as follows. Section 2 sets up the binary choice

model under uncertainty and presents the two-stage maximum score estimation pro-

cedure of the preference parameters. Section 3 gives further applications of maximum

score estimation with nonparametrically generated regressors. Section 4 states regu-

larity assumptions and derives consistency and rate of convergence of the estimator.

In addition, Section 4 gives conditions under which the two-stage maximum score

estimator is asymptotically equivalent to the infeasible single-stage maximum score

estimator with a known �rst stage input. Section 5 presents Monte Carlo studies

assessing �nite sample performance of the estimator. Section 6 concludes the pa-

per. Proofs of technical results along with some preliminary lemmas are given in the

Appendices.

2 Maximum Score Estimation of a Binary Choice

Model under Uncertainty

Suppose an agent must choose between two actions denoted by 0 and 1. The utility

from choosing action j 2 f0; 1g is

U j = vj
0�1 + y0�2 + "j:

Realization of the random vector (vj; "j) 2 Rk �R is known to the agent before the

action is chosen and the random vector y 2 Rp is realized only after the action is cho-

sen. Random vectors (v1; "1) and (v0; "0) are not necessarily identical. Distribution

of y depends on the chosen action and realization of a random vector x 2 Rq. Let

Es(�j�) denote the agent�s subjective conditional expectation. Given the realization
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of (vj; "j), the agent chooses the action d that maximizes the expected utility:

v0j�1 + Es(yjx; d = j)0�2 + "j; j 2 f0; 1g:

Thus the decision rule has the form

d = 1 fz0�1 + [Es(yjx; d = 1)� Es(yjx; d = 0)]0�2 > "g ; (2.1)

where z � v1 � v0; " � "0 � "1, and 1f�g is an indicator function whose value is one
if the argument is true and zero otherwise.

As in Ahn and Manski (1993), suppose that expectations are ful�lled:

Es(yjx; d = j) = E(yjx; d = j):

We assume that the researcher does not observe realization of " and E(yjx; d = j),

but that of (z; x; d; y).

Let G(x) � E(yjx; d = 1) � E(yjx; d = 0) and let w � (z;G(x)) 2 W � Rk+p,

where W denotes the support of the distribution of w. Then, equation (2.1) can be

written as

d = 1fw0� > "g; (2.2)

where � � (�1; �2) is a vector of unknown preference parameters. The set of as-

sumptions leading to the binary choice model in (2.2) is equivalent to that of Ahn

and Manski (1993, equations (1)-(3)). Note that x a¤ects the agent�s decision only

through G(x), and therefore, x and z can have common elements, as long as the

support of the distribution of w is not contained in any proper linear subspace of

Rk+p.

In this paper, we consider an important deviation from Ahn and Manski (1993)�s

setup where the unobserved preference shock " is independent of (z; x) with a known

distribution function. Instead, we consider inference under a �exible speci�cation of

the unobserved model component. Following Manski (1985), we impose the restric-
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tion:

Med("jz; x) = 0: (2.3)

The conditional median independence assumption in (2.3) allows for heteroskedastic-

ity of unknown form, and hence, is substantially weaker than the assumption imposed

in Ahn and Manski (1993). Given (2.3), the model (2.1) then satis�es

Med(djz; x) = 1fw0� > 0g: (2.4)

We may consider su¢ cient conditions for (2.3) in terms of the original structural

errors "0 and "1. Recall that " � "0� "1. Suppose that (i) the distribution of ("0; "1)
is the same as that of ("1; "0) conditional on x and z, and (ii) the support of this

common conditional distribution is R2. This type of condition is called conditional

exchangeability assumption. Then this implies that " is symmetrically distributed

around zero, thereby implying equation (2.3). For further discussions regarding

conditional exchangeability assumption, see Fox (2007) in the context of multinomial

discrete-choice models and Arellano and Honoré (2001) for applications in panel data

models, among others. Also, note that the conditional exchangeability assumption

is a su¢ cient (but not necessary) condition for equation (2.3).

Let � denote the space of preference parameters, and let �j, j 2 f1; :::; pg,
denote the function space of di¤erence of conditional expectations E(yjjx; d = 1) �
E(yjjx; d = 0). Moreover, let b � (b1; b2) and 
j(x), j 2 f1; :::; pg, denote generic
elements of � and �j, respectively. Let 
(x) � (
1(x); :::; 
p(x)) and � �

Qp
j=1 �j

be the space of 
. We refer to � � (�1; �2) and G(x) as the true �nite-dimensional
and in�nite-dimensional parameters.

Suppose that data consist of random sample (zi; xi; di; yi); i = 1; � � � ; N . We
estimate in the �rst stage the conditional expectations which are not observed. LetbG(xi) denote an estimate of the di¤erence in conditional expectations. Using the
estimate bG, we estimate the preference parameters � in the second stage by the
method of maximum score estimation of Manski (1975, 1985). For any b and 
,
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de�ne the sample score function

SN(b; 
) �
1

N

NX
i=1

� i(2di � 1)1fz0ib1 + 
(xi)
0b2 > 0g; (2.5)

where � i � �(xi) is a predetermined weight function to avoid unduly in�uences from

estimated G(xi) at data points carrying low density. The two-stage estimator of �

is now de�ned as b� = argmaxb2� SN(b; bG): (2.6)

We end this section by commenting on inherent features of the maximum score

estimation approach. The zero conditional median assumption does not require the

existence of any error moments and allows heteroskedastic errors of an unknown

form. However, the maximum score approach has its drawbacks, mainly due to

its weak assumption. First, in terms of prediction power, it can identify unknown

parameters up to scale and also only identify whether the conditional probability

of d = 1 is above or below one half; hence, the partial e¤ects of covariates are not

identi�ed. Second, lack of smoothness in the objective function makes computation

of the estimator di¢ cult and lets the estimator converge in probability to the true

parameter at a rate of N�1=3.

3 Further Applications of Two-StepMaximum Score

Estimation with First-Stage Nonparametric Es-

timation

Our paper has been motivated by the estimation problem in the binary choice model

under uncertainty. However, the resulting estimator has wider applicability than

just this model. To further motivate our two-step estimation procedure, this section

gives a couple of additional econometric models for which unknown parameters can

be estimated by maximum score with nonparametrically generated regressors.
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We �rst consider maximum score estimation of an incomplete information games.

Aradillas-Lopez (2012) developed a two-step procedure for estimation of incomplete

information games with Nash equilibrium behavior. Equation (2) of Aradillas-Lopez

(2012, p. 123) gives a description of players�behavior in a 2� 2 game:

Y1 = 1fX 0
1�1 +�1Pr[Y2 = 1jX]� �1 � 0g;

Y2 = 1fX 0
2�2 +�2Pr[Y1 = 1jX]� �2 � 0g;

where Yp 2 f0; 1g is the binary action for player p = 1; 2, Xp and �p are observable

and unobservable payo¤ covariates, X � (X 0
1; X

0
2)
0, and f(�p;�p) : p = 1; 2g are

unknown parameters.

Aradillas-Lopez (2012, Assumption A0, p. 122) assumed that players�behavior

corresponds to a Bayesian-Nash equilibrium with a degenerate selection mechanism.

He further assumed that �1 and �2 are independent of each other, independent of X,

and of the selection mechanism.

We can make the same assumptions as in Aradillas-Lopez (2012), with one excep-

tion. As in the previous section, we consider Med(�pjX) = 0 almost surely, instead
of assuming the full independence between �p and X, where p = 1; 2. Allowing for

dependence between �p and X might be important in applications when we suspect

possible interactions between observed covariates and unobserved components that

a¤ect players�payo¤s. Then for each p = 1; 2, we can estimate (�p;�p) by running

maximum score regression of Yp on Xp and G�p(X) � Pr[Y�p = 1jX] with the non-
parametric �rst stage estimation of G�p(X). Therefore, methodology of the present

paper can be applied to extension of Aradillas-Lopez (2012)�s context allowing un-

observed payo¤s to exhibit unknown form of heteroskedasticity.

Our second application, which is based on Fox (2007), is maximum score esti-

mation of multinomial discrete-choice models using a subset of choices under endo-

geneity. Fox (2007) proposed pairwise maximum score estimation of multinomial

discrete-choice models using a subset of choices. For simplicity, assume that a re-

searcher has data on only two choice, say 1 and 2, among J(� 3) alternatives, and
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also assume that there exists an endogenous covariate. Fox (2007, p. 1013) solved

the endogeneity problem by including, instead of the endogenous covariate, �tted

values from the OLS regression of the endogenous covariate, say price, on a vector

of instruments. We can extend Fox (2007) to allow for nonparametric �tted values.

Then this extension again can be accommodated in the framework of maximum score

estimation with nonparametrically generated regressors.

4 Consistency, Rate of Convergence and Asymp-

totic Distribution of b�
Let F (t; b) and f(t; b), respectively, denote the distribution and density of w0b. To

simplify the analysis, we consider �xed trimming such that �(x) = 1(x 2 X ), where
X � Rq is a predetermined, compact, and convex subset of the support of x. For any

real vector b, let kbkE denote the Euclidean norm of b. For any p-dimensional vector of
functions h(x), let khk1 �




�kh1ksup ; :::; khpksup�



E
where khjksup � supfjhj(x)j :

x 2 Xg and hj(x) denote the jth component of h. Let ez be the subvector of z
excluding the �rst component, say z1 of z. Write b1 = (b1;1;eb1) and �1 = (�1;1; e�1).
We assume the following regularity conditions.

Assumption 1. Assume that:

C1. � = f�1; 1g ��, where � is a compact subspace of Rk+p�1and
�e�1; �2� is an

interior point of �.

C2. (a) The support of the distribution of w is not contained in any proper linear

subspace of Rk+p. (b) 0 < P (d = 1jw) < 1 for almost every w. (c) For almost
every (ez; x), the distribution of z1 conditional on (ez; x) has everywhere positive
density with respect to Lebesgue measure.

C3. Med("jz; x) = 0 for almost every (z; x).

C4. There is a positive constant L < 1 such that jF (t1; b)� F (t2; b)j � L jt1 � t2j
for all (t1; t2) 2 R2 uniformly over b 2 �.
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C5.



bG�G





1
= op(1).

Because the scale of � for the model characterized by (2.4) cannot be identi�ed,

Assumption C1 imposes scale normalization by requiring that the absolute value of

the �rst coe¢ cient is unity. Assumption C2 implies that F (t; b) is absolutely con-

tinuous and has density f(t; b) for each b 2 f�1; 1g � �. Assumptions C1 - C3
are standard in the maximum score estimation literature (see e.g., Manski (1985),

Horowitz (1992), and Florios and Skouras (2008)). Assumption C4 is a mild condi-

tion on the distribution of the index variable w0b. Assumption C5 requires uniform

consistency of the �rst stage estimation. This assumption can be easily veri�ed for

standard nonparametric estimators such as series estimators (Newey (1997, Theorem

1)) and the kernel regression estimator (Bierens (1983, Theorem 1), Bierens (1987,

Theorem 2.3.1) and Andrews (1995, Theorem 1)).

Given these regularity conditions, we have the following result.

Theorem 1 (Consistency). Let Assumption 1 (C1 - C5) hold. Then the two-stage
estimator given by (2.6) converges to � in probability as N �!1.

In addition to consistency, we also study rate of convergence of the estimator b�.
Let ew � (ez;G(x));eb � (eb1; b2) and e� � (e�1; �2). Let F"(�jz; x) denote the distribution
function of " conditional on (z; x) and g1(z1jez; x) denote the density function of z1
conditional on (ez; x). Let p1 (�; ez; x) denote the partial derivative of P (d = 1jz; x)
with respect to z1. De�ne the following matrix

V � �1;1E
h
�p1(� ew0e�=�1;1; ez; x)g1(� ew0e�=�1;1jez; x) ew ew0i :

Since the objective function of (2.5) is non-smooth, we require the nonparametric

parameter of the estimation problem should possess certain degree of smoothness

to facilitate derivation of the rate of convergence result. In particular, we consider

the following well known class of smooth functions (see, e.g., van der Vaart and

Wellner (1996, Section 2.7.1)) : for 0 < � <1, let C�
M denote the class of functions
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f :X 7�! R with kfk� � M where for any q dimensional vector of non-negative

integers k = (k1; :::; kq),

kfk� � max
�(k)��



Dkf



sup
+ max

�(k)��
sup
x 6=x0

��Dkf(x)�Dkf(x0)
��

kx� x0k���E

where �(k) �
Pq

j=1 kq, � denotes the greatest integer smaller than �, and D
k is the

di¤erential operator

Dk � @�(k)

@xk11 � � � @x
kq
q

:

Given the norm k�k�, for any p-dimensional vector of functions h(x), let khk�;p �

�kh1k� ; :::; khpk��

E where hj(x) denote the jth component of h. Note that k�k�;p
is a stronger norm than k�k1 used in condition C5 for the uniform consistency of the
�rst stage estimator.

The regularity conditions imposed for the convergence rate result are stated as

follows.

Assumption 2. Assume that:

C6. The support of ez is bounded.
C7. There is a positive constant B < 1 such that (i) for every z1 and for almost

every (ez; x),
g1(z1jez; x) < B; j@g1(z1jez; x)=@z1j < B; and

��@2g1(z1jez; x)=@z21�� < B;

and (ii) for non-negative integers i and j satisfying i+ j � 2,

��@i+jF"(tjz; x)=@ti@zj1�� < B

for every t and z1 and for almost every (ez; x).
C8. All elements of the vector ew have �nite third absolute moments.
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C9. The matrix V is positive de�nite.

C10. For each j 2 f1; :::; pg, �j = C�
M for some � > q and M <1.

C11.



bG�G





�;p
= Op("N) where "N is a non-stochastic positive real sequence such

that N1=3"N � 1 for each N .

Assumption C6 is standard in deriving asymptotic properties of Manski�s maxi-

mum score estimator (see, e.g. Kim and Pollard (1990), pp. 213 - 216). Assumption

C7 requires some smoothness of the density g1(z1jez; x) and the distribution F"(tjz; x).
Assumption C8 is mild. Since �V corresponds to the second order derivative of

E[SN(b; 
)] with respect to eb evaluated at true parameter values, Assumption C9 is
analogous to the classic condition of Hessian matrix being non-singular in the M-

estimation framework. Assumption C10 imposes smoothness for the nonparametric

parameter 
 and hence helps to control complexity of the space �. The requirement

� > q is in line with the literature of two-stage semiparametric estimation with non-

smooth objective functions (See, e.g., Chen et. al. (2003, Example 2, pp. 1601-1603)

and Ichimura and Lee (2010, Section 4.1, pp. 258-259)).

Assumption C11 requires that the �rst stage estimator should converge under

the norm k�k�;p at a rate no slower than N�1=3. Note that convergence of bG to G

in the norm k�k�;p also implies uniform convergence of derivatives of bG to those of

G. For integer-valued � > 0, Assumption C11 is ful�lled provided that for vector of

non-negative integers k = (k1; :::; kq) that satis�es �(k) � �,


Dk bGt;j �DkGt;j





sup
= Op("N) (4.1)

where bGt;j(x) denotes the estimate of Gt;j(x) � E(yjjx; d = t) for (t; j) 2 f0; 1g �
f1; :::; pg. The condition (4.1) can also be veri�ed for series estimators (Newey (1997,
Theorem 1)) and the kernel regression estimator (Andrews (1995, Theorem 1)).

Theorem 2 (Rate of Convergence). In addition to Assumption 1 (C1 - C5), let
Assumption 2 (C6 - C11) also hold. Then




b� � �




E
= Op(N

�1=3).
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IfG were known to the researcher, the preference parameters � could be estimated

by the single stage maximum score estimator b�G, de�ned as
b�G = argmaxb2� SN(b;G): (4.2)

Kim and Pollard (1990) showed that b�G converges to � at cube root rate and estab-
lished its asymptotic distribution. In the case of unknown G, Theorem 2 implies that

the two-stage estimator b� retains the same convergence rate as the infeasible estima-
tor b�G. Indeed if condition C11 is strengthened for faster convergence of �rst stage
estimates, we can establish the oracle property that N1=3(b� � �) and N1=3(b�G � �)

have the same limiting distribution. Therefore, the inference on � can be carried out

by subsampling (Delgado et al. (2001)) since the standard bootstrap cannot be used

to estimate the distribution of the maximum score estimator consistently (Abrevaya

and Huang (2005)). We now state the asymptotic distributional equivalence result

in the next theorem.

Theorem 3 (Asymptotic Distribution). Suppose all assumptions stated in Theorem
2 hold with the additional restriction that the sequence "N stated in C11 further
satis�es "N = o(N�1=3). Then N1=3(b���) is asymptotically equivalent in distribution
to N1=3(b�G � �).

5 Monte Carlo Simulations

We employ the following data generating process (DGP) in simulation study of the

two-stage maximum score estimator:

d = 1fz�1 +G(x)�2 > "g;

where G(x) = E(yjx; d = 1) � E(yjx; d = 0), z � Logistic, x � N(0; 1) and " =

0:25�
p
1 + z2 + x2 with �j(x; z) � N(0; 1). The scalar random variable y is generated
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according to

y = d(
01 + 
11m(x) + u1) + (1� d)(
00 + 
10m(x) + u0); (5.1)

where (u1; u0) are independent of (x; z; ") and are jointly normally distributed with

E(u1) = E(u0) = 0, V ar(u1) = V ar(u0) = �2u, and Cov(u1; u0) = �. Given (5.1),

G(x) = 
01 � 
00 + (
11 � 
10)m(x):

We consider the following two types of the m(x) function:

Linear : m(x) = x; (5.2)

Nonlinear : m(x) = x2 tan�1 x: (5.3)

The true parameter values are speci�ed as follows: �1 = 1, �2 = 1, 
01 = 0:2,


11 = 0:1, 
00 = 0:1, 
10 = 0:4, � = �0:8, and �u = 0:33.
We compare infeasible single-stage estimator using (z;G(x)) as regressors and

also the feasible two-stage estimator using (z; bG(x)) as regressors. We consider both
parametric and nonparametric �rst stage estimators. For the former, we estimate

E(yjx; d = j) by running OLS of y on x with an intercept term using d = j subsam-

ples. For the latter, we implement Nadaraya-Watson kernel regression estimators.

The nonparametric estimators of E(yjx; d = j), j 2 f0; 1g are constructed as

NP
i=1

yiK(b��1j h�1N (x� xi))1fdi = jg

NP
i=1

K(b��1j h�1N (x� xi))1fdi = jg
(5.4)

where b�j is the estimated standard deviation of xi conditional on di = j, K(:) is a

univariate kernel function and hN is a deterministic bandwidth sequence. We use

two types of kernel and bandwidth con�gurations.

For the �rst type, we use the second-order Gaussian kernel and set hN to be

13



cN�1=5 for various values of the bandwidth scale c. For the second type, we use the

following 8th order kernel function (see, e.g., Bierens (1987, p. 112) and Andrews

(1995, p. 567)):

K(x) �
4X
s=1

as jbsj
�1 exp

�
�x2=(2b2s)

�
; (5.5)

where the constants (as; bs) ; s 2 f1; :::; 4g satisfy

4X
s=1

as = 1 and
4X
s=1

asb
2l
s = 0 for l 2 f1; 2; 3g. (5.6)

We specify bs = s�1=2 and then solve as as solution of the system of linear equations

(5.6). Associated with this kernel, the bandwidth hN is set to be cN�19=360 for var-

ious values of the scale c.1 By Theorem 1(b) of Andrews (1995), kernel regression

estimator of G(x) based on the second type con�guration has convergence property

required in (4.1) with �(k) � 2 and "N = N�41=120, thus ful�lling regularity con-

ditions C5 and C11 of Section 4. The �rst stage estimation with the second-order

kernels satis�es condition C5 but may not satisfy C11; however, we experiment with

the second-order kernels as well since kernel estimates with the second-order kernels

often outperform those with the higher-order kernels in small samples.2

To implement the second-stage estimator using nonparametric �rst stage estima-

tors, we trim the data by setting � i = 1fjxij � 1:95g where � i is the weight introduced
in (2.5). The estimates of �1 and �2 are obtained using grid search method. We re-

port simulation results of b�2 for the parameter capturing the agent�s uncertainty. Letb�2;Single, b�2;OLS, b�2;Kernel_2nd and b�2;Kernel_8th respectively denote the estimators b�2
that are constructed based on the infeasible single-stage, two-stage (OLS �rst stage)

and two-stage (kernel regression �rst stage implemented with the 2nd and 8th order

kernels) maximum score estimators. We compute bias, median, root mean squared

1As noted by Bierens (1987, p. 113), choice of the constants (as; bs) for the kernel function is less
crucial since its e¤ect on asymptotic variance of the conditional mean estimator can be captured
via the bandwidth scale c.

2See e.g., Marron and Wand (1992) and Efromovich (2001) for theoretical arguments why the
higher-order kernels may perform poorly in small samples.
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error (RMSE), mean absolute deviation (mean AD) and median absolute deviation

(median AD) of these estimators based on 1000 simulation repetitions for sample

size N 2 f300; 500; 1000g.

Tables 1-6 present simulation results for the four types of estimators of �2 under

linear and nonlinear designs of the G(x) function. Tables 7 and 8 graph the simu-

lated empirical distribution functions (edf) for N1=3(b�2;Single��2), N1=3(b�2;OLS��2),
N1=3(b�2;Kernel_2nd��2) and N1=3(b�2;Kernel_8th��2). As expected, for linear setup of
G the estimator b�2;OLS enjoys the best overall �nite-sample performance among all
two-stage estimators. However, this estimator also incurs huge bias when agent�s con-

ditional expectation is nonlinear. For the estimators b�2;Kernel_2nd and b�2;Kernel_8th,
the function G is nonparametrically estimated at the �rst stage. Hence regardless of

nonlinearity of G, we see that the simulated bias, RMSE, mean AD and median AD

of these estimators generally decrease as sample size grows.

We note that the edf curves of Tables 7 and 8 for the (kernel �rst-stage) two-stage

estimators broadly match shapes of those for the infeasible estimators. Interestingly,

�nite sample behavior of the estimator b�2;Kernel_2nd �ts that of b�2;Single better than
its counterpart implemented with the 8th order kernel. Use of higher order kernels

allows for veri�cation of convergence of bG to G in the strong norm k�k�;p. However,
as well known in the literature, the estimates with the higher-order kernels seem

to perform poorly in simulations relative to those with the second-order kernels.

The superb performance of b�2;Kernel_2nd suggests that the asymptotic distributional
equivalence result in Theorem 3 may not give us sharp asymptotics and there is scope

to develop further asymptotic theory. This is an interesting future research topic.

6 Conclusions

This paper has developed maximum score estimation of preference parameters in

the binary choice model under uncertainty in which the decision rule is a¤ected by

conditional expectations. The estimation procedure is implemented in two stages:

we estimate conditional expectations nonparametrically in the �rst stage and ob-
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tain the maximum score estimate of the preference parameters in the second stage

using choice data and the �rst stage estimates. The paper has shown consistency

and convergence rate of the two-stage maximum score estimator. Moreover, we also

establish the oracle property in terms of asymptotic equivalence in distribution of

the two-stage estimator and its corresponding infeasible single-stage version. These

results are of independent interest for maximum score estimation with nonparamet-

rically generated regressors.

It would be an alternative approach to develop the second stage estimator using

Horowitz (1992)�s smoothed maximum score estimator or using a Laplace estimator

proposed in Jun, Pinkse, and Wan (2013). These alternative methods would produce

faster convergence rates but require extra tuning parameters. Alternatively, we might

build the second stage estimator based on Lewbel (2000), who introduced the idea

of a special regressor satisfying certain conditional independence restriction. These

are interesting future research topics.

A Proof of Consistency

Recall that w = (z;G(x)) and SN(b; 
) is the sample score function de�ned by (2.5).

We �rst state and prove a preliminary lemma that will be invoked in proving Theorem

1 of the paper.

Lemma 1. Under Assumptions C1, C4 and C5,

sup
b2�

���SN(b; bG)� SN(b;G)
��� p�! 0: (A.1)

Proof of Lemma 1. Note that

���SN(b; bG)� SN(b;G)
��� � 1

N

NX
i=1

� i1
n���( bG(xi)�G(xi))

0b2

��� � jw0ibjo : (A.2)

By Assumption C1, kb2kE < B2 for some �nite positive constant B2. Therefore, the
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right-hand side of the inequality (A.2) is bounded above by

~�N � PN

�
� = 1; B2




bG�G




1
� jw0bj

�
; (A.3)

where PN denotes the empirical probability. Note that the term (A.3) is further

bounded above by

�N � PN

�
B2




bG�G




1
� jw0bj

�
: (A.4)

Let E� denote the event



bG�G





1
< � for some � > 0. Then given � > 0,

P (supb2� �N > �) � P (supb2� �N > �;E�) + P (Ec
�)

� P [supb2� PN (B2� � jw0bj) > �] + P (Ec
�):

By Assumption C5, P (Ec
�) �! 0 as N �! 1. Hence, to show (A.1), it remains to

establish that as N �!1,

P [supb2� PN (B2� � jw0bj) > �] �! 0: (A.5)

Note that by Assumption C4, P (B2� � jw0bj) � 2LB2�. Therefore, we have that

P [supb2� PN (B2� � jw0bj) > �]

� P [supb2� jPN (B2� � jw0bj)� P (B2� � jw0bj)j > �� 2LB2�] ; (A.6)

where � is taken to be su¢ ciently small such that �� 2LB2� > 0 for the given �. By
Lemma 9.6, 9.7 (ii) and 9.12 (i) of Kosorok (2008), the family of sets fB2� � jw0bjg for
b 2 � forms a Vapnik-µCervonenkis class. Therefore, by Glivenko-Cantelli Theorem
(see, e.g. Theorem 2.4.3 of van der Vaart and Wellner (1996)), the right-hand side of

(A.6) tends to zero as N �! 1. Hence, the convergence result in (A.5) holds and
Lemma 1 thus follows.

We now prove Theorem 1 for consistency of b�.
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Proof of Theorem 1. For any (b; 
), de�ne

S(b; 
) � E [�(2d� 1)1fz0b1 + 
(x)0b2 > 0g] :

Given Assumptions C1 - C3 and by Manski (1985, Lemma 3, p. 321), � uniquely

satis�es � = argmaxb2� S(b;G). We now look at the di¤erence���SN(b; bG)� S(b;G)
��� � ���SN(b; bG)� SN(b;G)

���+ jSN(b;G)� S(b;G)j ; (A.7)

where by Lemma 1, the �rst term of the right-hand side of (A.7) converges to zero

in probability uniformly over b 2 �, whilst by Manski (1985, Lemma 4, p. 321), the
second term converges to zero almost surely uniformly over b 2 �. Therefore, we
have that

sup
b2�

���SN(b; bG)� S(b;G)
��� p�! 0:

By Lemma 5 of Manski (1985, p. 322), S(b;G) is continuous in b. Given these results,

Theorem 1 thus follows by application of the consistency theorem in Newey and

McFadden (1994, Theorem 2.1).

B Lemma on the Rates of Convergence of a Two-

Stage M-Estimator with a Non-smooth Crite-

rion Function

We �rst present and prove a general lemma establishing the rates of convergence of

a general two-stage M-estimator under high level assumptions. In next section, we

prove Theorem 2 by verifying these assumptions for the particular estimator given

by (2.6) under the regularity conditions of C1 - C11.

To present a general result, let s 7! m�;h(s) be measurable functions indexed by

parameters (�; h). Let � and H be the space of parameters � and h, respectively.

Let (��; h�) denote the true parameter value. We assume (��; h�) 2 � � H. Let

SN (�; h) �
PN

i=1m�;h(si)=N be the empirical criterion of the M-estimation prob-
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lem where (si)
N
i=1 are i.i.d. random vectors. Suppressing the individual index, let

S (�; h) � E [m�;h(s)] be the population criterion. For a given �rst stage estimate bh,
let the estimator b� be constructed as

b� = arg sup�2� SN ��;bh� . (B.1)

Let d�(�; �
�) and dH(h; h

�) be non-negative functions measuring discrepancies

between � and ��, and h and h�, respectively. Note that d� and dH are usually

related to but not necessarily the same as the metrics speci�ed for the spaces � and

H. Given a non-stochastic positive real sequence "N , de�ne HN(C) � fh 2 H :

dH(h; h
�) � C"Ng. To simplify the presentation, we use the notation . to denote

being bounded above up to a universal constant. De�ne the recentered criterion

eSN(�; h) � (SN(�; h)� SN(�
�; h))� (S(�; h)� S(��; h)): (B.2)

The following lemma modi�es the rate of convergence results developed by van der

Vaart (1998, Theorem 5.55) and provides su¢ cient conditions ensuring that b� retains
the same convergence rate as it would have if h� were known.

Lemma 2 (Rate of convergence for a general two-stage M-estimator). For any �xed
and su¢ ciently large C > 0, assume that for all su¢ ciently large N ,

suph2HN (C) jS(�
�; h)� S(��; h�)j . (C"N)2 (B.3)

and there is a sequence of non-stochastic functions eN : � � HN(C) 7�! R such

that for all su¢ ciently small � > 0 and for every (�; h) 2 � � HN(C) satisfying

d�(�; �
�) � �,

S(�; h)� S(��; h�) + eN(�; h) . �d2�(�; ��) + d2H(h; h
�); (B.4)

sup
d�(�;�

�)��;(�;h)2��HN (C)
jeN(�; h)j . C�"N ; (B.5)
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and

E

"
sup

d�(�;�
�)��;(�;h)2��HN (C)

��� eSN(�; h)���# . �N(�)p
N

; (B.6)

where �N(�) is a sequence of functions de�ned on (0;1) and satis�es that �N(�)���

is decreasing for some � < 2. Suppose dH(bh; h�) = Op("N), d�(b�; ��) = op(1) and

there is a non-stochastic positive real sequence �N which tends to zero as N �! 1
and satis�es that "N � �N and �N(�N) �

p
N�2N for every N . Then d�(b�; ��) =

Op(�N).

Proof. Based on the peeling technique of van der Vaart (1998, Theorem 5.55), for

each natural number N , integer j and positive real M , construct the set

AN;j;M(C) �
�
(�; h) 2 ��HN(C) : 2

j�1�N < d�(�; �
�) � 2j�N ; dH(h; h�) � 2�Md�(�; ��)

	
:

Then we have that for any � > 0,

P
�
d�(b�; ��) � 2M ��N + dH(bh; h�)� ;bh 2 HN(C)

�
� P (2d�(b�; ��) > �) + P

�
(b�;bh) 2[

j�M;2j�N��
AN;j;M(C)

�
� P (2d�(b�; ��) > �) +X

j�M;2j�N��
P

 
sup

(�;h)2AN;j;M (C)
[SN(�; h)� SN(�

�; h)] � 0
!

(B.7)

where the last inequality follows from the de�nition of b� given by (B.1). Since

d�(b�; ��) = op(1), the term P (2d�(b�; ��) > �) tends to zero as N �! 1. Hence the
remaining part of the proof is to bound the terms in the sum (B.7).

Let N be large enough such that (B.3) holds and choose � to be small enough

such that assumptions (B.4), (B.5) and (B.6) hold for every � � �. Note that for

every su¢ ciently largeM , if (�; h) 2 AN;j;M(C), then d2H(h; h�)�d2�(�; ��) . ��2N22j

so that by (B.4),

S(�; h)� S(��; h�) + eN(�; h) . ��2N22j (B.8)
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and thus

SN(�; h)� SN(�
�; h) .

heSN(�; h) + S(��; h�)� S(��; h)� eN(�; h)
i
� �2N2

2j:

Therefore, by Markov inequality, each term in the sum (B.7) can be bounded above

by

��2N 2
�2jE

"
sup

(�;h)2AN;j;M (C)

��� eSN(�; h) + S(��; h�)� S(��; h)� eN(�; h)
���# : (B.9)

By (B.3), (B.5), (B.6) and applying triangular inequality, the term (B.9) is bounded

above by

��2N 2
�2j �N�1=2�N(2

j�N) + 2
jC�N"N + (C"N)

2
�
: (B.10)

By the monotonicity property of the mapping � 7! �N(�)�
��, we have that �N(2

j�N) �
2j��N(�N). Furthermore, since �N(�N) �

p
N�2N , the �rst term in the bracket of

(B.10) can thus be bounded by 2j��2N . Given that "N � �N , the term (B.10) can be

further bounded above by 2j(��2)+C2�j+C22�2j. Using this fact and the condition

� < 2, it follows that the sum (B.7) tends to zero as M �!1.

Since dH(bh; h�) = Op("N), P (bh 2 HN(C)) can be made arbitrarily close to 1

by choosing a su¢ ciently large value of C for every su¢ ciently large N . Therefore,

Lemma 2 follows by putting together all these results and noting that �N+dH(bh; h�) =
Op(�N).

C Proof of the Rate of Convergence for b�
To establish the convergence rate of b�, we apply Lemma 2 by setting (�; h) = (b; 
),
(��; h�) = (�;G), � = f�1; 1g ��, H = �, s = (� ; d; z; x) and

mb;
(s) � �(2d� 1)1fz0b1 + 
(x)0b2 > 0g:
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Assumptions (B.3), (B.4), (B.5) and (B.6) of Lemma 2 are non-trivial and will be

veri�ed using primitive conditions C1 - C11 of the model. Assumption (B.4) is

concerned with the quadratic expansion of S(b; 
) around (�;G) by which we obtain

the functional form of eN(b; 
). Recall that w = (z;G(x)), z = (z1; ez), ew = (ez;G(x)),
b1 = (b1;1;eb1), �1 = (�1;1;

e�1), eb = (eb1; b2) and e� = (e�1; �2). The following lemma
will be used to establish expansion of the population criterion S(b; 
).

Lemma 3. Under conditions C3 and C7, the sign of p1(� ew0e�=�1;1; ez; x) is the same
as that of �1;1 for almost every (ez; x).
Proof. Note that the model (2.2) implies that

P (d = 1jz; x) = F"(w
0�jz; x):

Thus, by C7(ii), P (d = 1jz; x) is di¤erentiable with respect to z1 and

@

@z1
P (d = 1jz; x) = �1;1

@

@t
F"(tjz; x)

����
t=w0�

+
@

@z1
F"(tjz; x)

����
t=w0�

:

Consider the mapping z1 7! h(z1) � @
@z1
F"(tjz; x)

���
t=z1�1;1+ ew0e� . By C3, h(� ew0e�=�1;1) =

0 for almost every (ez; x). Therefore, Lemma 3 follows from this fact and the monotonic-
ity of F"(tjz; x) in the argument t.

By assumption C1, the space of the coe¢ cient b1;1 is f�1; 1g and thus b1;1 = �1;1

when kb� �kE < � for � small enough. Let p(z; x) � P (d = 1jz; x) and

S1(eb; 
) � E
h
�(2p(z; x)� 1)1fz1�1;1 + ez0eb1 + 
(x)0b2 > 0g

i
: (C.1)

We now derive the quadratic expansion of S1(eb; 
) around (e�;G).
Lemma 4. For su¢ ciently small




eb� e�



E
and k
 �Gk1 and under conditions C3,

C7, C8 and C9, we have that���S1(e�; 
)� S1(e�;G)��� . k
 �Gk21
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and there are constants c1 > 0 and c2 � 0 such that

S1(eb; 
)� S1(e�;G) + e(eb; 
) � �c1 


eb� e�


2
E
+ c2 k
 �Gk21

for some function e(eb; 
) that satis�es���e(eb; 
)��� . 


eb� e�



E
k
 �Gk1 .

Proof. We prove Lemma 4 explicitly for the case �1;1 = 1. Proof for the case �1;1 =

�1 can be done by similar arguments.

Suppose now �1;1 = 1. Then

S1(eb; 
)� S1

�e�;G�
= E

�
�(2p(z; x)� 1)

h
1fz1 + ez0e�1 +G(x)0�2 � 0g � 1fz1 + ez0eb1 + 
(x)0b2 � 0g

i�
:

Let

�(t) � ez0 �e�1 + t
�eb1 � e�1��+ (G(x) + t (
(x)�G(x)) )0 (�2 + t (b2 � �2)) ;

	(t) � �E(�(2p(z; x)� 1)1fz1 + �(t) � 0g):

The �rst-order and second-order derivatives of 	(t) are derived as follows:

	0(t) = E (��0(t) (2p(��(t); ez; x)� 1) g1(��(t)jez; x)) ;
	00(t) = �E

n
� (�0(t))

2
[2p1 (��(t); ez; x) g1(��(t)jez; x)

+ (2p(��(t); ez; x)� 1) @

@z1
g1(�� (t) jez; x)]�

+E (2� [(2p(��(t); ez; x)� 1)] g1(��(t)jez; x)(
(x)�G(x))0(b2 � �2)) :

Then the second order expansion of S1(eb; 
)� S1

�e�;G� takes the form
	0(0) + 	00(0)=2 + o

��
max

n


eb� e�



E
; k
 �Gk1

o�2�
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where by C7 and C8, the remainder term has the stated order uniformly over eb and

. Given assumption C3, it follows that p(� ew0e�; ez; x) = 1=2 for almost every (ez; x).
Let

�(ez; x) = 2p1 �� ew0e�; ez; x� g1(� ew0e�jez; x):
Then we have that

	0(0) + 	00(0)=2 = �E
�
��(ez; x)�ew0(eb� e�) + (
(x)�G(x))0�2

�2�
= �

�
A1 + A2 + e(eb; 
)� ;

where

A1(eb) � (eb� e�)0E(��(ez; x) ew ew0)(eb� e�); (C.2)

A2(
) � E
�
��(ez; x) (
(x)�G(x))0 �2�

0
2 (
(x)�G(x))

�
; (C.3)

e(eb; 
) � 2(eb� e�)0E (��(ez; x) ew�02 (
(x)�G(x))) : (C.4)

Under condition C9, E(��(ez; x) ew ew0) is positive de�nite, so that A1 � c1




eb� e�


2
E

for some positive real constant c1. By Lemma 3, p1
�
� ew0e�; ez; x� � 0 and thus

�(ez; x) � 0. By Cauchy-Schwarz inequality, 0 � A2 � c2 k
 �Gk21, where c2 �
E(��(ez; x)) k�2k2E � 0, and the function e(eb; 
) satis�es that���e(eb; 
)��� � 2E

�
��(ez; x) ���(eb� e�)0 ew�02 (
(x)�G(x))

����
� 2E (��(ez; x) k ewkE) k�2kE 


eb� e�




E
k
 �Gk1 :

Hence Lemma 4 follows by noting that when



eb� e�




E
and k
 �Gk1 are su¢ ciently

small, ���S1(e�; 
)� S1(e�;G)��� = ��A2 + o
�
k
 �Gk21

��� � c2 k
 �Gk21
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and

S1(eb; 
)� S1

�e�;G�+ e(eb; 
) � �A1 + A2

� �c1



eb� e�


2

E
+ c2 k
 �Gk21 .

We now verify assumption (B.6) of Lemma 2. Note that for � su¢ ciently small,

assumption C1 implies that b1;1 = �1;1 when kb� �kE � �. Therefore we can focus on

analyzing (B.6) for the case of b1;1 = �1;1 and



eb� e�




E
� �. For any s = (� ; d; z; x),

consider the following recentered function

emeb;
(s) � �(2d�1)
h
1fz1�1;1 + ez0eb1 + 
(x)0b2 > 0g � 1fz1�1;1 + ez0e�1 + 
(x)0�2 > 0g

i
(C.5)

and the class of functions

z�;" �
nemeb;
 :




eb� e�



E
� �; k
 �Gk�;p � "

o
: (C.6)

Let k�kLr(P ) denote the Lr(P ) norm such that kfkLr(P ) � [E(jf(� ; d; z; x)jr)]1=r for
any measurable function f . For any � > 0, let N[](�;z; Lr(P )) denote the Lr(P )
- bracketing number for a given function space z. Namely, N[](�;z; Lr(P )) is the
minimum number of Lr(P ) - brackets of length � required to coverz (see e.g., van der
Vaart (1998, p. 270)). The logarithm of bracketing number for z is referred to as the
bracketing entropy for z. Assumption (B.6) is a stochastic equicontinuity condition
concerning the complexity of the function space z�;" in terms of its envelope function

and bracketing entropy. Let M
�;"
denote an envelope for z�;" such that

��� emeb;
(s)
���

�
��M

�;"
(s)
�� for all s and for all emeb;
 2 z�;". The next lemma derives the envelope

function M
�;"
.

Lemma 5. Let � and " be su¢ ciently small. Then under conditions C1, C4 ,C6 and
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C10, for some real constants a1 > 0 and a2 > 0, we can take

M
�;"
= 1fa1maxf�; "g � jw0�jg

and furthermore, 

M
�;"




L2(P )

� a2
p
maxf�; "g: (C.7)

Proof. Note that ��� emeb;
(� ; d; z; x)
���

� 1fz1�1;1 + ez0eb1 + 
(x)0b2 > 0 � z0�1 + 
(x)0�2 or

z0�1 + 
(x)0�2 > 0 � z1�1;1 + ez0eb1 + 
(x)0b2g:

Under condition C6, there is a positive real constant B such that kezkE < B with

probability 1. Hence if



eb� �





E
� � and k
 �Gk�;p � ", then we have that

z1�1;1 + ez0eb1 + 
(x)0b2 > 0 � z0�1 + 
(x)0�2

() ez0(eb1 � e�1) + 
(x)0(b2 � �2) > � [z0�1 + 
(x)0�2] � 0
=) � [kezkE + k
k1] � � [z0�1 + 
(x)0�2] and 0 � w0� + (
(x)�G(x))0�2

=) w0� + (
(x)�G(x))0�2 � �� [kezkE + "+ kGk1] and " k�2kE � w0�

=) � [B + "+ kGk1] + " k�2kE � w0� � �� [B + "+ kGk1]� " k�2kE

Based on similar arguments, it also follows that

z0�1 + 
(x)0�2 > 0 � z1�1;1 + ez0eb1 + 
(x)0b2

=) � [B + "+ kGk1] + " k�2kE � w0� � �� [B + "+ kGk1]� " k�2kE

Therefore, Lemma 5 follows by noting that for " su¢ ciently small (e.g., " < 1), we

can take

M
�;"
= 1fa1maxf�; "g � jw0�jg

where a1 � 2maxf(B + 1 + kGk1) ; k�2kEg. By C1 and C10, 0 < a1 < 1 and
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hence by C4,


M

�;"




L2(P )

� a2
p
maxf�; "g with a2 �

p
2a1L where L is the positive

constant stated in condition C4.

The following lemma establishes the bound for the bracketing entropy for z�;".

Lemma 6. Given conditions C1, C4, C6, C7, C8 and C10, we have that for su¢ -
ciently small � and ",

logN[](�;z�;"; L2(P )) . (maxf�; "g)q=���2q=�:

Proof. For j 2 f1; :::; pg, let e�j(") and e�jBj(�; ") be classes of functions de�ned as

e�j(") �
�
(
j �Gj)=" :




j �Gj




�
� "
	
;e�jBj(�; ") �

�
(
j(x)�Gj(x))(b2;j � �2;j)= ("�) :




j �Gj




�
� ";

��b2;j � �2;j
�� � �

	
:

Assumption C10 implies that both e�j(") and e�jBj(�; ") are C�
1 . By Corollary 2.7.2

of van der Vaart and Wellner (1996, p. 157), we have that for j 2 f1; :::; pg,

logN[](�
2; e�j("); L1(P )) . ��2q=� and logN[](�2; e�jBj(�; "); L1(P )) . ��2q=�: (C.8)

Note that for s = (� ; d; z; x), emeb;
(s) de�ned by (C.5) can be rewritten as
emeb;
(s) = �d

h
1fh(s;eb) > 0g � 1fh(s; e�) > 0gi+�(1�d) h1fh(s;eb) � 0g � 1fh(s; e�) � 0gi

where

h(s;eb) � w0� + ew0(eb� e�) + (
(x)�G(x))0(b2 � �2) + (
(x)�G(x))0�2;

h(s; e�) � w0� + (
(x)�G(x))0�2:
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Consider the following spaces:

�1 � f ew0(eb� e�) : 


eb� e�



E
� �g;

�2;j �
�
(
j(x)�Gj(x))(b2;j � �2;j) :




j �Gj




�
� ";

��b2;j � �2;j
�� � �

	
for j 2 f1; :::; pg;

�2 �
n
(
(x)�G(x))0(b2 � �2) : k
 �Gk�;p � ", kb2 � �2kE � �

o
;

�3;j � f(
j(x)�Gj(x))�2;j :



j �Gj




�
� "g for j 2 f1; :::; pg;

�3 � f(
(x)�G(x))0�2 : k
 �Gk�;p � "g;

�4 � fh(� ; d; z; x;eb)� w0� : k
 �Gk�;p � ",



eb� e�




E
� �g:

Let ni(�) � logN[](�;�i; L1(P )) for i 2 f1; 2; 3; 4g and nk;j(�) � logN[](�;�k;j; L1(P ))
for (k; j) 2 f2; 3g � f1; :::; pg. Let  �

p
maxf�; "g.

Since �1 is a pointwise Lipschitz class of functions with envelope k ewkE �. By
condition C8, E(k ewkE) is �nite. Thus applying Theorem 2.7.11 of van der Vaart

and Wellner (1996, p. 164), we have that

n1(�
2) . q

�
log(�=�2) . �q=���2q=� .  2q=���2q=�. (C.9)

Note that for any norm k�k, any �xed real valued c, any class of functions z, it is
straightforward to verify that

N[](�; cz; k�k) = 1 for c = 0
N[](�; cz; k�k) � N[](�= jcj ;z; k�k) for c 6= 0

where cz � fcf : f 2 zg.

Using this fact, we have that n2;j(�2) = logN[](�
2=("�); e�jBj(�; "); L1(P )) and

n3;j(�
2) = 0 for �2;j = 0 and n3;j(�

2) � logN[](�2=("
���2;j��); e�j("); L1(P )) for �2;j 6= 0.

Hence for su¢ ciently small � and " (e.g., � < 1 and " < 1) and by (C.8), it follows

that

n2;j(�
2) � logN[](�2 �2; e�jBj(�; "); L1(P )) .  2q=���2q=�:

Using similar arguments, we can also deduce that n3;j(�2) .  2q=���2q=�.
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By preservation of bracketing metric entropy (see, e.g., Lemma 9.25 of Kosorok

(2008, p. 169)), we have that for i 2 f2; 3g,

ni(�) � ni;p(�2
1�p) +

Xp�1

j=1
ni;j(�2

�j):

and n4(�) � n1(�=2) + n2(�=4) + n3(�=4). Therefore by the bounds derived above, it

follows that n2(�2) .  2q=���2q=�, n3(�2) .  2q=���2q=� and also n4(�2) .  2q=���2q=�.

Now let fL1 � fU1 ; :::; f
L
N[](�

2;�3;L1(P ))
� fUN[](�2;�3;L1(P )) and g

L
1 � gU1 ; :::; g

L
N[](�

2;�4;L1(P ))
�

gUN[](�2;�4;L1(P )) be the �
2-brackets with bracket length de�ned by L1(P ) for the spaces

�3 and�4, respectively. For 1 � k � N[](�
2;�3; L1(P )) and 1 � j � N[](�

2;�4; L1(P )),

de�ne

mL
jk(� ; d; z; x) � �d

�
1fw0� + gLj (z; x) > 0g � 1fw0� + fUk (z; x) > 0g

�
+�(1� d)

�
1fw0� + gUj (z; x) � 0g � 1fw0� + fLk (z; x) � 0g

�
;

mU
jk(� ; d; z; x) � �d

�
1fw0� + gUj (z; x) > 0g � 1fw0� + fLk (z; x) > 0g

�
+�(1� d)

�
1fw0� + gLj (z; x) � 0g � 1fw0� + fUk (z; x) � 0g

�
:

Note that

0 � mU
jk �mL

jk � 2
�
1fgLj � �w0� < gUj g+ 1ffLk � �w0� < fUk g

�
.

Thus

E
�
mU
jk �mL

jk

�2 � 12P (gLj � �w0� < gUj ) + 4P (f
L
k � �w0� < fUk ): (C.10)

By condition C1 and given (ez; x), the mapping z1 7�! w0� is one-to-one. Hence by

condition C7, the density of w0� conditional on (ez; x) is bounded and by (C.10), it
then follows that



mU
jk �mL

jk




L2(P )

. �. Moreover for each emeb;
 2 z�;"N , there is a

bracket
�
mL
jk;m

U
jk

�
in which it lies. Therefore,

logN[](�;z�;"N ; L2(P )) . n3(�
2) + n4(�

2) .  2q=���2q=�.
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Replacing (�; h) and �� with ((�1;1;eb); 
) and (�1;1; e�), respectively in the de�ni-
tion of eSN given by (B.2), we now verify assumption (B.6) in the next lemma.
Lemma 7. For su¢ ciently small � and ", under conditions C1, C4, C6, C7, C8 and
C10,

E

24 sup
keb�e�k

E
��;k
�Gk�;p�"

��� eSN(eb; 
)���
35 . pmaxf�; "gp

N
:

Proof. Let  �
p
maxf�; "g. By Lemmas 5 and 6, we have that

Z kM�;"kL2(P )
0

q
logN[](�;z�;"; L2(P ))d� .  q=�

Z a2 

0

��q=�d� .  

where the last inequality follows since � > q. Lemma 7 hence follows by applying

Corollary 19.35 of van der Vaart (1998, p. 288).

We now prove Theorem 2.

Proof of Theorem 2. We take �N = N�1=3, d�(b; �) =
p
c1 kb� �kE and dH(
;G) =p

c2 k
 �Gk�;p in the application of Lemma 2, where c1 and c2 are real constants
stated in Lemma 4.

Since c1 > 0, the norm by the metric d�(�; �) is equivalent to the Euclidean norm
and thus by Theorem 1, d�(b�; �) = op(1). Moreover since c2 � 0, assumption C11
implies that dH( bG;G) = Op("N). Given assumption C1, for su¢ ciently small �, we

have that b1;1 = �1;1 when d�(b; �) � �. Hence for su¢ ciently small � and "N , by

Lemma 4 and noting that k�k�;p is stronger than k�k1, assumptions (B.3), (B.4) and
(B.5) hold.

By Lemma 7 and by taking C su¢ ciently large in the de�nition of HN(C)

of Lemma 2, assumption (B.6) also holds with �N(�) =
p
maxf�; "Ng. Clearly,

�N(�)�
�� is decreasing for some � < 2. By assumption C11, "N � �N and thus

�N(�N) �
p
N�2N for every N . Therefore, all conditions stated in Lemma 2 are

ful�lled and the result of Theorem 2 hence follows.
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D Proof of Asymptotic Distribution of N 1=3(b���)
For C > 0, de�ne the sets

�N(C) �
�
b 2 � : N1=3 kb� �kE � C

	
;

HN(C) � f
 2 � : k
 �Gk�;p � C"Ng

where "N is the sequence stated in the assumptions of Theorem 3. For each (b; 
),

de�ne the following recentered empirical and population criterion functions

SN (b; 
) � SN (b; 
)� SN (�; 
) ;

S (b; 
) � S (b; 
)� S (�; 
) :

Clearly, b� and b� G , de�ned by (2.6) and (4.2), are still maximizers of the objective

functions SN(b; bG) and SN(b;G), respectively. Decompose SN(b; bG) � SN(b;G) as

follows.

SN(b; bG)� SN(b;G) =
heSN(b; bG)� eSN(b;G)i+ hS(b; bG)� S(b;G)

i
(D.1)

where eSN(b; 
) � SN (b; 
)� S (b; 
) :

We shall need the following results.

For � > 0 and " > 0, Consider the local neighborhoods �(�) and H(") de�ned as

�(�) � fb 2 � : kb� �kE � �g; (D.2)

H(") � f
 2 � : k
 �Gk�;p � "g: (D.3)

Recall that w � (z;G(x)), z � (z1; ez), ew � (ez;G(x)), eb � (eb1; b2) and e� � (e�1; �2).
Note that for � su¢ ciently small, assumption C1 implies that b1;1 = �1;1 when

b 2 �(�). Therefore we may assume that �(�) = fb 2 � : b1;1 = �1;1 and eb 2 e�(�)g
where e�(�) � feb 2 � : 


eb� e�




E
� �g. For any s = (� ; d; z; x), consider the following
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function

meb;
(z; x) � 1fz1�1;1 + ez0eb1 + 
(x)0b2 > 0g � 1fz1�1;1 + ez0e�1 + 
(x)0�2 > 0g: (D.4)

Let emeb;
(s) � �(2d� 1)
h
meb;
(z; x)�meb;G(z; x)

i
:

De�ne the class of functions

z�;" �
nemeb;
 : (eb; 
) 2 e�(�)�H(")

o
: (D.5)

Let M�;" denote an envelope for z�;" such that
��� emeb;
(s)

��� � jM�;"(s)j for all s and for
all emeb;
 2 z�;".

Lemma 8. Let � and " be su¢ ciently small. Given conditions C1, C4, C6 and C10,
for some positive real constants c1 and c2, we can take

M
�;"
= 2� 1fc1minf�; "g � jw0�jg

and furthermore, 

M
�;"




L2(P )

� c2
p
minf�; "g: (D.6)

Proof. Note that��� emeb;
(s)
��� � 2�1nhmeb;
(s) = 1 and meb;G(s) = �1

i
or
h
meb;
(s) = �1 and meb;G(s) = 1

io
:

Given C1, C6 and C10, there is positive real constantB such thatmaxfk ewkE ; kb2kEg <
B with probability 1. Hence if (eb; 
) 2 e�(�)�H("), we have that

meb;
(s) = 1
() z1�1;1 + ez0eb1 + 
(x)0b2 > 0 � z1�1;1 + ez0e�1 + 
(x)0�2

() ew0(eb� e�) + (
(x)�G(x))0b2 > �w0� � (
(x)�G(x))0�2

=) �B(� + ") � w0� � B":
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On the other hand,

meb;G(s) = �1
() z1�1;1 + ew0eb � 0 < w0�

() ew0(eb� e�) � �w0� < 0
=) 0 � w0� � B�:

Therefore, the condition meb;
(s) = 1 and meb;G(s) = �1 implies jw0�j � Bminf�,"g.
Based on similar arguments, we can verify that the condition meb;
(s) = �1 and
meb;G(s) = 1 also implies jw0�j � Bminf�,"g. Therefore, Lemma 8 follows by taking
M

�;"
= 2� 1fjw0�j � Bminf�; "gg and noting that given C4, inequality (D.6) holds

for c2 = 2
p
2c1L.

Lemma 9. Given conditions C1, C4, C6, C7, C8 and C10, we have that for su¢ -
ciently small � and ",

E

"
sup

(b;
)2e�(�)�H(")
��� eSN(b; 
)� eSN(b;G)���# . N�1=2(maxf�; "g)

q
2� (minf�; "g)

��q
2� :

Proof. De�ne the following two classes of functions

A�;" �
n
�(2d� 1)meb;
(z; x) : (eb; 
) 2 e�(�)�H(")

o
;

B�;" �
n
�(2d� 1)meb;G(z; x) : eb 2 e�(�)o :

Using Lemma 9.25 of Kosorok (2008, p. 169)), we have that

logN[](�;z�;"; L2(P )) � logN[](�=2; A�;"; L2(P )) + logN[](�=2; B�;"; L2(P )):

Let  �
p
maxf�; "g. By Lemma 6, we have that for su¢ ciently small � and ",

logN[](�; A�;"; L2(P )) .  2q=���2q=�:
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Furthermore by simplifying proof of Lemma 6, it is straightforward to verify that

logN[](�; B�;"; L2(P )) .  2q=���2q=�

and thus

logN[](�;z�;"; L2(P )) .  2q=���2q=�: (D.7)

Using inequality (D.7) and Lemmas 8, we have that

Z kM�;"kL2(P )
0

q
logN[](�;z�;"; L2(P ))d� .  

q
�

Z c2
p
minf�;"g

0

��
q
�d� .  

q
� (minf�; "g)

��q
2�

where the last inequality follows from the assumption � > q. Lemma 9 hence follows

by applying Corollary 19.35 of van der Vaart (1998, p. 288).

We now prove Theorem 3.

Proof of Theorem 3. By Kim and Pollard (1990),



b�G � �





E
= Op(N

�1=3). Hence,

by condition C11 and Theorem 2, for su¢ ciently large C > 0, probability of the

event that b� 2 �N(C); b�G 2 �N(C) and bG 2 HN(C) can be made arbitrarily close

to 1. Thus to show the theorem, it su¢ ces to establish that for any �xed su¢ ciently

large C > 0,

sup
b2�N (C)

���SN(b; bG)� SN(b;G)
��� = op(N

�2=3): (D.8)

Given (D.8), we have that

SN(b�;G) � SN(b�; bG)� op(N
�2=3)

� SN(b�G; bG)� op(N
�2=3)

� SN(b�G; G)� op(N
�2=3)

where the �rst and third inequalities follow from (D.8) and the second inequality

follows from the de�nition of b�. Therefore by Theorem 1.1 of Kim and Pollard (1990),
N1=3(b� � �) and N1=3(b�G � �) are asymptotically equivalent in distribution.
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We now verify equation (D.8). Given the decomposition (D.1), it su¢ ces to show

that

E

"
sup

(b;
)2�N (C)�HN (C)

��� eSN(b; 
)� eSN(b;G)���# = o(N�2=3); (D.9)

sup
b2�N (C)

���S(b; bG)� S(b;G)
��� = op(N

�2=3): (D.10)

Equation (D.9) concerns stochastic equicontinuity of the local recentered process

N2=3 eSN(b; 
) indexed by (b; 
) 2 �N(C) � HN(C). It is satis�ed by setting � =

CN�1=3 and " = C"N in the de�nition of sets �(�) and H(") given by (D.2) and

(D.3) and by invoking Lemma 9 with the assumptions "N = o(N�1=3) and � > q.

We now verify equation (D.10). Note that for N su¢ ciently large, if b 2 �N(C),
then b1;1 = �1;1 under condition C1. Let

S1(eb; 
) � S1(eb; 
)� S1(e�; 
)
where S1(eb; 
) is de�ned by (C.1). Hence it su¢ ces to verify

supeb2e�N (C)
���S1(eb; bG)� S1(eb;G)��� = op(N

�2=3)

where e�N(C) � feb 2 � : 


eb� e�



E
� CN�1=3g.

Note that the term
���S1(eb; bG)� S1(eb;G)��� is bounded above by���S1(e�; bG)� S1(e�;G)���+ ���[S1(eb; bG)� S1(e�;G)]� [S1(eb;G)� S1(e�;G)]��� : (D.11)

Since "N = o(N�1=3), by C11 we have that



 bG�G





1
= op(N

�1=3) because the norm

k�k�;p is stronger than the sup norm k�k1. Hence by Lemma 4, the �rst term of the

sum (D.11) is op(N�2=3) and

S1(eb; bG)� S1

�e�;G� = ��A1(eb) + A2( bG) + e(eb; bG)�+ op
�
N�2=3� (D.12)
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where the terms A1(eb), A2( bG) and e(eb; bG) are given by (C.2), (C.3) and (C.4), re-
spectively. Using the proof of Lemma 4, it is also straightforward to verify that

S1(eb;G)� S1(e�;G) = �A1(eb) + op
�
N�2=3� : (D.13)

Since



 bG�G





1
= op(N

�1=3) and eb 2 e�N(C), we have that A2 = op
�
N�2=3� and

e(eb; bG) = op
�
N�2=3�. Putting together (D.12) and (D.13), it follows that the second

term of the sum (D.11) is also op(N�2=3) and therefore equation (D.10) holds.
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Table 1 : Simulation Results for b�2;Single and b�2;OLS (linear G)
N Bias RMSE Median mean AD median AD

Single-stage estimation

300 -0.112 0.410 0.894 0.329 0.288

500 -0.061 0.352 0.916 0.285 0.247

1000 -0.031 0.264 0.961 0.211 0.182

Two-stage estimation : OLS �rst stage

300 -0.122 0.478 0.856 0.381 0.326

500 -0.070 0.376 0.908 0.304 0.259

1000 -0.033 0.301 0.952 0.240 0.211

Table 2 : Simulation Results for b�2;Single and b�2;OLS (nonlinear G)
N Bias RMSE Median mean AD median AD

Single-stage estimation

300 -0.056 0.330 0.918 0.262 0.216

500 -0.044 0.277 0.942 0.220 0.184

1000 -0.020 0.212 0.966 0.169 0.139

Two-stage estimation : OLS �rst stage

300 -0.394 0.489 0.577 0.431 0.432

500 -0.413 0.469 0.568 0.424 0.432

1000 -0.400 0.435 0.587 0.402 0.412
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Table 3 : Simulation Results for b�2;Kernel_8th (linear G)
c Bias RMSE Median mean AD median AD

Two-stage estimation : kernel �rst stage (N = 300)

5.4 -0.063 0.639 0.868 0.502 0.417

5.6 0.041 0.653 0.966 0.500 0.400

5.8 0.138 0.718 1.067 0.544 0.427

Two-stage estimation : kernel �rst stage (N = 500)

5.4 -0.046 0.501 0.908 0.388 0.314

5.6 0.056 0.518 0.992 0.393 0.307

5.8 0.171 0.584 1.096 0.435 0.331

Two-stage estimation : kernel �rst stage (N = 1000)

5.4 -0.087 0.389 0.887 0.311 0.266

5.6 0.008 0.380 0.992 0.307 0.264

5.8 0.111 0.424 1.086 0.334 0.278

Table 4 : Simulation Results for b�2;Kernel_8th (nonlinear G)
c Bias RMSE Median mean AD median AD

Two-stage estimation : kernel �rst stage (N = 300)

5.8 -0.071 0.480 0.918 0.380 0.328

6 0.053 0.523 1.028 0.408 0.340

6.2 0.147 0.577 1.132 0.448 0.372

Two-stage estimation : kernel �rst stage (N = 500)

5.8 -0.066 0.400 0.906 0.316 0.264

6 0.030 0.408 1.004 0.323 0.268

6.2 0.103 0.457 1.062 0.355 0.288

Two-stage estimation : kernel �rst stage (N = 1000)

5.8 -0.125 0.298 0.865 0.243 0.211

6 -0.028 0.286 0.956 0.230 0.192

6.2 0.059 0.320 1.038 0.251 0.211
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Table 5 : Simulation Results for b�2;Kernel_2nd (linear G)
c Bias RMSE Median mean AD median AD

Two-stage estimation : kernel �rst stage (N = 300)

0.6 -0.172 0.483 0.803 0.392 0.345

0.8 -0.122 0.502 0.865 0.395 0.328

1 -0.088 0.510 0.896 0.401 0.333

Two-stage estimation : kernel �rst stage (N = 500)

0.6 -0.111 0.391 0.880 0.315 0.276

0.8 -0.073 0.394 0.913 0.316 0.268

1 -0.037 0.408 0.937 0.326 0.280

Two-stage estimation : kernel �rst stage (N = 1000)

0.6 -0.054 0.305 0.923 0.247 0.216

0.8 -0.028 0.301 0.956 0.242 0.211

1 0.002 0.313 0.980 0.250 0.216

Table 6 : Simulation Results for b�2;Kernel_2nd (nonlinear G)
c Bias RMSE Median mean AD median AD

Two-stage estimation : kernel �rst stage (N = 300)

0.6 -0.112 0.440 0.865 0.347 0.297

0.8 -0.057 0.443 0.918 0.351 0.302

1 -0.009 0.469 0.968 0.370 0.316

Two-stage estimation : kernel �rst stage (N = 500)

0.6 -0.077 0.366 0.918 0.291 0.244

0.8 -0.040 0.382 0.932 0.302 0.254

1 -0.010 0.397 0.966 0.313 0.264

Two-stage estimation : kernel �rst stage (N = 1000)

0.6 -0.037 0.272 0.952 0.218 0.182

0.8 -0.012 0.272 0.980 0.218 0.192

1 0.036 0.286 1.028 0.230 0.201

43



Table 7 : Comparison of Empirical Distribution Functions (8th order kernel)

nonlinear G linear G
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Table 8 : Comparison of Empirical Distribution Functions (2nd order kernel)

nonlinear G linear G
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