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Abstract

Many structural economics models are semiparametric ones in which the unknown nuisance

functions are identi�ed via nonparametric conditional moment restrictions with possibly non-

nested or overlapping conditioning sets, and the �nite dimensional parameters of interest are

over-identi�ed via unconditional moment restrictions involving the nuisance functions. In this

paper we characterize the semiparametric e¢ ciency bound for this class of models. We show

that semiparametric two-step optimally weighted GMM estimators achieve the e¢ ciency bound,

where the nuisance functions could be estimated via any consistent nonparametric methods in

the �rst step. Regardless of whether the e¢ ciency bound has a closed form expression or not,

we provide easy-to-compute sieve based optimal weight matrices that lead to asymptotically

e¢ cient two-step GMM estimators.

JEL Classi�cation: C14, C31, C32

Keywords: Overlapping Information Sets; Semiparametric E¢ ciency; Two-Step GMM



1 Introduction

We consider the semiparametric e¢ ciency bound and e¢ cient estimation of a �nite dimen-

sional parameter of interest �o that is (possibly over-) identi�ed by the unconditional moment

restrictions

E [g (Z; �o; h1;o (�) ; :::; hL;o (�))] = 0; (1)

where the nuisance functions ho (�) = (h1;o (�) ; :::; hL;o (�)) are identi�ed by the conditional mo-
ment restrictions

E [�` (Z; h`;o (X`))jX`] = 0 almost surely X`, ` = 1; :::; L; (2)

Here, Z = (Y 0; X 0)0 are random vectors, X is the union of distinct elements of X`, ` = 1; :::; L.

The unknown functions h`;o (�), ` = 1; :::; L, are distinct from each other; while h`;o (�) enters
(2) through h`;o (X`) only, it may enter (1) through its values at all support points of X`. This

class of models is �exible enough to allow for models of semiparametric mean and quantile

treatment e¤ects, missing data, sample selection, default, entry, censoring, some models with

semiparametric control function approach and many more.

Given a random sample fZigni=1 of Z, we can exploit the conditional moment restrictions
(2), and estimate h`;o by any nonparametric estimator bh` for ` = 1; :::; L. We can then estimate
�o in (1) by setting the sample analog n�1

Pn
i=1 g

�
Zi; �;bh� of E [g (Z; �; ho)] as close to zero

as possible. This intuitive strategy is called a semiparametric two-step GMM procedure.1

Alternatively, one could compute an optimally weighted GMM estimator jointly using moment

restrictions (1) and (a �nite yet increasing number of unconditional moments implied by) (2).

The two-step procedure often has signi�cant computational advantages over the joint esti-

mation procedure, which explains its popularity among empirical researchers estimating compli-

cated structural models. Examples are the recent literatures on estimating production functions

(e.g. Olley and Pakes (1996)) and dynamic models (e.g. Hotz and Miller (1993)). In both cases,

the joint approach would require a large-dimensional non-linear search over h and � simulta-

neously. In contrast, the two-step approach can be computed with two sequential estimation

procedures, the �rst-step estimating h, and the second-step estimating �. Generally speaking,

the latter is easier computationally, both in terms of computational time and in terms of re-

liability. Moreover, in many cases h can be conveniently speci�ed such that the �rst-step of

the two-step approach is either analytically computable (e.g. least squares) or the solution to

1The root-n asymptotic normality of a semiparametric two-step GMM estimator b�n (of �o) and the consistent
estimation of the asymptotic variance of b�n have been studied in the existing literature. See, e.g., Andrews
(1994), Newey (1994), Pakes and Olley (1995), Chen, Linton, and van Keilegom (2003), Ackerberg, Chen, and
Hahn (2012) and the references therein.
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a globally concave optimization problem (e.g. a logit model). This can further decrease com-

putational time and increase reliability (e.g. with a globally concave optimization problem, the

global maximum is the only local maximum).

However, the two-step procedure may also have disadvantages relative to the joint procedure.

Any inference based on a semiparametric two-step GMM estimator b�n is a �limited informa-
tion�inference in the sense that the information contained in moment conditions (1) and (2)

are not simultaneously considered. Intuitively, the joint approach might be more e¢ cient than

a semiparametric two-step GMM estimator, but to the best of our knowledge, formal semi-

parametric e¢ ciency results are so far only established for the cases where the nonparametric

�rst stage (2) takes the form of sequential moment restrictions.2 We pose a natural question

whether the �limited information�estimation strategy in fact exhausts all the information in

model (1) and (2). Such a question was posed earlier in a �nite dimensional GMM context

by Crepon, Kramarz, and Trognon (1997), who noted that the limited information strategy

in fact achieves full e¢ ciency as long as the �rst step estimator is exactly identi�ed. Newey

and Powell (1999) considered optimality of the second step estimator conditional on a given

�rst-step nonparametric estimator, and noted in some examples that the e¢ cient second step

estimator is fully e¢ cient when the �rst step nonparametric estimator is exactly identi�ed. We

build on these papers, and show that Newey and Powell�s (1999) insight holds in general.

We derive the semiparametric e¢ ciency bound for �o in the model (1) and (2). The e¢ ciency

bound is calculated by establishing the bound for �o in a transformed model

E [eg (Z; �o; h1;o(�); :::; hL;o(�))] = 0
where (h1;o; :::; hL;o) are known, and relating the bound there to the asymptotic variance of the

two step estimator. The transformed model is such that it is orthogonal to the nonparametric

moment (2).3 As noted above, we �nd that when �o is estimated in the second step by GMM

using the unconditional moment (1) with an optimal weight matrix that re�ects the noise in

estimating the nuisance functions ho, the resulting semiparametric two-step GMM estimators

achieve the semiparametric e¢ ciency bound for �o. The semiparametric e¢ ciency bound for

�o may not have a closed form expression in general, and hence it may be di¢ cult to compute

2See Chamberlain (1992b) and Ai and Chen (2012), e.g., for the semiparametric e¢ ciency bound and e¢ cient
estimation of such sequential moment restriction models. Even in the sequential moment restriction case, our
approach and estimator has an advantage over Ai and Chen�s (2012) two-step e¢ cient estimator. Their e¢ cient
estimator takes a fairly complicated form involving a �ltering/orthogonalization procedure in which additional
non-parametric components (conditional covariances) are estimated. Our estimator does not require estimating
these additional components and is very similar to two-step approaches typically used in the parametric liter-
ature. On the other hand, unlike Ai and Chen (2012), our e¢ ciency results require that the non-parametric
objects are exactly identi�ed.

3The exact nature of the transformed model will be discussed later in Section 2.1.
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a feasible optimal weight matrix based on any nonparametric �rst step. However, when the

nuisance functions are estimated via a simple sieve M procedure in the �rst step, we provide

easy-to-compute optimal weight matrices that lead to asymptotically e¢ cient two-step GMM

estimators.

Our result leads to a convenient practical implication that the two-step GMM estimator

may reduce computational burden without sacri�cing e¢ ciency. As long as practitioners use

the weight matrix re�ecting the noise of estimating ho, the �limited information� inference

exhausts all the information in the model. Besides the practical implication, we believe that

our result is of interest from a theoretical perspective as well; we allow the conditioning variables

X`, ` = 1; :::; L, to be nested, overlapping, or non-nested (di¤erent from each other and have

arbitrary overlaps). To the best of our knowledge, our paper is the �rst to compute the e¢ ciency

bound for �o when the sets of nonparametric conditional moment restrictions (2) could be non-

nested or overlapping. We illustrate how such non-nested conditional moment models often

arise in the literatures based on Olley and Pakes (1996) and Hotz and Miller (1993). In a

brief Monte-Carlo study based on Olley and Pakes, we compare the small sample properties

of an e¢ cient joint estimator, an e¢ cient two-step estimator based on our methodology, and

a slightly simpler �naive� two-step estimator that is not necessarily e¢ cient. We �nd that

the small sample properties of the e¢ cient two-step estimator are similar to the e¢ cient joint

estimator, and superior to a naive two-step estimator.

The rest of the paper is organized as follows. Section 2 establishes the semiparametric

e¢ ciency bound for �o. Readers who would like to avoid technical details can jump directly to

Section 3, where the main result of Section 2 is rephrased in a more intuitive way and some of its

practical implications are discussed. Section 4 presents examples and Monte Carlo results, and

Section 5 provides a short summary. Additional proofs and technical derivations are gathered

in the Appendix.

2 Semiparametric E¢ ciency Bound

In this section, we derive the semiparametric e¢ ciency bound for �o when the unknown para-

meters �o = (�o; ho) 2 ��H are identi�ed by the sets of moment restrictions (1) and (2). We

�rst introduce some notation and de�nitions used in this paper. E (�) and V ar (�) are computed
with respect to the true unknown distribution Fo of Z. Let � be a compact set in Rd� that

contains an open ball centering at �o 2 int(�). For ` = 1; :::; L, we assume that the nuisance
function space H` is a linear subspace of the space of square integrable functions with respect

to X`. The moment functions g (�) and �`(�) are respectively dg � 1 and d` � 1 vector valued,
with dg � d� and d` = dim(h` (x`)) for ` = 1; :::; L. Let @E[g(Z;�o;ho)]

@�0 be the dg � d� matrix
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valued ordinary (partial) derivative of the function E [g (Z; �; h)] with respect to � evaluated

at (�o; ho). Let
@E[g(Z;�o;ho)]

@h`
[v`] be the dg � 1 vector valued pathwise derivative of E [g (Z; �; h)]

with respect to h`, evaluated at (�o; ho), in the direction v` 2 H` � fh`;og

@E [g (Z; �o; ho)]

@h`
[v`] =

@E [g (Z; �o; h`;o + �v`; h�`;o)]

@�

����
�=0

(3)

where h�`;o = (h1;o; :::; h`�1;o; h`+1;o; :::; hL;o). Let m`(X`; h`) = E [�` (Z; h`;o (X`))jX`]. In this

paper, because any h` 2 H` and v` 2 V` are restricted to be measurable functions of X`, and

because the conditional moment function m`(X`; h`) depends on h` only through h` (X`), the

pathwise derivative @m`(X`;h`;o)

@h`
[v`] takes a simple form

@m`(X`;h`;o(X`)+�v`(X`))

@�
j�=0. To stress this

fact, we let @m`(x`;h`;o(x`))

@h0`
be a d` � d` matrix-valued (ordinary derivative) function such that

@m`(X`; h`;o (X`))

@h0`
v`(X`) =

@m`(X`; h`;o + �v`)

@�

����
�=0

for all v` 2 V`, (4)

where v`(X`) is a d` � 1 vector-valued function of X`. For any v`, ev` 2 H` � fh`;og, we de�ne
the following inner product

hv`; ev`i` = E �v`(X`)
0
�
@m`(X`; h`;o (X`))

@h0`

�0
@m`(X`; h`;o (X`))

@h0`
ev`(X`)

�
: (5)

Finally, we say that @E[g(Z;�o;ho)]
@h`

[�] is a bounded (or regular) linear functional on V` if @E[gj(Z;�o;ho)]@h`
[�]

is a bounded linear functional on V` for all j = 1; :::; dg, i.e.,

max
1�j�dg

sup
v 6=0;v2V`

���@E[gj(Z;�o;ho)]@h`
[v]
���2

hv; vi`
<1:

We impose the following basic regularity condition:

Condition 1 (i) the data fZigni=1 is a random sample drawn from the unknown Fo(�); (ii)
(�o; ho) satis�es model (1) - (2),

@E[g(Z;�o;ho)]
@�0 has full (column) rank d�; (iii)

@m`(X`;h`;o(X`))

@h0`
is

invertible almost surely - X` for ` = 1; :::; L; (iv)
@E[g(Z;�o;ho)]

@h`
[�] is a bounded linear functional

on V` for ` = 1; :::; L.

Under Conditions 1(ii) and (iii), the unknown �o could be over identi�ed by the unconditional

moment restrictions (1) if ho were known, but the unknown function ho is �exactly�identi�ed

by the conditional moment restrictions (2).

Our main e¢ ciency bound result is contained in the following theorem. We need to de�ne

an object v�` (X`) for this purpose. By Condition 1(iv) and the Riesz representation theorem,

4



we have: for each j = 1; :::; dg, there is a unique u�`;j 2 V` such that

@E [gj (Z; �o; ho)]

@h`
[v`] =



u�`;j; v`

�
`
= E

��
@m`(X`; h`;o)

@h`
[u�`;j]

�0�
@m`(X`; h`;o)

@h`
[v`]

��
(6)

for all v` 2 V`. (See Ai and Chen (2003, 2007) for use of Riesz representation in a related
context.)

Let

v�` (X`) �

2664
v�`;1 (X`)

0

...

v�`;dg (X`)
0

3775 =
26664
�
@m`(X`;h`;o)

@h`
[u�`;1]

�0
...�

@m`(X`;h`;o)

@h`
[u�`;dg ]

�0
37775 ; (7)

which is a dg � d` matrix valued function. Having de�ned v�` (X`), we are able to state our

main theorem.

Theorem 1 Let Condition 1 hold. De�ne

eg (Z; �; h) = g (Z; �; h)� LX
`=1

v�` (X`)�`(Z; h` (X`)) (8)

with v�` (�) (` = 1; :::; L) de�ned in equation (7). If V ar (eg (Z; �o; ho)) is non-singular, then the
semiparametric information bound for �o is�

@E[g (Z; �o; ho)]

@�0

�0
[V ar (eg (Z; �o; ho))]�1�@E[g (Z; �o; ho)]

@�0

�
: (9)

Proof. Proof, along with discussion, is presented in Subsection 2.1.
This semiparametric e¢ ciency bound result is very general. In addition to allow for non-

overlapping or arbitrarily overlapped conditional moment restrictions, to allow for over iden-

ti�ed GMM restrictions, it also allows for moment functions g (Z; �; h) and �`(Z; h` (X`)); ` =

1; :::; L to be pointwise nonsmooth with respect to parameters. This e¢ ciency bound is derived

using a new technique based on an orthogonality argument. The orthogonalization has an

interesting relationship to adjustment of the in�uence function for estimation of the unknown

ho(), which are discussed in Subsection 2.1.

2.1 Proof of Theorem 1

We �rst develop a semiparametric information bound under an extra zero derivative restriction

(10).

5



Lemma 1 Let Condition 1 hold and V ar (g (Z; �o; ho)) be non-singular. If for all ` = 1; :::; L,
the restriction

@E [g (Z; �o; ho)]

@h`
[v`] = 0 for all v` 2 V` (10)

is satis�ed, then the semiparametric information bound for �o is�
@E[g (Z; �o; ho)]

@�0

�0
[V ar (g (Z; �o; ho))]

�1
�
@E[g (Z; �o; ho)]

@�0

�
: (11)

Proof. Proof in Appendix.
Lemma 1 shows that when the e¤ects of estimating unknown ho on the moment conditions

E [g (Z; �o; ho)] = 0 are ruled out, the semiparametric e¢ ciency bound of �o only relies on

E [g (Z; �o; ho)] = 0 with assuming ho to be known.

We now argue that the implication of Lemma 1 is not limited to the case where the zero

derivative condition (10) is satis�ed. This is because we can always transform the model such

that the moment condition E [g (Z; �o; ho)] = 0 is equivalent to E [eg (Z; �o; ho)] = 0 under (2)
and moreover

@E [eg (Z; �o; ho)]
@h`

[v`] = 0 for all v` 2 V`; ` = 1; :::; L; (12)

where the pathwise derivative @E[eg(Z;�o;ho)]
@h`

[v`] of eg (Z; �; h) is de�ned similarly to that in equation
(3).

To prove Theorem 1, we present a systematic method of transforming the model (1) such

that the zero derivative restriction (12) is always satis�ed by the transformed moment eg (Z; �; h)
de�ned in equation (8). Equations (6) - (7) imply that v�` (�) (` = 1; :::; L) can be equivalently
de�ned as solution to

@E [gj (Z; �o; ho)]

@h`
[v`] = E

�
v�`;j (X`)

0
�
@m`(X`; h`;o)

@h`
[v`]

��
for all v` 2 V` (13)

for each j = 1; :::; dg. We also have for each j = 1; :::; dg,

@E
�
v�`;j (X`)

0 �` (Z; h`;o (X`))
�

@h`
[v`] =

@E
�
v�`;j (X`)

0 �`(Z; h`;o (X`) + �v` (X`))
�

@�

�����
�=0

=
@E
�
v�`;j (X`)

0m`(X`; h`;o (X`) + �v` (X`))
�

@�

�����
�=0

= E

�
v�`;j (X`)

0
�
@m`(X`; h`;o)

@h`
[v`]

��
;
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where the last equal sign holds under the assumption allowing for interchanging the expectation

and di¤erentiation.

By de�nition of eg (Z; �; h) = g (Z; �; h)�PL
`=1 v

�
` (X`)�`(Z; h` (X`)) in equation (8), we have

for all j = 1; :::; dg,

@E [egj (Z; �o; ho)]
@h`

[v`] =
@E [gj (Z; �o; ho)]

@h`
[v`]� E

�
v�`;j (X`)

0
�
@m`(X`; h`;o)

@h`
[v`]

��
= 0 for all v` 2 V` by equation (13),

which implies that

@E [eg (Z; �o; ho)]
@h`

[v`] = 0 for all v` 2 V`, ` = 1; :::; L: (14)

We also have:
@E[eg (Z; �o; ho)]

@�0
=
@E[g (Z; �o; ho)]

@�0
: (15)

Under the conditional moment restrictions (2), the original unconditional moment condition

E [g (Z; �o; ho)] = 0 and the transformed moment condition E [eg (Z; �o; ho)] = 0 are equivalent;
E [eg (Z; �o; ho)] = 0 if and only if E [g (Z; �o; ho)] = 0: (16)

From equations (14), (15), and (16), Lemma 1 is applicable with the transformed moment

E [eg (Z; �o; ho)] = 0 and hence Theorem 1 holds.

2.2 Special cases

The semiparametric e¢ ciency bound stated in Theorem 1 depends on the functions v�` (�)
(` = 1; :::; L), which are characterized by equation (13) but may not have simple closed form

expressions in general.

We now consider a special case where the functions v�` (�) (` = 1; :::; L) and hence the

e¢ ciency bound could be solved more explicitly. In the following we let @E[g(Z;�o;ho)jX`]
@h`

[v`] be

the pathwise derivative of the function E[g (Z; �o; ho) jX`] with respective to h` in the direction

v` 2 V`
@E[g (Z; �o; ho) jX`]

@h`
[v`] =

@E[g (Z; �o; h`;o + �v`; h�`;o) jX`]

@�

����
�=0

:

Lemma 2 Let all the conditions of Theorem 1 hold. If for all ` = 1; :::; L there is a dg � d`

7



matrix valued square integrable function D`(X`; �o; ho) of X` such that for all v` 2 V`,

D`(X`; �o; ho)v`(X`) =
@E[g (Z; �o; ho) jX`]

@h`
[v`]: (17)

Then the conclusion of Theorem 1 holds with

eg (Z; �; h) = g (Z; �; h)� LX
`=1

D`(X`; �o; ho)

�
@m`(X`; h`;o (X`))

@h0`

��1
�`(Z; h` (X`)): (18)

Proof. By equations (13) and (17), we have: for each j = 1; :::; dg,

E

��
D`;j (X`; �o; ho)� v�`;j (X`)

0
�
@m`(X`; h`;o (X`))

@h0`

��
v`(X`)

�
= 0

for all v` 2 V`. In particular, it holds for

v` = D`;j (X`; �o; ho)� v�`;j (X`)
0
�
@m`(X`; h`;o (X`))

@h0`

�
;

which means that

D`;j(X`; �o; ho) = v
�
`;j (X`)

0
�
@m`(X`; h`;o (X`))

@h0`

�
almost surely X`:

By Condition 1(iii), we obtain

v�` (X`) = D`(X`; �o; ho)

�
@m`(X`; h`;o (X`))

@h0`

��1
almost surely X`. (19)

The conclusion now follows immediately from Theorem 1 under equations (8) and (19).

If the unconditional moment restrictions (1) take the special form

E[g (Z; �o; h1;o (X1) ; :::hL;o (XL))] = 0; (20)

i.e., if the moment function g depends on ho(�) only through (h1;o (X1) ; :::hL;o (XL)), then

equation (17) is trivially satis�ed with

D`(X`; �o; ho) =
@E[g (Z; �o; h`;o (X`) ; h�`;o (X�`)) jX`]

@h0`
; ` = 1; :::; L;

which could be viewed as an ordinary partial derivative de�ned similarly as that in equation

(4). We next give two examples when the unconditional moment restrictions (1) is of the special

8



form (20).

Example 1 (Nonparametric Regression) For ` = 1; :::; L, the unknown function h`;o is

identi�ed by the conditional mean restriction: E [Y` � h`;o (X`)jX`] = 0. Then:
@m`(X`;h`;o(X`))

@h0`
=

�1 and

eg (Z; �; h) = g (Z; �; h) + LX
`=1

@E[g (Z; �o; ho) jX`]

@h0`
(Y` � h` (X`)) :

Suppose further that (i) L = 2, (ii) Z = (Z1; Z2; Z 03; Z
0
4; Z

0
5; Z

0
6) such that Z1 and Z2 are scalars,

and (iii) g = (g01; g
0
2) with

g1 (Z; �; h) = Z5 � (Z1 � q1 (Z3; h1 (X1) ; �))

g2 (Z; �; h) = Z6 � (Z2 � q2 (Z4; h2 (X2) ; �))

for some parametrically speci�ed scalar-valued functions q1 and q2. (The models discussed in

Section 4 follows a similar structure.) We then have eg = (eg01; eg02) with
eg1 (Z; �; h) = Z5 � (Z1 � q1 (Z3; h1 (X1) ; �))� Z5 �

@E[q1 (Z3; h1;o (X1) ; �o) jX1]

@h1
(Y1 � h1 (X1))

eg2 (Z; �; h) = Z6 � (Z2 � q2 (Z4; h2 (X2) ; �))� Z6 �
@E[q2 (Z4; h2;o (X2) ; �o) jX2]

@h2
(Y2 � h2 (X2)) :

Example 2 (Nonparametric Quantile Regression) For ` = 1; :::; L, the unknown func-

tion h`;o is identi�ed by the conditional quantile restriction: E [� � IfY` � h`;o (X`)gjX`] = 0:

Denote U` = Y` � h`;o (X`). Let fU` ( �jX`) be the conditional density of U` given X`. Then:
@m`(X`;h`;o(X`))

@h0`
= �fU` (0jX`) and

eg (Z; �; h) = g (Z; �; h) + LX
`=1

@E[g (Z; �o; ho) jX`]

@h0`

(� � IfY` � h` (X`)g)
fU` (0jX`)

:

3 Discussion

3.1 Intuition

In order to gain an intuition underlying our result, consider a simple model

E [g (Z; �o; �o)] = 0; (21)

9



where the �nite dimensional parameter �o can be identi�ed by

E [� (Z; �o)] = 0 (22)

We assume that the nuisance parameter �o is exactly identi�ed4 by (22) in the sense that

dim (�) = dim (�). We also assume that even if �o were known, the �nite-dimensional parameter

of interest �o is possibly overidenti�ed by (21) in the sense dim (g) � dim (�). Note that if the
distribution of X has known, �nite support, then the semiparametric moment conditions in (1)

and (2) can be written in (21) and (22).

The information bound for �o can be obtained by the inverse of the upper-left block of�
@E [' (Z; �o; �o)]

@ (�0; �0)

�0
E
�
' (Z; �o; �o)' (Z; �o; �o)

0��1�@E [' (Z; �o; �o)]
@ (�0; �0)

�
;

where we de�ne ' by stacking � and g vertically, i.e., '0 = (�0; g0).

Assume further that
@E [g (Z; �o; �o)]

@�0
= 0: (23)

Under the regularity condition that @E [� (Z; �o)]/ @�0 is nonsingular, it is straightforward to

show that the asymptotic variance bound of � is equal to the inverse of�
@E [g (Z; �o; �o)]

@�0

�0
E
�
g (Z; �o; �o) g (Z; �o; �o)

0��1�@E [g (Z; �o; �o)]
@�0

�
: (24)

Now, if the assumption (23) is violated, we can consider the following transformation:

eg (Z; �; �) = g (Z; �; �)� v�� (Z; �o) (25)

such that
@E [eg (Z; �o; �o)]

@�0
= 0 (26)

i.e.,

v� =

�
@E [g (Z; �o; �o)]

@�0

��
@E [� (Z; �o)]

@�0

��1
4The discussion in this subsection re�ects an anonymous referee�s insight. It also re�ects Whitney Newey�s

insight that he kindly shared with us in a private communication.
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The asymptotic variance of the optimal GMM estimator for the moments

E [eg (Z; �o; �o)] = 0
E [� (Z; �o)] = 0

which is obtained by a nonsingular transformation of the model (21) and (22), is identical to

the original model, but satis�es the zero derivative restriction (26). Therefore, we can conclude

that the asymptotic variance bound of � is in general equal to the inverse of�
@E [eg (Z; �o; �o)]

@�0

�0
E
�eg (Z; �o; �o) eg (Z; �o; �o)0��1�@E [eg (Z; �o; �o)]

@�0

�
=

�
@E [g (Z; �o; �o)]

@�

�0
E
�eg (Z; �o; �o) eg (Z; �o; �o)0��1�@E [g (Z; �o; �o)]

@�

�
;

whether the zero derivative restriction (23) is satis�ed or not.

The v� in (25) can also be given the following interpretation. Let b� denote a method of mo-
ments estimator solving the sample counterpart of the exactly identi�ed model (22). Standard

arguments can be used to show that

1p
n

nX
i=1

g
�
Zi; �o; b��

=
1p
n

nX
i=1

g (Zi; �o; �o)�
�
@E [g (Z; �o; �o)]

@�0

��
@E [� (Z; �o)]

@�0

��1
1p
n

nX
i=1

� (Zi; �o) + op (1)

=
1p
n

nX
i=1

(g (Zi; �o; �o)� v�� (Zi; �o)) + op (1)

In other words, the v� can be understood to be a part of the adjustment of the in�uence function

of 1p
n

Pn
i=1 g

�
Zi; �o; b�� to re�ect the noise of estimating b�.

The preceding discussion allows us to provide an alternative interpretation to

E
�eg (Z; �o; �o) eg (Z; �o; �o)0�, which is used later in Section 3.3. Suppose that �o is known

and that we de�ne a �parameter��o by the moment equation

E [g (Z; �o; �o)� �o] = 0:

A natural estimator of �o is b� that sets the sample moment condition 1
n

Pn
i=1

�
g
�
Zi; �o; b��� b��

equal to zero. Note that the asymptotic variance of b� is equal to that of 1p
n

Pn
i=1 g

�
Zi; �o; b��,

which in turn is equal to E
�eg (Z; �o; �o) eg (Z; �o; �o)0� according to the discussion above.

11



3.2 Practical Implication of Theorem 1

Suppose that ho were known, then we would estimate �o in (1) by Hansen�s (1982) optimally

weighted GMM

min
�2�

"
n�1=2

nX
i=1

g(Zi; �; ho)

#0
W�1
n

"
n�1=2

nX
i=1

g(Zi; �; ho)

#

withWn = V ar [g (Z; �o; ho)]+op (1). Because V ar [g (Z; �o; ho)] = Avar
�
n�1=2

Pn
i=1 g(Zi; �o; ho)

�
,

the asymptotic variance of such an infeasible GMM estimator would be equal to the inverse of

�
@E[g (Z; �o; ho)]

@�0

�0 
Avar

 
n�1=2

nX
i=1

g(Zi; �o; ho)

!!�1�
@E[g (Z; �o; ho)]

@�0

�
:

Now ho is in fact unknown, we may consider a feasible version of the preceding GMM estimator

by replacing ho by any consistent nonparametric estimator bh and using a weight matrix such that
its probability limit is the inverse of Avar

�
n�1=2

Pn
i=1 g(Zi; �o;

bh)�; the asymptotic variance of
such a feasible GMM estimator would be the inverse of�

@E[g (Z; �o; ho)]

@�0

�0 
Avar

 
n�1=2

nX
i=1

g
�
Zi; �o;bh�!!�1�@E[g (Z; �o; ho)]

@�0

�
: (27)

This feasible GMM estimator was discussed by Newey (1994), Ackerberg, Chen, and Hahn

(2012), among others. Recall our motivation of the paper that it is not obvious (to us at least)

whether the feasible GMM estimator exploits all the information in model (1) and (2), because

it does not seem to use, e.g., the (conditional) covariance of the moments between (1) and (2).

A practical implication of our Theorem 1 is that (27) is indeed the semiparametric informa-

tion bound for model (1) and (2), and therefore, the feasible GMM estimator discussed above is

actually semiparametrically e¢ cient. In order to understand this implication, we need to relate

V ar (eg (Z; �o; ho)) in the middle of (9) in Theorem 1 to the Avar
�
n�1=2

Pn
i=1 g

�
Zi; �o;bh�� in

the middle of (27):

Proposition 1 For the model (1) - (2), suppose that Condition 1 (i) and (iv) are satis�ed.
We then have

V ar (eg (Z; �o; ho)) = Avar n�1=2 nX
i=1

g
�
Zi; �o;bh�! ; (28)

where eg is de�ned in (8) and bh is any consistent nonparametric estimator of ho satisfying (2).
Proof. We derive the adjustment to the in�uence function following Newey (1994, pp.
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1360-1361). For simplicity, we will assume that L = 1 and that h is a scalar, noting that

generalization can be done in an additive way as discussed in Newey (1994, p. 1357). For a

path fF� (z)g of the distribution of random variable Z, let h� to be the function indexed by �

such that E� [� (Z; h� (X))jX] = 0, where E� [ �jX] denotes the conditional expectation taken
under F� (z) with the corresponding score S (Z). It follows that

E� [w (X) � (Z; ho (X))] = 0 (29)

for any square integrable w (X). Di¤erentiating (29) with respect to � , we obtain

@

@�
E� [w (X) � (Z; ho (X))] +

@

@�
E [w (X)m(X; h� )] = 0: (30)

We can recall the de�nition of v� (X), and write

@

@�
E [g (Z; �o; h� )] = E

�
v� (X)

�
@

@�
m(X; h� )

��
=
@

@�
E [v� (X)m(X; h� )] ; (31)

which together with (30) implies that

@

@�
E [g (Z; �o; h� )] = �

@

@�
E� [v

� (X) � (Z; ho (X))] = E� [�v� (X) � (Z; ho (X))S (Z)] : (32)

It follows that the adjustment term (� in Newey�s notation) is equal to �v� (X) � (Z; ho (X)),
and the in�uence function of n�1=2

Pn
i=1 g

�
Zi; �o;bh� is equal to

g (Z; �o; ho)� v� (X) � (Z; ho (X)) = eg (Z; �o; ho) :
Next, we note that the Avar

�
n�1=2

Pn
i=1 g

�
Zi; �o;bh�� is invariant to the choice of any con-

sistent nonparametric estimator bh of ho, which follows from Newey�s (1994, Proposition 1)

observation that the asymptotic variance of a semiparametric
p
n-consistent estimator is inde-

pendent of the types of �rst step consistent nonparametric estimators.

Remark 1 Note that n�1
Pn

i=1 g
�
Zi; b�;bh� g �Zi; b�;bh�0 usually converges in probability to

V ar (g (Z; �o; ho)), which is often di¤erent from Avar
�
n�1=2

Pn
i=1 g

�
Zi; �o;bh��.
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3.3 Implementation

The general expression of the information bound of �o in (27) indicates that under suitable

regularity conditions, the second step GMM estimator b�n that solves
min
�2�

"
n�

1
2

nX
i=1

g
�
Zi; �;bh�#0W�1

n

"
n�

1
2

nX
i=1

g
�
Zi; �;bh�# ; (33)

is semiparametric e¢ cient as long as the weighting matrix Wn satis�es

Wn = Avar

 
n�1=2

nX
i=1

g
�
Zi; �o;bh�!+ op (1) (34)

for any consistent nonparametric estimator bh of ho.
For e¢ cient semiparametric estimation of �o, the crucial step is therefore to consistently

estimate the asymptotic variance of n�1=2
Pn

i=1 g
�
Zi; �o;bh�. We describe how this objective

can be achieved using a simple algorithm described in Ackerberg, Chen, and Hahn (2012).5 For

simplicity of illustration, we assume that for ` = 1; :::; L, the unknown function h`;o is identi�ed

by the conditional mean restriction: E [Y` � h`;o (X`)jX`] = 0, i.e., we use Example 1.

We imagine a researcher, who �pretends�that h` (X`) = p`;1 (X`) �(`);1+� � �+p`;K`
(X`) �(`);K`

=

pK`
` (x`;i)

0�(`) = h`
�
X`; �(`)

�
.6 Our researcher equates bh with b�, and perceives the latter to be a

simple M-estimator solving the moment equation E [� (Z; �o)] = 0, where

� (Z; �) =

2664
pK1
1 (X1)

�
Y1 � h1

�
X1; �(1)

��
...

pKL
L (XL)

�
YL � hL

�
XL; �(L)

��
3775 : (35)

The researcher then perceives the problem to be a parametric problem characterized by (21)

and (22) with � (Z; �) de�ned above in (35).

Using Ackerberg, Chen, and Hahn (2012), it can be seen that the following algorithm

produces a feasible estimator of Avar
�
n�1=2

Pn
i=1 g

�
Zi; �o;bh��:

1. Estimate b� by an M-estimator (e.g. OLS) solving the moment equation E [� (Z; �o)] = 0,
5Ackerberg, Chen and Hahn (2012) obtain a convenient estimator of standard errors regardless of e¢ ciency

issues, but they do not discuss e¢ cient estimation of �o.
6The functions p`;1 (X`) ; p`;2 (X`) ; : : : are such that h` (X`) can be well approximated by their linear com-

bination, and K` = K`;n is a function of n to be theoretically correct, although it is perceived to be �xed for
our �ctitious researcher.
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which is equivalent to solving

min
�(`)

nX
i=1

�
Y`;i � h`

�
X`;i; �(`)

��2
` = 1; :::; L:

2. Using an arbitrary weight matrix, minimize the sample moment 1
n

Pn
i=1 g

�
Zi; �; b�� over

� to obtain a preliminary estimator � of �o. Note that our researcher uses a parametric

speci�cation of bh, so without loss of generality, we can write g (Z; �; h) = g (Z; �; �).
3. Let the �parameter��o be de�ned by the moment

E [g (Z; �o; �o)� �o] = 0:

Pretend that � = �o and �estimate��o with the b� that sets the sample moment condition
1
n

Pn
i=1

�
g
�
Zi; �; b��� b�� equal to zero. Note that this estimation problem is exactly

identi�ed. In fact, it is just the mean of the moment conditions evaluated at (�; b�).
4. Again consider � to be �xed. Note that (b�; b�) from Steps 1 and 3 can be thought of as

an exactly identi�ed �parametric�estimator of (�o; �o) using the moments

E [� (Z; �o)] = 0;

E
�
g
�
Z; �; �o

�
� �o

�
= 0:

Use the standard parametric GMM asymptotic variance formula7 to estimate the variance

of (b�; b�). Denote by cWn the portion of this variance matrix corresponding to b�. cWn is a

consistent estimator of Avar
�
n�1=2

Pn
i=1 g

�
Zi; �o;bh��.

5. Our second-step e¢ cient estimator for �o is simply the solution to

min
�

 
1

n

nX
i=1

g
�
Zi; �; b��!0cW�1

n

 
1

n

nX
i=1

g
�
Zi; �; b��! :

The components of the above procedure are all very familiar from the parametric GMM

literature, and the procedure is not much harder than a �naive�two-step approach that com-

putes cWn by assessing the variance of the second-step moments assuming that (�; b�) are �xed.
7See Newey (1984), Murphy and Topel (1985), Section II of Ackerberg, Chen, and Hahn (2012), or standard

textbooks such as Wooldridge (2002, Chapter 12.4). Note that even though (b�; b�) have been estimated in
two steps, the model is exactly identi�ed so it is equivalent to joint estimation and thus the standard GMM
asymptotic variance formula is used.
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The �arti�cial�parameter �o is just a tool to obtain an estimate of the variance of the second-

step moments that includes the variance contribution of b� (bh). In our Monte-Carlo example,
we compare this e¢ cient two-step procedure to both a naive two-step estimator that is not

necessarily e¢ cient and the e¢ cient joint estimator.

Remark 2 Step 4 does require using the standard GMM asymptotic variance formula, which as

usual requires computing the derivative of the moments. If analytic derivatives are not possible

or feasible and one prefers not to do numeric di¤erentiation8, an alternative way to compute

Avar
�
n�1=2

Pn
i=1 g

�
Zi; �o;bh�� in Step 4 is the bootstrap9. We have to be careful in using the

bootstrap, though. Weak convergence does not imply that the bootstrap variance converges to

the asymptotic variance. See Ghosh, Parr, and Singh (1984) or Wu (1986). Hence, if the

bootstrap is to be used, a practitioner may want to avoid using the standard bootstrap variance.

Alternative methods that have been shown to produce a consistent estimator of the variance

include versions of truncation as suggested in Shao (1992) or Gonçalves and White (2005), and

a percentile method as in Machado and Parente (2005).

3.4 Comparison with Chamberlain (1992b) and Ai and Chen (2012)

Chamberlain (1992b) derived the e¢ ciency bound of �o for the sequential moment restrictions

E
�
�t (Y;X; �o) jX(t)

�
= 0 with f1g � X(0) � X(1) � � � � � X(L)

for t = 0; 1; :::; L. Ai and Chen (2012) extended the result such that �t function may depend

on a nuisance function ho(�). In order to derive the e¢ ciency bound, they proceed by �orthog-
onalizing�the moments by working with forward �ltering as in Hayashi and Sims (1983):

"L (Z; �) = �L (Z; �) ;

"s (Z; �) = �s (Z; �)�
LX

t=s+1

�s;t
�
X(t)

�
"t (Z; �) ;

where � = (�; h) and

�s;t
�
X(t)

�
= E

�
�s (Z; �o) "t (Z; �o)

0��X(t)
� �
�t
�
X(t)

���1
;

�t
�
X(t)

�
= E

�
"t (Z; �o) "t (Z; �o)

0��X(t)
�
:

8See, e.g., Hong, Mahajan, and Nekipelov (2010) for suggestions and caveats regarding numeric di¤erentiation
9See Armstrong, Bertanha, and Hong (2012), who established the weak convergence of the bootstrap in this

case.
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Their e¢ cient estimator is based on forming counterparts of "s (Z; �), which requires nonpara-

metric estimation of the ��s and ��s.

We can see that our orthogonalization is quite di¤erent than Ai and Chen (2012). Theirs

is with respect to covariances of the moments, whereas our orthogonalization is with respect

to derivatives of the moments. Perhaps more important from an applied perspective, our or-

thogonalization is just a proof technique that can be bypassed in practice by exploiting the

algorithm in Section 3.3. In contrast, the procedure of Ai and Chen (2012) requires nonpara-

metric implementation of orthogonalization for estimation. As noted in the introduction, our

orthogonalization is also available when the �rst-step conditioning variables are non-nested.

On the other hand, our results are limited to the situation where the h is exactly identi�ed,

whereas the results in Ai and Chen (2012) do not have such limitation.

4 Examples and Monte Carlo Results

We now illustrate the usefulness of our results and estimators by showing how they can be

applied to two recent methodological literatures that are based on two-step semiparametric

techniques. In both examples, our results imply that two-step methods do not need to sacri�ce

e¢ ciency relative to joint estimation. We then do a brief Monte-Carlo study.

4.1 Example 1: Two-Step Estimation of Dynamic Models

Hotz and Miller (1993) initiated a large literature that uses two-step semiparametric estima-

tors to estimate single agent dynamic programming problems and dynamic games. The main

bene�t of the semiparametric approach is to avoid the computational burden associated with

solving dynamic programming problems. With these approaches, one can estimate structural

parameters without ever having to explicitly solve agents�dynamic programming problems.

In this literature, two-step estimators are typically preferred to estimators that jointly use all

the moment conditions because of a di¤erent computational issue. With a two-step approach,

the non-parametric parts of the problem can often be estimated in the �rst step using analytic

estimators (e.g. least squares) or estimators with a globally concave objective function (e.g.

logit). This can not only save time but also alleviates concern regarding the reliability of a

non-linear search over a large (i.e. asymptotically increasing) set of parameters representing

the non-parametric parts of the problem.

One might worry that such two-step approaches have an e¢ ciency cost, but our results

show that this may not be the case. We illustrate this with a simple �nite horizon, single agent,

dynamic binary choice model. This might be appropriate, e.g., for a model of retirement or
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fertility decisions. One could also apply our results to problems with multiple agents, in�nite

horizons, and multinomial choice. However, since our �rst step relies on estimating conditional

expectations, the results do not directly apply to problems with continuous choices (e.g. Bajari,

Benkard, and Levin (2007)).

Suppose that the per-period utility function for agent i making choice yit 2 f0; 1g in period
t = 1; :::; T is given by

U =

(
U0(xit; �) + �i0t if yit = 0

U1(xit; �) + �i1t if yit = 1
:

The vector xit includes the state variables of the problem (e.g. work experience, number of

children, wealth) that are observed by the econometrician. �it = f�i0t; �i1tg represent state
variables that are not observed by the econometrician. U0 and U1 are known up to the �nite

dimensional structural parameters �. The majority of the empirical literature thus far has

assumed that �it are independent of xit and i.i.d. over time10, e.g. Type 1 Extreme Value

random variables.

Assuming the evolution of the state variable xit is �rst order Markov, the optimal policy

function in this problem is

yit = yt (xit; �it) :

The function is indexed by t because of the �nite horizon. One can also consider a "conditional

choice probability"

E [yitjxit] = ht (xit) =
Z
yt (xit; �it) p(�it)d�it

which is the probability of making choice 1 in time t given state xit (prior to the agent�s

realization of �it).

The key result of Hotz and Miller (1993) is that under certain conditions, one can rewrite

the dynamic programming Bellman equation in terms of conditional choice probabilities, i.e.

ht (xit) = gt (xit; ht+1 (�) ; �) (36)

where the gt�s are known, (relatively) easily computable, functions.11 This representation is

10see, e.g., Pakes, Ostrovsky and Berry (2007), Pesendorfer and Schmidt-Dengler (2008), Ryan (2012), Collard-
Wexler (2012), Fang and Wang (2012). Only recently has the literature considered allowing correlation in
unobservables over time, e.g., Aguirregabiria and Mira (2007), Kasahara and Shimotsu (2009), Hu, Shum, and
Tan (2010), and Arcidiacono and Miller (2011), and it is challenging.
11For the particularly simple form in the text, one needs one of the choices to lead to a terminal state. Hotz,

Miller, Sanders, and Smith (2004) consider �nite horizon models without this condition - in that case, all future
h�s enter the right hand side. In an in�nite horizon problem, the equation also has a very simple form, since
the h function does not depend on time (see, e.g. Aguirregabiria and Mira (2002))
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possible because there is a one-to-one mapping between value functions and conditional choice

probabilities.

Estimation can then proceed with the following two-step procedure. In the �rst step, one

non-parametrically estimates the T conditional choice probabilities using

E [yi1 � h1 (xi1) j xi1] = 0; (37)

:

:

E [yiT � hT (xiT ) j xiT ] = 0:

In the simplest case, the ht functions might be represented by a linear sieve, in which case

the �rst step can be performed using simple least squares.12 Note that this set of �rst stage

moments falls directly into our framework of non-nested �rst step conditioning sets.

In the second step, one can estimate the structural parameters � using the following moment

conditions implied by (36)

E
h�
yit � gt

�
xit;bht+1 (�) ; ���
 r (xit) i = 0 (38)

where the unknown functions ht+1 have been replaced with their estimates from the �rst step,bht+1. This does not require explicitly solving the agents� dynamic programming problems.
While the gt function needs to be computed, this is relatively simple.13

In this context, our results imply that as long as one uses an appropriate weight matrix for

the second step (e.g. the procedure described in Section 3.3), this two-step procedure does not

sacri�ce asymptotic e¢ ciency relative to a joint procedure that considers both sets of moments

(37) and (38) simultaneously. Again, this is important because the joint procedure requires

a non-linear search over the entire parameter space (�; h1; :::; hT ), which is likely both more

computationally demanding and less reliable than the two-step approach (which requires a

non-linear search over just � in the case where linear sieves are used in the �rst stage14).

12Alternatively, one could use a sieve logit or probit.
13See Hotz and Miller (1993) for details. Note that our e¢ ciency result is conditional on a given set of

moments (38), i.e. we do not consider the optimal choice of instrument function r(xit) - for this see Pesendorfer
and Schmidt-Dengler (2008) in a �nite dimensional parameter context.
14In the case where sieve logits are used in the �rst stage, the �rst step would require solving T globally concave

optimization problems, and the second step would be a non-linear search over �. Again, this is generally quicker
and more reliable than a non-linear search over the full (�; h1; :::; hT ) space. Moreover, even if the �rst step
does not have a global concave objective function, it will generally be easier computationally to estimate the
parameters in two steps.
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4.2 Example 2: Two-Step Estimation of Production Functions

We next show how our results can be applied to a version of the Olley and Pakes(1996) two-

step methodology for estimating production functions. Consider a panel of �rms indexed by

i producing output yit using inputs xit across time t. The model can be described with three

equations. First is the production function

Production Function: yit = F (xit; �1) + !it + �it: (39)

The production function contains two scalar econometric unobservables, !it and �it. !it is �rm

i�s �productivity�shock in period t, and will be permitted to be correlated with input choices

xit. In contrast, �it is noise in output (e.g. measurement error) that is assumed to be mean

independent of the �rm�s information set at t, Iit.

The second equation describes how productivity !it evolves over time. Speci�cally, !it is

assumed to follow a �rst-order Markov process from the �rm�s perspective, i.e.

Productivity Evolution: E [!itjIit�1] = �(!it�1; �2): (40)

The last equation describes how some other variable iit is chosen by the �rm at t, i.e.

Proxy Choice: iit = i(xit; !it): (41)

This precise de�nition of this �proxy�variable iit di¤ers across di¤erent formulations of these

estimators. For example, in Olley and Pakes (1996), iit is the �rm�s current investment towards

future physical capital. In Levinsohn and Petrin (2003), iit is the �rm�s choice of an intermediate

input, e.g. electricity or material input.

In the current formulation, we treat the functions F and � parametrically, i.e. known up to

the �nite dimensional parameters �1 and �2. In contrast, the optimal proxy choice function i is

treated non-parametrically. This seems somewhat natural since both F and � can be considered

economic primitives of the model, while the i function is not an economic primitive (e.g. in

Olley and Pakes it is the solution to a complicated dynamic investment problem). That said,

we should note that this di¤ers slightly from most of the existing empirical literature, which

treat both i and � non-parametrically, and only F parametrically.15

The two key assumptions regarding the Proxy Choice equation are that 1) i(xit; !it) is

strictly monotonic in !it, and 2) !it is the only econometric unobservable in i(xit; !it). This

15We need � to be parametric to �t the model into a two-step procedure in which the second step only requires
estimating a �nite dimensional set of parameters. In practice, as long as the parametric � is speci�ed �exibly,
the di¤erence should be minor. But strictly speaking, our results only apply when � is assumed parametric.
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implies that two �rms with the same xit and iit have the same !it. To make these assumptions

more plausible, most empirical researchers using this methodology have allowed the proxy choice

equation to vary across t.

iit = it(xit; !it): (42)

This allows for the general economic environment (e.g. input prices, costs of investment, in-

dustry level demand, industry structure) �rms are operating in to change over time. It also

means that two �rms with the same xit and iit do not necessarily have the same !it (if they are

operating in di¤erent time periods).16

We also make the assumption that xit 2 Iit�1 - this is a �timing�assumption that the inputs
used in production at time t were decided upon (i.e. committed to) at time t � 1.17 This is
often partially relaxed in the literature, e.g. in OP and LP, the labor input is not decided until

t. In some case our results can apply to this more general model, but we do not elaborate here

to keep things simple.18

To derive the �rst step estimating equation, substitute the inverted (42) into (39), obtaining:

yit = F (xit; �1) + i
�1
t (xit; iit) + �it

= ht(xit; iit) + �it:

Note that since xit enters this equation both parametrically (through F ), and non-parametrically

(through i�1t ), �1 and i
�1
t cannot be separately identi�ed at this stage. Hence, the �rst step

involves non-parametrically estimating the �composite�functions ht. Common practice in the

applied literature is to use the moment conditions

E [�i1 jxi1; ii1 ] = E [yi1 � h1(xi1; ii1) jxi1; ii1 ] = 0 (43)

:

:

E [�iT jxiT ; iiT ] = E [yiT � hT (xiT ; iiT ) jxiT ; iiT ] = 0

and simple kernel or polynomial series regressions of yit on (xit; iit) to estimate each of the ht�s

16One can also allow the production function F to depend on t - our results would generalize to this model
as well.
17This assumption helps provide identi�cation because although xit is correlated with !it, it implies that xit

is not correlated with the "innovation in !it, i.e. !it � E [!itjIit�1].
18Brie�y, whether our e¢ ciency result holds depends on whether the structural parameters related to the

�variable� inputs can be identi�ed using only the �rst step moment condition. If they are, as in the �rst step
moment of Olley and Pakes (1996), Levinsohn and Petrin (2003), and Wooldridge (2009), our e¢ ciency results
doesn�t hold. If they are not, as in the �rst step moment of Ackerberg, Caves, and Frazer (2006), then our
e¢ ciency result does hold.
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separately. Thus, this again falls into our framework of non-nested conditioning sets.

For the second step estimating equation, take the conditional expectation of (39) given Iit�1,

substitute in (40), and then substitute in the inverted (42), i.e.

E [yitjIit�1] = E [F (xit; �1) + !it + �itjIit�1]
= F (xit; �1) + E [!itjIit�1] + 0
= F (xit; �1) + �(!it�1; �2)

= F (xit; �1) + �(i
�1
t�1(xit�1; iit�1); �2)

= F (xit; �1) + �(ht�1(xit�1; iit�1)� F (xit�1; �1); �2):

The �nite dimensional parameters �1 and �2 are then estimated using the moment condition:

E
h�
yit � F (xit; �1)� �(bht�1(xit�1; iit�1)� F (xit�1; �1); �2)�
 r(Iit�1)i = 0 (44)

where the unknown functions ht have been replaced with their estimates from the �rst step, bht.
Note that since we started by assuming E [�itjIit] = 0 (and Iit includes past i�s and x�s),

the �rst step moments (43) likely do not exhaust all the information in the model. But our

results show that if, as typically done in practice, one only uses this limited set of �rst-step

moments19, the two-step procedure (with appropriate second step weight matrix) does not

sacri�ce asymptotic e¢ ciency relative to a joint procedure. Again, this is important because the

joint procedure would requires non-linear optimization over both � and the ht�s simultaneously,

which is considerably more computationally burdensome (and prone to error) than the two-step

approach, which in most cases only requires non-linear optimization over �.

4.3 Small Monte Carlo Experiment

We perform a brief monte-carlo experiment in the context of the above production function

example to examine the performance of the various estimators in a small sample context. We

consider the following Cobb-Douglas production function in logs

yit = �0 + �1kit + !it + �it

19Presumably applied researchers do this because of the ease of running simple kernel or series regressions.
It would be more complicated to enforce all the moment conditions (i.e. w.r.t. the full Iit) to estimate the ht
functions.
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where �0 = 0 and �1 = 1. Firms accumulate capital according to (note that uppercase variables

are not logged)

Kit = �Kit�1 + �itIit�1

where � = 0:9 and �it is a lognormal shock to the capital accumulation process. Firms invest-

ment decisions are assumed to follow

iit = 
0 + 
1kit + 
2!it (45)

where 
0 = 0, 
1 = �0:1, and 
2 = 1. This investment process is admittedly ad-hoc but very
convenient since it 1) allows us to do the Monte-Carlos without having to solve �rms�dynamic

programming problems, and 2) allows us to run a speci�cation where the non-parametric ap-

proximation is exact. We consider 1000 �rms, and assume we observe two periods of full data

for each �rm (plus a lag - period 0). We do a 1000 period run-in prior to the observed data,

so the data can be thought of as coming from the steady state distribution given the speci�ed

investment process.

The productivity shock !it is assumed to follow a normal AR(1) process with depreciation

parameter �2 = 0:7. The variance of the innovation term in the AR(1) is set such that �! = 0:1.

The measurement error in output, �it is normal and i.i.d. over i and t. We vary �� across the

three relevant periods in the data - ��0 = 0:2, ��1 = 0:05, and ��2 = 0:1. This is important

because in our simple model, this heterogeneity in �� generates an e¢ ciency advantage of joint

estimation relative to naive two-step estimation. Intuitively, the heterogeneity in �� means

that the di¤erent h�s are estimated with di¤erent precision, which is accounted for in joint

estimation (and our procedure), but not in the �naive� two-step approach. The lognormal

capital accumulation shock �it is assumed to be i.i.d. over i and t and where the variance of

the underlying normal is 1.20

Table 1: Monte Carlo Results
20The relatively low variance of ! and � and relatively high variance of � (which generates more variation

in observed kit) helps lower the variance of all the estimators. Relatedly, it also makes the objective function
more concave, which helps the reliability of the numeric optimization algorithm. This is particularly important
to have con�dence in the results of joint estimation procedure because that requires a non-linear search over 15
parameters.
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Naive E¢ cient Two-Step Joint

Truth Mean S.D. Mean S.D. Mean S.D.

Exact Polynomial Approximation (1000 reps)

�0 0 -0.0010 0.0522 -0.0009 0.0484 -0.0006 0.0484

�1 1 1.0002 0.0202 1.0004 0.0186 1.0002 0.0187

�2 0.7 0.6972 0.0361 0.6974 0.0314 0.6999 0.0316

Non-Exact Polynomial Approximation (1000 reps)

�0 0 0.0143 0.0659 -0.0216 0.0565 -0.0146 0.0563

�1 1 0.9930 0.0259 1.0089 0.0222 1.0058 0.0220

�2 0.7 0.7245 0.0433 0.7098 0.0344 0.7243 0.0351

Following the discussion in the prior subsection, we use iit as the �proxy�variable. This

leads to the �rst step moment conditions

E [�i0 jki0; ii0 ] = E [yi0 � h0(ki0; ii0) jki0; ii0 ] = 0; (46)

E [�i1 jki1; ii1 ] = E [yi1 � h1(ki1; ii1) jki1; ii1 ] = 0:

We model h0 and h1 as second order polynomials in the two arguments. Because (45) is linear,

the non-parametric approximation is exact in this case (and while we still estimate the second

order terms, they are irrelevant). We also consider a case where we replace kit and iit with Kit

and Iit (non logged variables) in (46) and assume the h�s are linear. Since !it is not linear in

Kit and Iit, in this case the polynomial approximation is not exact. The second step moment

conditions are

E
h�
yi1 � �0 � �1ki1 � �2(bh0(ki0; ii0)� �0 � �1ki0)�
 [1; ki0; ki1; ii0]i = 0; (47)

E
h�
yi2 � �0 � �1ki2 � �2(bh1(ki1; ii1)� �0 � �1ki1)�
 [1; ki1; ki2; ii1]i = 0:

Results are in Table 1. We estimate the model three ways - e¢ cient joint estimation of

both sets of moments (�Joint�), our proposed two-step e¢ cient estimator from Section 3.3

(�E¢ cient Two-Step�), and a naive two-step estimator that does not consider the e¤ect of bh in
constructing the second step weight matrix (�Naive�).21 Con�rming our theoretical results, the

e¢ cient two-step estimator performs almost identically to the joint estimator, and both have

a smaller small sample variance than the naive two-step estimator. This is true regardless of

21In all three cases, we need an initial consistent estimate of (�; h) to form weight matrices. For all three
cases, we use a h from the �rst-step polynomial OLS regression, and a � obtained by minimizing the second-step
moments with a weight matrix given by V ar ([�0i; �0iki0; �0iki1; �0iii0; �1i; �1iki1; �1iki2; �1iii1])

�1 where �0i and
�1i are i.i.d. standard normals.

24



whether the polynomial approximation subsumes the true speci�cation.

5 Summary

This paper studies the e¢ ciency issue of a general two-step GMM estimation procedure, where

the �exactly identi�ed�unknown nuisance functions are estimated �rst and the �nite dimen-

sional parameters of interest are estimated by GMM with the �rst-step nonparametric esti-

mators. We calculate the semiparametric e¢ ciency bound for these models, and show that

semiparametric two-step optimally weighted GMM estimators achieve the e¢ ciency bound,

where the nuisance functions could be estimated via any consistent nonparametric methods in

the �rst step. Regardless of whether the e¢ ciency bound has a closed form expression or not,

we provide easy-to-compute sieve based optimal weight matrices that lead to asymptotically

e¢ cient two-step GMM estimators.

It is not yet clear whether or how the results would generalize to the case where the �rst

step nonparametric estimator takes the form of a nonparametric instrumental variables (NPIV)

estimator. This is an important challenge that we leave as a future research agenda.
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Appendix

A Proof of the main results in Section 2

Let Fo(�) be the unknown true probability distribution of Z. For ` = 1; :::; L with a �xed

�nite L, let F`;o(�jx`) be the unknown true conditional probability distribution of Z�` given
X` = x`, where Z�` denotes the components of Z not in the conditioning variable X`, and

hence Z = (Z 0�`; X
0
`)
0. The model (1) - (2) can be rewrittenZ

g (z; �o; h1;o(�); :::; hL;o(�)) dFo(z) = 0; (48)Z
�` (z�`; x`; h`;o(x`)) dF`;o(z�`jx`) = 0 for almost all x`, ` = 1; :::; L: (49)

We note that although the unknown functions h`;o(�); ` = 1; :::; L enter the conditional moment
restrictions (2) (i.e., (49)) through h`;o(X`) only, they could enter the unconditional moment

restrictions (1) (i.e., (48)) in a very �exible way. We assume that the in�nite dimensional

nuisance functions ho(�) = (h1;o(�); :::; hL;o(�)) 2 H = H1 � � � � � HL are identi�ed by the

conditional moment restrictions (49), and that if ho(�) were known, the �nite dimensional
parameter �o 2 � is (possibly) over identi�ed by the unconditional moment restrictions (48).
Proof of Lemma 1. For the ease of notation and without loss of generality, we assume in

this proof that L = 2. We assume that the regularity condition as in Newey (1990, De�nition

A.1) is satis�ed.

Let fo(z) to be the true density of Z with respect to a sigma �nite dominating measure �(z),

and fo(z�`jx`) be the true conditional density of Z�` given X` = x` (` = 1; 2). Here F denotes

a class of candidate density function of Z with fo 2 F . De�ne a class of density functions F�
that satisfy the conditional and unconditional moment conditions:

F� =
�
f 2 F :

Z
�1 (z�1; h1(x1)) f(z�1jx1)d�(z�1) = 0;Z
�2 (z�2; h2(x2)) f(z�2jx2)d�(z�2) = 0;Z

g (z; �; h1; h2) f(z)d�(z) = 0

�
: (50)

We will consider a class of densities of Z indexed by (�; h1; h2; �), where � denotes the parameter

that determines the features of the distribution of Z other than the restriction above. More
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precisely, let G denote a class of real valued measurable function of Z such that

F� = ff (zj �; h1; h2; �) : � 2 Gg (51)

for any � = (�; h1; h2) 2 � � H1 � H2. Let V� � V1 � V2 � V� denote the completion (with
respect to the L2-norm) of ��H1 �H2 � G � f(�o; h1;o; h2;o; �o)g where �o satis�es

f (zj �o; h1;o; h2;o; �o) = fo(z):

We will consider the parametric family f (zj �o + �; h1;o + �1v1; h2;o + �2v2; �o + ��v�) in F�.
The scores in the direction of �, �1, �2, �� of this family are such that

s� (Z) = c�;1 (Z�1jX1) + d�;1 (X1)

= c�;2 (Z�2jX2) + d�;2 (X2) ;

sh1 (Z) [v1] = ch1;1 (Z�1jX1) [v1] + dh1;1 (X1) [v1]

= ch1;2 (Z�2jX2) [v1] + dh1;2 (X2) [v1] ;

sh2 (Z) [v2] = ch2;1 (Z�1jX1) [v2] + dh2;1 (X1) [v2]

= ch2;2 (Z�2jX2) [v2] + dh2;2 (X2) [v2] ;

s� (Z) [v�] = c�;1 (Z�1jX1) [v�] + d�;1 (X1) [v�]

= c�;2 (Z�2jX2) [v�] + d�;2 (X2) [v�] ;

with

E [c�;1 (Z�1; X1)jX1] = 0; (52)

E [d�;1 (X1)] = 0; (53)

E [c�;2 (Z�2; X2)jX2] = 0; (54)

E [d�;2 (X2)] = 0; (55)
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E [ch1;1 (Z�1jX1) [v1]jX1] = 0; (56)

E [dh1;1 (X1) [v1]] = 0; (57)

E [ch2;1 (Z�1jX1) [v1]jX1] = 0; (58)

E [dh2;1 (X1) [v1]] = 0; (59)

E [ch2;2 (Z�2jX2) [v2]jX2] = 0; (60)

E [dh2;2 (X2) [v2]] = 0; (61)

E [ch1;2 (Z�2jX2) [v2]jX2] = 0; (62)

E [dh1;2 (X2) [v2]] = 0; (63)

and

E [c�;1 (Z�1; X1) [v�]jX1] = 0; (64)

E [d�;1 (X1) [v�]] = 0; (65)

E [c�;2 (Z�2; X2) [v�]jX2] = 0; (66)

E [d�;2 (X2) [v�]] = 0: (67)

Here, ch1 (Z�1jX1) [v1] and dh1 (X1) [v1] denote the conditional score of Z�1 given X1 and the

marginal score of X1, obtained by di¤erentiating the log-likelihood with respect to �1, for

example. Note that s� (Z) is a d� � 1 vector of functions. Below, we will write ch1 (Z) [v1] �
ch1 (Z�1jX1) [v1], e.g., for simplicity of notations.

Di¤erentiating the moment restrictions in (50), we obtain the nonparametric tangent space

T as the completion of the set consisting of sh1 (Z) [v1] + sh2 (Z) [v2] + s� (Z) [v�], where s�s

satisfy (52) - (67) as well as

E
�
�1 (Z; h1;o) c�;1 (Z)

0��X1

�
= 0; (68)

@m1(X1; h1;o (X1))

@h01
v1 (X1) + E [�1 (Z; h1;o) ch1;1 (Z) [v1]jX1] = 0; (69)

E [�1 (Z; h1;o) ch2;1 (Z) [v2]jX1] = 0; (70)

E [�1(Z; h1;o)c�;1 (Z) [v�]jX1] = 0; (71)
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E
�
�2(Z; h2;o)c�;2 (Z)

0��X2

�
= 0; (72)

E [�2(Z; h2;o)ch1;2 (Z) [v1]jX2] = 0; (73)

@m2(X2; h2;o (X2))

@h02
v2 (X2) + E [�2(Z; h2;o)ch2;2 (Z) [v2]jX2] = 0; (74)

E [�2(Z; h2;o)c�;2 (Z) [v�]jX2] = 0; (75)

and

@E [g (Z; �o; h1;o; h2;o)]

@�0
+ E

�
g (Z; �o; h1;o; h2;o) s� (Z)

0� = 0; (76)

E[g (Z; �o; h1;o; h2;o) sh1 (Z) [v1]] = 0; (77)

E [g (Z; �o; h1;o; h2;o) sh2 (Z) [v2]] = 0; (78)

E [g (Z; �o; h1;o; h2;o) s� (Z) [v�]] = 0; (79)

for any (v1; v2; v�) 2 V1�V2�V�, where @m`(X`;h`;o(X`))

@h0`
and v` (X`) are d`�d` matrix of functions

and d` � 1 vector of functions respectively. Note that (14) is used in (77) and (78).
The residual of the projection of s� on T , s�(Z)�proj [s�(Z)j T ] will give the semiparametric

score S�� (Z) and the semiparametric information bound of �o will be E[S
�
� (Z)S

�
� (Z)

0]. See Bickel

et al (1993) and Newey (1990). We show that the residual of the projection of s� on T is equal
to

S�� (Z) = �
�
@E[g (Z)]

@�0

�0 �
E
�
g (Z) g (Z)0

�	�1
g (Z) (80)

where g (Z) = g (Z; �o; h1;o; h2;o).

We now de�ne ��1 (X1) and ��2 (X2) as solutions to

0 = E
�
�1(Z; h1;o)

�
c�;1 (Z)

0 � S�� (Z)
0 � ch1;1 (Z) [��1]� ch2;1 (Z) [��2]

	��X1

�
(81)

and

0 = E
�
�2(Z; h2;o)

�
c�;2 (Z)

0 � S�� (Z)0 � ch1;2 (Z) [��1]� ch2;2 (Z) [��2]
	��X2

�
: (82)

Note that for ` = 1; 2, ��` (X`) is a d` � d� matrix of functions and

ch`;` (Z) [�
�
` ] =

�
ch`;` (Z)

�
��`;1
�
; : : : ; ch`;` (Z)

�
��`;d�

��
is a 1� d� vector of functions, where ��`;j (X`) denotes the j-th row of ��` (X`) for j = 1; : : : ; d�.

We argue that such ��1 (X1) and ��2 (X2) exist as unique objects almost surely for the fol-

lowing reason. Letting v1 = ��1;j (X1) in (69) and v2 = ��2;j (X2) in (70) for j = 1; : : : ; d�, we
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get
@m1(X1; h1;o (X1))

@h01
��1 (X1) + E [�1 (Z; h1;o) ch1;1 (Z) [�

�
1]jX1] = 0 (83)

and

E [�1 (Z; h1;o) ch2;1 (Z) [�
�
2]jX1] = 0: (84)

Using (68), (80), (83) and (84), we note that

E
�
�1(Z; h1;o)c�;1 (Z)

0��X1

�
� E

�
�1(Z; h1;o)S

�
� (Z)

0��X1

�
� E [�1(Z; h1;o)ch1;1 (Z) [��1]jX1]� E [�1(Z; h1;o)ch2;1 (Z) [��2]jX1]

=0 +

�
@E[g (Z)]

@�0

�0 �
E
�
g (Z) g (Z)0

�	�1
E [g (Z) �1(Z; h1;o)

0jX1]

+

�
@m1(X1; h1;o (X1))

@h01
��1 (X1)

�0
+ 0;

so we rewrite (81) as

0 = E
�
�1 (Z; h1;o) g (Z)

0��X1

� �
E
�
g (Z) g (Z)0

�	�1 @E[g (Z)]
@�0

+
@m1(X1; h1;o (X1))

@h01
��1 (X1) ;

which can be solved for ��1 (X1) as long as @m1 (X1; h1;o (X1))/ @h
0
1 is invertible almost surely.

Similarly, we can solve for ��2 (X2) as long as @m2 (X2; h2;o (X2))/ @h
0
2 is invertible almost surely.

Now let

�0 = s� (Z)
0 � S�� (Z)

0 � sh1 (Z) [��1]� sh2 (Z) [��2] :

We will show that � satis�es the properties (64)-(67), (71), (75), and (79) of the s� (Z) [v�] for

some v�.

� By construction, we have E [�] = 0. Taking

ed�;1 (X1) [v�] = E [�jX1]

= d�;1 (X1)� (dh1;1 (X1) [�
�
1])

0 � (dh2;1 (X1) [�
�
2])

0

+ E
�
c�;1 (Z)� S�� (Z)� (ch1;1 (Z) [��1])

0 � (ch2;1 (Z) [��2])
0��X1

�
= d�;1 (X1)� (dh1;1 (X1) [�

�
1])

0 � (dh2;1 (X1) [�
�
2])

0 � E [S�� (Z)jX1] ;

and

ec�;1 (Z) [v�] = � � ed�;1 (X1) [v�]

= c�;1 (X1)� (ch1;1 (Z) [��1])
0 � (ch2;1 (Z) [��2])

0 � S�� (Z) + E [S�� (Z)jX1] ;
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we can see that properties (64) and (65) are satis�ed for

� = ec�;1 (Z) [v�] + ed�;1 (X1) [v�] :

With ec�;2 (Z) [v�] and ed�;2 (X2) [v�] similarly de�ned, we can see that properties (66) and

(67) are also satis�ed.

� Equations (81) implies that

E
�
�1(Z; h1;o)ec�;1 (z) [v�]0��X1

�
= E

�
�1(Z; h1;o)

�
c�;1 (Z)

0 � S�� (Z)
0 � ch1;1 (Z) [��1]� ch2;1 (Z) [��2]

	��X1

�
+ E [�1(Z; h1;o)jX1]E [S

�
� (Z)

0jX1]

= 0:

which implies that the property (71) is satis�ed by �. Likewise, (75) are satis�ed by �.

� Using (76)-(78), we obtain

E
�
�g (Z)0

�
= E

�
s� (Z) g (Z)

0�� E �S�� (Z) g (Z)0�
= �

�
@E[g (Z)]

@�0

�0
+

�
@E[g (Z)]

@�0

�0 �
E[g (Z) g (Z)0]

	�1 �
E[g (Z) g (Z)0]

	
= 0; (85)

which shows that the property (79) is satis�ed.

These observations lead us to conclude that

sh1 (Z) [�
�
1] + sh2 (Z) [�

�
2] + � 2 T . (86)

Because S�� (Z) is proportional to g (Z), we can deduce from (77)-(79) that S�� (Z) ? T . Along
with (86), this implies that S�� (Z) is the residual of the projection of s� on T . Thus the

semiparametric information bound of �o is

E[S�� (Z)S
�
� (Z)

0] =

�
@E[g (Z)]

@�0

�0 �
E[g (Z) g (Z)0]

	�1�@E[g (Z)]
@�0

�
: (87)
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